MIChAEL A MIHALIK COMBINATICN WIZARDS

************************************************************
ALL SERUICE QUESTIONS FROM EUROPE, MIDOLE EAST, AND AFRICA SHOULD BE ADDRESSED TO THE EUROPEAN marketing center service group in the netherlands.

TEKTRONIX INTERNAL USE ONLY
Published by Service Admin Support
November 21, 1980 56-037 Ext. 8939 Merlo
Issue 10-23

## TABLE OF CONTENTS

PERSONNEL CHANGES ..... 1
GENERAL
BERG CONNECTOR CRIMP TOOLS ..... 2
CAM SWITCH REPAIR MANUAL - Reference Pull-0ut ..... E-1
STOLEN INSTRUMENTS (INTERNATIONAL) ..... 3
UNIVERSAL LOAD UNIT - PRODUCTION ERROR ..... 3A
WIZARDS WORKSHOP MASTER INDEX ..... 4
ADMINISTRATIVE SUPPORT
MAINTENANCE AGREEMENT ADMINISTRATION ..... 4
COMMUNICATIONS DIVISION
MEDICAL
408, 414 POWER SUPPLY CHANGE ..... 5
SPECTRUM ANALYZERS
LEVELING OF HEWLETT PACKARD HP 8620C SYSTEM ..... 6
492/492P SERVICE POINTS ..... 15
1502/1503 FUSED BATTERY PACKS ..... 15

## TELEVISION PRODUCTS

520 SERIES DIFF GAIN TRACE NOISE. ..... 16
528 VERTICAL, NOISE ON TRACE ..... 18
650A/650HR SERIES, PARTS KITS AVAILABLE TO PREVENT SPOT BURNING OF CRT ..... 20
1450 CABLE CLAMP LOOSENESS PROBLEM ..... 20
1480 SERIES, D.C. RESTORER, WIZARD CORRECTION ..... 21
1980 POWER-UP DIAGNOSTICS ..... 22
600 SERIES
602 PHASING ADJUSTMENT ..... 25
608: CRT REPLACEMENT IN EARLY INSTRUMENTS ..... 25
611: U450 LAYOUT MISLEADING ..... 25
613 CG, 613-1 CG, 613 JA; MODIFICATION 35391 APPLIES ..... 26
634 ARCING CRT DETECTION ..... 26
634 MODIFICATION \#36364 ..... 26
SERVICE INSTRUMENT DIVISION
LOGIC ANALYZERS
7 D02 FAILURE TO POWER UP ..... 27
7 D02 PERSONALITY MODULE LOOPBACK ..... 30
PORTABLES
T900 SLOW TURN ON TIME OF H.V. ..... 32
465B DTM JITTER ..... 32
468 SWITCHING FROM NORM STORAGE TO SAVE CAUSES A VERTICAL POSITION SHIFT ..... 33
TELEQUIPMENT
TECHNICAL SUPPORT ON TELEQUIPMENT ..... 33

## INFORMATION DISPLAY DIVISION

GMA102A MANUAL FOR SERIAL NUMBER B060000 AND UP ..... 34
4052/54 MAG TAPE ERROR - COM CLOCK MODIFICATION \#M40828 ..... 34
4054 VECTOR GENERATOR AND DISPLAY CONTROLLER MODIFICATIONS, \#M41262 \& M41404 ..... 36
4631 Y-AXIS DEFLECTION MODIFICATION \#40282 ..... 37
LABORATORY INSTRUMENT DIVISION
MICROCOMPUTER DEVELOPMENT PRODUCTS
CURRENT MANUAL PART NUMBERS ..... 38
VERSION 3.X EDITOR RESTRICTION ..... 41
SEMICONDUCTOR TEST SYSTEMS
S-3200: FLUKE OPTION, TYPE D FIXTURING RESISTANCE MEASUREMENTS ..... 42
S-3200: 1140 CURRENT SUPPLIES: MIXED STOCK ..... 45
COMMUNICATIONS DIVISION
1980
1980 - 1900 COMPATIBILITY (Answer Service Bulletin \#10) ..... 46
REFERENCE PULL-OUTS
T\&M SERVICE SUPPORT RESPONSIBILITY LIST ..... A-1
SYSTEMS SERVICE SUPPORT RESPONSIBILITY LISTS ..... B-1
IDD SERVICE SUPPORT RESPONSIBILITY LISTS ..... C-1
FACTORY SERVICE CENTER FLOW CHART ..... D-1
GENERAL
CAM SWITCH REPAIR MANUAL ..... E-1

## NEW HIRES

Please welcome the following individuals to Tektronix:
Andrew Koval - FSII, IDD
Ft. Lauderdale
Andrew "Tony" came to Tek from Tele-Acoustics, Inc., where he was their service manager.

Kathryn Ott - Denver
Kathy came to Tek upon completion of training at E.T.I. with a great amount of experience in the service environment. Her hobbies include reading, roller skating and travelling.

```
Jay Mendoza - FET I
    Irvine Night Team
```

Jay comes to Tek from Cox Hobbies where he was a Product Technician on radio control systems. His previous experience includes three years with the U.S. Army as a Radio Communications Specialist.

## Gary Clure - Stock Department Field Clerk

 IrvineGary comes to Tek from high school and operates the entire stock area while also attending college. Gary's career plan is to get into the computer programming field.

Eric Morton - Jr. ET
Irvine Night Team
Eric comes to Tek from Racal Dana where he was a Calibration Technician on the DVM line. He is a college student during the day, working towards his AA and Electronic Technician certificate.

```
Ron Roberts - Field Clerk/Driver Irvine
```

Ron is Irvine's new Field Clerk/Driver and helps in the shipping and receiving area. He also drives the shuttle to the Los Angeles Field Office and makes pick-ups and deliveries along the way. Ron's plans include school and possibly a sales or management career with Tek.
PROMOTIONS
Please join us in congratulating the following on their recent promotions in the Santa Clara Service Center IDD group:

$$
\begin{array}{ll}
\text { Bill Tucker } & \text { to Field Service Specialist II } \\
\text { Chris Martinez } & \text { to Field Service Specialist III } \\
\text { Ron Phillips } & \text { to Field Service Specialist III } \\
\text { Lou Shultz } & \text { to Field Service Specialist III }
\end{array}
$$

WELCOME TO OUR NEW HIRES AND CONGRATULATIONS TO THOSE RECEIVING PROMOTIONS!!!!

## GENERAL

## BERG CONNECTOR CRIMP TOOLS

Over 100 different types or sizes of Berg connectors are used in Tektronix products. Fortunately, however, only one connector is replaced with regularity and that is $P / N$ 131-0707-00. The crimp tool Berg manufactures for this connector also crimps P/N 131-0708-00 allowing double use in one tool. The following table matches Berg tools to connectors:

| T00L | CONNECTOR BY P/N |
| :---: | :---: |
| HT-73 | 131-2428-00 |
| HT-95 | 131-0707-00 |
| HT-95 | 131-0708-00 |
| HT-49 | 131-0792-00 |
| HT-48 | 131-0621-00 |
| HT-47 | 131-0622-00 |

When crimping a wire it is important to observe and insure that the crimp height is within the following tolerances: (Continued on the next page)


| CONNECTOR P/N | WIRE SIZE (AWG) | CRIMP HEIGHT (INCHES) |
| :---: | :---: | :---: |
| 131-0707-00 | 22 | . $035-.039$ |
| 131-0707-00 | 24 | . $033-.037$ |
| 131-0707-00 | 26 | . $031-.035$ |
| 131-0708-00 | 28 | . $026-.028$ |
| 131-0708-00 | 30 | . $026-.028$ |
| 131-0708-00 | 32 | . $026-.028$ |
| 131-0621-00 | 22 | . $038-.042$ |
| 131-0621-00 | 24 | . $036-.040$ |
| 131-0622-00 | 26 | . $034-.038$ |
| 131-0622-00 | 28 | . $032-.034$ |
| 131-0622-00 | 30 | . $030-.032$ |
| 131-0622-00 | 32 | . 028 - . 030 |

Present Customer Service connector demand indicates that only the HT-95 and possibly the HT-48 would be useful and appropriate at this time. You may order from your local Berg representative or from CSG in about 2 months.

> --Tom Fox
> 58/511, Ext. 7349

## STOLEN INSTRUMENTS (INTERNATIONAL)

The following instrument has been reported by EMC as missing.

| Product | Serial Number |
| ---: | :--- |
| 466DM |  |$\quad$| Location Missing From |
| :--- |
| this instrument missing |
| from Central Laboratory |

--Editor

Since the release of the article in the October 21 edition, additional input has shed light upon a production error on the 067-0883-99 (Universal Load Unit). It is undetermined at this writing how many ULU's were shipped with this problem; however, all instruments in service should be checked. The problem is the result of a misinterpretation of a poorly documented B-Phase change order.

The error was an incorrect routing of a 26 ga. (black) ground wire. This wire, when properly routed, provides the channel 13 (passive) H. V. return. Without this ground properly in place, channel 13 is floating and, therefore, prevents the test supply that is connected to it from coming up properly.

In the B-Phase change order, the addition of 2 ground wires was called out. Both wires are 26 gauge black wires and are grounded together at the thermal switch on the main heatsink. The other end of one wire was to be connected to pins 35 and 36 on the rear panel sense connector (P3). The end of the other wire was to be connected to pins 31 and 32 of P3. Instead, both wires were inadvertently routed together from ground to pins 35 and 36 , leaving pins 31 and 32 open. It is necessary to move one of the ground wires from pins 35 and 36 on P3 to pin 32 of P3 and jumper pin 32 to pin 31 . It will also be necessary to add a jumper between pins 35 and 36 of P3 if there isn't one already in place.

It should be noted that it is necessary to move one the black wires, as channel 13 needs its own dedicated ground return for optimum performance.

## WIZARDS WORKSHOP MASTER INDEX

Due to many unforseen problems the six month update of the Master Index was not published. Look for a new one the second week in January 1981 which will include all 1980 articles. The publication cycle will then be on an every six month schedule. Your editor apologizes for the inconvenience this may have caused you.

Also, for anyone interested we do have a chronological set of Wizards Workshop on microfiche. This is updated every three months. The set now covers September of 1973 thru October 17, 1980. If you would like this fiche and all future updates just call me on Ext. 8939 Merlo Road or drop me a note at Delivery Station 56-037. It's free!.
--Sharon Huetson Editor

## ADMINISTRATIVE SUPPORT

## MAINTENANCE AGREEMENT ADMINISTRATION

An increasing number of maintenance agreements are being written using IDD Schedule B prices with an effective period of one year.

Schedule B prices are to be used for new products with CRT warranty in effect. The maximum term for such an agreement is nine (9) months, coinciding with the period from expiration of product warranty ( 90 days) to expiration of CRT Warranty (1 year).

## MEDICAL

408, 414 POWER SUPPLY CHANGE
408 Manual P/N 070-1525-00
414 Manual P/N 070-2042-01
At the below listed serial numbers, the power supply circuitry was changed as shown in the picture below. In this case, the problem was fixed before the new circuit board was ever shipped.

Effective Serial Number 408 B203715
Effective Serial Number 414 B097215
Add: C743 P/N 281-0812-00 0.001 $\mu \mathrm{F}, 10 \%$, 100v
R746 Moved location as shown below.


POWER SUPPLY
--Dave McKinney
58/511, Ext. 7072

## LEVELING OF HEWLETT PACKARD HP 8620C SYSTEM

Leveling of the HP 8620C system with the HP435A will not always work properly. Hewlett Packard has suggested that we use the crystal detector method of leveling the 8620C (see Application Note 150-13 which is attached). The crystal detector that will be needed is the HP 8470B, Opt. 12. I suggest that you order a HP8470B, Opt. 12 to enable your technicians to level their systems.
--Rich Kuhns
58-511, Ext. 6782

REMAINDER OF THIS ARTICLE IS ON THE FOLLOWING PAGES.

Spectrum Analyzer Series
Application Note 150-13

## STIMULUS-RESPONSE MEASUREMENTS ... Using the HP 8565A Spectrum Analyzer from 2-18 GHz

## INTRODUCTION

A stimulus/response measurement technique for the 2 to 18 GHz frequency range is described in this note. This application will be of specific interest to those who have an HP 8565A Spectrum Analyzer and an HP 8620C/ 86290B Sweep Oscillator, and have a need to make scalar network measurements. The implementation described here includes the analyzer and sweeper mentioned along with an HP 8709A-H10 Synchronizer.

Microwave devices such as attenuators, filters, amplifiers, directional couplers, and power splitters are characterized through measurements of insertion loss, gain, frequency response, and return loss. To make these measurements with a spectrum analyzer, a swept signal source is desirable. A wide dynamic range can be achieved by forcing this swept signal to track or follow the frequency of the spectrum analyzer input tuning. If this requirement is met, the spectrum analyzer will not detect source harmonics or spurious products generated in its first mixer as it is always tuned to the fundamental. At RF frequencies up to 1300 MHz a suitable tracking signal can be obtained with an HP 8444A Tracking Generator. Further details on the operation and use of tracking generators can be found in HP Application Note 150-3, "Spectrum Analysis . . Swept Frequency Measurements and Selective Frequency Counting with a Tracking Generator."

A tracking signal at microwave frequencies can be obtained in conjunction with the HP 8565A Spectrum Analyzer by externally phase-locking a sweep generator to the spectrum analyzer tuning. This is accomplished using an HP 8709A-H10 Synchronizer functioning as the phase comparator in a phase-lock loop. The frequency range depends upon the choice of sweep generators; here we have used an HP 8620C/86290B Sweep Oscillator which operates from 2 to 18 GHz .

## PERFORMANCE

The characteristics of an actual system are summarized as follows and should be regarded as typical:

| Frequency Range | Dynamic Range |
| :---: | :---: |
| $2-4 \mathrm{GHz}$ | 76 dB |
| $3.8-8.5 \mathrm{GHz}$ | 76 dB |
| $5.8-12.9 \mathrm{GHz}$ | 66 dB |
| $8.5-18 \mathrm{GHz}$ | 60 dB |

Table 1. Typical Performance
The indicated frequency ranges correspond to available bands on the HP 8565 A with the exception of the first ( $2-4 \mathrm{GHz}$ ). Any center frequency and frequency span may be selected on the analyzer so long as that range is available from the sweeper.


Figure 1. Test Set-Up

## OPERATION

The required interconnections for the signal tracking system are shown in the figure above.

Basically, a phase-lock loop is set up so that the output of the sweeper, which is down-converted within the analyzer to an IF frequency, is compared to a fixed oscillator in the HP 8709A-H10 Synchronizer. This reference frequency is 21.4 MHz -chosen to be the same as the analyzer's final IF. The phase comparison yields an error voltage which frequency modulates the sweeper, keeping its output tuned to the center of the analyzer's passband.

Certain operating characteristics of this phase-lock loop are worth noting. The limiting loop bandwidth is the analyzer's 3 MHz IF bandwidth; using narrower bandwidths ( $<3 \mathrm{MHz}$ ) tends to decrease the loop stability to the point that oscillations can occur. For this reason, bandwidths less than 3 MHz are generally not usable.

If the DUT exhibits large out-of-band rejection, only a very low-level signal will reach the analyzer and, in turn, the synchronizer may receive insufficient signal to function. The HP 8709A-H10 in the test set-up required a minimum input level of -76 dBm ( -65 dBm specified). This corresponds to a CRT display range of 6.6 divisions, measured down from the top. So long as the analyzer's noise is below this threshold level, the dynamic range lower limit is determined by the minimum IF signal required to drive the synchronizer; this is the case for the first two frequency bands listed in Table 1. For the other two ranges, the analyzer's internal noise sets the overall system sensitivity and thus determines the available dynamic range.

## INITIAL SET-UP

Connect equipment as shown in Figure 1, replacing the device under test (DUT) with a "through" cable for calibration. As an illustration, the system will be set up for an analyzer full band, 5.8 to 12.9 GHz . Alternatively, any combination of center frequency and span may be used.

8565A:
Set all Normal Settings (controls marked with green) FREQUENCY BAND GHz ............................5.8-12.9 INPUT ATTEN ................................................... 10 dB REF LEVEL ................................................ +10 dBm REF LEVEL FINE ... 0 FREQUENCY SPAN MODE .................FULL BAND SWEEP SOURCE .................................................EXT PRESELECTOR PEAK ................Centered in Green

8620C/86290B:
(Front Panel) BAND Band 4 (2-18.6 GHz)
MARKER SWEEP pushbutton $\qquad$ Depress START MARKER pointer ...............................5.8 GHz STOP MARKER pointer ...............................12.9 GHz SWEEP TIME-SECONDS .. - . 01 SWEEP TIME-SECONDS vernier Fully Counterclockwise RF OFF-ON .............................................................ON ALC SWITCH ......................................................INT POWER LEVEL ...........................................Midrange
(Rear Panel) RF BLANKING/OFF ........................RF BLANKING DISPLAY BLANKING/OFF ..DISPLAY BLANKING FM-NORM-PL ...........................................................PL

8709A:
MOD. SENS
... $6 \mathrm{MHz} /$ Volt
ERROR SIGNAL
(use "+" for bands 1.7-4.1, 3.8-8.5 GHz, and "-" for 8.5-18 GHz)


Figure 2. Sweeping Without Phase-Lock

## TRACKING PROCEDURE

Starting with the system out-of-lock (Figure 2), phaselock sweep oscillator as follows:

1. Set sweep oscillator to manual sweep mode with manual sweep control fully counterclockwise.
2. Set sweep oscillator start marker to low frequency of selected spectrum analyzer FREQUENCY BAND and adjust start marker for synchronizer phase-lock (minimum phase-error). (Figure 3a.)
3. Set sweep oscillator manual sweep control fully clockwise.
4. Set stop marker to high frequency of selected spectrum analyzer FREQUENCY BAND. Adjust stop marker for synchronizer phase-lock (minimum phase-error). (Figure 3b.)
5. Set sweep oscillator to automatic sweep mode and check for phase-locked spectrum analyzer CRT display. If the system is breaking phase-lock, repeat steps 1 through 3. Phase-lock drop-outs will be minimized by using slower sweep speeds.


Figure 3. Adjusting for Phase-Lock At Start and Stop Frequencies

## MEASUREMEXT PROCEDCRI

The sweeper is now generating a signal that tracks the tuning of the analyzer. For passive device testing, adjust POWER LEVEL on the sweeper to obtain the maximum leveled RF output (i.e., insure that the UNLEVELED indicator remains off during the entire sweep.) Adjust RF OUTPUT-PEAK and ALC SLOPE on the sweeper together with PRESELECTOR PEAK on the analyzer to achieve as flat a trace as possible on the CRT screen. Set REF LEVEL on the HP 8565A to position the trace at the top of the screen (Figure 4). This serves as the calibration


Figure 4. Phase-Locked Sweep
reference level. Replace the "through" cable with the test device to measure its swept response relative to the calibration level (Figure 5).

The display range for this analyzer band is 5.6 divisions, measured down from the top graticule line (i.e., from +10 dBm to $-46 \mathrm{dBm})$. To obtain the full dynamic range listed in Table 1, shift the trace 10 dB off the top of the screen


Figure 5. Frequency Response of 6 to 8 GHz Bandpass Filter
(reduce INPUT ATT to 0 dB ). 5.6 divisions are again available but now the range is from 0 dBm to -56 dBm . In Figure 6, the full dynamic range of 66 dB is displayed in composite photograph. Switching the attenuator is neces sary because during "through" calibration, the reference line cannot be positioned above the 1 dB gain compression input level of 0 dBm with 0 dB attenuation. Adding 10 dB input padding raises the effective input gain compression level to +10 dBm , thereby permitting a calibration level which utilizes the maximum power available from the HP $8620 \mathrm{C} / 86290 \mathrm{~B}$ Sweeper. Thus, the usable dynamic range is as shown in Table 1 provided the operator switches the input attenuator from 10 dB to 0 dB to alter the limits of the displayed range.


Figure 6. Composite Photo of Filter Response Showing 66 dB Dynamic Range

For test devices with gain, set the calibration level low enough on the display such that the trace remains on screen when the gain is inserted. In a $\log$ mode (such as 10 dB / div), be certain the reference line is not set below the seventh graticule so that trace calibration is retained.

To measure return loss, a directional coupler, a short and a 50 ohm termination are required, connected as shown below.


Figure 7. Return Loss Measurement Test Set-Up

First, calibrate the system with the short (total reflection, or 0 dB return loss) in place of the DUT. Then replace the short with the DUT-properly terminated in 50 ohms-and measure return loss relative to the calibration level (Figure 8).

Whichever type of stimulus/response measurement is undertaken, special care should be used when testing narrowband devices, as they may serve to limit the response time of the system and thus require the use of long sweep times. The fastest usable sweep speed should be determined by first increasing the rate of sweep until the display clearly changes (i.e., distorts), and then reducing the rate until the trace ceases to change.


Figure 8. Return Loss of 6 to 8 GHz Bandpass Filter

## IMPROYED FLATNESS

There are two ways to improve the frequency response (flatness) of this tracking system. The set-up may be configured with an external leveling loop as shown in Figure 1 with the addition of a power splitter (or coupler) and a detector. This technique reduces the effects of mismatch errors between the DUT and the loop components. An effective method to improve the spectrum analyzer's flatness uncertainty is to normalize it out of the measurement by incorporating the HP 8750A Storage Normalizer. The return loss measurement shown in Figure 8 is repeated in Figure 9 using the HP 8750A. Note the flatness achieved by normalizing during calibration.


Figure 9. Return Loss of 6 to 8 GHz Bandpass Filter Using HP 8750A Storage Normalizer

## EXTERNAL CRYSTAL DETECTOR LEVELING



## EQUIPMENT:

| Sweep Oscillator | P860C |
| :---: | :---: |
| RF Plug-in | HP 86290A |
| Oscilloscope | HP 182C/1801A/1820C |
| Power Meter | HP 432A |
| Crystal Detector (2 required) | HP 8470A |
| Power Splitter | HP 11667A |
| Directional Coupler | HP 11691D, Option CO-1 |
| Thermistor Mount | HP 8478B |
| - 7 to | HP 11525 |

## PROCEDURE:

1. Connect equipment as shown in test setup.

NOTE
Crystal Detector output must be between 25 mVdc and 350 mVdc.

## SECTION III OPERATION

## 3-1. INTRODUCTION

3-2. This operating section explains the function of the controls and indicators of the Model 86290A RF Plug-in. It describes typical operating modes in a measurement system and covers operator maintenance for replacing the indicator lamps. Figure $3-13$ shows the positions of the ALC Function switch A1S1 that the operator will set for each application.

## 3-3. PANEL FEATURES

3-4. Front and rear panel features are described in Figures 3-2 and 3-3. Description numbers match the numbers on the illustration.

## 3-5. OPERATOR'S CHECKS

3-6. The Operator's Checks (Figure 3-4) allow the operator to make quick evaluation of the instrument's main functions prior to use. These checks assume that the 86290A RF Plug-in is installed in an 8620C Sweep Oscillator mainframe. The checks cover the RF Plug-in and mainframe; therefore, if the correct indications are not obtained, trouble may be in either of the units. If the RF Plug-in is suspected, perform applicable performance tests in Section IV of this manual, and if necessary, the related adjustments in Seciton V. If correct indications are still not obtained, refer to the troubleshooting chart in Section VIII to isolate the problem.

## 3-7. OPERATING INSTRUCTIONS

WARNING
Any interruption of the protective (grounding) conductor (inside or outside the instrument) or disconnecting the protective earth terminal could make this instrument dangerous.

## 3-8. Internal Leveling

3-9. The most convenient method of RF output leveling is internal leveling. A portion of the RF output is coupled from a Directional Coupler DC1 to a Detector CR1. A proportional de-voltage is applied to an operational amplifier in the 86290A ALC Amplifier Assembly A1. The Operator's Checks in Figure 3-4 are performed in the internal leveling mode.

## 3-10. External Power Meter Leveling

3-11. Power leveling can be obtained with a power meter and power splitting tee or directional coupler as shown in Figure 3-10. A sample of the RF output signal is routed to a power meter to produce a dc voltage proportional to the RF signal level. The dc voltage is applied to the 86290 A ALC circuits and compared with an internal reference voltage. A difference voltage is produced and amplified by the ALC amplifier before being applied, as modulator drive, to the Coupler/Modulator assembly A10. The modulator drive controls the output of the Coupler/Modulator to maintain a constant power level.

## 3-12. External Crystal Detector Leveling

3-13. Power may be leveled externally using a power splitting tee (or directional coupler) and crystal detector. This leveling system uses a power splitting tee to sample the RF output signal and a crystal detector to produce a dc voltage proportional to RF signal level. The detector voltage is compared with an internal reference voltyage, and the difference voltage changes the output power level to keep it constant at the output. Instead of a power splitting tee, a directional coupler may be used to sample the RF signal for the leveling loop. Directional couplers are usually narrow band, whereas the power splitting tee is flat over a wide frequency range. The advantage of a directional coupler is that it does not have a $6-\mathrm{dB}$ loss like the power splitting tee, therefore a higher maximum leveled power output may be obtained. To place the crystal detector leveling loop in operation, use the test setup and procedures in Figure 3-11.

## EXTERNAL CRYSTAL DETECTOR LEVELING

2. Set controls as follows:
```
8620C:
    BAND
    BAND 4, 2.0 - 18.0 GHz
    MARKER ..................................................... OFF
```




```
    TIME/SECONDS Vernier ..................... Fully clockwise
    1 kHz SQ WAVE/OFF (rear panel) ...................... OFF
    DISPLAY BLANKING/OFF (rear panel) . .DISPLAY BLANKING
86290A:
RF OUTPUT
ON
POWER LEVEL . . . . . . . . . . . . . . . . . . . . . . . . Fully clockwise
ALC ........................................................... . EXT
ALC GAIN .................................... . . Fully clockwise
FM-NORM-PL (rear panel) ............... NORM (Normal)
```

3. Press 8620 C LINE pushbutton to ON; LINE, and FULL SWEEP pushbuttons should light, indicating FULL SWEEP mode is selected. The $2 .-18.0 \mathrm{GHz}$ lamp should light on 86290A.
4. Adjust ALC GAIN and POWER LEVEL controls fully clockwise for maximum RF power OUTPUT and maximum ALC Loop gain. Adjust PEAK control for maximum RF power. One of the conditions shown in Figures 3-5 through 3-9 should be displayed on oscilloscope. If trace is unleveled as shown in Figures 3-5 or 3-7 (or partially leveled) and UNLEVELED lamp is on, turn POWER LEVEL control counterclockwise until trace is level. (See Figures 3-6 and 3-8). If ALC loop gain is too high, oscillations may occur as shown in Figure 3-9. To remove oscillations, reduce ALC loop gain by turning ALC GAIN control counterclockwise.
5. To use leveled RF power output for testing external equipment, make connection at point marked "Leveled Power Output."


Figure 3-5. Unleveled Rf Power Output for Sequential Sweep


Figure 3-7. Unleveled RF Power Output for Single Band


Figure 3-6. Leveled RF Power Output for Sequential Sweep


Figure 3-8. Leveled RF Power Output for Single Band


Figure 3-9. Oscillations with ALC Loop Gain Too High


There still seems to be some confusion as to where to send a 492/492P for repairs. Some Service Centers are automatically shipping instruments to Factory Service. DO NOT SHIP INSTRUMENTS TO FACTORY SERVICE FOR REPAIRS UNLESS IT IS YOUR LOCAL 492/492P SERVICE CENTER. Please send units to the Service Center designated for your area. The following is a list of 492/ 492P Service Centers:

BOSTON
CHICAGO

ROCKVILLE
SANTA CLARA

FACTORY SERVICE
If you have any questions, please contact me.
--Rich Andrusco
58/511, Ext. 5609

## 1502/1503 FUSED BATTERY PACKS

The battery pack for the 1502 and 1503 was modified to include a 3 amp fuse, P/N 159-0124-00, and a fuse protection plate, P/N 337-2762-00. During calibration or repair of the $1502 / 1503$, the battery pack is inserted into the instrument without the cover on the instrument. The fuse protection plate on the battery pack may possibly cut the cable harness in the 1502/1503. To prevent cutting the cable harness, I suggest extending the battery pack during repair and calibration. You can do this with the following parts:

BNC male to dual binding post adapter $\quad P / N$ 103-0035-00
BNC female to BNC female adapter $\quad P / N$ 103-0028-00
$50 \Omega$ coaxial cable, 42 in. $\quad \mathrm{P} / \mathrm{N}$ 012-0057-01
BNC female to dual banana adapter $\quad P / N$ 103-0090-00
--Rich Kuhns
58-511, Ext. 6782

## 520 SERIES DIFF GAIN TRACE NOISE

Reference: 520A Instruction Manual, P/N 070-1709-00
When used in the DIFF GAIN mode, a situation can occur that appears as "noise" on the CRT trace. The reason for this noise is that transistor, Q836, is driven hard into saturation during the vertical interval. During the vertical interval, the clamp Amp samples during each horizontal sync pulse. When Q836 is slow coming out of saturation, the clamp level changes and appears as "noise" on the signal.

To improve circuit operation, a diode ( $P / N$ 152-0141-02) is added to the back of the board between the emitter of Q836 and the emitter of Q856, the cathode end going to Q836. This switches the extra current through R855 and Q856 to Q835, thereby relieving Q836 of the extra charge dissipation. The addition of the diode also protects $Q 856$ from being reverse biased into zener break down. Another diode ( $P / N$ 152-0141-02) is also added to Q956 (cathode to Q956 emitter) and Q976 (anode to Q976 emitter) on the back of the circuit board, again for reverse break down protection.

Refer to the following diagrams for the additions required.

CONCLUSION OF ARTICLE IS ON THE FOLLOWING PAGE.
--Bil1 Bean
58/511
Ext. 6507

$$
\begin{aligned}
\text { Parts of } 670-0537-00(\text { B333000-B399999)/ } \\
670-0537-04 ~(B 400000 ~ \& ~ U p)
\end{aligned}
$$



## VERTICAL AMPLIFIER



HORIZONTAL AMPLIFIER

Reference: Mod \#41688, Instruction Manual P/N 070-0800-00 Diagram (1)

Zener diodes D172 and D152 have been contributing excessive noise to the vertical sweep due to operation in a low current mode. To reduce the noise, the current is increased through these diodes by resistor value changes. R154 and R174 are to be changed from 300 K ohm resistors to 174 K ohm, ( $\mathrm{P} / \mathrm{N} 323-0408-00$ ), $\frac{1}{2}$ watt resistors.

MAIN BOARD
670-0588-06
(528)

(continued)


INPUT \& VERTICAL AMPLIFIER《1

Reference: 650 Manual P/N 070-2234-00
650HR Manual P/N 070-2246-00
Modification 37966
WIZARD'S WORKSHOP Issue 10-11, Pg. 19
The article in Issue 10-11 titled "Modification to Prevent Spot Burning of the CRT Phosphor" outlined a procedure to install components to eliminate spot burning of the CRT at turn-off. A kit (P/N 050-0741-01) is available which contains a blanking circuit board with the piggy-back board already installed. When available the new corrected blanking board will be put in this 050 kit. While more expensive than adding individual components, the availability of this kit reduces labor required to implement the modification. Service Centers should use their own discretion when deciding which method to use.
--Steve Schmelzer
58/511, Ext. 6507

## 1450 CABLE CLAMP LOOSENESS PROBLEM

Cable clamps and associated hardware in the 1450 have been showing signs of loosening up after exposure to heat over a long period of time. This is generally caused by the tendency of the plastic, in the cable clamp, to move away from areas of mechanical pressure. Heat makes the plastic a little softer and exaggerates the problem.

If you are experiencing this problem, the solution is as follows:

| Remove--211-0507-00 | Screw |
| :--- | :--- |
| 210-0863-00 | Washer |
| $211-0511-00$ |  |
| $210-0005-00$ | Screw |
| $210-0778-01$ |  |
| 210-0601-01 Eyelet Washer |  |
| Eyelet |  |

These parts are all current part numbers and should be readily available.

This material is provided to correct an article published in WIZARD'S WORKSHOP, Issue 10-8, April 18, 1980.

The text in the article concerning a modification to improve incomplete D.C. restorer turn-off was correct. The partial schematic that was provided is in error. The proper schematic is illustrated below. The nomeclature is also correct as it is illustrated below:


DC RESTORATION \& GAIN CONTROL SCHEMATIC

## 1980 POWER-UP DIAGNOSTICS

```
Reference: Video Data Converter A-24, P/N 670-5695-00
Video Data Converter Board, S/N B010010100 - B010010180 (S/N on the Board)
```

The 1980 will show a power-up diagnostic error in the "VID:" section of the diagnosticsif a signal is connected to EXTB SYNC. This is due to an error in the circuit board. All video data converters will have the following modification installed before leaving the factory. Units with S/NB010010180 and below should be modified as they are returned for repair service, or they can be modified onsite on an "as needed" basis.

To determine whether or not power-up errors are a result solely of this problem, disconnecting any input signal from both EXT B SYNC input connectors should clear the error condition.

An example of power-up errors with a signal applied to EXT B SYNC is as follows:

$$
1980 \text { SELF TEST }
$$

CPU: DONE
RAM: DONE
FIRM: DONE
ROM: DONE
TT:
DONE
NVM: DONE
VID: FPULSE F
FBINCR F
DVMVAL F
CSAVE F
CSKIP F
CINSTR F
TEST COMPLETE
(continued)

The modification goes as follows:

1. Change R121 from $750 \Omega$ to $390 \Omega$ (315-0391-00).
$\frac{\text { Front of 670-5695-00 }}{\text { (Partial) }}$

2. Cut ECB run on rear of circuit board that goes from cathode of CR121 to pin 10 of U420.

$$
\frac{\text { Rear of } 670-5695-00}{\text { (Partial) }}
$$


3. Clip pin 10 of $U 420$ close to board and CAREFULLY bend the leg of the IC up to clear the board.
4. Connect an insulated piece of wire ( 3 " of \#20) from bent up pin (10) of U420 to cathode end of CR121.

Front of 670-5695-00
(Partial)


If the mod has been installed correctly and power-up diagnostic errors still exist, another malfunction exists and should be troubleshot as required. Mod installation in the factory started at board serial number B010010181.
--Bill Bean
58/511, Ext. 6507
-
*


## 602 PHASING ADJUSTMENT

The phase setting as described in the 602 instruction manual (P/N 070-0799-00, page 5-7) may sometimes be difficult to attain. If this is the case, it may be necessary to "dress" the feedback capacitors, C20, C29, C70 and C79.
"Dressing the caps" consists of bending them toward or away from their associated parallel resistors, R20, R29, R70 and R79. This is done while observing the elipse on the CRT face to obtain minimal phase difference.

63/503, ext. 3928

## 608: CRT REPLACEMENT IN EARLY INSTRUMENTS

The earliest 608 monitors were shipped with a wire connection for grounding the CRT funnel. A few of these also had an oversized faceplate. This was due to a limited supply of funnels.

When replacing one of these CRTs it may be necessary to install a spring contact ( $\mathrm{P} / \mathrm{N}$ 131-2187-00) to ground the funnel.

In addition, those instruments with large faceplates on original CRTs must have the one-piece CRT front support replaced by two 386-3824-00 supports.

My thanks to K. Takahashi, of Sony/Tek, for bringing this to our attention.
George Kusiowski
63/503, ext. 3928 (WI)

## 611: U450 LAYOUT MISLEADING

The layout for the Z-axis and high voltage board ( $\mathrm{p} / \mathrm{n}$ 670-0837-0X) in the 611 Storage Display Unit is misleading as to the orientation of U450. The flag indicating pin \#1 rests, instead, on pad \#8.

A correction to this error is not expected due to the advanced age of the 611.

My thanks to Bill Stevenson and Pat Morrison of Dallas for sharing this observation.

The recent implementation of MOD \#37777 in the 634 monitor has helped minimize the damage done to circuitry in the event of a CRT arc. One component, however, is still vulnerable.

Diode CR184 in the video interface's output characteristically fails if the CRT arcs. Repeated failure of CR184 is therefore a strong indication of an arcing CRT.

613 CG, 613-1 CG, 613 JA; MODIFICATION 35391 APPLIES
References: "613 High Voltage Board Resistor Changes, MOD \#35391"
Wizard Workshop February 16, 1979, issue 9-3, page 14
"Correction to 613 High Voltage Board Article" Wizard Workshop January 25, 1980, issue 10-2, page 21.

The modification described in the above mentioned articles has been applied to the high voltage boards in the 613 CG, 613-1 CG and 613 JA custom modified products. Installation changes the part number of the high voltage board from CM 670-2308-50 to CM 670-2308-51.

This article is for your information only.
--George Kusiowski
63/503, Ext. 3928

Modification 36364 changed the part number and rating of fuse F406 as reported in "634 High Voltage Fuse Change," Wizards Workshop issue 9-6 (April 6, 1979), page 41. In addition, a number of U.L. concerns were addressed to facilitate production of Options 6 and 9.

To prevent the bottom cover from being pushed in and contacting the interface circuit board, a nylon spacer ( $P / N$ 129-0143-00) and a $6 \times 32$ screw ( $\mathrm{P} / \mathrm{N}$ 211-0040-00) were added to the board. The part number of the interface board then changed from 670-5592-01 to 670-5592-02 and is now 670-5592-03.

To preclude the possibility of leakage or arcing between runs on the low voltage power supply board, an insulating coating was applied to the 670-5595-01 circuit board assembly. However, to avoid requiring the use of a coating, a new circuit foil pattern was made up. This new layout pattern was implemented in the 670-5595-02 board which is a direct replacement for the -01 low voltage power supply board.

Finally, a possibility existed that the sliding cabinet top panel could abrade against the deflection yoke wiring harness. To correct this, a fiber insulator ( $P / \mathrm{N} 342-0483-00$ ) was added to protect the harness. Initially, there was some difficulty in obtaining this item.

At the time of this writing, the 342-0483-00 insulator is readily available.
Modification \#36364 became effective in 634 number B010821.
This article is for your information only. No field update is intended.

## SERVICE INSTRUMENT DIVISION

## LOGIC ANALYZERS

## 7D02 FAILURE TO POWER UP

All 7D02's above Serial Number B010100 and below B010410 may experience intermittent power up. The symptoms are: C.P.U. lockup with random numbers on the display.

This condition is caused by the display board +5 Volt supply coming up slightly before the C.P.U. Board +5 Volt Supply. This in turn, sometimes causes the ready line to go low while the C.P.U. is trying to exercise power up routines. A low READY line will inhibit the 8085 from writing to and reading from memory.

The fix is to add a 4.7 K resistor R3076 (315-0472-00) to the C.P.U. Board (670-5984-00), from U4080 Pin 1 to +5 Volts. Also, add to the display board (670-5983-00), a 1.8 K resistor R3052 (315-0182-00), from U3020B Pin 12 to +5 Volts, and add a 2.2 microfarad capacitor C3039 (290-0523-00), from U4040A Pin 1 to ground.

Refer to the following schematics.
If any questions, please call.



## 7 D02 PERSONALITY MODULE LOOPBACK

When making the 7D02 self-test stimulus connections on the PM101 personality module, it is important that all loopback connections be in the correct positions. If any signal lines are not connected or on wrong pins, failures will result in the personality module diagnostic tests.

Figure 1 shows the colors of all the PM101 signal and ground pins. Note that the address and data lines start with black through white, then start over with black. The second black being line ten. Be sure to connect the P 6451 probe when running the extended diagnostics. Without the P6451, Timing Option Test will fail test 3 with a 2E807-7 error (no trigger error).

With any other personality module with the onboard data generator, be sure the S.U.T. (System under test) plug is plugged into the diagnostic loop back socket and insure that no microprocessor is inserted in the Z.I.F. (zero insertion force) socket. If a microprocessor is inserted, the personality module will fail the diagnostics. Also, damage may result to the microprocessor.

If any questions, please call.
7 D02 PERSONALITY MODULE LOOPBACK (CONTINUED)

| ${ }_{\text {T17 }}{ }^{\text {T10 }}$ | T9 |
| :---: | :---: |
|  |  |
| 015 | 07 D8 |
| T17 T10 | $\mathrm{T9}^{\text {T9 }}$ |
|  |  |
| $\underset{\text { A15 }}{ }$ | $A 7 \quad A D$ |
| timing (from P6451 proe |  |
| Ggry |  |

FIGURE 1


## T900 SLOW TURN ON TIME OF H.V.

Reference: CRT \& Vertical Amplifier Schematic
Serial Numbers: T912 B016760 to B016789
T922 B022950 to B030859
T922R B013880 to B013919
T932A B022410 to B022489
T935A B024020 to B024059
442 B024432 to B024521
In some instruments listed above, Q458, the H.V. oscillator transistor, may have P/N 151-0423-00 in the circuit instead of the correct P/N 151-0423-01. With the -00 part in the circuit, the H.V. may take up to 30 seconds to turn on. In some extreme cases the H.V. may not turn on at all and load down the other power supplies. The correct transistor P/N 151-0423-01 is selected from P/N 151-0358-00. Either of these transistors will work properly in the circuit, however, P/N 151-0423-01 has been stressed and prechecked which makes for a more reliable part in the circuit.

To check for the wrong transistor in the instrument, $P / N$ 151-0423-00 has a black case whereas the correct part, P/N 151-0423-01, has a red case.
--Mike Laurens
58/511, Ext. 6246

## 465B DTM JITTER

One possible source of DTM jitter is caused by wires coming from P6015 on the timing board, going to P7052 on the trigger board. If these wires run parallel and touch the CH2 trigger coax, it can cause crosstalk between CH2 trig coax and the input to the "B" delayed pick off comparator, thus causing jitter. To determine whether $\mathrm{CH}_{2}$ coax is causing the problem, simply unplug the CH 2 coax from the trigger board and the jitter should reduce.

To prevent the crosstalk, dress the wires away from the CH 2 coax. The wires may cross each other but they should not be touching along the entire length.
--Written by
465B Manufacturing
--Submitted by
Mike Laurens
58/511, Ext. 6246

Reference: Manual--Volume I $P / N$ 070-3515-00
Volume II P/N 070-3516-00
Schematic 16 Storage Display $X$ and $Y$ Axis
In the storage display circuit U359, U365, U373, U374, U377, and U385 are used to set the vertical position in SAVE. However, because of the feedback loop of the circuit, an error in one part will cause erroneous voltages elsewhere in the circuit. (See Theory of Operation, Vol. I, Page 3-61.) This feedback loop makes the circuit difficult to troubleshoot.

To break the feedback loop so the circuit can be diagnosed, a shorting strap can be placed across R386 (CH2-R461) which places the $+5 v$ to pin 6 of U377 (U365). This produces an output of 11111111 from U377 (U365) which is read by the D.A.C. U385 (U359). The current output of U385 (U359) is fed into pin 13 of U374D (pin 6 of U374B) which produces a voltage output of -7.5 v at pin 14 of U374D (pin 7 of U374B). By shorting pin 6 of U377 to ground the output of that chip will be 00000000 which produces $0 v$ at pin 14 of U374D. Normal circuit operation produces a voltage of 0 to +7.5 v at pin 8 of U374C (pin 1 of U374A) and an equal but opposite voltage at pin 14 of U374D (pin 7 of U374B) which nulls to $0 v$ at pin 5 of U373B (pin 3 of U373A). However, by shorting across or grounding the resistor this null voltage will not be there.

By using this technique two known outputs can be expected which should help in isolating the trouble area.
(NOTE: All these measurements are made when the instrument has sampled in NORM STORAGE and then switched to SAVE.)
--Mike Laurens
58/511, Ext. 6246

## TELEQUIPMENT

## TECHNICAL SUPPORT ON TELEQUIPMENT

Please direct all technical Telequipment questions to:
TOM HERD
56-103
Ext. 8616 Merlo Road.
--Editor

## GMA102A MANUAL FOR SERIAL NUMBER B060000 AND UP

A new instruction manual is available for the major mod GMA102A which has serial numbers of $\mathbf{B 0 6 0 0 0 0}$ and up. Part number of the new manual is $070-3635-00$, title of manual is GMA102A (B060000 and up) STORAGE DISPLAY MONITOR Instruction Manual.
--Dennis Painter 63/503, ext. 3597

## 4052/54 MAG TAPE ERROR - COM CLOCK MODIFICATION \#M40828

Some 4052's and 4054's have indicated read errors during a read operation of the magnetic tape. The source of these read errors are actually due to a improperly formatted header written on a file or data on the magnetic tape written incorrectly. The result is the magnetic tape cannot be read by the 4052/54. The circuitry that causes the eiror is on the $4052 / 54$ I/0 Boards. Modification \#M40828 addresses the write error.

There are two different procedures to Modification \#M40828, the first addressing the 4052 I/0 Board, the second, the 4054 I/0 Board.

The first procedure addressing the 4052 I/0 Board 670-5632-01 is as follows.

Parts Needed: 1 283-0107-00 51pf capacitor
1 317-0101-00 100ohm resistor
Procedure: (refer to figure 1)

1) Clip and lift pin 1 of U505
2) Add 100 ohm resistor (317-0101-00) circuit number R405, between U505 pin 1 and the pad of where pin 1 of $U 505$ was clipped from.
3) Add a 51 pf capacitor, circuit number C405 (283-0107-00), between 4505 pin 1 and ground.
4) The 670-5632-01 will roll to a -03 .
(CONTINUED)

Procedure to MOD the 670-5666-01 4054 I/0 Board.
Parts Needed: 1 283-0107-00 51pf capacitor
1 317-0101-00 1000hm resistor
Procedure: (refer to figure 2)

1) Clip and lift U120 pin 1
2) Add 100 ohm resistor circuit number R121 (317-0101-00), between U120 pin 1 and the pad of where pin 1 of U120 was clipped from.
3) Add a 51pf capacitor, circuit number C121 (283-0107-00), be tween U120 pin 1 and ground.
4) The $670-5666-01$ rolls to a -02 .


Figure 14052 Manual Schematic 5-2


Figure 24054 Manual Schematic 5-2

4054 VECTOR GENERATOR AND DISPLAY CONTROLLER MODIFICATIONS, \#M41262 \& M41404
Some 4054 's with Option 30 installed have demonstrated an undesirable problem when operating in a refresh mode. The symptom of this problem occurs as follows: The 4054 may draw some unwanted vectors and hang busy. In addition, when the product hangs busy, the $Z$ axis may remain on causing the CRT to be damaged. This problem is caused by interaction between the Vector Generator (670-5667-02) and Display Controller (670-5672-03), and is only apparent with Option 30 installed. There are two modifications addressing this problem. Both modifications have to be implemented together.

The first mod is \#M41626 and addresses the Display Controller (670-5672-03). The procedure is as follows:

1. Clip pin 1 of U20.
2. Run an insulated wire from pin 1 of U20 to pin 11 of U630.
3. Roll 670-5672-03 to a -04 level board.

The second mod is \#M41404 and addresses the Vector Generator (670-5667-02). The procedure is as follows:

1. Remove U155 (156-0382-01, 74LS00)
2. Replace U155 with a 156-0030-00 (7400).
3. Roll board level from 670-5667-02 to a -03.
--Darrel1 McGiverin
63/503, ext. 3786 (W1)

4631 Y-AXIS DEFLECTION MODIFICATION \#40282
Calls have been received concerning the appearance of a faint Z-Axis dot on the bottom righthand side of the CRT faceplate in the 4631. This dot will cause a black blemish to appear on the hardcopy if the instrument is left to idle for a period of time.

The cause of the dot is the CRT's unusually high "electrical center." The electrical center of a CRT is the location of the Z-Axis trace with no deflection applied.

To correct this situation, MOD \#40282 calls for changing some resistor values on the standard and Option 31 timing boards. Identical changes are made to both boards as follow:

| CIRCUIT NO. | OLD VALUE | NEW VALUE | NEW PART NUMBER |
| :---: | :---: | :---: | :---: |
| R3 | $15 \mathrm{~K} \Omega$ | $13 \mathrm{~K} \Omega$ | 321-0300-00 |
| R233 | 200s | $100 \Omega$ | 308-0075-00 |
| R336 | $1.5 \mathrm{~K} \Omega$ | $330 \Omega$ | 315-0331-00 |

As a result, the standard 4631 timing board changes from $P / N$ 670-3661-07 to 670-3661-08. The Option 31 board changes from 670-5740-00 to 670-5740-01.

This modification should be made in any 4631 suspected of having a CRT with a high electrical center.
--George Kusiowski
63/503, ext. 3928

## CURRENT MANUAL PART NUMBERS

This MDP Manuals List supersedes all previous manual lists to date.

| 8002A USER'S MANUALS | PART NUMBER | PRICE |
| :---: | :---: | :---: |
| 8002A UProcessor Lab TEkdos System User's Manual | 070-2701-02 | 25.00 |
| Supplement for $6800 / 6802$ Emulator Processor | 070-2714-00 | 2. 00 |
| Supplement for E04E/etc. Emulator Processor | 070-2856-00 | 2. 00 |
| -Supplement for 6500/1 Emulator Processo | 070-3433-00 | 2. 00 |
| 8002A uprocessor Lab MDL/u Compiler User's Manual | 070-2584-01 | 25.00 |
| 8002 A uprocessor Lab TEkDOS Editor Version 3. X | 070-3441-00 | 25.00 |
| 8001/8002A uProcessor Lab Real-Time Prototype Analyzer |  |  |
| User's Guide | 070-2785-00 | 25. 00 |
| Simplifying Microprocessor-Based Product Design | 062-3771-00 | 20.00 |
| gooza uproressor Lab 808t Prototype Debug User Manual | 070-3455-00 |  |
| 8002A uProressor Lab ze000 Prototype Dbug User Manual | 070-3507-00 |  |
| 8002A uprocessor Lab 8080A/8085A Assembler \& Emulator User's Manual | 070-2702-01 | 25.00 |
| 8002A uprocessor Lab 6800/6EO2 Assembler \& Emulator User's Manual |  |  |
| 8002A uprocessor Lab 9900 Assembler \& Emulator User's Manual | 070-2704-01 | 25.00 |
| 8002A uprocessor Lab 280 Assemblet \& Emulator User's Manual | 070-2705-01 | 25.00 |
| 8002A uProcessor Lab F8/3870/3872 Assembler \& Emulator <br> $\begin{array}{lll}\text { User's Manual } & \text { 070-2615-00 } & 25.00\end{array}$ |  |  |
| 8002A uProcessor Lab 1802 Assembler \% Emulator User's Manual | 070-2627-00 | 25.00 |
| 8002A UProcessor Lab 8048/8021/8041A/8022 Assembler <br> \& Emulator User's Manual 070-2611-00 25.00 |  |  |
| 8002A Ufrocessor Lab Assembler User's Manual | 070-3454-00 | 25.00 |
| Supplement for 6500/1 Assembler | 070-2790-00 | 2. 00 |
| -Supplement for 8086 Assembler | 070-3505-00 | 2. 00 |
| Supplement for 28000 Assembler | 070-3509-00 | 2. 00 |

## 8OO2A REFERENCE CARDS

8002A uProcessor Lab System Reference Booklet
(TEKDOS Version 3) 070-2706-01
3. 00

8002A uprocessor Lab MDL/u Compiler Reference Booklet 070-2629-01
3.00

8002A uprocessor Lab TEKDOS Editor Version 3. X
Reference Card
8002A uprocessor Lab 8086 Prototype Debug Ref Card
070-3442-00

1. 00

8002A uProcessor Lab 28000 Prototype Debug Ref Card
070-3504-00

1. 00

8002A uprocessor Lab 8080A/8085A Assembler \& Emulator Feference Card

070-2707-01

8002A uProcessor Lab 6800/680e Assembler \& Emulator Reference Card
8002A uprocessor Lab 9900 Assembler \& Emulator
Reference Card
8OOZA uProcessor Lab ZBO Assembler \& Emulator
Reference Card
B002A uprocessor Lab F8/3870/3872 Assembler \& Emulator
Reference Card
070-2708-02
1.00

070-2709-01
070-2710-01

070-2616-00

1. 00

Reference Card
070-2628-00

1. 00

8002A uProcessor Lab 8048/8021/8041A/8022 Assembler Reference Card
B002A uProcessor Lab 6500/1 Assembler Reference Card
$90-242-91$

1. 00 8002A uprocessor Lab g086 Assembler Reference Card gOO2A uProcessor Lab Z8000 Assembler Reference Card

070-2784-00

1. 00

070-3506-00

1. 00

070-3510-00

1. 00

8001 USER'S DOCUMENTATION
PART NUMBER
PRICE

070-2464-00
25.00
---Supplement for F8/3870/3872 Emulator Processor
070-2822-00
070-2854-00
E. 00
--Supplement for 1802 Emulator Processor
070-2713-00
2. 00
-- Supplement for $6800 / 6802$ Emulator Processor
070-2855-00
2. 00
---Supplement for $8048 / e t c$. Emulator Processor
070-3432-00
2. 00
---Supplement for $6500 / 1$ Emulator Processor
2. 00

070-2471-01

1. 00

3001/8002A uProcessor Lab Real-Time Prototype Analyzer
User's Guide
070-2785-00
25. 00

3001/8002A SERVICE MANUALS
PART NUMBER
PRICE
$070-2711-00$
50.00
$070-2353-02$
10.00
$3001 / 8002 A$ uprocessor Lab Service Manual
$3001 / 8002 / 8002 A$ uprocessor Lab 8080A Emulator
Processor Service Manual
070-2354-02
10.00

Processor Service Manual
3001/8002A uProcessor Lab 280 Emulator Processor Service Manual
$070-2715-00$
10.00

3001;8002A uProcessor Lab 9900 Emulator Processor Service Manual
$070-2712-00$
10.00

070-2716-00
10.00

070-2634-00
10.00

070-2631-00
10.00

070-2887-00
10.00
$3001 / 8002 A$ uprosessor Lシb 6500/1 Emulator Processor Service Manual
$3001 / 8002 A$ uprocessor Lab E048/etc. Emulator Processor Service Manual

070-2632-00
10.00

8001/8002/8002A UProcessor Lab Installation Guide
---Supplement for 8080A Emulator Processor
-- Supplement for $6800 / 6802$ Emulator Processor
---Supplement for 280 Emulator Processor
---Supplement for 9900 Emulator Processor
---Supplement for 8085 Emulator Processor
---Supplement for F8/3870/3E7e Emulator Processor
---Supplement for 1802 Emulator Processor
-- Supplement for EO48/etc. Emulator Processor
---Supplement for $6500 / 1$ Emulator Processor

| $070-2717-01$ | 10.00 |
| :--- | ---: |
| $070-3380-00$ | 1.00 |
| $070-2951-00$ | 1.00 |
| $070-3382-00$ | 1.00 |
| $070-3381-00$ | 1.00 |
| $070-2871-01$ | 1.00 |
| $070-2872-01$ | 1.00 |
| $070-2882-01$ | 1.00 |
| $070-2473-00$ | 1.00 |
| $070-3475-00$ | 1.00 |

8001/8002A uprosessor Lab 1702A PROM Programmer Serviee Manual
8001/8002A UProcessor Lab 2704/2708 PROM Programmer Service Manual
8001/8002A uprocessor Lab Real-Time Prototype Analyzer Service Manual
8001/8002A uprocessor Lab Maintenance Front Panel Service Manual
8002A uprocessor Lab Flexi. Disc Unit Service Manual 118-0195-00 Flexible Disc Drive Service Manual

070-2722-00 10.00
070-2723-00 10.00
070-2724-00
10.00

070-2725-00
10. 00

070-2587-00
25. 00

070-2786-00
25. 00

Microlab I Instruction Manual
---Supplement for 3870 Personality Card
---Supplement for F8 Personality Card
---Supplement for 1802 Personality Card
---Supplement for 6802 Personality Card
---Supplement for $6500 / 1$ Personality Card
---Supplement for MCs-48 Personality Card
---Supplement for eossa Personality Card
---Supplement for z8OA Personality Card
070-2027.01
070 2062-01
$070-286401$
$070-2866-01$
970-2939-01.
$079-2941-01$
070-2937-00
070-2860-00
10.00
5. 00
5. 00
5.00
5. 00
5.00

070-2861-00
5.00
5. 00
5. 00

PART NUMBER PRICE
$\begin{array}{rr}070-2362-00 & 50.00 \\ 070-2359-00 & 10.00 \\ 070-2363-00 & 50.00 \\ 070-2360-00 & 25.00 \\ 070-2364-00 & 50.00 \\ 070-2361-00 & 10.00 \\ 070-2401-02 & 7.00\end{array}$
CT8i00 CRT Terminal Service Manual (4023)
CT8i00 CRT Terminal User's Manual (4023)
CT8i01 Printing Terminal Service Manual
cT8i01 Printing Terminal User's Manual
LPE200 Line Printer Service Manual
LF8e00 Line Printer User's Manual
4025 Computer Display Terminal Operator's Manual
4025 Computer Display Terminal Programmer's
Reference Manual
4025 Computer Display Terminal Programmer's Reference Card

070-2402-00 15.00
070-2437-02

1. 00

070-2830-00
070-2831-00
.

## VERSION 3.X EDITOR RESTRICTION

The Upgraded Editor (Version 3.X) doesn't function correctly with the LEARN keys on the 4024 and 4025 terminals. This is a known restriction with the Editor interface to TEKDOS. The restriction can't be fixed without sacrificing other editing capabilities. The following is an example of the restrictions; suppose the Editor is invoked and you are trying to use a LEARNED key such as GET 100. The results of GET 100 will be $G$ which is get one line instead of 100 . The system only had time to process the first character of the command. The rest of the command line is lost.

At this time there is no intention of implementating a modification to correct the problem.

Brad Griffin/Kevin King 92-236, Ext. 1608/1636

S3200: FLUKE OPTION, TYPE D FIXTURING RESISTANCE MEASUREMENTS
REFERENCE MOD \#M41000
The S3200 Test Systems with the Fluke DVM and Type D Fixturing cannot perform resistance measurements.

A similar problem existed in 1976 with Type J Fixturing on 53260 systems. The Type J Fixturing created a thermal electric offset in the matrix path for the optional DVM of approximately 300 microvolts, which was too high. This problem was resolved by modifying the 1803 card nest, changing the Type J Load Board (1881/1882), and designing a new interconnect cable. These changes allowed the DVM meter leads to be connected to the load board for resistance measurements. A 20 microvolt offset was achieved with these modifications. Present documentation for Type J Fixturing should reflect these changes.

The Type D Fixturing for 1804, 1804A, 1803F, and 1804B test stations with the Fluke DVM option cannot make accurate resistance measurements. This is because the high and low currents on the DC Load Circuit board are tied together.

The DC Load Circuit board (670-2831-03) must have the runs cut between $J 503$ Pins One and Two. The runs between Pins Three and Four must also be cut. These connections are shown in 070-3291-00 manual "Program Controlling the Fluke 8500A DVM" Figure Diamond 2, cabling, DVM to 1803.

The new DC load circuit board 670-2831-04 directly replaces the 670-2831-03.
The attached drawing details the new signal paths for the Fluke DVM. Note the new signal paths for Ih and Vlo from Junction Panel 3923 to cardnest 3842 for the 1803 Test Station. Cable part number 179-2087-02 is necessary for these signal paths to be complete when used with the 670-2831-04 DC Load Board. This cable is also used with Type J Fixturing.

Implementation of these changes will allow S3200 Systens with the Fluke Options to make accurate resistance measurements.

Information supplied by Steve Mishler, Production Engineering.

```
Inserted by-Ron Lang
92-236, Ext. 1015
```

diagrams to complete this article are on the following two pages.
S-3200: FLUKE OPTION, TYPE D FIXTURING RESISTANCE MEASUREMENTS (CONTINUED)



## S3200: 1140 CURRENT SUPPLIES: MIXED STOCK

When ordering an 1140 current supply from Board Exchange, be aware that presently you may receive either export or domestic versions.

621-0458-01 indicates the domestic current supply which is strapped for 115V. The Export version is numbered 621-0458-02 and is strapped for 220 V operation.

The procedure for converting from 115 V to 220 V operation and the reverse is located on Page 2-1 of the 1140A manual, part number 070-3108-01. Observe that you change the straps on the transformer as well as the circuit protection fuses. No recalibration should be required.

Check your spares for proper strapping and fuses for your particular application. Also, check the fuses for proper ratings on the instruments already installed. The possibility exists that the unit could be operating with inadequate circuit protection.

If you discover your instruments are strapped wrong, rework them accordingly. It is not necessary to return them for exchange. Insure the part numbers are corrected for the intended usage.

If you convert any of these current supplies from Export to Domestic or vice-versa, please contact Ron Powell in Board Exchange, 56-103, Ext. 8928 to insure an accurate count of the exchange stock is maintained.

## COMMUNICATIONS DIVISION

1980

1980-1900 COMPATIBILITY (Answer Service Bulletin \#10)

When using the 1900 Digital Generator with the 1980, it is important that the EIA Color Bars VIT NOT be located in Field 1. The 1980 confuses these color bars with the NTC-7 Composite VITS Test Signal. Locating the EIA Color Bars in Field 2 (preferably line 17) "hides" that signal "behind" the Composite signal in Field 1. This method allows the Composite signal to be properly located by the 1980.

Thanks to Dave Meyers, Irvine, for bringing this to our attention.





V

# SYSTEMS SERVICE SUPPORT 

## WALKER ROAD

DELIVERY STATION 92-236

| 1285 | Wally Karstad | Service Programs Manager |
| :--- | :--- | :--- |
| 1565 | Marianne Hamilton | Secretary |
| 1290 | Mary Feeken | Secretary |
| 1291 | Debbie Zukerman | Systems Notification/DEC |
| 1286 | Frank Tucker | SPS: TM500 |
| 1288 | Terry Turner | PAE: TM500 |
| 1292 | Roger Lee | SPS: S-3200, S-3455, S-3100 |
| 1287 | Jim Stubbs | PAE: S-3200 |
| 1015 | Ron Lang | PAE: S-3200 |
| 1634 | Joe Lipska | Applications Support for S-3455 |
| 1611 | Doug Comstock | SPS: LA, DCA, BST |
| 1564 | Craig Wasson | PAE: LA, DCA, |
| 1582 | Pat Wolfram | PAE: LA, DCA, TM500 |
| 1284 | Dean Hager | Operations/SPS: SPS, Sampling |
| 1635 | Randy Newton | PAE: SPS |
| 1289 | Vern Johnson | SPS: MDL |
| 1608 | Brad Griffin | PAE: MDL |
| 1636 | Kevin King | PAE: MDL |

PRODUCT RESPONSIBILITY LIST FOR WALKER ROAD SERVICE SUPPORT Includes: S-3000 Series, SPS Products, 8000 Series, TM500, BST, Logic Analyzers, TM500, 800 Series, Telequipment, Sampling,

| Product | STS PRODUCTS |  | Service Plan |
| :---: | :---: | :---: | :---: |
|  | Description | Technical Questions |  |
|  |  | Repair/Troubleshoot |  |
|  |  | Perf. Assur. Eng. | Serv. Prog. Sp |
| S-3000 | Series Test Systems | STS Staff | Roger Lee |
| S-3100 | Series Test Systems | STS Staff | Roger Lee |
| S-3200 | Series Test Systems | Jim Stubbs/Ron Lang | Roger Lee |
| S-3455 | Test System | Joe Lipska | Roger Lee |
| BST PRODUCTS |  |  |  |
| 172 | Programmable Test Fixture | Factory Service | Doug Comstock |
| 176 | High Current Fixture | Factory Service | Doug Comstock |
| 177 | Standard Test Fixture | Factory Service | Doug Comstock |
| 178 | Linear IC Test Fixture | Factory Service | Doug Comstock |
| 576 | Curve Tracer | Factory Service | Doug Comstock |
| 577D1 | Storage Curve Tracer | Factory Service | Doug Comstock |
| 577D2 | Nonstorage Curve Tracer | Factory Service | Doug Comstock |

MICROCOMPUTER DEVELOPMENT PRODUCTS

| 8001/8002 | Microcomputer | Brad Griffin/Kevin King Vern Johnson |
| :--- | :--- | :--- |
| 8002A | Development Products |  |
| CT8101 | Printer/Terminal | Brad Griffin/Kevin King Vern Johnson |
| CT8100 | TEK 4023-CRT Terminal | Brad Griffin/Kevin King Vern Johnson |
| LP8200 | DEC Line Printer | Brad Griffin/Kevin King Vern Johnson |
| 8301 | Microcomputer Development | Brad Griffin/Kevin King Vern Johnson |
|  | Unit |  |
| 8501 | Data Management Unit | Brad Griffin/Kevin King Vern Johnson |
| CT8500 | CRT Terminal | Brad Griffin/Kevin King Vern Johnson |
| Microlab | O67-0892-OX | Brad Griffin/Kevin King Vern Johnson |
| 8000 | Series Options | Brad Griffin/Kevin King Vern Johnson |


| Product | Description | Technical Questions Repair/Troubleshoot <br> Perf. Assur. Eng. | Service Plan <br> Business <br> Serv. Prog. Spec. |
| :---: | :---: | :---: | :---: |
| P7001 | Digitizer | Randy Newton | Dean Hager |
| P7912 | Digitizer | Factory Service | Dean Hager |
| R7912R | Digitizer | Factory Service | Dean Hager |
| 7612D | Digitizer | Randy Newton | Dean Hager |
| 7912AD | Digitizer | Randy Newton | Dean Hager |
| 7A16P | Programmable Vertical <br> Plug-in | Randy Newton | Dean Hager |
| 7890P | Programmable Horizontal Plug-in | Randy Newton | Dean Hager |
| CP4165 | Controller | Randy Newton | Dean Hager |
| 1350 | DDC | Factory Service | Dean Hager |
| 016-0397-00 | TV MUX (Custom) | Randy Newton | Dean Hager |
| 021-XXXX-XX | Interfaces | Randy Newton | Dean Hager |
| CP112 | DEC Floppy | Randy Newton | Dean Hager |
| CP115 | Data Systems Floppy | Randy Newton | Dean Hager |
| WP1000 | Series - DPO System | Randy Newton | Dean Hager |
| WP2000 | Series - Transient <br> Digitizer System | Randy Newton | Dean Hager |
| WP3XXX | Dual Channel Digitizer Systems | Randy Newton | Dean Hager |
| WP11000AC | Custom Product | Randy Newton | Dean Hager |
| WP1000 AF | Mod Product | Randy Newton | Dean Hager |
| All previous WPXXX |  |  |  |

LOGIC ANALYZER PRODUCTS

| 7DU1 | Logic Analyzer | Factory Service | Doug Comstock |
| :--- | :--- | :--- | :--- |
| 7DU1-DH'1 | Logic Analyzer | Factory Service | Doug Comstock |
| 7DU2 | Logic Analyzer | Craig Wasson/P. Wolfram | Doug Comstock |
| PM1XX | Personality Module Series | Pat Wolfram/C. Wasson | Doug Comstock |
| DF1 | Logic Analyzer | Factory Service | Doug Comstock |
| DF2 | Logic Analyzer | Factory Service | Doug Comstock |
| DL2 | Logic Analyzer | Factory Service | Doug Comstock |
| DL502 | Logic Analyzer | Factory Service | Doug Comstock |
| LA501 | Logic Analyzer | Factory Service | Doug Comstock |
| WR501 | Logic Analyzer | Factory Service | Doug Comstock |



TELEQUIPMENT PRODUCTS

A11 Service related calls should be referred to Tom Herd, Factory Service, Ext. 8616 Merlo Road.

| Product | Description |
| :--- | :--- |
| S Series | Sampling Head |
| S50 | Pulse Head |
| S51, S52 | Trigger Count Down |
| S53 | Trigger Recognizer |
| S54 | Pulse Head |
| 284 | Pulse Generator |
| 5S14 | Two Channel Sampler |
| 7 K Series | Sampling |

Technical Questions
Repair/Troubleshoot
Perf. Assur. Eng.

Factory Service

Service Plan
Business
Serv. Prog. Spec.

Dean Hager

## WILSONVILLE

DELIVERY STATION 63-503

Gary Cooper Jeannie Keller Mary Ann O'Shea OPEN

Dick Schilling Marty DeVall

Bill Hatch George Kusiowski
Frank Lees
Darrell McGiverin
Duane Moore Larry North Dennis Painter Ed Sawicki

Kent Barnard
Dan Harris
Dennis McGary Del Moore

Hank Piatek
Steve Prunty
Jim Tiano

Service Program Manager Lead Secretary
Secretary
Secretary
Service Program Manager: Technical Support
PAE: AOCO Sories \& Ontions. fos Remote Diagnostics
PAE: 4080 Series, Meg Series \& Options, 619
PAE: 600 Series, HCU's.
PAE: Data Communications, Interfaces, Graphic Computing Systems
PAE: 4050 Series \& Options, 492X, 4907
PAE: Diagnostician, Remote Diagnostic Center
PAE: 464X, 466X
PAE: 4010 Series, Interfaces \& Options, Displays
PAE: Internal Diagnostics, Copiers, Plotters, \& Image Forming Systems

SPS: Terminals \& Displays, 4020 \& 4010 Series, 600 Series,
SPS: Graphic Computing Systems, Data Storage Products
SPS: Terminals \& Displays, 408x, Meg Series
SPS: Graphic Computing Systems: 4050 Series \& Options
SPS: Copiers, Plotters, \& Image Forming Systems, 463X, 464X
SPS: Copiers, Plotters, \& Image Forming Systems, 466X
SPS: OEM, Custom Mods, \& International

## PRODUCT DESCRIPTION

MODIFIED PROD., CEM ACCOUN'IS, INTERNATIONAL
REMOTE DIAGNOS'IIC CENTER
DATA COMMUNICAITIONS
REMOTE DIAGNOSIIIC:
INTERNAL DIAGNUSTICS
E31
FEM181
GMAIO1A
GMA102A
GMA125
MEG121
MEG121/
131
MEG121/
131
MEG121/
4904
MEG121/
4904
MEG121/
4904
MEG121/
4904
MEG131
RE4012
SURVEY 31
T4002
TEK 21
TEK 31
152
153
154
3110
3153
4002A
4006
4010
4012
4013
4014
4015
4016
LON COST TEK 31
4081 \& PERIPHERALS \& S/W PACKACE
19" STORAGE DISPLAY MONITOR
19" S'TORAGE DISPLAY MONITOR
25" STORAGE DISPLAY MONITOR
MECHINICAL ENGINEERING WORK S'T.
OPT. 35 FUNCTION KEYBOARD
OPF. 36, 25" DISPLAY
OPT' 10 READER/PUNCH I/E
OPI' 11 READER/PUNCH I/F FOR 4081
OPD. 30 REMEX TAPE READER
OPT. 31 REMEX PAPER TAPE PUNCH
MECHANICAL EINGINEERING DEVELOPMENT
S'IATION (INCLUDES PDP 11/34)
RUGGEDIZED MIL SPEC KACK MT'. 4012
SURVEYING CALCULATOR
11" CRT STORAGE IIERMINAL
LOW COST CALCULATOR (DESK TOP)
DESK TOP CALCULATOR
'IEK 31 INTEREACE
TEK 31 INTERFACE TO 'IM503
TEK 31 INTERFACE
TEK $31 \& 4010$ TELMINAL
TEK 31 \& 153 INTERFACE
11" STORAGE TERMINAL
11" STORAGE TERMINAL-LON COST
11" STORAGE 'IERMINAL-PEDESTAL
11" STORAGE TERMINAL-PEDESTAL
4012 WITH APL CHARACTLR SE'T
19" DVS'I TERMINAL
19" DVS'T TERMINAL \& APL CIARACTER SET
25" STORAGE TERMINAL-PEDES'IAL

TECHINICAL QUESTIONS
REPAIR/TROUBLESHOOT
PERF. ASSUR. ENG.
SERVICE PLAN
BUSINESS
SER. PROG. SPEC.

DUANE MOORE
FRANK LEES MNEIY LEVALI.
ED SNWICKI
FACTORY SERVICE
BILL HATCH
DENNIS PAINIER
DENNIS PAINTER
DENNIS PAINTER
BILL HA'ICH
BILL HATCH
BILL HATCH

BILL HAICH

BILL HATCH
BILL HATCH
BILL HATCH
BILL HATCH
DENNIS PAINTER
FACTORY SERVICE
FACTORY SERVICE
FACIURY SERVICE
FACTORY SERVICE
EAC'IORY SERVICE
FACTORY SERVICE
F'AC'IORY SERVICE
FACIORY SLRVICE
FACIORY SERVICE
FACIORY SERVICE
DENIIS PAINTER
FACTORY SERVICE
FACTIORY SERVICE
FACIORY SERVICE
FAC'IORY SERVICE
FACIORY SERVICE
DENNIS PAINTER

JIM TIANO

DEL MOORE DENNIS MCGARY DENNIS MCGARY DENNIS MCGARY KENT BARNARD DENNIS MCGARY DENNIS MCGARY

DENNIS MCGARY
DENNIS MCGARY

DENNIS MCGARY
DENNIS MCGARY
DENNIS MCGARY
DENNIS MCGARY
KENT BARNARD JIM TIANO
KENI BARNARD
DEL MOORE
KENT BARNARD
KENI BARNARD
KENT BARNARD
KENT BARNARD
KENI BARNARD
KENT BARNARD
KENT BARNARD
KENT BARNARD

```
    * - *
```

4023
4024
4025
4027
4051
4051C01
4051 E01
4051R0X
4052
4052R0X
4054
4054R日X
4081
4501
4551
4601
4602
4610
4620
4623
4631
4632
4633
4633A
4634
4641
4642
4661
4662
4663
4701
4801
4802
4803
4804
4901
4902
4903
4905
4907
4911
4912
4921
4922
4923
4924
4931
4951
4952
4953
4954
4956
601
602

RASTER SCAN TERMINAL
RAS'TER SCAN TERMINAL
RASTER SCAN TERMINAL
COLOR RASTER SCAN TERMINAL
11" CR'T GRAPHIC COMPU'TING SYSTEM
SYNC. INTEREACE
ROM EXPANDER BACK PACK
ROM PACKS
GRAPHIC COMPUTING SYS'TEM
ROM PACKS
GRAPHIC COMPU'IING SYS'TEM
ROM PACKS
MINI-COMPUTER SYSTEM
SCAN CONVERTER
LIGHT PEN FOR VIDEO TERMINAL
HARD COPY (611 AND 4002)
VIDEO HARD COPY
HARD COPY TO 4010 FAMILY
digi'tal video hard cory
VIDEO hard Culy
HARD COPY TO 4010 FAMILY
VIDEO HARD COPY
CONTINUOUS RECORDER
CONTINUOUS RECORDER
IMAGE FORMING MODULE
LINE PRINTER (DEC LA186)
LINE PRINTER (CENTRONICS)
PLOTPER "B" SIZE
PLOTYER "B" SIZE
PLOTMER "C" SIZE
8 CHANNEL ANALOG MUX
INTERFACE FOR T4002
INTERFACE FOR T4002
INTERFACE FOR T40日2
INTERFACE FOR T4062
INTERFACE FOR T4002A
INTERFACE FOR T4002A
INTERFACE FOR TAU02A
MASS STORAGE MODULE
FLOPPY DISC STORAGE MODULE
REMEX READER PUNCH FOR 4010 FAMILY
CASSEITE RECORDER (DIGI'IAL) (SYKES)
FOR 4016 FAMILY
SINGLE FLOPPY DISC TO 4010 FAMILY
DUAL F.D. TO 4010 FAMILY
CASSETTE TAPE RS-232, 401X BUS
CASSETTE TAPE GPIB
MODEM FOR 4016 FAMILY
JOY STICK FOR 4002A
JOY STICK FOR 4010 FAMILY AND 4951
SUMMAGRAPHICS GRAPHIC TABLET 11 "Xll"
SUMMAGRAPHICS GRAPHIC TABLET 40 "X30"
SUMMAGRAPHICS GRAPHIC TABLET GPIB INTERFACE TO $405120 " X 20 "$

DISPLAY MONITOR
$8 \times 10$ CM DISPLAY MONITOR

FACIORY SERVICE
MARTY DEVALL
MARTY DEVALL
MARTY DEVALL
DARRELL MCGIVERIN
BILL HA'TCH
FACIORY SERVICE
FACTIORY SERVICE
FAC'IORY SERVICE
FACTORY SERVICE
FACTORY SERVICE
fictory shrivice
FACJURY SERVICE
FACTORY SERVICE
FAC'IORY SERVICE
GEORGE KUSIOWSKI
GEORGE KUSICNSKI
GEORGE KUSIONSKI
LARRY NORTH
LARRY NORTH
FACTORY SERVICE
LARRY NORTH
LARRY NOTH
FAC'IORY SERVICE
FAC'IORY SERVICE
FAC'IORY SERVICE
FACTORY SERVICE
FACTORY SERVICE
FACTORY SERVICE
FACTORY SERVICE
FACTORY SERVICE
BILL HATCH
DARRELL MCGIVERIN
FACTORY SERVICE
FACTORY SERVICE
FACTORY SERVICE
FACIORY SERVICE
DARRELL MCGIVERIN
DARRELL MCGIVERIN
FRANK LEES
FACTORY SERVICE
DARRELL MCGIVERIN
MARTY DEVALL
MARTY DEVALL
DARRELL MCGIVERIN
FACTORY SERVICE
FACIORY SERVICE

KENT BARNARD
KENI BARNARD
KENT BARNARD
KENT BARNARD
DEL MOORE
DENNIS MCGARY
HANK PIATEK
HANK PIATEK
HANK PIATEK
HANK PIATEK
HANK PIATEK
HANK PIATEKK
LIANK PIATEK
HANK piatek
STEVE PRUNTY
STEVE PRUNTY
STEVE PRUNTY
KENT BARNARD
DENNIS MCGARY
DAN HARRIS
KENT BARNARD
KENT BARNARD
KENT BARNARD KENT BARNARD DAN HARRIS DAN HARRIS
KENT BARNARD KENI' BARNARD KENT BARNARD KENT BARNARD KENT BARNARD KENT BARNARD

KENT BARNARD KENT BARNARD

603
$10.2 \times 12.7 \mathrm{CM}$ SIORAGE DISPLAY MOHITOR $10.2 \times 12.7 \mathrm{CM}$ STORAGE DISPLAY MOHITOR $10.2 \times 12.7 \mathrm{CM}$ DISPLAY MONITOR $10.2 \times 12.7 \mathrm{CM}$ DISPLAY MONITOR $7.2 \times 9 \mathrm{CM}$ STORAGE DISPLAY MONITOK $8 \times 10$ CM DISPLAY MONLTOR
$8 \times 10$ CM HIGH RESOLU'TION DISPLAY MON. $8 \times 10 \mathrm{CM}$ HIGH RESOLU'TION DISPLAY MON. $7.2 \times 9 \mathrm{CM}$ VARIABLE PERSISTANCE DISPLAY MONITOR
7.2×9 CM VARIABLE PERSISTANCE GEORGE KUSIONSKI DISPLAY MONITOR
9.8X12.2 CM HIGH BRIGHTNESS DIS. MON. 11" DISPLAY
11" HIGH CONTHAST DISPLAY
19" SIORAGE DISPLAY
19" STORAGE DISPLAY $10 \times 12 \mathrm{CM}$ DISPLAY MONITOR $9.8 \times 12.2 \mathrm{CM}$ DISPLAY MONITOR $9 \times 12$ CM RASTER SCAN DISELAY MONITOR

FACIORY SERVICE
GEORGE KUS IONSKI FACTORY SERVICE
GEORGE KUSIONSKI FACIORY SERVICE FACIORY SERVICE GEOIRGE KUSIOWSKI GEORGE KUSIOWSKI FACTORY SERVICE

GEORGE KUSIOWSKI FACTORY SERVICE FACTORY SERVICE DENNIS PAINTER DENNIS PAINTER CEORGE KUSIOVSKI GEORCE KUSIMVSKI GEORCE KUSIOVSKI

KENI BARNARD* KENI BARNARD KENT BARNARD KENT BARNARD KENT BARRNARD KENT BARNARD KENT BARNARD KENT BARNARD KENT BARNARD

KENT BARNARD
KENT BARNARD KENT BARNARD KENT BARNARD DENNIS MCGARY DENNIS MCGARY KENT BARNARD KENI BAFNARD KENI BAISNARD

## FACTORY SERVICE CENTER

DELIVERY STATION 56-103


## TELEPHONE LISTING

| Jim Baker | 8639 |
| :--- | :--- |
| Dave Arnold | 8641 |
| Linda Anthony | 8640 |
| Jack Talley | 8638 |

## GENERAL

## CAM SWITCH REPAIR MANUAL

The Electromechanical Design group has prepared a cam switch repair manual detailing operation, cleaning and maintenance of cam switches. The manual will be part numbered and made available in the near future. The part number will be published when the manual is available. The manual is included as a reference pull-out in this issue.

Submitted by Virgil Hanes
Inserted by Lynn Sperley
58/511, Ext. 6902


## 1. INTRODUCTION

This manual has been prepared to assist field personnel in troubleshooting and repairing cam switches. Use it as a supplement to service manuals for instruments that have cam switches.

The information herein is presented in the most logical inspection/repair order normally followed by technicians, starting with knob/shaft misalignment and progressing through contact contamination and cleaning, contact pressure and alignment problems, contact and actuator replacement.

Causes of failure are also presented in the most probable sequence of occurrence based upon service record reports and failure analysis of parts returned to Beaverton.

## 2. FRONT PANEL PROBLEMS KNOB/SHAFT MISALIGNMENT

Only knob/shaft misalignment can be checked from the front panel.

1. First check tightness of knob set screws. If after tightening, the misalignment problem still exists, remove the set screws and examine for damaged threads. If threads are damaged, replace the entire knob.
2. Two basic knob configurations are used for mating with the shaft. One is a metal insert molded into the plastic knob. If the inner diameter of this insert is scored, replace the entire knob.

The second configuration uses a split bushing that can be pushed out with a pencil. If this bushing is fractured or scored, install a new bushing.
3. Check the knurl of the shaft for wear and damage. Its surface should feel rough when rotated between thumb and forefinger. If the knurl is damaged, replace the entire actuator assembly (see section 5).

## 3. SWITCH/CIRCUIT BOARD PROBLEMS

Some switch/ECB assemblies can be inspected while in the instrument by simply removing the switch cam cover; others require removal of the actuator assembly. If this is the case, leave the cam cover in place to keep the switch intact during removal.

For removal instructions, consult the service manual for that instrument.
Also, do not restrict your inspection to the cam switch alone. Board problems such as component drift, damaged runs and defective solder joints can underlie what is thought to be strictly a switch problem.

## CONTACT CONTAMINATION/CLEANING

Contacts require cleaning: (1) when visual inspection shows contamination on the contacts or pads; (2) after solder work has been done on the ECB [flux fumes may leave a thin film deposit on contact surfaces] (3) after board wash, which can trap contaminants around closed contacts.

Two cleaning procedures are recommended. Procedure A is preferred. Use procedure $B$ only if $A$ proves inadequate.

WARNING: Do not use No-Noise or other contact lubricants on cam switches. They are designed to operate dry, and lubricants tend to trap dust particles.

## Cleaning procedure $A$

1. Remove the cam cover.
2. Clean contact pads and fingers with isopropanol (isopropyl alcohol) or fotocol (ethyl alcohol) using a soft brush and alcohol on cotton swabs. Be very gentle around the contact fingers. Rotate the switch shaft during cleaning and drying to prevent dissolved contaminants from collecting around closed contacts.
3. Allow switch to air dry for 60 seconds.
4. Blow out remaining residue with an air hose while rotating the shaft to prevent trapping of particles.
5. If contacts are clean, proceed with checking for contact pressure and damage. If contamination persists and cannot be removed with this procedure, use procedure $B$.

## Cleaning procedure B - Removing hard films

This procedure is to be used only on films not removeable by procedure $A$. CAUTION: There is only about 0.0001 inch of gold on the contact pad surface. Any abrasive material will remove some of this gold, thus increasing risk of corrosion and decreasing the life of the switch.

1. Rotate the switch shaft to open contacts to be cleaned.
2. Cut an Eberhard Faber 'Pink Pearl' eraser into the shape of a screwdriver tip small enough so that it can be inserted between the contact fingers and pad. Note: do not use typewriter- or fiberglass-type erasers because they are too abrasive.
3. Use light strokes to remove contamination. Use only enough pressure and strokes to change the gold pads to a more satiny, yellow finish.
4. Follow up with the alcohol cleaning procedure $A$ to remove residue.

## CONTACT PRESSURE

Improper contact pressure on a pad can either cause or contribute to switch failure. Contact pressure is determined by visually inspecting cam-to-contact arm height and contact arm shape.

Sometimes a "defective" switch will operate satisfactorily after being installed on either a new or freshly cleaned circuit board.

Make your visual checks with the cam cover removed. Rotate the switch shaft to check all contacts in both open and closed positions.

## With contacts open:

1. Lobe on contact arm should ride on the cam. A gap means either a defective contact arm or excessive cam clearance.
2. Contact-to-board gap should be even. Variations may indicate defective contacts, actuator problems, or cam
 cover problems

As contacts close:

1. Contact should be made while the contact lobe is still on the cam ramp (before logic lobe is over the contact lobe). Failure means excessive cam clearance or defective contact arm.
2. All fingers on any arm should touch the pad at the same time. Failure means defective contact arm or fingers.

## With contacts closed:

1. Contact fingers should be centered squarely on the pad. Failure means defective contact arm or fingers.
2. Contact arm should be deflected toward ECB. Failure of contact arm to deflect means that inadequate pressure is being exerted on the pad. This may


Proper Function

五


Improper Function


Proper Function mean either a defective contact arm or actuator problems.


For normally closed attenuator contacts: Sight along board. All contacts should be in line and set squarely on their pads. Failure means defective contacts, which must be replaced.

## 4. CONTACT REPLACEMENT

All defective contacts should be replaced. Do not attempt to adjust or repair defective contacts because optimum realignment is not possible.

For standard contacts use replacement kit 040-0541-00. For high-frequency (attenuator) contacts use kit 003-0708-00, and for T900 Series instruments install a whole new contact strip.

Other factors can also affect contact pressure although they rarely occur, and are found primarily on long, single-cam switches. These include:

1. Board warpage, which causes uneven height variations between cam and board. Check for this condition by visual inspection.
2. Repeated switch failures with no indication of physical damage may mean a tolerance buildup somewhere. Installing a new actuator assembly and cam cover may help.

## 5. ACTUATOR REPLACEMENT

Mechanical failure of the actuator is usually easy to identify. The cam won't turn, it may be scored, etc.

To remove an actuator, first reinstall its cam cover. This will hold the actuator in alignment. Removal must be done carefully to avoid risk of damaging the contacts.

When installing a new actuator, include a new cam cover as well.

## 6. DEFECTIVE PARTS/SPECIAL PROBLEMS

The Switch Design Group does failure analysis on all returned parts. If actuators are returned with covers on, it is easier to identify the cause of failure. Any helpful additional information should be sent along with the part.

If questions arise about a specific instrument, write or phone Irv Sherbeck, manager, Electromechanical Design Support, or Virgil Hanes, switch and relay reliability engineer, at delivery station 58-021, ext. 7909 (Beaverton GTE).

