

1.0 DESCRIPTION

Hybrid Integrated Circuit, Channel Switch. Initially Designated as H752.
The component consists of two M178 SHF III chips mounted on a 1.75×1.75 $x .0635 \mathrm{~cm} \mathrm{A1} 2_{3}$ thin film substrate.
2.0 ABSOLUTE MAXIMUM RATINGS
2.1 Storage Temperature Range ($\mathrm{T}_{\text {stg }}$) $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
2.2 Operating Ambient Temperature (T_{A}) 0 to $+70^{\circ} \mathrm{C}$
2.3 Total Device Power Dissipation ($\mathrm{P}_{\mathrm{DAX}}$) 2,8 Watts
2.3 Maximum Voltage (Pins 2, 3, 12, and 13) 15 Volts
(Referred to Substrate Backplane)
2.4 Maximum Current (Pins 2, 3, 12, and 13) 200 mA
2.5 Maximum Input Signal (Pins 7, 9, 17, and 19) ± 1 Volt
(Referred to Substrate Backplane)

2.6 Electrical Specification

Parameters measured at $25^{\circ} \mathrm{C}$ substrate backplane temperature.

3.0 SCHEMATIC

TEKTRONIX.INC. beAVERTON. OREGON	sht 3 of 30	$\begin{aligned} & \text { CODE IENT NO } \\ & 80009 \end{aligned}$	${ }^{\text {S12E }}$	PART NumaER	155-0206-00	$\begin{gathered} \text { REV } \\ A \end{gathered}$

3.1 Layout Drawing

An
PART NUMBER

4.0 PARAMETRIC DEFINITIONS

$$
\text { Refer to Section } 5.0 \text { (Parametric Summary) }
$$

5.0 PARAMETRIC SUMMARY

Electrical characteristics (for an ambient temperature of $25^{\circ} \mathrm{C}$ except where a different temperature may be shown).

NO	SYMBOL	PARAMETER	CONDITIONS	MIN	MAX	UNIT
1	$\begin{gathered} \mathrm{I}_{\mathrm{CBO}}^{1-4} \\ 9-12 \\ \text { at } 8 \text { Volts } \end{gathered}$	Collector-base leakage of Q1, Q2, Q3, Q4, Q9, Q10, Q11, and Q12 in parallel, emitters open	Pins 7, 8, 9, 17, 18, and 19 , back of substrate grounded. Pins 1, 2, 3, 10, 11, 12, 13, and 20 held at +8.8 volts. All other pins open Measure current from +8.8 volt source		50	$\mu \mathrm{A}$
2	$\begin{gathered} \mathrm{I}_{\text {CES }} 1-4, \\ 9-12 \\ \text { at } 8 \text { Volts } \end{gathered}$	Collector-emitter leakage of Q1, Q2, Q3, Q4, Q9, Q10, Q11, and Q12 in parallel, bases shorted to emitters	Same as in \#1 except Pins 4, 5, 6, 14, 15, and 16 grounded		50	$\mu \mathrm{A}$
3	$\begin{gathered} \mathrm{I}_{\mathrm{CBO}}^{5-8} \\ 13-16 \\ \text { at } 12 \text { Volts } \end{gathered}$	Collector-base leakage of Q5, Q6, Q7, Q8, Q13, Q14, Q15, and Q16 in parallel, emitters open	Pins 1, 10, 11, and 20 grounded Pins 2, 3, 12, and 13 held at +12 volts All other pins, substrate backplane open Measure current from +12 volt source		50	$\mu \mathrm{A}$

PARAMETRIC SUMMARY (continued)						
NO	SYMBOL	PARAMETER	CONDITIONS	MIN	MAX	UNIT
7	$\mathrm{I}_{\mathrm{in}_{7}}$	Pin 7 input bias current with total emitter current at 80 mA per channel	Pins 1 and 11 held at +2.0 volts Pins 10 and 20 held at +2.6 volts Pins 12 and 13 through 50Ω resistors to +9.8 V Pins 2 and 3 through 50Ω resistors to +5.8 V Pins 4, 6, 14, and 16 through 103Ω resistors to -3.95 volts Pins 5 and 15 to -3.95 V Pins 8 and 18 grounded Pins 7, 9, 17, and 19, substrate backplane held at 0.0 volts Measure current delivered by source connected to Pin 7	80	450	$\mu \mathrm{A}$
8	$\mathrm{I}_{\mathrm{in}_{9}}$	Pin 9 input bias current with total emitter current of 80 mA per channel	Same as \#7 except measure current delivered by source connected to Pin 9	80	450	$\mu \mathrm{A}$
9	$\mathrm{I}_{\text {in Substrate }}$	Q2, Q3, Q10, and Q11 input bias current with total emitter current of 80 mA per channe1	Same as in \#7 except measure current delivered by source connected to substrate backplane	0.320	1.800	mA
10	$\mathrm{I}_{\mathrm{in}}^{10(0 \mathrm{~N})} \textrm{}$	Pin 10 input bias current with channel "on" and total emitter current of 80 mA per channel	Same as \#7 except measure current delivered by source connected to Pin 10	0.320	1.800	mA
11	$\mathrm{I}_{\mathrm{in}}^{11(\mathrm{ON})},$	Pin 11 input bias current with channel "on" and total emitter current of 80 mA per channel	Same as \#7 except measure current delivered by source connected to Pin 11	-10	+10	$\mu \mathrm{A}$

PARAMETRIC DEFINITIONS (continued)						
NO	SYMBOL	PARAMETER	CONDITIONS	MIN	MAX	UNIT
12	$\mathrm{I}_{\mathrm{in}_{17}}$	Pin 17 input bias current with total emitter current of 80 mA per channel	Same as \#7 except measure current delivered by source connected to Pin 17	80	450	$\mu \mathrm{A}$
13	$\mathrm{I}_{\mathrm{in}_{19}}$	Pin 19 input bias current with total emitter current of 80 mA per channel	Same as \#7 except measure current delivered to by source connected to Pin 19	80	450	$\mu \mathrm{A}$
14	$\mathrm{I}_{\mathrm{in}_{20() N}}$	Pin 20 bias current with channel "on" and total emitter current of 80 mA per channel	Same as \#7 except measure current delivered by source connected to Pin 20	0.320	1.800	mA
15	$\mathrm{I}_{\mathrm{n}_{1(0 N)}}$	Pin 1 bias current with channel "on" and total emitter current of 80 mA per channel	Same as \#7 except measure current delivered by source connected to Pin 1	-10	+10	$\mu \mathrm{A}$
16	$\mathrm{I}_{\left.\mathrm{in}_{20(0 \mathrm{FF}}\right)}$	Pin 20 bias current with channel "off" and total emitter current of 80 mA per channel	Same as \#7 except: Pin 1 held at +2.6 V Pin 20 held at $+2.0 V$ Pin 11 held at +2.6 V Pin 10 held at +2.0 V Pin 2 through 50Ω to +9.8 volts Pin 3 through 50Ω to +9.8 volts Pin 12 through 50Ω to +5.8 volts Pin 13 through 50Ω to 5.8 volts Measure current delivered by source connected to Pin 20	-10	+10	$\mu \mathrm{A}$
17	$\mathrm{I}_{\mathrm{in}_{10(0 \mathrm{FF})}}$	Pin 10 bias current with channel "off" and total emitter current of 80 mA per channel	Same as \#16 except measure current delivered by source connected to Pin 10	-10	+10	$\mu \mathrm{A}$

PARAMETRIC SUMMARY (continued)						
NO	SYMBOL	PARAMETER	CONDITIONS	MIN	MAX	UNIT
18	$\mathrm{I}_{\mathrm{in}_{11(\mathrm{OFF})}}$	Pin 11 bias current with channel "off" and total emitter current of 80 mA per channel	Same as \#16 except measure current delivered by source to $\operatorname{Pin} 11$	0.320	1.800	mA
19	$\mathrm{I}_{\text {in }}{ }_{\text {(OFF })}$	Pin 1 bias current with channel "off" and total emitter current of 80 mA per channel	Same as \#16 except measure current delivered by source connected to Pin 1	0.320	1.800	mA
20	$V_{\text {OUT 1 (ADD }}$	Common mode DC output voltage, ADD mode	Pins 7, 9, 17, and 19 open	5.6	5.8	v
			Pins 10 and 20 to 2.6 volts			
			Pin 3 through 50Ω to +5.8 volts			
			Pin 4 through 103Ω to -3.95 volts			
			Pins 5 and 15 to -3.95 volts			
			Pin 6 through 103Ω to -3.95 volts			
			Pins 8 and 18, substrate backplane grounded			
			Pins 1 and 11 to 2.0 volts			
			Pin 2 through 50Ω to +5.8 volts			
			Pin 14 through 103Ω to -3.95 volts			
			Pin 16 through 103Ω to -3.95 volts			
			Pin 12 through 50Ω to +9.8 volts			
			Pin 13 through 50Ω to +9.8 volts			
			Measure average of voltages at Pins 12 and 13			

5.0 PARAMETRIC SUMMARY (continued)

NO	SYMBOL	PARAMETER	CONDITIONS	MIN	MAX	UNIT
24	$V_{O S 1}$ (ADD)	Output \#1 offset voltage, ADD mode	Same as \#20 except measure voltage at Pin 12 with respect to $\operatorname{Pin} 13$	-100	+100	mV
25	$V_{0 S 1} 1$ (L-ADD)	Output \#1 offset voltage between modes, LEFT-ADD	$\begin{aligned} & V_{O S} 1(L-A D D)= \\ & V_{O S} 1(L)^{-V_{O S} 1(A D D)} \end{aligned}$	-50	+50	mV
26	$V_{0 S 1} 1(R-L)$	Output \#1 offset voltage between modes, RIGHT-LEFT	$\begin{aligned} & V_{O S ~} 1(R-L) \quad= \\ & V_{O S} 1(R)^{-V_{O S} 1(L)} \end{aligned}$	-50	+50	mV
27	$V_{O S 1} 1$ (R-ADD)	Output \#1 offset voltage between modes, RIGHT-ADD	$\begin{aligned} & V_{O S ~} 1(R-A D D) \\ & V_{O S} 1(R)^{-V_{O S}} 1(A D D) \end{aligned}$	-50	+50	mV
28	$V_{0 S} 2(L)$	Output \#2 offset voltage, LEFT mode	Same as \#22 except measure voltage at Pin 3 with respect to Pin 2	-100	+100	mV
29	$V_{0 S 2}$ (R)	Output \#2 offset voltage, RIGHT mode	Same as \#23 except measure voltage at Pin 3 with respect to Pin 2	-100	$+100$	mV
30	$V_{0 S} 2$ (OFF)	Output \#2 offset voltage, OFF mode	Same as \#21 except measure voltage at Pin 3 with respect to $\operatorname{Pin} 2$	-100	+100	mV
31	$V_{0 S 2}$ (L-OFF)	Output \#2 offset voltage between modes, LEFT-OFF	$\begin{aligned} & V_{\text {OS 2(L-OFF) }}= \\ & V_{\text {OS 2(L) }}-V_{\text {OS 2 }} \text { (OFF) } \end{aligned}$	-50	+50	mV
32	$V_{0 S 2}$ (R-L)	Output \#2 offset voltage between modes, RIGHT-LEFT	$\begin{aligned} & V_{\text {OS } 2(R-L)}= \\ & V_{\text {OS } 2(R)^{-}} V_{\text {OS 2 }}(L) \end{aligned}$	-50	+50	mV
33	$V_{0 S} 2(\mathrm{R}-0 \mathrm{FF})$	Output \#2 offset voltage between modes, RIGHT-0FF	$\begin{aligned} & V_{O S} 2(R-O F F)= \\ & V_{\text {OS 2(R) }}-V_{O S} 2(O F F) \end{aligned}$	-50	+50	mV

5.0 PARAMETRIC SUMMARY (continued)								
NO	SYMBOL	PARAMETER			CONDITİNS	MIN		UNIT
34	$\mathrm{R}_{\mathrm{IN}_{7(\mathrm{ADD})}}$	Input resistance Pin 7 to ground, ADD mode			$\begin{aligned} & \text { Pins } 1 \text { and } 11 \text { to } \\ & +2.0 \text { volts } \end{aligned}$	49.70	50.50	Ω
					Pin 10 and 20 to +2.6 volts			
					Pins 12 and 13 to +9.8 volts through 50Ω resistors			
					Pins 2 and 3 to +5.8 volts through 50Ω resistors			
					Pins 4, 6, 14, and 16 through separate 103Ω resistors to -3.95 volts			
					Pins 5 and 15 to -3.95 volts			
					Pins 8 and 18, backplane of substrate grounded			
					Pins 7 and 17 connected to current sources of +1 mA then -1 mA			
					Pins 9 and 19 connected to current sources of -1 mA then +1 mA			
					Measure voltage from Pin 7 to ground.			
					Voltage difference between application of +1.0 mA and -1.0 mA divided by 2.0 mA is R_{IN}			
35	$\mathrm{R}^{\mathrm{IN}}{ }_{9(\mathrm{ADD})}$	Input resistance Pin 9 to ground, ADD mode			Same as \#34 except measure voltage from Pin 9 to ground	49.70	50.50	Ω
36	$\mathrm{R}^{\mathrm{IN}}{ }_{17 \text { (ADD })}$	Input resistance Pin 17 to ground, ADD mode			Same as \#34 except measure voltage from Pin 17 to ground	49.70	50.50	Ω
37	$\mathrm{R}_{\mathrm{IN}_{19(\mathrm{ADD})}}$	Input resistance Pin 19 to ground, ADD mode			Same as \#34 except measure voltage from Pin 19 to ground	49.70	50.50	Ω
EKTRONIX AVERTON.	X,INC. OREGON SHT	Of 30	$\begin{aligned} & \text { CODE IDENT NOO } \\ & \mathbf{8 0 0 0 9} \end{aligned}$	${ }_{\text {A }}^{\text {SI2E }}$	PAAT NUMBER $\quad 155-020$			REV OR

5.0 PARAMETRIC SUMMARY (continued)

	SYMBOL PARAMETER CONDITIONS MIN MAX					
38	T 1 (ADD)	Output resistance, Pin 12 to Pin 13, ADD mode	Pins 1 and 11 to	$99.50101 .5 \Omega$		

Pin 13 held at +5.55 volts (case 1), then +6.05 volts (case 2) by current through 50Ω resistor

Pin 4 through 103Ω to -3.95 volts

Pins 5 and 15 to -3.95 volts

Pin 6 through 103Ω to -3.95 volts
Pin 7 through 50Ω to ground
Pins 8 and 18 backplane of substrate ground
Pin 9 through 50Ω to ground

Pins 10 and 20 to +2.6 volts

Pin 12 held at +6.05 volts (case 1) then
+5.55 volts (case 2)
by current through
50Ω resistor
Pin 14 through 103Ω to -3.95 volts
Pin 16 through 103Ω to -3.95 volts
Pin 17 through 50Ω to ground
Pin 19 through 50Ω to ground
Pin 3 through 50Ω to +5.8 volts
Pin 2 through 50Ω to +5.8 volts

Continued on Page 14

5.0 PARAMETRIC SUMMARY (continued)

NO SYMBOL PARAMETER CONDITIONS MIN MAX UNIT

49 OFF Accuracy Rejection of equal but opposite polarity input signals measured at Output \#2, OFF mode

Same as \#42 except: $\quad-0.5 \quad 0.5 \%$
Pin 10 to +2.0 volts
Pin 11 to +2.6 volts
Pins 12 and 13 through
50Ω resistors to
+5.8 volts
Pins 2 and 3 through
50Ω resistors to
+9.8 volts
Measure voltage difference of Pin 2 with respect to Pin 3

Calculated current
gain divided by 2.355
and expressed as a percentage is OFF
Accuracy

50	Output-toOutput Accuracy, LEFT Input	Difference in gains of LEFT input to Output \#1 or Output \#2	$\left(A_{i L 1} 1(L)^{-A_{i L}} 2(R)\right) /$ $2.355=$ Output-to-Output Accuracy, LEFT Input Express result as a percentage	-0.5	0.5	\%
51	Output-toOutput Accuracy, RIGHT Input	Difference in gains of RIGHT input to Output \#1 or Output \#2	$\left(A_{i R 1(R)}-A_{i R 2(L)}\right) /$ $2.355=$ Output-to-Output Accuracy, RIGHT Input Express result as a percentage	-0.5	0.5	\%
52	Left to ADD Accuracy, Output \#1	Change in gain of a signal from the LEFT input directed to Output \#1 when the mode is changed from LEFT to ADD	$\begin{aligned} & \left(A_{i L 1(L)^{-A}}^{i L A(A D D)}\right)^{\prime} / \\ & 2.355 \\ & \text { Express in percent } \end{aligned}$	-0.5	0.5	\%

PARAMETRIC SUMMARY (continued)						
NO	SYMBOL	PARAMETER	CONDITIONS	MIN	MAX	UNIT
53	Right to ADD Accuracy, Output \#1	Change in gain of a signal from the RIGHT input directed to Output \#1 when the mode is changed from RIGHT to ADD	$\begin{aligned} & \left(A_{i R 1(R)^{-A_{i R 1}} 1(A D D)}\right) / \\ & 2.355 \\ & \text { Express in precent } \end{aligned}$	-0.5	0.5	\%
54	Left to OFF Accuracy, Output \#2	Change in gain of a signal from the RIGHT input directed to Output \#2 when the mode is changed from LEFT to OFF	$\begin{aligned} & \left(A_{i R 2(L)^{-A}} \mathrm{AR}_{2(\text { OFF })}\right) / \\ & 2.355 \\ & \text { Express in precent } \end{aligned}$	-0.5	0.5	\%
55	Right to OFF Accuracy, Output \#2	Change in gain of a signal from the LEFT input directed to Output \#2 when the mode is changed from RIGHT to OFF	$\begin{aligned} & \left(A_{i L} 2(R)^{-A_{i L} 2(0 F F)}\right)^{\prime} / \\ & 2.355 \\ & \text { Express in precent } \end{aligned}$	-0.5	0.5	\%
56	$A_{i L 1} 1(\mathrm{R})$	Current gain from LEFT input, RIGHT mode, measured at Output \#1	Same as \#42 except: Pins 7 and 9 open Pin 17 connected to a current source of -7.5 mA then +7.5 mA and Pin 19 connected to a current source of +7.5 mA then -7.5 mA Measure the voltage difference between Pins 12 and 13 The change in voltage difference between application of -7.5 mA and +7.5 mA divided by 1.5 volts then 2.355 and expressed in dB is the current gain		-66	dB

PARAMETRIC SUMMARY (continued)						
NO	SYMBOL	PARAMETER	CONDITIONS	MIN	MAX	UNITS
57	$\mathrm{A}_{\text {iR } 1(L)}$	Current gain from RIGHT input, LEFT mode, measured at Output \#1	Same as \#56 except; Pins 1 and 10 to +2.0 volts Pins 11 and 20 to +2.6 v.olts Pins 17 and 19 open Pin 7 connected to a current source of -7.5 mA then +7.5 mA and Pin 9 connected to a current source of +7.5 ma then $-7.5 \mathrm{~mA}$		-66	dB
58	$A_{\text {ir } 1 \text { (OFF) }}$	Current gain from RIGHT input, OFF mode, measured at Output \#1	Same as \#57 except; Pin 1 to +2.6 volts Pin 20 to +2.0 volts Pin2 12 and 13 through 50Ω resistors to +5.8 volts Pins 2 and 3 through 50Ω resistors to +9.8 volts		-66	dB
59	$A_{i L 1} 1$ (OFF)	Current gain from LEFT input, OFF mode, measured at Output \#1	Same as \#56 except Pin 10 to +2.0 volts Pin 11 to +2.6 volts Pins 12 and 13 through 50Ω resistor to +5.8 volts Pins 2 and 3 through 50Ω resistor to +9.8 volts		-66	dB
60	$A_{i R 2} 2(R)$	Current gain from RIGHT input, RIGHT mode, measured at Output \#2	Same as \#57 except; Pins 11 and 20 to +2.0 volts Pins 1 and 10 to +2.6 volts Measure voltage difference between Pins 3 and 2		-66	dB
$\begin{aligned} & \text { RONI } \\ & \text { RTON. } \end{aligned}$	NC. sht 20	30 80 COE IDENT NO 2	PART Number $155-0206-00$			REV

5.1
 Test Fixture

6.0 PACKAGING

$1.75 \mathrm{~cm} \mathrm{x} 1.75 \mathrm{~cm} \mathrm{Al}_{2} \mathrm{O}_{3}$ (805) substrate with 22 pin HYPCON connector.
6.1 Terminal Identification

PIN NUMBER
INPUT/OUTPUT

1

2

3
3a
4
5

6

7
8

9

10
11
12
13
13a
14
15
16
17
18
19
20

Left Channel OFF
-Output \#2
+Output \#2
$+V_{C C}{ }^{2}$
Right Channel Emitter Pick-Off
Right Channel Emitter Longtail
Right Channel Emitter Pick-Off
Right Channel -Input
Right Channel Bias
Right Channel +Input
Right Channel ON
Right Channel OFF
+Output \#1
-Output \#1
$+V_{C C}{ }^{1}$
Left Channel Emitter Pick-Off
Left Channel Emitter Longtail
Left Channel Emitter Pick-Off
Left Channel +Input
Left Channel Bias
Left Channel -Input
Left Channel ON

6.1 Outline Drawing

				14, 28	25Ω	$\pm 20 \%$	25Ω	20\%
				12,13, 26, 27	45Ω	$\pm 12 \%$		-
				8,22	100Ω	$\pm 20 \%$	100Ω	$\pm 20 \%$
				7,9,21,23	135Ω	$\pm 12 \%$	150Ω	$\pm 1 \%$
				6,10,20,24	35Ω	$\pm 12 \%$		-
				5,11,12, 25	40Ω	$\pm 12 \%$	47Ω	$\pm 1 \%$
				3,4,17,18	41.6Ω	$\pm 12 \%$	51Ω	10.75\%
32,3,4	5.5.n	6,2,5,4	0.4 pf	1,2,15,16	50Ω	$\pm 20 \%$	50Ω	-20\%
$\angle N^{\text {OS }}$	VALUE	CNes.	value	Pasas.	VALUE	rok.	VALUE	E.04.704
					AS AEOCESSED		ASTRIMMED	
ANDUCTOR, CARACITOE, RESISTOR VALUES								
				TABLE	III			

6.2 Hybrid Substrate Pattern

6.3 Thermal Characteristics

For 1.64 W total M178 power, $\Delta \mathrm{T}_{\text {J-Die Pad }}=18.7^{\circ} \mathrm{C}$
For 2.01 W total substrate power, $\Delta \mathrm{T}_{\text {Die Pad-Ambient }}=62.0^{\circ} \mathrm{C}$
(EC Board Mounting)
ΔT_{J} M178 Ambient $=80.7^{\circ} \mathrm{C}$ (EC Board Mounting)
T_{J} M178 (For $\mathrm{T}_{\text {Ambient }}=65^{\circ} \mathrm{C}$) $=145.7^{\circ} \mathrm{C}$
7.0 RELIABILITY STATEMENT Based on the H442 - No Test Done on the H752
7.1 Reliability Goal
λ, Failure Rate $\leq .7 \% / 1 \mathrm{~K}$ Hours at $145^{\circ} \mathrm{C} \mathrm{T}_{\mathrm{j}}$
λ, Failure Rate $\leq .0026 \% / 1 \mathrm{~K}$ Hours at $75^{\circ} \mathrm{C} \mathrm{T}_{\mathrm{j}}$
MTTF $\geq 143 \mathrm{~K}$ Hours at $145^{\circ} \mathrm{C} \mathrm{T}_{\mathrm{j}}$
Expected Instrument Life; 10K Hours
7.2 Life Test Results

90\% Confidence Level
$\lambda, .25 \% / 1 \mathrm{~K}$ Hours at $145^{\circ} \mathrm{C} \mathrm{T}_{\mathrm{j}}$
$\lambda, .00093 \% / 1 \mathrm{~K}$ Hours at $75^{\circ} \mathrm{C} \mathrm{T}_{\mathrm{j}}$
Life Test Report \#RA-32

8.0

APPLICATIONS INFORMATION
The circuit receives analog input data at differential input RIGHT and at differential input LEFT. The outputs select the inputs according to the following schedule:

MODE*	MODE**	PIN 1	PIN 20	PIN 11	PIN 10
LEFT	RIGHT	2.0 Volts	2.6 Volts	2.6 Volts	2.0 Volts
RIGHT	LEFT	2.6 Volts	2.0 Volts	2.0 Volts	2.6 Volts
ADD	OFF	2.0 Volts	2.6 Volts	2.0 Volts	2.6 Volts
OFF	ADD	2.6 Volts	2.0 Volts	2.6 Volts	2.0 Volts

*Referenced to Output \#1: All of the preceeding mode designations are referenced to Output \#1
**Referenced to Output \#2
9.0 REFERENCE LIST

SPEC NO
TITLE

