TEKTRONIX

067-0746-00 SYSTEM TEST FIXTURE

Tektronix, Inc.
P.O. Box 500

Copyright © 1977 by Tektronix, Inc. Beaverton, Oregon. Printed in the United States of America. All rights reserved. Contents of this publication may not be reproduced in any form without permission of Tektronix, Inc.

This instrument, in whole or in part, may be protected by one or more U.S. or foreign patents or patent applications. Information provided on request by Tektronix, Inc., P.O. Box 500, Beaverton, Oregon 97077.

TEKTRONIX is a registered trademark of Tektronix, Inc.

Portions of this manual were reprinted with permission of Motorola, Inc., Phoenlx, Arizona.

This manual supports the following versions of this product: B010100 and up

MANUAL REVISION STATUS

REV.	DATE	DESCRIPTION

CONTENTS

SECTION 1 INTRODUCTION
Overview $1-1$
Standard Configuration 1-3
Available Test Fixture Memory 1-3
Installation 1-3
Routine Maintenance $1-4$
WARNING
The remaining portion of this Table of Contents lists servicing instructions that expose personnel to hazardous voltages. These instructions are for qualified service personnel only.
SECTION 2 OPERATION
Getting Started 2-1
Operating Procedures 2-1
SECTION 3 CIRCUIT DESCRIPTIONIntroduction3-1
General 3-1
Definitions Of Signal Names 3-4
Circuitry 3-9
Block Diagram Overview 3-9
Power 3-9
SECTION 46800 MICROCOMPUTER SPECIFICATIONS
SECTION 5 REPLACEABLE PARTS
SECTION 6 SCHEMATICS
CHANGE INFORMATION
LIST OF ILLUSTRATIONS
Figure Description Page
1-1 067-0746-00 System Test Fixture
1-2 Equipment that can be tested is based on a 6800 microcomputer system 1-2
1-3
Memory address space utilization 1-4
1-4 System Test Fixture installation hardware 1-5
3-1 System Test Fixture showing microcomputer interface signal lines 3-2
3-2 6800 Microcomputer Block Diagram 3-3
3-3 System Test Fixture Block Diagram 3-7
3-4 EXAMINE and DEPOSIT timing 3-10
3-5 System Test Fixture timing 3-11
3-6Comparative timing for memory write operations (4051and System Test Fixture)3-13

Fig. 1-1: 067-0746-00 System Test Fixture.

INTRODUCTION

overview

The 067-0746m0 system Test Fixture (fig. 1-1) is a general purpose test device for Tektronix equipinent that uses 6800 microprocessors. Several manusacturers make the 6800 microo processors modeled after a design introduced by Motorola Semiconductor products, Inc. Due to the sophisticated intelligence offered by these microprocessor devices, tektronix has developed the System Test fixture as an ald to troub. leshooting these intelligent machines.

Typical systems offered by rektronix using 6800 microprocessor technoloay include computing systems like the 4051 Graphlc system, data storage devices like the f924 tape unit data display devices like the 4662 Digital plotter and other equipment (fig. 1-2), many of which can directy interface with the IEEE-488-1975 Standard Digital Interface for Programable instrumentation.

There are optional cables and accessories avallable to use the system rest fixture witn a number of intelligent systems offered by rektronix. Refer to the section at the back of the manual that describes the varlous cables. alixiliary test boards and interface adapters for the various systems.

Microprocessors, when used as controllers for an intelligent device, must be treated mueh like a computer. The system Test fixture connects directly to the microprocessor bus and control lines or their buffered equivalent. Atter the elece trical connection is made, system test fixture operations closely resemble the control console operations of any malnframe computer system, Rinary data can be stored and retrieved from specified addressable locations. Programs can be run. Erocesses can be stopped and the microinstrucitons can be executed one at a time for eacn pressing or a switch. Running test programs can also output data to the lights on the system test rixture in accordance with procedures dependent upon the oderations of the specific test program.

Microprocessor devices residing in the addressable space of 65,536 possible address locations can be of varlous types. Most of the devices are components directiy supported by the manufacturers of the 6800 microprocessors. They include random access memory (RAM) for temporary data storage, read only memory (ROM) for permanent data and program storage, and perinheral interface devices (PIA's and ACIA's) for equipment control and data transfer. Some intelligent sys= tems may even have discrete logics that decode address information, latch data, and perform special operations.

Fig. 1-2. Equipment that can be tested is based on a $\mathbf{6 8 0 0}$ microcomputer system.

Standard Configuration

The standard configuration of the system test fixture con= talns the test fixturee two ribbon cables and an adapter board for connecting the device to a 4051 Graphic sytem. other adapter boards are required if the system rest fixture is to be used with other equipment. The two PROM devices that come standard with the system Test fixture contain firmware tests for the 4051 Graphic System.

Available Test Fixture Memory
The System Test fixture contains a possible $4 k$ of programme able readmonly memory (P ROM). Within the system test fix. ture, the address strap is set to give the PROM devices an address space in the $4 k$ address reaton bounded by 9000 and 9FFF (Fig. 1-3). The internal fixture proms contain special test proarams for the 4051 Graphic system. The strap can be changed to select any $4 k$ address partition in the upper $32 k$ of the microprocessor's 64 K address soace for PROM address= ing.

System test programs can be changed by replacina the exista ing proms in the system rest fixture with a new set.

The System Test fixture also contains random access memory (RAM) for the highest 32 memory locations in the microprom cessor's 64 K address soace (Fig. 1-3).

Instadlation

Several devices and systems manufactured by tektronix uti= lize the system Test fixture as part of the standara service equipment. specifle documentation as to the tests pertormed by the tirmware test PROMS can be found in the appropriate service documentation that is avallable for each respective product. Consult the appropriate service manual for the connecting procedures for your system and the cautions to be taken. figure 1 - 4 illustrates some of the devices necessary to make the system Test Fixture usable as a service troublem shooting tool.

(INTERRUPT VECTORS)

Fig. 1-3. Memory address space utilization.

Routine Maintenance

Routine maintenance of the system Test Fixture consists ot occasional cleaning. If the electronics are to be serviced. this service should be performed at a static-free work station.

There are no adjustments within the system test fixture housing except for the jumper that selects the pRom address space. The prom address jumper should be set to be compatible with the system (or instrument) being tested.

Fig. 1-4. System Test Fixture installation hardware.

Getting started

1. Review the service documentation for the equipment to be tested.
2. Check to see that the appropriate programs are in* stalled in the system Test Fixture. The test programs are avallable through the regional field service centers as orogramable read only memory (PROM) devices.
3. Be sure you have the approprlate interface adapters and cables for the system to be tested.
4. Connect the system rest fixture to your equipment as descrited in the appropriate service documentation for the equipment to be tested.

Operating procedures

The switches and lamps on the system Test fixture are used in a manner similar to the control console of a mainframe computer. The switches are used to load and retrieve data to and from memory. The switches are also used to execute programs, provide data input and enable data display operam tions under program control. Debugaing breakpoints that monitor data at specified addresses or address monitoring of specified data values can be implemented by appropriate switch settings.

NOTE

> If the halt line goes active during the last processor cycie of an instruction, one more instruction will be executed before the halt is atfected and the microprocessor finally stops.

The switches and indicators perform the following functions.

All side switches $\quad u p=1$ or true Down $=0$ or false

16 Address switches

STOP
$A B 15-A B O$ left to right in aroups of four switches, AR1S is the most significant and $A B O$ is the least significant adriess bit.

DA7-DBO left to right in two groups of four switches, DB7 is the most significant and DBO is the least significant data bit.

This signal will cause a HAbT signal to be sent to the 6800 microprocessor. After completing the current instruction, the $6800 \mathrm{mi-}$ croprocessor will make the busses avallable for otner uses and assert Bus Avallable (BA).

Once the microprocessor nalts, the STEP switch can be used to step through the microinstructions, one instruction at a time. Each of the instructions may comprise 1, 2 or 3 memory locations (8-bits each).

This lamp turns on when the microm orocessor stops and makes the busses avallable, the microprocesm sor asserts BA, which is used as $A B A$ meaning the address bus is available.

This switch, when pressed, causes data found at a memory location determined by the address switches to be displayed in the Data LEDS. The microprogessor must be halted in order for this switch to have any aftect.

This switch, when pressed, causes data found in the Data switches to be loaded into the memory location as determined by the Address

DEPASIT (cont* ${ }^{(1)}$	Switches. The microprocessor must be nalted in order for this switch to have any affect.
RESTART	This switch is tied directly to the RESTART IIne and causes a vectored restart interrupt to occur whenever this switch is pressed.
LATCH DATA	This silde switch will enable memm ory address comparison with the Ade dress switches and will capture the data contents written to or read from that memory location. The data contents will be displayed on the nata Leds.
LATCH ADDRESS	This slide switch will enable data comparison with the Data switches and will capture the address oits that are active when the data come parison is sensed. The captured adm dress is displayed in the Address LEDs. The address displayed is the location where the data was found.
FIXTURE PROM	This slide switch activates the INTERNAL PROM ENARLE SIGNAL. AS a result, the RBC (ROM BANK CONTROL) signal is made false to disable a $4 k$ byte memory address region in the upper 32 K of the equipment un der test. The firmware tests stored in the system Test fixture on prom grammable read only memory (PROM) are enabled.
FIXTURE RAM	This slide switch activates the INTERNAL RAM ENABLE siqnal. As a result, the ROM DIS siqnal is asm serted to disable the microproces* sor interrupt vectors found in the equipment under test. The 32 K RAM memory location can then be prom grammed to contain interrupt and restart vectors used by the PROM test programs.

cIRCUIT DESCRIPTION

INTRODUCTION

General

The 067-0746-00 System Test fixture is most effectively understood as a control panel for a 6800 microcomputer system. Using the System Test fixturep data contents of addressable locations may be changed or examined while the processor is stopped. A restart vector can be executed. Other functions performed by computer control panels can also be pertorined using the system rest fixture (see section 2 on operation).

Figure $3-1$ shows the system Test Fixture keyboard layout along with sianals found on the microcomputer bus cables. Meanings of each sic̣nal name are described later. The pushbutton switches (STOP, START. STER, EXAMINE, DEPOSIT And RESTART) cause the speciffed operation to be performed. The microprocessor must be stopped and the ARA lamp must be on in order for the STEP, EXAMINE and DEPOSIT switches to have any affect.

The seven function slide switches are to the right of the push-button switches. The microprocessor must be running for these switches, with the exception of INSTR CYCLE, to be useful. The LATCH DATA and littch adnress switches enable data bus and address bus contents to re displayed as a program is rurining. The FIXTURE PROM and FIXTURE RAM switches select internal erom and internal RAM when on the BREAK DATA and BREAK ADDR switches forces a microprocessor halt upon a valld data or address comparison. The lNSTR CYCLE, when on, allows an instructioon didress and op-coDE information to be displayed when single-steppina through a program of microcode instructions.

The DATA and ADDRESS switches are used to enter values on the microcomputer data bus and address bus. The correspondm ing LEDs can display data bus and adoress bus information.

Fig. 3-1. System Test Fixture showing microcomputer interface signal lines.

[^0]

Fig. 3-2. 6800 Microcomputer Block Diagram.

```
A block diagram of System Test Fixture functions (Fig. 3-3)
shows the switches, circuitry being controlled, and the
interface lines to a 6g00 microcomputer system (Fig. 2).
Detailed circuitry of each block in the diagram can be found
on the schematics at the end of this section. This block
diagram is a convenient map to understanding the internal
circuitry of the system Test Fixture. The rest. of the
documentation in the manual relates to this diagram and
functions being performed.
Signal mnemonics found on the schematics and in the text of
this manual have the following voltage level interpretation,
If the signal name is appended by a dashmone (NAME-1), then
the true state of the loaic sional is high. If the sianal
name is appended by a dasnmzero (NAMEm0), then the true
state of the logic signal is low. If a dashmone or dashmzero
Is missing from a schematic mnemonic, an analog signal is
generally assumed. In the text of the manual and tables, the
dashoone and dashozero are often not shown; the true state
or false state mentioned for these signals is dependent upon
the appended one or zero as found on the schematic diagram.
```

Definitions ge Signal Names

ABO thru AB15
$A B A$

AD COM

BRK DATA COM

ADORFSS BUS
These signal lines are the address bus that is used by the 6800 microprocessor and its associated memom ries and peripheral interfaces.

ADDRESS BUS AVAILABLE
The bus available (BA) on the 6800 microprocessor, when buftered, is used as the source for the ABA sional.

ADDRFES COMPARE
This siunal is true whenever the address on the address bus matches the data keyed into the Adaress Switches.

BREAK OR DATA COMDARE
Tnis sianal reflects the state of the BREAK-DATA switch and, when acm tive, forces a MALT signal whenever the dota bus value reflects the pattern set. in the Data switches.

Fig. 3-3. System Test Fixture Block Diagram.

BRK ADRS COM

DA COM

ENADR

ENDA

HALT

IPE

BREAK ON ADDRESS COMPARE This signal reflects the state of the BREAK-ADDRESS switch and, when active, forces a HALT signal whenever the addresses on the address bus reflect the pattern keyed into the Address Switches.

DATA COMPARE
This signal is true whenever data on the data hus is the same as data entered into the Data switches.

ENABLE ADDRESSING
The ENADR signal, when true, places the contents of the Address switches onto the address bus. This allows the system Test Fixture to address any memory location when the microprocessor is stopped. The siqnal becomes true for one memory cycle when either the EXAMINE or oEPOSIT switenes is pressed.
enable data
The ENDA siqnal, when true, places the contents of the Data Switches onto the data bus, This allows the System Test fixture to place data into memory locations and peripheral registers when the microprocessor is stopped.

HALT THE MICROPROCESSOR
When this signal becomes true, the microprocessor will stop after come pleting the instruction in which Halt went true, when halt goes false, microprocessor operations will again resume.

INTERNAL PROM ENABLE
This is the internal proorammable read only memory ($P R O M$) enable signal that is activated by a test fixture switch having the same meaning (FiXTURE PROM), This signal activates RBC to disable a bank or ROM within the device under test that occupies the same address

IPE	$\left(\operatorname{cont}{ }^{\circ} \mathrm{d}\right)$	space as the test 1 ixture proms. The jumper strap should be set such that the fixture PROMS occupy the bank switched address space of the device under test.
IRE		INTERNAL RAM ENABLE
		This is the internal random access
		memory (RAM) enable sional that is
		activated by a test fixture switch
		naving the same meaning (fixture
		RAM). This slgnal activates ROM DIS
		to disable the interrupt vector ado
		dress space within the device under
		test.
LAT	$A D R$	LATCH ADDRESS
		This signal is activated by the
		LATCH ADDRESS switch and the data
		compare signal to strobe the con
		tents of the memory adoress bus
		Into the Address LEDS.
LAT	dATA	LATCH DATA
		This signal is used to strobe the
		contents of the data bus into the
		Data LEDS. When the EXAMINE switen
		is pressed, the data found at the
		address specified by the Address
		Switches is displayed. when the
		LATCH DATA switch is true, data
		that accompanies the memory address
		as determined by the Address
		Switches is displayed whenever the
		microprocessor addresses the speci-
		fied memory address location.
PIAE		PERIPHERAL INTERFACE ADAPTER ENABLE
		This signal is true if data on the
		address bus is the same as the
		pattern found in the system rest
		Fixture Address switches.
RBC		ROM BANK CONTRUL
		This slonal goes false whenever the
		addresses for the internal prums
		are activated. The signal is used
		to disable a memory address space
		in the device under test and make
		the addresses avallable to the syso

RBC (cont ${ }^{\circ} d$)

RCE

RESTART

ROM DIS
tem Test fixture. This provides an area of addresses that can be used by the system rest Fixture firmware.

RAM CHIP ENARLE
This signal allows the test fixture or microprocessor to address any of 32 random access memory locations In which temporary interrupt vectors may be stored.

RESTART OR INITIALIZE This signal forces a vectored interrupt to a snecial test proaram as determined by the restart interrupt vector (FFFEaFFFF).

ROM DISABLE
This is the read only memory (ROM) disable signal line that is used to disable the ROM containing the interrupt vectors for the processor. The system Test fixture provides vector address space whenever the internal PAM enable switen is true. ine suitch, when true, causes the RDM DIS signal to be asserted. The Internal RAM occupies the niahest 32 memory locations in the 64 K adm dress space of the microorocessor.

RWE

RWDC

RAM WRITE ENABLE
This signal is true whenever data is to be written to memory by any other perioneral device.

HEAD/WRITE OUTPUT COMMAND This siqnal is the system read/write (R/W) signal that is generated by the microprocessor or system Test Fixture。

CIRCUITRY

Block Diagram overview

Refer to the block diagran of Fig. 3-3. The "control switches and buffers" block contains the microprocessor control and function switches. Also included are filpoflops on each switch to keep switching translents out of the internal control circuits.

The "data and address switeh enable logic" and the "address compare louic." when ENOA is true. data from the ndata switches can be placed on the data bus (DBO-DB7). When LATDA 15 true, the contents of the data bus are strobed into a buffer register and displayed on the "data LEDs." Whenever the contents of the data switches" matches the contents of the data bus. DACOM becomes true.

The madress compare logic" is controlled by LATADR and ENADR and produces ADCOM in much the same way as the "data compare logic" is controlled by LATDA and FADA and produces DACOM.

The RAM block contains data storage registers to allow tne user to modify the interrupt vectors. This data storage is addressed only when IRF is true.

The PROM block contains data storaqe reqisters for test programs. rris block ot memory car be addressed only if Ipe is true. the "pros enable" block contains an adaress jumper to determine the address smace occupled by the prons.

HALT reguests are generated by the "halt on compare logic" and by oressing the sTop switch.
"Test fixture timina" controls the time sequencing of opera= tions necessary for data transfer operations, halt operam tions, single instruction execution, and any timemependent microcomputer interface functions.

Power

Power for the system Test fixture comes from power supplies within the instrument being tested. Required voltages and their usage appear in table $3-1$.

Table 3-1

POWER RFGUIREMENTS

```
+5 volTs used by all logic circuits.
+12 volTS used by PROM devices.
-12 vOLTS used to generate-5 volt suppiy for PROMS,
```

Test Fixture Timing
Timing for examine and aeposit operations is illustrated in Fiq. 3-4. II 31 A and J431B are two monostable devices shown on the schematic foldmout at the end of this chapter. These devices, along with microprocessor clock signals MCPi (01) and PIAF, (02) are usen for system Test fixture timing clocks. Whenever an ExAMTNE or DFPOSIT switch is pressed, the value of ENADR goes true for one infoprocessor cycle. If the EXAMME switch was pressed, the LAT DA line qoes true and the contents of tre dta bus are strobed into the DATA LEDs. When LAT DA goes false, 0431 mrovides timing for the memory devices. If the derosit switch was pressed, Lat DA remains talse whereas RDE and ERDA go true. This causes data to be strobed into memory via u43i pulses.

Fig. 3-4. EXAMINE And DEPOSIT Timing.

Refer to the composite timing diagram of fia, 3 -5. U101B and U101C provide debouncing for the EXAMINE and DEPOSIT switches respectively. U40iA is cleared ny pressing the EXAMINE SWItch OR DEPOSIT swltch and is set after MCPI triggers U401B.

Halt mode timing and single instruction step timina are dilustrated in the timing diagram of Fig. 3 m. The step switch has debounce flip-flops that perform much the same as Elipmilops on the FXAMINE and DFPOSIT switches it the

[^1]Fig. 3-5. System Test Fixture Timing.

```
microprocessor is nalted, the sTEp switch causes the HALT-0
sional to go nigh for one machine cycle thus causina a
single microprocessor instruction to be executed. [HALTMi is
a delayed HALT signal that \(1 s\) used to latch data pertaining
to the instruction being executed as a result of sinqlestep
operation, u4210 provides the pulse that is used to laten
the op-CODE of the instruction being executed. Any time the
HALT line qoes true, the microprocessor continues to execute
the current instruction and stops at the end of the current
instruction except, if the HALT occurs during the last
machine cycie fo an instruction, the 6800 microprocessor
will continue to execute one more machine instruction before
stopping.
```

When the microprocessor is stopped, piAE remains false because the microprocessor cannot assert vMa. Only when the microprocessor is operating can $V M A$ be issued to allow the phase two microprocessor clock MCP2 (02) to become the plaE sianal used by the system rest fixture.

Figure $3-6$ compares memory write operations between microm processor initiated writes (Rwoc line from a 405i) and System Test fixture initiated writes using the DEPOSIT switch.

Fig. 3-6. Comparative timing for memory write operations (4051 and System Test Fixture).

These specification sheets are reprinted by permission of Motorola semiconductor, Inc. The specification information is current as of the first printing of this manual. updates and corrections and desion changes made by motorola will not necessarily be reflected in later reprints of this manual.

The purpose of this section is to alve users of the System Test fixture a ready access to general specifications tht apply to most systems using 6800 microprocessors. it is advisable to understand thoroughly the specifications that apply to your system being tested as documented in the service manual for that product.

MOTOROLA
Semiconductors BOX 20912 . PHOENIX, ARIZONA 85036

MC6800C
(-40 to $85^{\circ} \mathrm{C}$; L Suffix only)

MICROPROCESSING UNIT (MPU)

The MC6800 is a monolithic 8 -bit microprocessor forming the central control function for Motorola's M6800 family. Compatible with TTL, the MC6800, as with all M6800 system parts, requires only one +5.0 -volt power supply, and no external TTL devices for bus interface.

The MC6800 is capable of addressing 65 K bytes of memory with its 16 -bit address lines. The 8 -bit data bus is bidirectional as well as 3 -state, making direct memory addressing and multiprocessing applications realizable.

- Eight-Bit Parallel Processing
- Bi-Directional Data Bus
- Sixteen-Bit Address Bus - 65K Bytes of Addressing
- 72 Instructions - Variable Length
- Seven Addressing Modes - Direct, Relative, Immediate, Indexed, Extended, Implied and Accumulator
- Variable Length Stack
- Vectored Restart
- Maskable Interrupt Vector
- Separate Non-Maskable Interrupt - Internal Registers Saved In Stack
- Six Internal Registers - Two Accumulators, Index Register, Program Counter, Stack Pointer and Condition Code Register
- Direct Memory Addressing (DMA) and Multiple Processor Capability
- Clock Rates as High as 1 MHz
- Simple Bus Interface Without TTL
- Halt and Single Instruction Execution Capability

REPRINTED BY PERMISSION OF MOTOROLA, INC.

Characteristic	Symbol	Min	Typ	Max	Unit
$\begin{array}{ll}\text { Input High Voltage } & \text { Logic } \\ & \phi 1, \phi 2\end{array}$	$\begin{aligned} & v_{I H} \\ & v_{I H C} \end{aligned}$	$\begin{gathered} \mathrm{V}_{\mathrm{SS}}+2.0 \\ \mathrm{v}_{\mathrm{CC}}-0.3 \\ \hline \end{gathered}$	-	$\begin{gathered} v_{C C} \\ v_{C C}+0.1 \end{gathered}$	Vdc
$\begin{array}{ll}\text { Input Low Voltage } &$ Logic $1, \phi 2$\end{array}	$\begin{aligned} & \hline V_{\text {IL }} \\ & V_{\text {ILC }} \end{aligned}$	$\begin{aligned} & \hline V_{S S}-0.3 \\ & V_{S S}-0.1 \end{aligned}$	-	$\begin{aligned} & \mathrm{V}_{\mathrm{SS}}+0.8 \\ & \mathrm{v}_{\mathrm{SS}}+0.3 \end{aligned}$	Vdc
Clock Overshoot/Undershoot - Input High Level - Input Low Level	$\mathrm{V}_{\text {OS }}$	$\begin{aligned} & V_{C C}-0.5 \\ & V_{S S}-0.5 \end{aligned}$	-	$\begin{aligned} & \mathrm{v}_{\mathrm{CC}}+0.5 \\ & \mathrm{v}_{\mathrm{SS}}+0.5 \end{aligned}$	Vdc
Input Leakage Current $\left(V_{\text {in }}=0\right.$ to $5.25 \mathrm{~V}, \mathrm{~V}_{C C}=$ max $)$ Logic* $\left(\mathrm{V}_{\text {in }}=0\right.$ to $\left.5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=0.0 \mathrm{~V}\right)$ $\phi 1, \phi 2$	$\mathrm{l}_{\text {in }}$	-	1.0	$\begin{gathered} 2.5 \\ 100 \end{gathered}$	$\mu \mathrm{Adc}$
Three-State (Off State) Input Current DO-D7 $\left(V_{\text {in }} 0.4\right.$ to $2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=$ max $)$ AO-A15,R/W	ITSI		2.0	$\begin{gathered} 10 \\ 100 \end{gathered}$	μ Adc
Output High Voltage (I Load $\left.=-205 \mu \mathrm{Adc}, V_{C C}=\mathrm{min}\right)$ DO-D7 (I Load $\left.=-145 \mu \mathrm{Adc}, V_{C C}=\mathrm{min}\right)$ AO-A15,R/W,VMA (Load $=-100 \mu \mathrm{Adc}, V_{C C}=$ min) BA	V_{OH}	$\begin{aligned} & V_{S S}+2.4 \\ & V_{S S}+2.4 \\ & V_{S S}+2.4 \end{aligned}$...	-	Vdc
$\begin{aligned} & \text { Output Low Voltage } \\ & \text { (I Load }=1.6 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{min} \text {) } \end{aligned}$	VOL	-	-	$\mathrm{V}_{\text {SS }}+0.4$	Vdc
Power Dissipation	$P_{\text {D }}$	-	0.600	1.2	W
Capacitance $\#$ $\phi 1, \phi 2$ $\left(V_{\text {in }}=0, T_{A}=25^{\circ} \mathrm{C}, f=1.0 \mathrm{MHz}\right)$ TSC DBE DO-D7 Logic Inputs	$\mathrm{C}_{\text {in }}$	80	$\begin{gathered} 120 \\ - \\ 7.0 \\ 10 \\ 6.5 \end{gathered}$	$\begin{gathered} \hline 160 \\ 15 \\ 10 \\ 12.5 \\ 8.5 \end{gathered}$	pF
AO-A15,R/W,VMA	$\mathrm{C}_{\text {out }}$	-	-	12	pF
Frequency of Operation	f	0.1	-	1.0	MHz
Clock Timing (Figure 1) Cycle Time	${ }^{\text {t }}$ cyc	1.0	-	10	$\mu \mathrm{s}$
Clock Pulse Width (Measured at $\mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V}$)	$\mathrm{PW}_{\phi} \mathrm{H}$	$\begin{array}{r} 430 \\ 450 \\ \hline \end{array}$	$-$	$\begin{aligned} & 4500 \\ & 4500 \\ & \hline \end{aligned}$	ns
Total $\phi 1$ and $\phi 2$ Up Time	tut	940	-	-	ns
Rise and Fall Times (Measured between $V_{S S}+0.3 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{CC}}-\mathbf{~}-\mathbf{0 . 3} \mathrm{V}$)	$\mathrm{t}_{\phi r}, \mathrm{t}_{\phi} \mathrm{f}$	5.0	-	50	ns
Delay Time or Clock Separation (Measured at $\mathrm{V}_{\mathrm{OV}}=\mathrm{V}_{\mathrm{SS}}+0.5 \mathrm{~V}$)	${ }_{\text {t }}$ d	0	-	9100	ns
Overshoot Duration	tos	0	-	40	ns

*Except $\overline{\mathrm{IRO}}$ and $\overline{\mathrm{NMI}}$, which require $3 \mathrm{k} \Omega$ pullup load resistors for wire-OR capability at optimum operation.
${ }^{\text {\# }}$ Capacitances are periodically sampled rather than 100% tested.
FIGURE 1 - CLOCK TIMING WAVEFORM

REPRINTED BY PERMISSION OF MOTOROLA, INC.

MC6800
MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Supply Voltage	V_{CC}	-0.3 to +7.0	Vdc
Input Voltage	$\mathrm{V}_{\text {in }}$	-0.3 to +7.0	$\mathrm{~V}_{\mathrm{Vc}}$
Operating Temperature Range	T_{A}	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$
Thermal Resistance	θ_{JA}	70	${ }^{\circ} \mathrm{C} / \mathrm{W}$

This device contains circuitry to protect the inputs against damage due to high static volt ages or electric fields; however, it is advised that normal precautions be taken to avoid applica tion of any voltage higher than maximum rated voltages to this high impedance circuit.

READ/WRITE TIMING Figures 2 and $3, f=1.0 \mathrm{MHz}$, Load Circuit of Figure 6.

Characteristic	Symbal	Min	Typ	Max	Unit
Address Delay	${ }_{\text {t }}$ D	-	220	300	ns
Peripheral Read Access Time $t_{a c c}=t_{u t}-\left(t_{A D}+t_{D S R}\right)$	tacc	-	-	540	ns
Data Setup Time (Read)	tDSR	100	-	-	ns
Input Data Hold Time	t_{H}	10	-	-	ns
Output Data Hold Time	th_{H}	10	25	-	ns
Address Hold Time (Address, R/W, VMA)	${ }^{t} \mathrm{AH}$	50	75	-	ns
Enable High Time for DBE Input	${ }_{\text {teh }}$	450	-	-	ns
Data Delay Time (Write)	todw	-	165	225	ns
Processor Controls* Processor Control Setup Time Processor Control Rise and Fall Time Bus Available Delay Three State Enable Three State Delay Data Bus Enable Down Time During $\phi 1$ Up Time (Figure 3) Data Bus Enable Delay (Figure 3) Data Bus Enable Rise and Fall Times (Figure 3)	```tPCS ```	200 - - - - 150 300 -	- - - - - - -	- 100 300 40 700 - - 25	ns ns ns ns ns ns ns ns

*Additional information is given in Figures 12 through 16 of the Family Characteristics - see pages 17 through 20.

FIGURE 2 - READ DATA FROM MEMORY OR PERIPHERALS

MOTOROLA Semiconductor Products Inc.

FIGURE 4 - TYPICAL DATA BUS OUTPUT DELAY versus CAPACITIVE LOADING

FIGURE 5 - TVPICAL READ/WRITE, VMA, AND

(A) MOTOROLA Semiconductor Products inc.

REPRINTED BY PERMISSION OF MOTOROLA,INC.

MC6800

EXPANDED BLOCK DIAGRAM

MPU SIGNAL DESCRIPTION

Proper operation of the MPU requires that certain control and timing signals be provided to accomplish specific functions and that other signal lines be monitored to determine the state of the processor.

Clocks Phase One and Phase Two ($\phi 1, \phi 2$) - Two pins are used for a two-phase non-overlapping clock that runs at the VCC voltage level.

Address Bus (A0-A15) - Sixteen pins are used for the address bus. The outputs are three-state bus drivers capable of driving one standard TTL load and 130 pF . When the output is turned off, it is essentially an open circuit. This permits the MPU to be used in DMA applications.

Data Bus (DO-D7) - Eight pins are used for the data bus. It is bi-directional, transferring data to and from the memory and peripheral devices. It also has three-state output buffers capable of driving one standard TTL load and 130 pF .

Halt - When this input is in the low state, all activity in the machine will be halted. This input is level sensitive. In the halt mode, the machine will stop at the end of an instruction, Bus Available will be at a one level, Valid Memory Address will be at a zero, and all other three-state lines will be in the three-state mode.

Transition of the Halt line must not occur during the last 250 ns of phase one. To insure single instruction operation, the Halt line must go high for one Clock cycle.

Three-State Control (TSC) - This input causes all of the address lines and the Read/Write line to go into the off or high impedance state. This state will occur 700 ns after TSC $=2.0 \mathrm{~V}$. The Valid Memory Address and Bus Available signals will be forced low. The data bus is not affected by TSC and has its own enable (Data Bus Enable). In DMA applications, the Three-State Control line should be brought high on the leading edge of the Phase One Clock. The $\phi 1$ clock must be held in the high state and the $\phi 2$ in the low state for this function to operate properly. The address bus will then be available for other devices to directly address memory. Since the MPU is a dynamic device, it can be held in this state for only $4.5 \mu \mathrm{~s}$ or destruction of data will occur in the MPU.

Read/Write (R/W) - This TTL compatible output signals the peripherals and memory devices whether the MPU is in a Read (high) or Write (low) state. The normal standby state of this signal is Read (high). Three-State Control going high will turn Read/Write to the off (high impedance) state. Also, when the processor is halted, it will be in the off state. This output is capable of driving one standard TTL load and 90 pF .

Valid Memory Address (VMA) - This output indicates to peripheral devices that there is a valid address on the address bus. In normal operation, this signal should be utilized for enabling peripheral interfaces such as the PIA and ACIA. This signal is not three-state. One standard TTL load and 90 pF may be directly driven by this active high signal.

Data Bus Enable (DBE) - This input is the three-state control signal for the MPU data bus and will enable the bus drivers when in the high state. This input is TTL compatible; however in normal operation, it would be driven by the phase two clock. During an MPU read cycle, the data bus drivers will be disabled internally. When it is desired that another device control the data bus such as in Direct Memory Access (DMA) applications, DBE should be held low.

Bus Available (BA) - The Bus Available signal will normally be in the low state; when activated, it will go to the high state indicating that the microprocessor has stopped and that the address bus is available. This will occur if the Halt line is in the low state or the processor is in the WAIT state as a result of the execution of a WAIT instruction. At such time, all three-state output drivers will go to their off state and other outputs to their normally inactive level. The processor is removed from the WAIT state by the occurrence of a maskable (mask bit $1=0$) or nonmaskable interrupt. This output is capable of driving one standard TTL load and 30 pF .
$\overline{\text { Interrupt Request }}(\overline{\mathbf{I R Q}})$ - This level sensitive input requests that an interrupt sequence be generated within the machine. The processor will wait until it completes the current instruction that is being executed before it recognizes the request. At that time, if the interrupt mask bit in the Condition Code Register is not set, the machine will begin an interrupt sequence. The Index Register, Program Counter, Accumulators, and Condition Code Register are stored away on the stack. Next the MPU will respond to the interrupt request by setting the interrupt mask bit high so that no further interrupts may occur. At the end of the cycle, a 16 -bit address will be loaded that points to a vectoring address which is located in memory locations FFF8 and FFF9. An address loaded at these locations causes the MPU to branch to an interrupt routine in memory.

The $\overline{H a l t}$ line must be in the high state for interrupts to be serviced. Interrupts will be latched internally while Halt is low.

The $\overline{\mathrm{TQ}}$ has a high impedance pullup device internal to the chip; however a $3 \mathrm{k} \Omega$ external resistor to $V_{C C}$ should be used for wire-OR and optimum control of interrupts.

Reset - This input is used to reset and start the MPU from a power down condition, resulting from a power failure or an initial start-up of the processor. If a high level is detected on the input, this will signal the MPU to begin the restart sequence. This will start execution of a routine to initialize the processor from its reset condition. All the higher order address lines will be forced high. For the restart, the last two (FFFE, FFFF) locations in memory will be used to load the program that is addressed by the program counter. During the restart routine, the interrupt mask bit is set and must be reset before the MPU can be interrupted by $\overparen{R Q}$.

Figure 9 shows the initialization of the microprocessor after restart. $\overline{\text { Reset }}$ must be held low for at least eight clock periods after VCC reaches 4.75 volts. If $\overline{R e s e t}$ goes high prior to the leading edge of $\phi 2$, on the next $\phi 1$ the first restart memory vector address (FFFE) will appear on the address lines. This location should contain the higher order eight bits to be stored into the program counter. Following, the next address FFFF should contain the lower order eight bits to be stored into the program counter.

Non-Maskable Interrupt (NMI) - A low-going edge on this input requests that a non-mask-interrupt sequence be generated within the processor. As with the Interrupt Request signal, the processor will complete the current instruction that is being executed before it recognizes the $\overline{\text { NMI }}$ signal. The interrupt mask bit in the Condition Code Register has no effect on NMI:

The Index Register, Program Counter, Accumulators, and Condition Code Register are stored away on the stack. At the end of the cycle, a 16 -bit address will be loaded that points to a vectoring address which is located in memory locations FFFC and FFFD. An address loaded at these locations causes the MPU to branch to a nonmaskable interrupt routine in memory.
$\overline{\text { NMI }}$ has a high impedance pullup resistor internal to the chip; however a $3 \mathrm{k} \Omega$ external resistor to $V_{C C}$ should be used for wire-OR and optimum control of interrupts.

Inputs $\overline{\mathrm{RQ}}$ and $\overline{\mathrm{NMI}}$ are hardware interrupt lines that are sampled during $\phi 2$ and will start the interrupt routine on the $\phi 1$ following the completion of an instruction.

Figure 10 is a flow chart describing the major decision paths and interrupt vectors of the microprocessor. Table 1 gives the memory map for interrupt vectors.

MC6800

MPU REGISTERS

The MPU has three 16 -bit registers and three 8 -bit registers available for use by the programmer (Figure 11).

Program Counter - The program counter is a two byte (16-bits) register that points to the current program address.

Stack Pointer - The stack pointer is a two byte register that contains the address of the next available location in an external push-down/pop-up stack. This stack is normally a random access Read/Write memory that may
have any location (address) that is convenient. In those applications that require storage of information in the stack when power is lost, the stack must be non-volatile.

Index Register - The index register is a two byte register that is used to store data or a sixteen bit memory address for the Indexed mode of memory addressing.

Accumulators - The MPU contains two 8-bit accumu lators that are used to hold operands and results from an arithmetic logic unit (ALU).

MC6800

Figure 12 - SAVING the status of the microprocessor in the stack

MOTOROLA Semiconductor Products Inc.

REPRINTED BY PERMISSION OF MOTOROLA, INC.

Condition Code Register - The condition code register indicates the results of an Arithmetic Logic Unit operation: Negative (N), Zero (Z), Overflow (V), Carry from bit 7 (C), and half carry from bit $3(\mathrm{H})$. These bits of the Condition Code Register are used as testable conditions for the conditional branch instructions. Bit 4 is the interrupt mask bit (1). The unused bits of the Condition Code Register (b 6 and b 7) are ones.

Figure 12 shows the order of saving the microprocessor status within the stack.

MPU INSTRUCTION SET

The MC6800 has a set of 72 different instructions. Included are binary and decimal arithmetic, logical, shift, rotate, load, store, conditional or unconditional branch, interrupt and stack manipulation instructions (Tables 2 thru 6).

MPU ADDRESSING MODES

The MC6800 eight-bit microprocessing unit has seven address modes that can be used by a programmer, with the addressing mode a function of both the type of instruction and the coding within the instruction. A summary of the addressing modes for a particular instruction can be found in Table 7 along with the associated instruction execution time that is given in machine cycles. With a clock frequency of 1 MHz , these times would be microseconds.

Accumulator (ACCX) Addressing - In accumulator only addressing, either accumulator A or accumulator B is specified. These are one-byte instructions.

Immediate Addressing - In immediate addressing, the operand is contained in the second byte of the instruction except LDS and LDX which have the operand in the second and third bytes of the instruction. The MPU addresses
this location when it fetches the immediate instruction for execution. These are two or three-byte instructions.

Direct Addressing - In direct addressing, the address of the operand is contained in the second byte of the instruction. Direct addressing allows the user to directly address the lowest 256 bytes in the machine i.e., locations zero through 255. Enhanced execution times are achieved by storing data in these locations. In most configurations, it should be a random access memory. These are two-byte instructions.

Extended Addressing - In extended addressing, the address contained in the second byte of the instruction is used as the higher eight-bits of the address of the operand. The third byte of the instruction is used as the lower eight-bits of the address for the operand. This is an absolute address in memory. These are three-byte instructions.

Indexed Addressing - In indexed addressing, the address contained in the second byte of the instruction is added to the index register's lowest eight bits in the MPU. The carry is then added to the higher order eight bits of the index register. This result is then used to address memory. The modified address is held in a temporary address register so there is no change to the index register. These are two-byte instructions.

Implied Addressing - In the implied addressing mode the instruction gives the address (i.e., stack pointer, index register, etc.). These are one-byte instructions.

Relative Addressing - In relative addressing, the address contained in the second byte of the instruction is added to the program counter's lowest eight bits plus two. The carry or borrow is then added to the high eight bits. This allows the user to address data within a range of -125 to +129 bytes of the present instruction. These are twobyte instructions.

TABLE 2 - MICROPROCESSOR INSTRUCTION SET - ALPHABE TIC SEQUENCE

ABA	Add Accumulators	CLR	Clear	PUL	Pull Data
ADC	Add with Carry	CLV	Clear Overfiow	ROL	Rotate Left
ADD	Add	CMP	Compare	ROR	Rotate Right
AND	Logical And	COM	Complement	RTI	Return from Interrupt
ASL	Arithmetic Shift Left	CPX	Compare Index Register	RTS	Return from Subroutine
ASR	Arithmetic Shift Right	DAA	Decimal Adjust	SBA	Subtract Accumulators
BCC	Branch if Carry Clear	DEC	Decrement	SBC	Subtract with Carry
BCS	Branch if Carry Set	DES	Decrement Stack Pointer	SEC	Set Carry
BEQ	Branch if Equal to Zero	DEX	Decrement Index Register	SEI	Set Interrupt Mask
BGE	Branch if Greater or Equal Zero	EOR	Exclusive OR	SEV	Set Overliow
BGT	Branch if Greater than Zero	EOR		STA	Store Accumulator
BHI	Branch if Higher	INC	Increment	STS	Store Stack Register
BIT	Bit Test	INS	Increment Stack Pointer	STX	Store Index Register
BLE	Branch if Less or Equal	INX	Increment Index Register	SUB	Subtract
BLS	Branch if Lower or Same	JMP	Jump	SWI	Software Interrupt
BLT	Branch if Less than Zero Branch if Minus	JSR	Jump to Subroutine	TAB	Transfer Accumulators
BNE	Branch if Not Equal to Zero	LDA	Load Accumulator	TAP	Transfer Accumulators to Condition Code Reg.
BPL	Branch if Plus	LDS	Load Stack Pointer	TBA	Transfer Accumulators
BRA	Branch Always	LDX	Load Index Register	TPA	Transfer Condition Code Reg. to Accumulator
BSR	Branch to Subroutine	LSR	Logical Shift Right	TST	
BVC	Branch if Overllow Clear			TSX	Transfer Stack Pointer to Index Register
BVS	Branch if Overllow Set	NOP	No Operation	TXS	Transter Index Register to Stack Pointer
CBA	Compare Accumulators Clear Carry	ORA	Inclusive OR Accumulator	WAI	Wait for Interrupt
CLI	Clear Interrupt Mask	PSH	Push Data		

MOTOPOLA Semiconductor Products Inc.

TABLE 5 - JUMP AND BRANCH INSTRUCTIONS

\qquad

MC6800

SPECIAL OPERATIONS

JSR, JUMP TO SUBROUTINE:

BSR, BRANCH TO SUBROUTINE:

JMP, JUMP:

RTS, RETURN FROM SUBROUTINE:

RTI, RETURN FROM INTERRUPT:

TABLE 6 - CONDITION CODE REGISTER MANIPULATION INSTRUCTIONS

OPERATIONS	MNEMONIC				boolean operation	Cond. Code reg.					
		IMPLIED				5	4	3	2	1	0
		OP	\sim	$=$		H	1	N	z	V	C
Clear Carry	CLC	OC	2	1	$0 \rightarrow$ C	-	-	-	\bullet	\bullet	R
Clear Interrupt Mask	CLI	OE	2	1	$0 \rightarrow 1$	-	R	-	-	-	-
Clear Overflow	CLV	OA	2	1	$0 \rightarrow \mathrm{~V}$	\bullet	-	-	-	R	-
Set Carry	SEC	00	2	1	$1 \rightarrow \mathrm{C}$	-	-	-	-	-	S
Set Interrupt Mask	SEI	OF	2	1	$1 \rightarrow 1$	-	S	\bullet	-	\bullet	-
Set Overflow	SEV	OB	2	1	$1 \rightarrow \mathrm{~V}$	-	-	-	-	S	-
Acmitr A \rightarrow CCR	TAP	06	2	1	$\mathrm{A} \rightarrow \mathrm{CCR}$			-12			
CCR \rightarrow Acmittr A	TPA	07	2	1	$\mathrm{CCR} \rightarrow \mathrm{A}$	-	-	-	-	-	-

CONDITION CODE REGISTER NOTES: (Bit set it test is true and cleared otherwise)

```
(Bit V) Test: Result = 10000000?
Bit C) Test: Result = 00000000?
Bit C) Test: Decimal value of most significant BCD Character greater than nine?
    (Not cleared if previously set.)
(Bit V) Test: Operand = 10000000 prior to execution?
(Bit V) Test: Operand = 10000000 prior to execution?
(Bit V) Test: Set equal to result of N\oplusC after shift has occurred
```

7	(Bit N)	Test: Sign bit of most significant (MS) byte $=1$?
8	(Bit V)	Test: 2's complement overflow from subtraction of MS bytes?
9	(Bit N)	Test: Result less than zero? (Bit $15=1$)
10	(All)	Load Condition Code Register from Stack. (See Special Operations)
11	(Bit I)	Set when interrupt occurs. If previously set, a Non-Maskable
12	(All)	Interrupt is required to exit the wait state.
12	Set according to the contents of Accumulator A.	

(A) MOTOROLA Semiconductor Products Inc.

REPRINTED BY PERMISSION OF MOTOROLA, INC.

MC6800

REPRINTED BY PERMISSION OF MOTOROLA, INC

MC6800

SUMMARY OF CYCLE BY CYCLE OPERATION

Table 8 provides a detailed description of the information present on the Address Bus, Data Bus, Valid Memory Address line (VMA), and the Read/Write line (R/W) during each cycle for each instruction.

This information is useful in comparing actual with expected results during debug of both software and hard-
ware as the control program is executed. The information is categorized in groups according to Addressing Mode and Number of Cycles per instruction. (In general, instructions with the same Addressing Mode and Number of Cycles execute in the same manner; exceptions are indicated in the table.)

TABLE 8 - OPERATION SUMMARY

Address Mode and Instructions	Cycles	Cycle $\#$	VMA Line	Addross Bus	R / W Line	Data Bus

IMMEDIATE						
ADC EOR ADD LDA AND ORA BIT SBC	2	2	1	Op Code Address Op Code Address +1	1	Op Code Operand Data
CPP SUB						
LDS		1	1	Op Code Address	1	Op Code
LDX	2	2	1	Op Code Address +1	1	Operand Data (High Order Byte)
Operand Data (Low Order Byte)						

DIRECT ADC EOR ADD LDA AND ORA BIT SBC CMP SUB							
CPX							

INDEXED

JMP	4	1 2 3 4	1 1 0
 ADC EOR ADD LDA AND ORA BIT SBC CMP SUB	5	1 2 3 4 5	1 0 0
$\begin{array}{\|l\|} \hline \text { CPX } \\ \text { LDS } \\ \text { LDX } \end{array}$	6	1 2 3 4 5 6	0 0 1

Op Code Address	1	Op Code
Op Code Address + 1	1	Offset
Index Register	1	Irrelevant Data (Note 1)
Index Register Plus Offset (w/o Carry)	1	Irrelevant Data (Note 1)
Op Code Address	1	Op Code
Op Code Address + 1	1	Offset
Index Register	1	Irrelevant Data (Note 1)
Index Register Plus Offset (w/o Carry)	1	Irrelevant Data (Note 1)
Index Register Plus Offset	1	Operand Data
Op Code Address	1	Op Code
Op Code Address + 1	1	Offset
Index Register	1	Irrelevant Data (Note 1)
Index Register Plus Offset (w/o Carry)	1	Irrelevant Data (Note 1)
Index Register Plus Offset	1	Operand Data (High Order Byte)
Index Register Plus Offset + 1	1	Operand Data (Low Order Byte)

MOTOROLA Semiconductor Products Inc.

TABLE 8 - OPERATION SUMMARY (Continued)						
Address Mode and Instructions	Cycles	$\begin{array}{\|c\|} \hline \text { Cycle } \\ \# \\ \hline \end{array}$	$\begin{aligned} & \text { VMA } \\ & \text { Line } \\ & \hline \end{aligned}$	Address Bus	$\begin{aligned} & \mathrm{A} / \mathbf{W} \\ & \text { Line } \\ & \hline \end{aligned}$	Data Bus
INDEXED (Continued)						
STA	6	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & \hline \end{aligned}$	Op Code Address Op Code Address + 1 Index Register Index Register Plus Offset (w/o Carry) Index Register Plus Offset Index Register Plus Offset	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 0 \end{aligned}$	Op Code Offset Irrelevant Data (Note 1) Irrelevant Data (Note 1) Irrelevant Data (Note 1) Operand Data
 ASL LSR ASR NEG CLR ROL COM ROR DEC TST INC	7	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \end{aligned}$	1 1 1 0 0 1 0 $1 / 0$ (Note 3)	Op Code Address Op Code Address + 1 Index Register Index Register Plus Offset (w/o Carry) Index Register Plus Offset Index Register Plus Offset Index Register Plus Offset	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 0 \end{aligned}$	Op Code Offset Irrelevant Data (Note 1) Irrelevant Data (Note 1) Current Operand Data Irrelevant Data (Note 1) New Operand Data (Note 3)
$\begin{aligned} & \text { STS } \\ & \text { STTX } \end{aligned}$	7	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$	Op Code Address Op Code Address +1 Index Register Index Register Plus Offset (w/o Carry) Index Register Plus Offset Index Register Plus Offset Index Register Plus Offset +1	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	Op Code Offset Irrelevant Data (Note 1) Irrelevant Data (Note 1) Irrelevant Data (Note 1) Operand Data (High Order Byte) Operand Data (Low Order Byte)
JSR	8	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	Op Code Address Op Code Address + 1 Index Register Stack Pointer Stack Pointer - 1 Stack Pointer - 2 Index Register Index Register Plus Offset (w/o Carry)	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	```Op Code Offset Irrelevant Data (Note 1) Return Address (Low Order Byte) Return Address (High Order Byte) Irrelevant Data (Note 1) Irrelevant Data (Note 1) Irrelevant Data (Note 1)```
EXTENDED						
JMP	3	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	Op Code Address Op Code Address +1 Op Code Address +2	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	Op Code Jump Address (High Order Byte) Jump Address (Low Order Byte)
ADC EOR ADD LDA AND ORA BIT SBC CMP SUB	4	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & \hline \end{aligned}$	1	Op Code Address Op Code Address + 1 Op Code Address +2 Address of Operand	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Op Code Address of Operand (High Order Byte) Address of Operand (Low Order Byte) Operand Data
$\begin{aligned} & \text { CPX } \\ & \text { LDS } \\ & \text { LDX } \end{aligned}$	5	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	Op Code Address Op Code Address + 1 Op Code Address + 2 Address of Operand Address of Operand + 1	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	Op Code Address of Operand (High Order Byte) Address of Operand (Low Order Byte) Operand Data (High Order Byte) Operand Data (Low Order Byte)
STA A	5	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 0 \\ & 1 \\ & \hline \end{aligned}$	Op Code Address Op Code Address + 1 Op Code Address + 2 Operand Destination Address Operand Destination Address	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 0 \end{aligned}$	Op Code Destination Address (High Order Byte) Destination Address (Low Order Byte) Irrelevant Data (Note 1) Data from Accumulator
 ASL LSR ASR NEG CLR ROL COM ROR DEC TST INC	6	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	$\begin{gathered} \hline 1 \\ 1 \\ 1 \\ 1 \\ 0 \\ 1 / 0 \\ \text { 1/0 } \\ \text { (Note } \\ 3 \text {) } \\ \hline \end{gathered}$	Op Code Address Op Code Address + 1 Op Code Address + 2 Address of Operand Address of Operand Address of Operand	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 0 \end{aligned}$	Op Code Address of Operand (High Order Byte) Address of Operand (Low Order Byte) Current Operand Data Irrelevant Data (Note 1) New Operand Data (Note 3)

REPRINTED BY PERMISSION OF MOTOROLA, INC.
мс6800

TABLE 8 - OPERATION SUMMARY (Continued)						
Address Mode and Instructions	Cycles	Cycle \#	VMA Line	Address Bus	R / W Line	Data Bus
EXTENDED (Continued)						
$\begin{aligned} & \text { STS } \\ & \text { STX } \end{aligned}$	6	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$	Op Code Address Op Code Address + 1 Op Code Address +2 Address of Operand Address of Operand Address of Operand +1	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	Op Code Address of Operand (High Order Byte) Address of Operand (Low Order Byte) Irrelevant Data (Note 1) Operand Data (High Order Byte) Operand Data (Low Order Byte)
JSR	9	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \\ & 8 \\ & 9 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \end{aligned}$	Op Code Address Op Code Address + 1 Op Code Address + 2 Subroutine Starting Address Stack Pointer Stack Pointer - 1 Stack Pointer - 2 Op Code Address + 2 Op Code Address +2	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Op Code Address of Subroutine (High Order Byte) Address of Subroutine (Low Order Byte) Op Code of Next Instruction Return Address (Low Order Byte) Return Address (High Order Byte) Irrelevant Data (Note 1) Irrelevant Data (Note 1) Address of Subroutine (Low Order Byte)
INHERENT						
ABA DAA SEC ASL DEC SEI ASR INC SEV CBA LSA TAB CLC NEG TAP CLI NOP TBA CLR ROL TPA CLV ROR TST COM SBA	2	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Op Code Addrass Op Code Address +1	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Op Code Op Code of Next Instruction
DES DEX INS INX	4	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	Op Code Address Op Code Address + 1 Previous Register Contents New Register Contents	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Op Code Op Code of Next Instruction Irrelevant Data (Note 1) Irrelevant Data (Note 1)
PSH	4	1 2 3 4	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 0 \end{aligned}$	Op Code Address Op Code Address + 1 Stack Pointer Stack Pointer - 1	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	Op Code Op Code of Next Instruction Accumulator Data Accumulator Data
PUL	4	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	Op Code Address Op Code Address + 1 Stack Pointer Stack Pointer + 1	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Op Code Op Code of Next Instruction Irrelevant Data (Note 1) Oparand Data from Stack
TSX	4	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	Op Code Address Op Code Address + 1 Stack Pointer New Index Register	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Op Code Op Code of Next Instruction Irrelevant Data (Note 1) Irrelevant Data (Note 1)
TXS	4	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	Op Code Address Op Code Address + 1 Index Register New Stack Pointer	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Op Code Op Code of Next Instruction Irrelevant Data Irrelevant Data
RTS	5	1 2 3 4 5	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$	Op Code Address Op Code Address +1 Stack Pointer Stack Pointer + 1 Stack Pointer +2	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Op Code Irrelevant Data (Note 2) Irrelevant Data (Note 1) Address of Next Instruction (High Order Byte) Address of Next Instruction (Low Order Byte)

MOTOROLA Semiconductor Products Inc.

REPRINTED BY PERMISSION OF MOTOROLA, INC.

MC6800

MOTOROLA Semiconductor Products Inc. \qquad

REPRINTED BY PERMISSION OF MOTOROLA, INC.

PERIPHERAL INTERFACE ADAPTER (PIA)

The MC6820 Peripheral Interface Adapter provides the universal means of interfacing peripheral equipment to the MC6800 Microprocessing Unit (MPU). This device is capable of interfacing the MPU to peripherals through two 8 -bit bidirectional peripheral data buses and four control lines. No external logic is required for interfacing to most peripheral devices.

The functional configuration of the PIA is programmed by the MPU during system initialization. Each of the peripheral data lines can be programmed to act as an input or output, and each of the four control/interrupt lines may be programmed for one of several control modes. This allows a high degree of flexibility in the over-all operation of the interface.

- 8-Bit Bidirectional Data Bus for Communication with the MPU
- Two Bidirectional 8-Bit Buses for Interface to Peripherals
- Two Programmable Control Registers
- Two Programmable Data Direction Registers
- Four Individually-Controlled Interrupt Input Lines; Two Usable as Peripheral Control Outputs
- Handshake Control Logic for Input and Output Peripheral Operation
- High-Impedance 3-State and Direct Transistor Drive Peripheral Lines
- Program Controlled Interrupt and Interrudt Disable Capability
- CMOS Drive Capability on Side A Peripheral Lines

MC6820

ELECTRICAL CHARACTERISTICS ${ }^{\prime} V_{C C}=5.0 \mathrm{~V} \pm 5 \%, V_{S S}=0, T_{A}=0$ to $70^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
Input High Voltage $\begin{gathered}\text { Enable } \\ \text { Other Inputs }\end{gathered}$	VIH	$\begin{aligned} & V_{S S}+2.4 \\ & v_{S S}+2.0 \\ & \hline \end{aligned}$	-	$\begin{aligned} & \mathrm{v}_{\mathrm{CC}} \\ & \mathrm{v}_{\mathrm{CC}} \end{aligned}$	$V \mathrm{dc}$
Input Low Voltage $\begin{array}{r}\text { Enable } \\ \text { Other Inputs }\end{array}$	VIL	$\begin{aligned} & V_{S S}-0.3 \\ & v_{S S}-0.3 \end{aligned}$	-	$\begin{aligned} & V_{S S}+0.4 \\ & V_{S S}+0.8 \end{aligned}$	$V \mathrm{dc}$
Input Leakage Current $R / W, \overline{\text { Reset }}, R S 0, R S 1, ~ C S 0, ~ C S 1, ~ \overline{C S 2}, ~ C A 1, ~$ $\left(V_{\text {in }}=0\right.$ to 5.25 Vdc$)$ CB1, Enable	1 in	-	1.0	2.5	$\mu \mathrm{Adc}$
Three-State (Off State) Input Current D0.D7, PB0-PB7, CB2 $\left(\mathrm{V}_{\text {in }}=0.4\right.$ to 2.4 Vdc$)$	ITSI	${ }^{-}$	2.0	10	$\mu \mathrm{Adc}$
Input High Current PAO-PA7, CA2 $\left(\mathrm{V}_{1 H}=2.4 \mathrm{Vdc}\right)$	$1 / \mathrm{H}$	-100	-250	${ }^{-}$	μ Adc
Input Low Current PA0.PA7, CA2 $\left(\mathrm{V}_{\mathrm{IL}}=0.4 \mathrm{Vdc}\right)$	1 IL	-	-1.0	-1.6	mAdc
Output High Voltage (Load $=-205 \mu$ Adc, Enable Pulse Width $<25 \mu \mathrm{~s})$ (I Load$=-100 \mu$ Adc, Enable Pulse Width $<25 \mu \mathrm{~s}$) Other Outputs	V_{OH}	$\begin{aligned} & v_{S S}+2.4 \\ & v_{S S}+2.4 \end{aligned}$	-	- -	Vdc
Output Low Voltage (${ }_{\text {Load }}=1.6 \mathrm{mAdc}$, Enable Pulse Width $<25 \mu \mathrm{~s}$)	VOL	-	-	$\mathrm{V}_{\mathrm{SS}}+0.4$	Vdc
Output High Current (Sourcing) $\left(\mathrm{V}_{\mathrm{OH}}=2.4 \mathrm{Vdc}\right) \quad$ Other Outputs $\mathrm{V}_{\mathrm{O}}=1.5 \mathrm{Vdc}$, the current for driving other than TTL, e.g., Darlington Base) PBO-PB7, CB2	${ }^{1} \mathrm{OH}$	$\begin{aligned} & -205 \\ & -100 \\ & -1.0 \end{aligned}$	-2.5	-10	μ Adc μ Adc mAdc
$\begin{aligned} & \text { Output Low Current (Sinking) } \\ & \left(\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{Vdc}\right) \end{aligned}$	IOL	1.6	-	-	mAdc
Output Leakage Current (Off State) $\left(\mathrm{V}_{\mathrm{OH}}=2.4 \mathrm{Vdc}\right)$ $\overline{\text { IROA }}, \overline{\text { IROB }}$	${ }^{\mathrm{L} O H}$	-	1.0	10	$\mu \mathrm{Adc}$
Power Dissipation	P_{D}	-	-	650	mW
	$\mathrm{C}_{\text {in }}$	-	-	$\begin{gathered} 20 \\ 12.5 \\ 10 \\ 7.5 \end{gathered}$	pF
Output Capacitance $\overline{\text { IRQA }}, \overline{\text { IRQB }}$ $\left(V_{\text {in }}=0, T_{A}=25^{\circ} \mathrm{C}, f=1.0 \mathrm{MHz}\right)$ PB0-PB7	$\mathrm{C}_{\text {out }}$	-	-	$\begin{aligned} & 5.0 \\ & 10 \end{aligned}$	pF
Peripheral Data Setup Time (Figure 1)	tPDSU	200	-	-	ns
Delay Time, Enable negative transition to CA2 negative transition (Figure 2, 3)	${ }^{\text {t }}$ CA2	-	-	1.0	$\mu \mathrm{s}$
Delay Time, Enable negative transition to CA2 positive transition (Figure 2)	tRS 1	-	-	1.0	$\mu 5$
Rise and Fall Times for CA1 and CA2 input signals (Figure 3)	t_{r}, t_{f}	-	-	1.0	μs
Delay Time from CA1 active transition to CA2 positive transition (Figure 3)	tRS2	-	-	2.0	$\mu \mathrm{s}$
Delay Time, Enable negative transition to Peripheral Data valid (Figures 4, 5)	tPDW	-	-	1.0	$\mu \mathrm{s}$
Delay Time, Enable negative transition to Peripheral CMOS Data Valid ($\mathrm{V}_{\mathrm{CC}}-30 \% \mathrm{~V}_{\mathrm{CC}}$, Figure 4; Figure 12 Load C$) \quad$ PAO-PA7, CA2	${ }^{\text {t }} \mathrm{CMOS}$	-	-	2.0	$\mu \mathrm{s}$
Delay Time, Enable positive transition to CB2 negative transition (Figure 6, 7)	${ }^{\text {t }} \mathrm{CB} 2$	-	-	1.0	$\mu \mathrm{s}$
Delay Time, Peripheral Data valid to CB2 negative transition (Figure 5)	${ }^{\text {t }} \mathrm{DC}$	20	-	-	ns
Delay Time, Enable positive transition to CB2 positive transition (Figure 6)	tRS 1	-	-	1.0	$\mu \mathrm{s}$
Rise and Fall Time for CB1 and CB2 input signals (Figure 7)	$t_{\text {r }, ~}^{\text {tf }}$	-	-	1.0	μs
Delay Time, CB1 active transition to CB2 positive transition (Figure 7)	trs2	-	-	2.0	$\mu \mathrm{s}$
Interrupt Release Time, \RQA and 1RQB (Figure 8)	$1 / R$	-	-	1.6	$\mu \mathrm{s}$
Reset Low Time ${ }^{\text {(}}$ (igure 9)	tRL	2.0	-	-	$\mu \mathrm{s}$

- The Reset line must be high a minimum of 1.0μ s before addressing the PIA.

MC6820

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Supply Voltage	$V_{\text {CC }}$	-0.3 to +7.0	V dc
Input Voltage	$\mathrm{V}_{\text {in }}$	-0.3 to +7.0	Vdc
Operating Temperature Range	T_{A}	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$
Thermal Resistance	${ }^{\circ} \mathrm{JA}$	82.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$

This device contains circuitry to protect the inputs against damage due to high static volt. ages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

BUS TIMING CHARACTERISTICS

READ (Figures 10 and 12)

Characteristic	Symbol	Min	Typ	Max	Unit
Enable Cycle Time	${ }^{\text {cheyce }}$	1.0	-	-	$\mu 5$
Enable Pulse Width, High	PWEH	0.45	-	25	$\mu \mathrm{s}$
Enable Pulse Width, Low	PWEL	0.43	-	-	$\mu \mathrm{s}$
Setup Time, Address and R/W valid to Enable positive transition	${ }^{\text {t }}$ AS	160	-	-	ns
Data Delay Time	${ }^{\text {' ODR }}$	-	-	320	ns
Data Hold Time	${ }^{\text {t }} \mathrm{H}$	10	-	-	ns
Address Hold Time	${ }^{t} \mathrm{AH}$	10	-	-	ns
Rise and Fall Time for Enable input	${ }^{\text {t Er }}$, t_{Ef}	-	-	25	ns
WRITE (Figures 11 and 12)					
Enable Cycle Time	${ }^{\text {ctycE }}$	1.0	-	-	$\mu \mathrm{s}$
Enable Pulse Width, High	PWEH	0.45	-	25	$\mu \mathrm{s}$
Enable Pulse Width, Low	PWEL	0.43	-	-	$\mu \mathrm{s}$
Setup Time, Address and R/W valid to Enable positive transition	${ }^{\text {t }}$ AS	160	-	-	ns
Data Setup Time	${ }^{\text {t }}$ (${ }^{\text {d }}$ W	195	-	-	ns
Data Hold Time	${ }_{\text {t }} \mathrm{H}$	10	-	-	ns
Address Hold Time	${ }^{\text {taH }}$	10	-	-	ns
Rise and Fall Time for Enable input	${ }^{\text {t }}$ Er, ${ }^{\text {tef }}$	-	-	25	ns

FIGURE 3 - CA2 DELAY TIME

REPRINTED BY PERMISSION OF MOTOROLA, INC.

MC6820

FIGURE 12 - buS timing test loads

PIA INTERFACE SIGNALS FOR MPU

The PIA interfaces to the MC6800 MPU with an eight bit bi-directional data bus, three chip select lines, two register select lines, two interrupt request lines, read/write line, enable line and reset line. These signals, in conjunction with the MC6800 VMA output, permit the MPU to have complete control over the PIA. VMA should be utilized in conjunction with an MPU address line into a chip select of the PIA.

PIA Bi-Directional Data (D0-D7) - The bi-directional data lines (D0-D7) allow the transfer of data between the MPU and the PIA. The data bus output drivers are threestate devices that remain in the high-impedance (off) state except when the MPU performs a PIA read operation. The Read/Write line is in the Read (high) state when the PIA is selected for a Read operation.

PIA Enable (E) - The enable pulse, E , is the only timing signal that is supplied to the PIA. Timing of all other signals is referenced to the leading and trailing edges of the E pulse. This signal will normally be a derivative of the MC6800 $\phi 2$ Clock.

PIA Read/Write (R/W) - This signal is generated by the MPU to control the direction of data transfers on the Data Bus. A low state on the PIA Read/Write line enables the input buffers and data is transferred from the MPU to the PIA on the E signal if the device has been selected. A high on the Read/Write line sets up the PIA for a transfer of data to the bus. The PIA output buffers are enabled when the proper address and the enable pulse E are present.
$\overline{\text { Reset }}$ - The active low $\overline{\text { Reset }}$ line is used to reset all register bits in the PIA to a logical zero (low). This line can be used as a power-on reset and as a master reset during system operation.

PIA Chip Select (CS0, CS1 and CS2) - These three input signals are used to select the PIA. CSO and CS1 must be high and CS2 must be low for selection of the device. Data transfers are then performed under the control of the Enable and Read/Write signals. The chip select lines must be stable for the duration of the E pulse. The device is deselected when any of the chip selects are in the inactive state.

PIA Register Select (RS0 and RS1) - The two register select lines are used to select the various registers inside the PIA. These two lines are used in conjunction with internal Control Registers to select a particular register that is to be written or read.

The register and chip select lines should be stable for the duration of the E pulse while in the read or write cycle.
$\overline{\text { Interrupt Request }}$ (IRQA and $\overline{\operatorname{RQB})}$ - The active low $\overline{\text { Interrupt Request }}$ lines ($\overline{\mathrm{RQA}}$ and $\overline{\mathrm{IROB}}$) act to interrupt the MPU either directly or through interrupt priority circuitry. These lines are "open drain" (no load device on the chip). This permits all interrupt request lines to be tied together in a wire-OR configuration.

Each Interrupt Request line has two internal interrupt flag bits that can cause the Interrupt Request line to go low. Each flag bit is associated with a particular peripheral interrupt line. Also four interrupt enable bits are provided in the PIA which may be used to inhibit a particular interrupt from a peripheral device.

Servicing an interrupt by the MPU may be accomplished by a software routine that, on a prioritized basis, sequentially reads and tests the two control registers in each PIA for interrupt flag bits that are set.

The interrupt flags are cleared (zeroed) as a result of an

MC6820

MOTOROLA Semiconductor Products Inc. \qquad

REPRINTED BY PERMISSION OF MOTOROLA, INC.

MC6820

MPU Read Peripheral Data Operation of the corresponding data register. After being cleared, the interrupt flag bit cannot be enabled to be set until the PIA is deselected during an E pulse. The E pulse is used to condition the interrupt control lines (CA1, CA2, CB1, CB2). When these lines are used as interrupt inputs at least one E
pulse must occur from the inactive edge to the active edge of the interrupt input signal to condition the edge sense network. If the interrupt flag has been enabled and the edge sense circuit has been properly conditioned, the interrupt flag will be set on the next active transition of the interrupt input pin.

PIA PERIPHERAL INTERFACE LINES

The PIA provides two 8 -bit bi-directional data buses and four interrupt/control lines for interfacing to peripheral devices.

Section A Peripheral Data (PAO-PA7) - Each of the peripheral data lines can be programmed to act as an input or output. This is accomplished by setting a " 1 " in the corresponding Data Direction Register bit for those lines which are to be outputs. A " 0 " in a bit of the Data Direction Register causes the corresponding peripheral data line to act as an input. During an MPU Read Peripheral Data Operation, the data on peripheral lines programmed to act as inputs appears directly on the corresponding MPU Data Bus lines. In the input mode the internal pullup resistor on these lines represents a maximum of one standard TTL load.

The data in Output Register A will appear on the data lines that are programmed to be outputs. A logical " 1 " written into the register will cause a "high" on the corresponding data line while a " 0 " results in a "low". Data in Output Register A may be read by an MPU "Read Peripheral Data $A^{\prime \prime}$ operation when the corresponding lines are programmed as outputs. This data will be read properly if the voltage on the peripheral data lines is greater than 2.0 volts for a logic " 1 " output and less than 0.8 volt for a logic " 0 " output. Loading the output lines such that the voltage on these lines does not reach full voltage causes the data transferred into the MPU on a Read operation to differ from that contained in the respective bit of Output Register A.

Section B Peripheral Data (PB0-PB7) - The peripheral data lines in the B Section of the PIA can be programmed to act as either inputs or outputs in a similar manner to PAO-PA7. However, the output buffers driving these lines differ from those driving lines PA0-PA7. They have three-
state capability, allowing them to enter a high impedance state when the peripheral data line is used as an input. In addition, data on the peripheral data lines PBO-PB7 will be read properly from those lines programmed as outputs even if the voltages are below 2.0 volts for a "high". As outputs, these lines are compatible with standard TTL and may also be used as a source of up to 1 milliampere at 1.5 volts to directly drive the base of a transistor switch.

Interrupt Input (CA1 and CB1) - Peripheral Input lines CA1 and CB1 are input only lines that set the interrupt flags of the control registers. The active transition for these signals is also programmed by the two control registers.

Peripheral Control (CA2) - The peripheral control line CA2 can be programmed to act as an interrupt input or as a peripheral control output. As an output, this line is compatible with standard TTL; as an input the internal pullup resistor on this line represents one standard TTL load. The function of this signal line is programmed with Control Register A.

Peripheral Control (CB2) - Peripheral Control line CB2 may also be programmed to act as an interrupt input or peripheral control output. As an input, this line has high input impedance and is compatible with standard TTL. As an output it is compatible with standard TTL and may also be used as a source of up to 1 milliampere at 1.5 volts to directly drive the base of a transistor switch. This line is programmed by Control Register B.

NOTE: It is recommended that the control lines (CA1, CA2, CB1, CB2) should be held in a logic 1 state when Reset is active to prevent setting of corresponding interrupt flags in the control register when Reset goes to an inactive state. Subsequent to Reset going inactive, a read of the data registers may be used to clear any undesired interrupt flags.

INTERNAL CONTROLS

There are six locations within the PIA accessible to the MPU data bus: two Peripheral Registers, two Data Direction Registers, and two Control Registers. Selection of these locations is controlled by the RSO and RS1 inputs together with bit 2 in the Control Register, as shown in Table 1.

TABLE 1 - INTERNAL ADDRESSING

		Control Register Bit		Location Selected
RS1	RSO	CRA-2	CRB-2	
0	0	1	X	Peripheral
0	0	0	X	Data Direction Register A
0	1	X	X	Control Register A
1	0	X	1	Peripheral Register B
1	0	X	0	Data Direction Register B
1	1	X	X	Control Register B

$x=$ Don't Care

INITIALIZATION

A low reset line has the effect of zeroing all PIA registers. This will set PAO-PA7, PB0-PB7, CA2 and CB2 as inputs, and all interrupts disabled. The PIA must be configured during the restart program which follows the reset.

Details of possible configurations of the Data Direction and Control Register are as follows.

DATA DIRECTION REGISTERS (DDRA and DDRB)
The two Data Direction Registers allow the MPU to control the direction of data through each corresponding peripheral data line. A Data Direction Register bit set at " 0 " configures the corresponding peripheral data line as an input; a " 1 " results in an output.

CONTROL REGISTERS (CRA and CRB)
The two Control Registers (CRA and CRB) allow the MPU to control the operation of the four peripheral control lines CA1, CA2, CB1 and CB2. In addition they allow the MPU to enable the interrupt lines and monitor the status of the interrupt flags. Bits 0 through 5 of the two registers may be written or read by the MPU when the proper chip select and register select signals are applied. Bits 6 and 7 of the two registers are read only and are modified by external interrupts occurring on control lines CA1, CA2, CB1 or CB2. The format of the control words is shown in Table 2.

TABLE 2 - CONTROL WORD FORMAT

CRA	7	6	5	4	3	2	1	0
	IROA1	IROA2	CA2 Control			DDRA Access	CA1 Control	
	7	6	5	4	3	2	1	0
CRB	IROB1	IROB2	CB2 Control			DDRB Access	CB1 Control	

Data Direction Access Control Bit (CRA-2 and CRB-2) Bit 2 in each Control register (CRA and CRB) allows selection of either a Peripheral Interface Register or the Data Direction Register when the proper register select signals are applied to RSO and RS1.

Interrupt Flags (CRA-6, CRA-7, CRB-6, and CRB-7) The four interrupt flag bits are set by active transitions of signals on the four Interrupt and Peripheral Control lines when those lines are programmed to be inputs. These bits cannot be set directly from the MPU Data Bus and are reset indirectly by a Read Peripheral Data Operation on the appropriate section.

TABLE 3 - CONTROL OF INTERRUPT INPUTS CA1 AND CB1

CRA-1 (CRB-1)	CRA-0 (CRB-0)	Interrupt Input CA1 (CB1)	Interrupt Flag CRA-7 (CRB-7)	MPU Interrupt Request (RQA (IRQB)
0	0	\downarrow Active	Set high on \downarrow of CA1 (CB1)	Disabled - /RQ re- mains high
0	1	\downarrow Active	Set high on \downarrow of CA1 (CB1)	Goes low when the interrupt flag bit CRA-7 (CRB-7) goes high
1	0	\uparrow Active	Set high on \uparrow of CA1 (CB1)	Disabled - IRQ re- mains high
1	1	\uparrow Active	Set high on \uparrow of CA1 (CB1)	Goes low when the interrupt flag bit CRA-7 (CRB-7) goes high

Notes: 1. \uparrow indicates positive transition (low to high)
2. \downarrow indicates negative transition (high to low)
3. The Interrupt flag bit CRA-7 is cleared by an MPU Read of the A Data Register, and CRB-7 is cleared by an MPU Read of the B Data Register.
4. If CRA-0 (CRB-0) is low when an interrupt occurs (Interrupt disabled) and is later brought high, $\overline{\mathrm{IRQA}}(\overline{\mathrm{IROB}})$ occurs after CRA-O (CRB-O) is written to a "one".

MC6820

Control of CA1 and CB1 Interrupt Input Lines (CRA-0, CRB-0, CRA-1, and CRB-1) - The two lowest order bits of the control registers are used to control the interrupt input lines CA1 and CB1. Bits CRA-0 and CRB-0 are
used to enable the MPU interrupt signals $\overline{\operatorname{RQA}}$ and $\overline{\mathrm{RQB}}$, respectively. Bits CRA-1 and CRB-1 determine the active transition of the interrupt input signals CA1 and CB1 (Table 3).

TABLE 4 - CONTROL OF CA2 AND CB2 AS INTERRUPT INPUTS CRA5 (CRB5) is low

$\begin{gathered} \text { CRA-5 } \\ \text { (CRB-5) } \end{gathered}$	$\begin{gathered} \text { CRA-4 } \\ \text { (CRE-4) } \end{gathered}$	CRA-3 (CRB-3)	Interrupt Input CA2 (CB2)	Interrupt Flag CRA-6 (CRB-6)	MPU Interrupt Request IRQA (IRQE)
0	0	0	\downarrow Active	Set high on \downarrow of CA2 (CB2)	$\begin{aligned} & \text { Disabled - } \sqrt{R Q} \text { re- } \\ & \text { mains high } \end{aligned}$
0	0	1	\downarrow Active	Set high on \downarrow of CA2 (CB2)	Goes low when the interrupt flag bit CRA-6 (CRB-6) goes high
0	1	0	\uparrow Active	Set high on \uparrow of CA2 (CB2)	$\begin{aligned} & \text { Disabled - } \mathbb{R Q} \text { re- } \\ & \text { mains high } \end{aligned}$
0	1	1	\uparrow Active	Set high on \uparrow of CA2 (CB2)	Goes low when the interrupt flag bit CRA-6 (CRB-6) goes high

Notes: 1. \uparrow indicates positive transition (low to high)
2. \downarrow indicates negative transition (high to low)
3. The Interrupt flag bit CRA-6 is cleared by an MPU Read of the A Data Register and CRB-6 is cleared by ań MPU Read of the B Data Register.
4. If CRA-3 (CRB-3) is low when an interrupt occurs (interrupt disabled) and is later brought high, $\overline{\mathrm{IROA}}$ (IROB) occurs after CRA-3 (CRB-3) is written to a "one".

TABLE 5 - CONTROL OF CB2 AS AN OUTPUT
CRB-5 is high

CRB-5	CRB-4	CRB-3	Cleared	

MOTOROLA Semiconductor Products Inc. \qquad

REPRINTED BY PERMISSION OF MOTOROLA, INC.

Control of CA2 and CB2 Peripheral Control Lines (CRA-3, CRA-4, CRA-5, CRB-3, CRB-4, and CRB-5) Bits 3, 4, and 5 of the two control registers are used to control the CA2 and CB2 Peripheral Control lines. These bits determine if the control lines will be an interrupt input or an output control signal. If bit CRA-5 (CRB-5)
is low, CA2 (CB2) is an interrupt input line similar to CA1 (CB1) (Table 4). When CRA-5 (CRB-5) is high, CA2 (CB2) becomes an output signal that may be used to control peripheral data transfers. When in the output mode, CA2 and CB2 have slightly different characteristics (Tables 5 and 6).

MOTOROLA Semiconductor Products Inc.

REPRINTED BY PERMISSION OF MOTOROLA, INC.

ASYNCHRONOUS COMMUNICATIONS INTERFACE ADAPTER (ACIA)

The MC6850 Asynchronous Communications Interface Adapter provides the data formatting and control to interface serial asynchronous data communications information to bus organized systems such as the MC6800 Microprocessing Unit.

The bus interface of the MC6850 includes select, enable, read/ write, interrupt and bus interface logic to allow data transfer over an 8 -bit bi-directional data bus. The parallel data of the bus system is serially transmitted and received by the asynchronous data interface, with proper formatting and error checking. The functional configuration of the ACIA is programmed via the data bus during system initialization. A programmable Control Register provides variable word lengths, clock division ratios, transmit control, receive control, and interrupt control. For peripheral or modem operation three control lines are provided. These lines allow the ACIA to interface directly with the MC6860L $0-600$ bps digital modem.

- Eight and Nine-Bit Transmission
- Optional Even and Odd Parity
- Parity, Overrun and Framing Error Checking
- Programmable Control Register
- Optional $\div 1, \div 16$, and $\div 64$ Clock Modes
- Up to 500 kbps Transmission
- False Start Bit Deletion
- Peripheral/Modem Control Functions
- Double Buffered
- One or Two Stop Bit Operation

MOS

(N-CHANNEL, SILICON-GATE)

ASYNCHRONOUS COMMUNICATIONS INTERFACE ADAPTER

REPRINTED BY PERMISSION OF MOTOROLA, INC.
MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Supply Voltage	V_{CC}	-0.3 to +7.0	Vdc
Input Voltage	$\mathrm{V}_{\text {in }}$	-0.3 to +7.0	Vdc°
Operating Temperature Range	T_{A}	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$
Thermal Resistance	θ_{JA}	82.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this highimpedance circuit.

ELECTRICAL CHARACTERISTICS $\left(V_{C C}=5.0 \mathrm{~V} \pm 5 \%, V_{S S}=0, T_{A}=0\right.$ to $70^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
Input High Voltage	$\mathrm{V}_{1} \mathrm{H}$	$\mathrm{V}_{\text {SS }}+2.0$	-	V_{CC}	Vdc
Input Low Voltage	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\text {SS }}-0.3$	-	$\mathrm{V}_{\mathrm{SS}}+0.8$	Vdc
input Leakage Current $\left(V_{\text {in }}=0\right.$ to 5.25 Vdc$)$	$\mathrm{l}_{\text {in }}$	-	1.0	2.5	$\mu \mathrm{Adc}$
Three-State (Off State) Input Current $\left(V_{\text {in }}=0.4 \text { to } 2.4 \mathrm{Vdc}\right)$	'tsi	-	2.0	10	$\mu \mathrm{Ad}$
Output High Voltage (ILoad $=-205 \mu \mathrm{Adc}$, Enable Pulse Width $<25 \mu \mathrm{~s}$) DO-D7 ((Load $=-100 \mu \mathrm{Adc}$, Enable Pulse Width $<25 \mu \mathrm{~s}$) T× Data, $\overline{\text { RTS }}$	V_{OH}	$\begin{array}{r} \mathrm{v}_{\mathrm{SS}}+2.4 \\ \mathrm{v}_{\mathrm{SS}}+2.4 \\ \hline \end{array}$		-	Vdc
Output Low Voltage (Load $=1.6 \mathrm{mAdc}$, Enable Pulse Width $<25 \mu$ s)	$\mathrm{V}_{\text {OL }}$	-	-	$\mathrm{V}_{\mathrm{SS}}+0.4$	Vdc
Output Leakage Current (Off State) $\left(\mathrm{V}_{\mathrm{OH}}=2.4 \mathrm{Vdc}\right)$	${ }^{\prime} \mathrm{LOH}$	-	1.0	10	$\mu \mathrm{Adc}$
Power Dissipation	PD	-	300	525	mW
Input Capacitance $\begin{array}{r} \left(V_{\text {in }}=0, T_{A}=25^{\circ} \mathrm{C}, f=1.0 \mathrm{MHz}\right) \\ \text { E, T×Clk,R×Clk,R/W,RS,R× Data, CSO, CS1, } \overline{C S 2}, \overline{C T S}, \overline{D O-D 7} \\ \hline \end{array}$	${ }^{\text {c }}$ in	-	$\begin{aligned} & 10 \\ & 7.0 \end{aligned}$	$\begin{gathered} 12.5 \\ 7.5 \\ \hline \end{gathered}$	pF
Output Capacitance $\left(V_{\text {in }}=0, T_{A}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}\right)$ $\overline{\mathrm{RTS}}, \mathrm{T} \times \frac{\text { Data }}{\text { IRO }}$	$\mathrm{C}_{\text {out }}$	-	-	$\begin{aligned} & 10 \\ & 5.0 \end{aligned}$	pF
Minimum Clock Pulse Width, Low (Figure 1) $\quad \div 16, \div 64$ Modes	$\mathrm{PW}_{\text {CL }}$	600	-	-	ns
Minimum Clock Pulse Width, High (Figure 2) $\quad \div 16, \div 64$ Modes	$\mathrm{PW}_{\mathrm{CH}}$	600	-	-	ns
Clock Frequency$\div 1$ Mode $\div 16, \div 64$ Modes	${ }^{\text {f }} \mathrm{C}$	-	-	$\begin{aligned} & 500 \\ & 800 \\ & \hline \end{aligned}$	kHz
Clock-to-Data Delay for Transmitter (Figure 3)	ttod	-	-	1.0	$\mu 5$
Receive Data Setup Time (Figure 4) $\div 1$ Mode	trdsu	500	-	-	ns
Receive Data Hold Time (Figure 5) $\quad \div 1$ Mode	trDH	500	-	-	ns
Tnterrupt Request Release Time (Figure 6)	tiR	-	-	1.2	$\mu \mathrm{s}$
Request-to-Send Delay Time (Figure 6)	$t_{\text {t }}$ TS	-	-	1.0	$\mu \mathrm{s}$
Input Transition Times (Except Enable)	$t_{\text {r }, ~}^{\text {t }}$ f	-	-	1.0*	$\mu \mathrm{s}$

* $1.0 \mu \mathrm{~s}$ or 10% of the pulse width, whichever is smaller.

BUS TIMING CHARACTERISTICS

Characteristic	Symbol	Min	Typ	Max	Unit
Enable Cycle Time	$\mathrm{t}_{\mathrm{cyc}} \mathrm{E}$	1.0	-	-	$\mu \mathrm{s}$
Enable Pulse Width, High	PWEH	0.45	-	25	$\mu \mathrm{s}$
Enable Pulse Width, Low	PWEL	0.43	-	-	$\mu \mathrm{s}$
Setup Time, Address and R/W valid to Enable positive transition	${ }^{\text {t }}$ AS	160	-	-	ns
Data Delay Time	tDDR	-	-	320	ns
Data Hold Time	${ }^{t} \mathrm{H}$	10	-	-	ns
Address Hold Time	${ }^{\text {t }} \mathrm{H}$	10	-	-	ns
Rise and Fall Time for Enable input	${ }^{\text {t Er, }}$, Ef	-	-	25	ns

WRITE (Figure 8 and 9)

Enable Cycle Time	$\mathrm{t}_{\text {cyce }}$	1.0	-	-	$\mu \mathrm{s}$
Enable Pulse Width, High	PWEH	0.45	-	25	$\mu \mathrm{s}$
Enable Pulse Width, Low	PWEL	0.43	-	-	Hs
Setup Time, Address and R/W valid to Enable positive transition	${ }^{\text {t }}$ AS	160	-	-	ns
Data Setup Time	${ }^{\text {t }}$ DSW	195	-	-	ns
Data Hold Time	${ }^{\text {t }} \mathrm{H}$	10	-	-	ns
Address Hold Time	${ }^{\text {t }} \mathrm{AH}$	10	-	-	ns
Rise and Fall Time for Enable input	${ }^{\text {t Er, }}$ tef	-	-	25	ns

MC6850

(A) MOTOROLA Semiconductor Products Inc.

REPRINTED BY PERMISSION OF MOTOROLA, INC.

MC6850

MOTOROLA Semiconductor Prodescts Inc.

POWER ON/MASTER RESET

The master reset (CR0, CR1) should be set during system initialization to insure the reset condition and prepare for programming the ACIA functional configuration when the communications channel is required. Control bits CR5 and CR6 should also be programmed to define the state of RTS whenever master reset is utilized. The ACIA also contains internal power-on reset logic to detect the power line turn-on transition and hold the chip in a reset state to prevent erroneous output transitions prior to initialization. This circuitry depends on clean power turn-on transitions. The power-on reset is released by means of the bus-programmed master reset which must be applied prior to operating the ACIA. After master resetting the ACIA, the programmable Control Register can be set for a number of options such as variable clock divider ratios, variable word length, one or two stop bits, parity (even, odd, or none), etc.

TRANSMIT

A typical transmitting sequence consists of reading the ACIA Status Register either as a result of an interrupt or in the ACIA's turn in a polling sequence. A character may be written into the Transmit Data Register if the status read operation has indicated that the Transmit Data Register is empty. This character is transferred to a Shift Register where it is serialized and transmitted from the Transmit Data output preceded by a start bit and followed by one or two stop bits. Internal parity (odd or even) can be optionally added to the character and will occur between the last data bit and the first stop bit. After the first character is written in the Data Register, the Status Register can be read again to check for a Transmit Data Register Empty condition and current peripheral status. If the register is empty, another character can be loaded for transmission even though the first character is in the process of being transmitted (because of double buffering). The second character will be automatically transferred into the Shift Register when the first character transmission is completed. This sequence continues until all the characters have been transmitted.

RECEIVE

Data is received from a peripheral by means of the Receive Data input. A divide-by-one clock ratio is provided for an externally synchronized clock (to its data) while the divide-by-16 and 64 ratios are provided for internal synchronization. Bit synchronization in the divide-by-16 and 64 modes is initiated by the detection of the leading mark-to-space transition of the start bit. False start bit deletion capability insures that a full half bit of a start bit has been received before the internal clock is synchronized to the bit time. As a character is being received, parity (odd or even) will be checked and the error indication will be available in the Status Register along with framing error, overrun error, and Receive Data Register full. In a typical receiving sequence, the Status Register is read to determine if a character has been re-
ceived from a peripheral. If the Receiver Data Register is full, the character is placed on the 8-bit ACIA bus when a Read Data command is received from the MPU. When parity has been selected for an 8 -bit word 17 bits plus parity), the receiver strips the parity bit ($D 7=0$) so that data alone is transferred to the MPU. This feature reduces MPU programming. The Status Register can continue to be read again to determine when another character is available in the. Receive Data Register. The receiver is also double buffered so that a character can be read from the data register as another character is being received in the shift register. The above sequence continues until alf characters have been received.

INPUT/OUTPUT FUNCTIONS

ACIA INTERFACE SIGNALS FOR MPU

The ACIA interfaces to the MC6800 MPU with an 8-bit bi-directional data bus, three chip select lines, a register select line, an interrupt request line, read/write line, and enable line. These signals, in conjunction with the MC6800 VMA output, permit the MPU to have complete control over the ACIA.

ACIA Bi-Directional Data (D0-D7) - The bi-directional data lines (D0-D7) allow for data transfer between the ACIA and the MPU. The data bus output drivers are three-state devices that remain in the high-impedance (off) state except when the MPU performs an ACIA read operation.

ACIA Enable (E) - The Enable signal, E, is a high impedance TTL compatible input that enables the bus input/output data buffers and clocks data to and from the ACIA. This signal will normally be a derivative of the MC6800 $\phi 2$ Clock.

Read/Write (R/W) - The Read/Write line is a high impedance input that is TTL compatible and is used to control the direction of data flow through the ACIA's input/output data bus interface. When Read/Write is high (MPU Read cycle), ACIA output drivers are turned on and a selected register is read. When it is low, the ACIA output drivers are turned off and the MPU writes into a selected register. Therefore, the Read/Write signal is used to select read-only or write-only registers within the ACIA.

Chip Select (CS0, CS1, $\overline{\mathbf{C S} 2}$) - These three high impedance TTL compatible input lines are used to address the ACIA. The ACIA is selected when CS0 and CS1 are high and $\overline{\mathrm{CS} 2}$ is low. Transfers of data to and from the ACIA are then performed under the control of the Enable signal, Read/Write, and Register Select.

Register Select (RS) - The Register Select line is a high impedance input that is TTL compatible. A high level is used to select the Transmit/Receive Data Registers and a low level the Control/Status Registers. The Read/ Write signal line is used in conjunction with Register Select to select the read-only or write-only register in each register pair.
$\overline{\text { Interrupt Request }}(\overline{\mathbf{1 R O}})$ - $\overline{\text { Interrupt Request }}$ is a TTL compatible, open-drain (no internal pullup), active low
output that is used to interrupt the MPU. The TRQ output remains low as long as the cause of the interrupt is present and the appropriate interrupt enable within the ACIA is set. The IRQ status bit, when high, indicates the IRO output is in the active state.

Interrupts result from conditions in both the transmitter and receiver sections of the ACIA. The transmitter section causes an interrupt when the Transmitter Interrupt Enabled condition is selected (CR5 . CR6), and the Transmit Data Register Empty (TDRE) status bit is high. The TDRE status bit indicates the current status of the Transmitter Data Register except when inhibited by Clear-to-Send (CTS) being high or the ACIA being maintained in the Reset condition. The interrupt is cleared by writing data into the Transmit Data Register. The interrupt is masked by disabling the Transmitter Interrupt via CR5 or CR6 or by the loss of CTS which inhibits the TDRE status bit. The Receiver section causes an interrupt when the Receiver Interrupt Enable is set and the Receive Data Register Full (RDRF) status bit is high, an Overrun has occurred, or $\overline{\text { Data Carrier Detect }}(\overline{\mathrm{DCD}}$) has gone high. An interrupt resulting from the RDRF status bit can be cleared by reading data or resetting the ACIA. Interrupts caused by Overrun or loss of $\overline{D C D}$ are cleared by reading the status register after the error condition has occurred and then reading the Receive Data Register or resetting the ACIA. The receiver interrupt is masked by resetting the Receiver Interrupt Enable.

CLOCK INPUTS

Separate high impedance TTL compatible inputs are provided for clocking of transmitted and received data. Clock frequencies of 1,16 or 64 times the data rate may be selected.

Transmit Clock (Tx Clk) - The Transmit Clock input is used for the clocking of transmitted data. The transmitter initiates data on the negative transition of the clock.

Receive Clock (Rx CIk) - The Receive Clock input is used for synchronization of received data. (In the $\div 1$ mode, the clock and data must be synchronized externally.) The receiver samples the data on the positive transiton of the clock.

SERIAL INPUT/OUTPUT LINES

Receive Data (Rx Data) - The Receive Data line is a high impedance TTL compatible input through which data is received in a serial format. Synchronization with a clock for detection of data is accomplished internally when clock rates of 16 or 64 times the bit rate are used. Data rates are in the range of 0 to 500 kbps when external synchronization is utilized.

Transmit Data (Tx Data) - The Transmit Data output line transfers serial data to a modem or other peripheral. Data rates are in the range of 0 to 500 kbps when external synchronization is utilized.
PERIPHERAL/MODEM CONTROL
The ACIA includes several functions that permit limited
control of a peripheral or modem. The functions included are Clear-to-Send, Request-to-Send and Data Carrier De$\overline{\text { tect. }}$
$\overline{\text { Clear-to-Send }}(\overline{\text { CTS }})$ - This high impedance TTL compatible input provides automatic control of the transmitting end of a communications link via the modem Clear-to-Send active low output by inhibiting the Transmit Data Register Empty (TDRE) status bit.
$\overline{R e q u e s t-t o-S e n d ~(\overline{R T S}}$) - The Request-to-Send output enables the MPU to control a peripheral or modem via the data bus. The $\overline{\mathrm{RTS}}$ output corresponds to the state of the Control Register bits CR5 and CR6. When CR6 $=$ 0 or both CR5 and CR6 $=1$, the $\overline{\operatorname{RTS}}$ output is low (the active state). This output can also be used for Data Terminal Ready ($\overline{\mathrm{DTR}}$).
$\overline{\text { Data Carrier Detect }}(\overline{\mathrm{DCD}})$ - This high impedance TTL compatible input provides automatic control, such as in the receiving end of a communications link by means of a modem Data Carrier Detect output. The $\overline{D C D}$ input inhibits and initializes the receiver section of the ACIA when high. A low to high transition of the $\overline{\text { Data Carrier }}$ Detect initiates an interrupt to the MPU to indicate the occurrence of a loss of carrier when the Receive Interrupt Enable bit is set.

ACIA REGISTERS

The expanded block diagram for the ACIA indicates the internal registers on the chip that are used for the status, control, receiving, and transmitting of data. The content of each of the registers is summarized in Table 1.

TRANSMIT DATA REGISTER (TDR)

Data is written in the Transmit Data Register during the negative transition of the enable (E) when the ACIA has been addressed and RS • $\overline{\mathrm{R} / \mathrm{W}}$ is selected. Writing data into the register causes the Transmit Data Register Empty bit in the Status Register to go low. Data can then be transmitted. If the transmitter is idling and no character is being transmitted, then the transfer will take place within one bit time of the trailing edge of the Write command. If a character is being transmitted, the new data character will commence as soon as the previous character is complete. The transfer of data causes the Transmit Data Register Empty (TDRE) bit to indicate empty.

RECEIVE DATA REGISTER (RDR)

Data is automatically transferred to the empty Receive Data Register (RDR) from the receiver deserializer (a shift register) upon receiving a complete character. This event causes the Receive Data Register Full bit (RDRF) in the status buffer to go high (full). Data may then be read through the bus by addressing the ACIA and selecting the Receive Data Register with RS and R/W high when the ACIA is enabled. The non-destructive read cycle causes the RDRF bit to be cleared to empty although

MC6850

TABLE 1 - DEFINITION OF ACIA REGISTER CONTENTS

Data Bus Line Number	Buffer Address			
	RS $\cdot \overline{\mathbf{R} / W}$ Transmit Data Register	RS•R/W Receive Data Register	$\overline{\mathrm{RS}} \cdot \overline{\mathrm{R} / \mathbf{W}}$ Control Register	$\overline{\mathbf{R S}} \bullet \mathbf{R} / \mathbf{W}$ Status Register
	(Write Only)	(Read Only)	(Write Only)	(Read Only)
0	Data Bit 0^{*}	Data Bit 0	Counter Divide Select 1 (CRO)	Receive Data Register Full (RDRF)
1	Data Bit 1	Data Bit 1	Counter Divide Select 2 (CR1)	Transmit Data Register - Empty (TDRE)
2	Data Bit 2	Data Bit 2	Word Select 1 (CR2)	$\overline{\text { Data Carrier Detect }}$ $(\overline{\text { DCD }})$
3	Data Bit 3	Data Bit 3	Word Select 2 (CR3)	$\begin{aligned} & \hline \text { Clear-to-Send } \\ & (\overline{C T S}) \end{aligned}$
4	Data Bit 4	Data Bit 4	Word Select 3 (CR4)	$\begin{gathered} \text { Framing Error } \\ \text { (FE) } \end{gathered}$
5	Data Bit 5	Data Bit 5	Transmit Control 1 (CR5)	Receiver Overrun (OVRN)
6	Data Bit 6	Data Bit 6	Transmit Control 2 (CR6)	Parity Error (PE)
7	Data Bit $7 \times$	Data Bit 7**	Receive Interrupt Enable (CR7)	Interrupt Request (IRQ)

- Leading bit $=$ LSB $=$ Bit 0
- Data bit will be zero in 7 -bit plus parity modes.
... Data bit is "don't care" in 7-bit plus parity modes
the data is retained in the RDR. The status is maintained by RDRF as to whether or not the data is current. When the Receive Data Register is full, the automatic transfer of data from the Receiver Shift Register to the Data Register is inhibited and the RDR contents remain valid with its current status stored in the Status Register.

CONTROL REGISTER

The ACIA Control Register consists of eight bits of write-only buffer that are selected when RS and RNW are low. This register controls the function of the receiver, transmitter, interrupt enables, and the Request-to-Send peripheral/modem control output.

Counter Divide Select Bits (CR0 and CR1) - The Counter Divide Select Bits (CRO and CR1) determine the divide ratios utilized in both the transmitter and receiver sections of the ACIA. Additionally, these bits are used to provide a master reset for the ACIA which clears the Status Register (except for external conditions on $\overline{C T S}$ and $\overline{D C D}$) and initializes both the receiver and transmitter. Master reset does not affect other Control Register bits. Note that after power-on or a power fail/restart, these bits must be set high to reset the ACIA. After reseting, the clock divide ratio may be selected. These counter select bits provide for the following clock divide ratios:

CR1	CRO	Function
0	0	$\div 1$
0	1	$\div 16$
1	0	$\div 64$
1	1	Master Reset

Word Select Bits (CR2, CR3, and CR4) - The Word

Select bits are used to select word length, parity, and the number of stop bits. The encoding format is as follows:

CR4	CR3	CR2	Function
0	0	0	7 Bits + Even Parity + 2 Stop Bits
0	0	1	7 Bits + Odd Parity + 2 Stop Bits
0	1	0	7 Bits + Even Parity + 1 Stop Bit
0	1	1	7 Bits + Odd Parity + 1 Stop Bit
1	0	0	8 Bits + 2 Stop Bits
1	0	1	8 Bits + 1 Stop Bit
1	1	0	8 Bits + Even Parity + 1 Stop Bit
1	1	1	8 Bits + Odd Parity + 1 Stop Bit

Word length, Parity Select, and Stop Bit changes are not buffered and therefore become effective immediately.

Transmitter Control Bits (CR5 and CR6) - Two Transmitter Control bits provide for the control of the interrupt from the Transmit Data Register Empty condition, the $\overline{\text { Request-to-Send (} \overline{\mathrm{RTS}} \text {) output, and the }}$ transmission of a Break level (space). The following encoding format is used:

CR6	CR5	Function
0	0	$\overline{\text { RTS }}=$ low, Transmitting Interrupt Disabled.
0	1	$\overline{\text { RTS }}=$ low, Transmitting Interrupt Enabled.
1	0	$\overline{\text { RTS }}=$ high, Transmitting Interrupt Disabled.
1	1	$\overline{\text { RTS }}=$ low, Transmits a Break level on the
		Transmit Data Output. Transmitting

Receive Interrupt Enable Bit (CR7) - The following interrupts will be enabled by a high level in bit position 7 of the Control Register (CR7): Receive Data Register Full, Overrun, or a low to high transistion on the Data Carrier $\overline{\text { Detect }}$ (DCD) signal line.

MC6850

STATUS REGISTER

Information on the status of the ACIA is available to the MPU by reading the ACIA Status Register. This read-only register is selected when RS is low and R/W is high. Information stored in this register indicates the status of the Transmit Data Register, the Receive Data Register and error logic, and the peripheral/modem status inputs of the ACIA.

Receive Data Register Full (RDRF), Bit 0 - Receive Data Register Full indicates that received data has been transferred to the Receive Data Register. RDRF is cleared after an MPU read of the Receive Data Register or by a master reset. The cleared or empty state indicates that the contents of the Receive Data Register are not current. Data Carrier Detect being high also causes RDRF to indicate empty.

Transmit Data Register Empty (TDRE), Bit 1 - The Transmit Data Register Empty bit being set high indicates that the Transmit Data Register contents have been transferred and that new data may be entered. The low state indicates that the register is full and that transmission of a new character has not begun since the last write data command.
 $\overline{\text { Detect }}$ bit will be high when the $\overline{\mathrm{DCD}}$ input from a modem has gone high to indicate that a carrier is not present. This bit going high causes an Interrupt Request to be generated when the Receive Interrupt Enable is set. It remains high after the $\overline{\mathrm{DCD}}$ input is returned low until cleared by first reading the Status Register and then the Data Register or until a master reset occurs. If the DCD input remains high after read status and read data or master reset has occurred, the interrupt is cleared, the $\overline{D C D}$ status bit remains high and will follow the $\overline{\mathrm{DCD}}$ input.
$\overline{\text { Clear-to-Send }}$ ($\overline{\mathrm{CTS}}$), Bit 3 - The Clear-to-Send bit indicates the state of the Clear-to-Send input from a modem. A low $\overline{\mathrm{CTS}}$ indicates that there is a $\overline{\text { Clear-to-Send }}$ from the modem. In the high state, the Transmit Data Register Empty bit is inhibited and the Clear-to-Send status bit will be high. Master reset does not affect the

$\overline{\text { Clear-to-Send }}$ Status bit.

Framing Error (FE), Bit 4 - Framing error indicates that the received character is improperly framed by a start and a stop bit and is detected by the absence of the 1 st stop bit. This error indicates a synchronization error, faulty transmission, or a break condition. The framing error flag is set or reset during the receive data transfer time. Therefore, this error indicator is present through out the time that the associated character is available.

Receiver Overrun (OVRN), Bit 5 - Overrun is an error flag that indicates that one or more characters in the data stream were lost. That is, a character or a number of characters were received but not read from the Receive Data Register (RDR) prior to subsequent characters being received. The overrun condition begins at the midpoint of the last bit of the second character received in succession without a read of the RDR having occurred. The Overrun does not occur in the Status Register until the valid character prior to Overrun has been read. The RDRF bit remains set until the Overrun is reset. Character synchronization is maintained during the Overrun condition. The Overrun indication is reset after the reading of data from the Receive Data Register or by a Master Reset

Parity Error (PE), Bit 6 - The parity error flag indicates that the number of highs (ones) in the character does not agree with the preselected odd or even parity. Odd parity is defined to be when the total number of ones is odd. The parity error indication will be present as long as the data character is in the RDR. If no parity is selected, then both the transmitter parity generator output and the receiver parity check results are inhibited.

Interrupt Request (IRQ), Bit 7 - The IRQ bit indicates the state of the $\overline{\mathrm{RQ}}$ output. Any interrupt condition with its applicable enable will be indicated in this status bit. Anytime the $\overline{\mathrm{RO}}$ output is low the IRQ bit will be high to indicate the interrupt or service request status. IRO is cleared by a read operation to the Receive Data Register or a write operation to the Transmit Data Register.

REPLACEABLE PARTS

PARTS ORDERING INFORMATION

Replacement parts are available from or through your local Tektronix, Inc. Field Office or representative.

Changes to Tektronix instruments are sometimes made to accommodate improved components as they become available, and to give you the benefit of the latest circuit improvements developed in our engineering department. It is therefore important, when ordering parts, to include the following information in your order: Part number, instrument type or number, serial number, and modification number if applicable.

If a part you have ordered has been replaced with a new or improved part, your local Tektronix, Inc. Field Office or representative will contact you concerning any change in part number.

Change information, if any, is located at the rear of this manual.

SPECIAL NOTES AND SYMBOLS

X000 Part first added at this serial number
00X Part removed after this serial number

FIGURE AND INDEX NUMBERS

Items in this section are referenced by figure and index numbers to the illustrations.

INDENTATION SYSTEM

This mechanical parts list is indented to indicate item relationships. Following is an example of the indentation system used in the description column

12345
Name \& Description
Assembly and/or Component
Attaching parts for Assembly and/or Component
-- - *--
Detail Part of Assembly and/or Component
Attaching parts for Detail Part
\qquad
Parts of Detail Part
Attaching parts for Parts of Detail Part
\qquad

Attaching Parts always appear in the same indentation as the item it mounts, while the detail parts are indented to the right. Indented items are part of, and included with, the next higher indentation. The separation symbol-- *---indicates the end of attaching parts.

Aftaching parts must be purchased separately, unless otherwise specified.

ITEM NAME

In the Parts List, an Item Name is separated from the description by a colon (:). Because of space limitations, an Item Name may sometimes appear as incomplete. For further Item Name identification, the U.S. Federal Cataloging Handbook H6-1 can be utilized where possible.

			ABBRE	110	5		
"	INCH	ELCTRN	ELECTRON	IN	INCH	SE	SINGLE END
\#	NUMBER SIZE	ELEC	ELECTRICAL	INCAND	INCANDESCENT	SECT	SECTION
ACTR	ACTUATOR	ELCTLT	ELECTROLYTIC	INSUL	INSULATOR	SEMICOND	SEMICONDUCTOR
ADPTR	ADAPTER	ELEM	ELEMENT	INTL	INTERNAL	SHLD	SHIELD
ALIGN	ALIGNMENT	EPL	ELECTRICAL PARTS LIST	LPHLDR	LAMPHOLDER	SHLDR	SHOULDERED
AL	ALUMINUM	EQPT	EQUIPMENT	MACH	MACHINE	SKT	SOCKET
ASSEM	ASSEMBLED	EXT	EXTERNAL	MECH	MECHANICAL	SL	SLIDE
ASSY	ASSEMBLY	FIL	FILLISTER HEAD	MTG	MOUNTING	SLFLKG	SELF-LOCKING
ATTEN	ATTENUATOR	FLEX	FLEXIBLE	NIP	NIPPLE	SLVG	SLEEVING
AWG	AMERICAN WIRE GAGE	FLH	FLAT HEAD	NON WIRE	NOT WIRE WOUND	SPR	SPRING
BD	BOARD	FLTR	FILTER	OBD	ORDER BY DESCRIPTION	SQ	SQUARE
BRKT	BRACKET	FR	FRAME or FRONT	OD	OUTSIDE DIAMETER	SST	STAINLESS STEEL
BRS	BRASS	FSTNR	FASTENER	OVH	OVAL HEAD	STL	STEEL
BRZ	BRONZE	FT	FOOT	PH BRZ	PHOSPHOR BRONZE	SW	SWITCH
BSHG	BUSHING	FXD	FIXED	PL	PLAIN or PLATE	T	TUBE
CAB	CABINET	GSKT	GASKET	PLSTC	PLASTIC	TERM	TERMINAL
CAP	CAPACITOR	HDL	HANDLE	PN	PART NUMBER	THD	THREAD
CER	CERAMIC	HEX	HEXAGON	PNH	PAN HEAD	THK	THICK
CHAS	CHASSIS	HEX HD	HEXAGONAL HEAD	PWR	POWER	TNSN	TENSION
CKT	CIRCUIT	HEX SOC	HEXAGONAL SOCKET	RCPT	RECEPTACLE	TPG	TAPPING
COMP	COMPOSITION	HLCPS	HELICAL COMPRESSION	RES	RESISTOR	TRH	TRUSS HEAD
CONN	CONNECTOR	HLEXT	HELICAL EXTENSION	RGD	RIGID	\checkmark	VOLTAGE
COV	COVER	HV	HIGH VOLTAGE	RLF	RELIEF	VAR	VARIABLE
CPLG	COUPLING	IC	INTEGRATED CIRCUIT	RTNR	RETAINER	W/	WITH
CRT	CATHODE RAY TUBE	ID	INSIDE DIAMETER	SCH	SOCKET HEAD	WSHR	WASHER
DEG	DEGREE	IDENT	IDENTIFICATION	SCOPE	OSCILLOSCOPE	XFMR	TRANSFORMER
DWR	DRAWER	IMPLR	IMPELLER	SCR	SCREW	XSTR	TRANSISTOR

Mfr. Code	Manufacturer	Address	City, State, Zip
00779	AMP, INC.	P O box 3608	HARRISBURG, PA 17105
01121	ALLEN-BRADLEY COMPANY	1201 2ND STREET SOUTH	MILWAUKEE, WI 53204
01295	TEXAS INSTRUMENTS, INC., SEMICONDUCTOR GROUP	P O box 5012, 13500 N CENTRAL	
		EXPRESSWAY	DALLAS, TX 75222
01963	CHERRY ELECTRICAL PRODUCTS CORPORATION	3600 SUNSET AVENUE	WAUKEGAN, IL 60085
02735	RCA CORPORATION, SOLID STATE DIVISION	ROUTE 202	SOMERVILLE, NY 08876
04222	AVX CERAMICS, DIVISION OF AVX CORP.	P O box 867, 19TH AVE. SOUTH	MURTLE BEACH, SC 29577
04713	MOTOROLA, INC., SEMICONDUCTOR PROD. DIV.	5005 E MCDOWELL RD,PO BOX 20923	PHOENIX, AZ 85036
05574	VIKING INDUSTRIES, INC.	21001 NORDHOFF STREET	CHATSWORTH, CA 91311
07910	TELEDYNE SEMICONDUCTOR	12515 Chadron ave.	HAWTHORNE, CA 90250
10389	CHICAGO SWITCH, INC.	2035 WABANSIA AVE.	CHICAGO, IL 60647
22526	BERG ELECTRONICS, INC.	youk expressway	NEW CUMBERLAND, PA 17070
27014	NATIONAL SEMICONDUCTOR CORP.	2900 SEMICONDUCTOR DR.	SANTA CLARA, CA 95051
28480	HEWLETT-PACKARD CO., CORPORATE HQ.	1501 PAGE MILL RD.	PALO ALTO, CA 94304
56289	SPRAGUE ELECTRIC CO.		NORTH ADAMS, MA 01247
71279	CAMBRIDGE THERMIONIC CORP.	445 CONCORD AVE.	CAMBRIDGE, MA 02138
72982	ERIE TECHNOLOGICAL PRODUCTS, INC.	644 W .12 TH ST.	ERIE, PA 16512
73138	BECKMAN INSTRUMENTS, INC., HELIPOT DIV.	2500 HARBOR BLVD.	FULLERTON, CA 92634
75037	minnesota mining and mfg. Co., electro PRODUCTS DIVISION	3M CENTER	ST. PAUL, MN 55101
78189	ILLINOIS TOOL WORKS, INC.		
	SHAKEPROOF DIVISION	St. Charles road	ELGIN, IL 60120
78488	STACKPOLE CARBON CO.		ST. MARYS, PA 15857
80009	TEKTRONIX, INC.	P O box 500	BEAVERTON, OR 97077
83385	CENTRAL SCREW CO.	2530 CRESCENT DR.	BROADVIEW, IL 60153
91637	DALE ELECTRONICS, INC.	P. O. BOX 609	COLUMBUS, NE 68601

Electrical

	Tektronix	Serial/Model No.			Mfr	
Ckt No.	Part No.	Eff Dscont		Name \& Description	Code	Mfr Part Number
A1	670-4101-00		CKT BOARD	ASSY:MCM SYSTEMS TEST	80009	670-4101-00
A2	670-4171-00		CKT BOARD	ASSY :CONNECTOR INTERFACE	80009	670-4171-00

A1	670-4101-00	CKT BOARD ASSY:MCM SYSTEMS TEST	80009	670-4101-00
C31	283-0010-00	CAP. ,FXD, CER DI: $0.05 \mathrm{UF},+100-20 \%, 50 \mathrm{~V}$	56289	273C20
C41	283-0010-00	CAP., FXD, CER DI: $0.05 \mathrm{UF},+100-20 \%, 50 \mathrm{~V}$	56289	273 C 20
C51	283-0010-00	CAP. ,FXD, CER DI:0.05UF, +100-20\%,50V	56289	273C20
C60	283-0010-00	CAP.,FXD, CER DI: $0.05 \mathrm{UF},+100-20 \%, 50 \mathrm{~V}$	56289	273C20
C61	283-0010-00	CAP.,FXD, CER DI:0.05UF, +100-20\%,50V	56289	273C20
C71	283-0010-00	CAP.,FXD, CER DI:0.05UF, +100-20\%,50V	56289	273C20
C80	283-0010-00	CAP., FXD, CER DI:0.05UF, +100-20\%,50V	56289	273C20
C81	283-0010-00	CAP., FXD, CER DI:0.05UF, $+100-20 \%, 50 \mathrm{~V}$	56289	273C20
C85	283-0010-00	CAP., FXD, CER DI:0.05UF, $+100-20 \%, 50 \mathrm{~V}$	56289	273C20
Cl01	283-0010-00	CAP., FXD, CER DI:0.05UF,+100-20\%,50V	56289	273C20
C111	283-0010-00	CAP.,FXD, CER DI:0.05UF, +100-20\%,50V	56289	273C20
C131	283-0010-00	CAP., FXD, CER DI:0.05UF, $+100-20 \%, 50 \mathrm{~V}$	56289	273C20
Cl41	283-0010-00	CAP., FXD, CER DI:0.05UF, $+100-20 \%$, 50 V	56289	273C20
C171	283-0010-00	CAP., FXD, CER DI:0.05UF, +100-20\%,50V	56289	273C20
Cl81	283-0010-00	CAP.,FXD, CER DI:0.05UF, $+100-20 \%$, 50 V	56289	273C20
C211	283-0010-00	CAP., FXD, CER DI:0.05UF, +100-20\%,50V	56289	273C20
C311	283-0010-00	CAP., FXD, CER DI: $0.05 \mathrm{UF},+100-20 \%, 50 \mathrm{~V}$	56289	273C20
C321	283-0010-00	CAP., FXD, CER DI: $0.05 \mathrm{UF},+100-20 \%, 50 \mathrm{~V}$	56289	273C20
C331	283-0010-00	CAP. , FXD, CER DI:0.05UF, $+100-20 \%$, 50 V	56289	273C20
C341	283-0010-00	CAP, ,FXD, CER DI:0.05UF, $+100-20 \%$, 50 V	56289	273C20
C361	283-0010-00	CAP. ,FXD, CER DI: $0.05 \mathrm{UF},+100-20 \%, 50 \mathrm{~V}$	56289	273C20
C381	283-0010-00	CAP., FXD, CER DI: $0.05 \mathrm{UF},+100-20 \%, 50 \mathrm{~V}$	56289	273C20
C382	283-0010-00	CAP., FXD, CER DI:0.05UF, +100-20\%,50V	56289	273C20
C411	283-0010-00	CAP. , FXD, CER DI:0.05UF, +100-20\%, 50V	56289	273C20
C421	283-0010-00	CAP. , FXD, CER DI: $0.05 \mathrm{UF},+100-20 \%, 50 \mathrm{~V}$	56289	273C20
C431	283-0144-00	CAP.,FXD, CER DI:33PF,18,500V	72982	801-547P2G330G
C432	283-0144-00	CAP. ,FXD, CER DI:33PF,1\%,500V	72982	801-547P2G330G
C441	283-0010-00	CAP. , FXD, CER DI: $0.05 \mathrm{UF},+100-20 \%, 50 \mathrm{~V}$	56289	273C20
C471	283-0010-00	CAP., FXD, CER DI:0.05UF, $+100-20 \%$, 50 V	56289	273C20
C501	283-0010-00	CAP. , FXD, CER DI:0.05UF, $+100-20 \%$, 50 V	56289	273C20
C521	283-0010-00	CAP.,FXD, CER DI: $0.05 \mathrm{UF},+100-20 \%, 50 \mathrm{~V}$	56289	$273 C 20$
C525	283-0010-00	CAP.,FXD, CER DI:0.05UF,+100-20\%,50V	56289	273C20
C531	283-0010-00	CAP., FXD, CER DI:0.05UF, $+100-20 \%$, 50 V	56289	273 C 20
C535	281-0540-00	CAP., FXD, CER DI:51PF,5\%,500V	72982	301-000U2J0510J
C561	283-0010-00	CAP.,FXD,CER DI:0.05UF,+100-20\%,50V	56289	273C20
C571	283-0010-00	CAP. ,FXD, CER DI: $0.05 \mathrm{UF},+100-20 \%, 50 \mathrm{~V}$	56289	273C20
C601	283-0010-00	CAP., FXD, CER DI:0.05UF,+100-20\%,50V	56289	273C20
C621	283-0010-00	CAP., FXD, CER DI:0.05UF,+100-20\%,50V	56289	273C20
C671	283-0111-00	CAP.,FXD, CER DI:0.1UF,20\%,50V	72982	8121-N088z5U104M
C673	290-0246-00	CAP.,FXD,ELCTLTT:3.3UF,10\%,15V	56289	162D335X9015CD2
C680	290-0746-00	CAP. ,FXD, ELCTLT: $47 \mathrm{UF},+50-10 \%, 16 \mathrm{~V}$	56289	502D226
C681	281-0524-00	CAP.,FXD, CER DI:150PF,+/-30PF,500V	04222	7001-1381
C711	283-0010-00	CAP.,FXD,CER DI: $0.05 \mathrm{UF},+100-20 \%, 50 \mathrm{~V}$	56289	273C20
C712	283-0000-00	CAP., FXD, CER DI: $0.001 \mathrm{UF},+100-0 \%, 500 \mathrm{~V}$	72982	831-516E102P
C721	283-0010-00	CAP., FXD, CER DI:0.05UF,+100-20\%,50V	56289	273C20
C770	290-0746-00	CAP.,FXD, ELCTLT: $47 \mathrm{UF},+50-10 \%, 16 \mathrm{~V}$	56289	502D226
C780	290-0746-00	CAP.,FXD, ELCTLT:47UF, +50-10\%,16V	56289	502D226

Ckt No.	Tektronix Part No.	Serial/Model No:	Name \& Description	Mfr Code	Mfr Part Number
CR621	152-0141-02		SEMICOND DEVICE:SILICON,30v,150MA	07910	1N4152
CR671	152-0581-00		SEMICOND DEVICE:SILICON, 20V,1A	04713	1N5817
DSI	150-1001-00		LAMP,LED: RED, 2V,100MA	28480	5082-4403
DS2	150-1001-00		LAMP, LED: RED, $2 \mathrm{~V}, 100 \mathrm{MA}$	28480	5082-4403
DS3	150-1001-00		LAMP, LED: RED, $2 \mathrm{~V}, 100 \mathrm{MA}$	28480	5082-4403
DS4	150-1001-00		LAMP, LED: RED, 2V,100MA	28480	5082-4403
DS5	150-1001-00		LAMP, LED: RED, $2 \mathrm{~V}, 100 \mathrm{MA}$	28480	5082-4403
DSII	150-1001-00		LAMP, LED : RED, $2 \mathrm{~V}, 100 \mathrm{MA}$	28480	5082-4403
DS12	150-1001-00		LAMP,LED: RED, $2 \mathrm{~V}, 100 \mathrm{MA}$	28480	5082-4403
DS15	150-1001-00		LAMP, IED: RED, $2 \mathrm{~V}, 100 \mathrm{MA}$	28480	5082-4403
DS14	150-1001-00		LAMP, LED: RED, $2 \mathrm{~V}, 100 \mathrm{MA}$	28480	5082-4403
DS31	150-1001-00		LAMP, LED: RED, $2 \mathrm{~V}, 100 \mathrm{MA}$	28480	5082-4403
DS32	150-1001-00		LAMP, LED: RED, $2 \mathrm{~V}, 100 \mathrm{MA}$	28480	5082-4403
DS33	150-1001-00		LAMP, LED: RED, $2 \mathrm{~V}, 100 \mathrm{MA}$	28480	5082-4403
DS34	150-1001-00		LAMP, LED : RED, $2 \mathrm{~V}, 100 \mathrm{MA}$	28480	5082-4403
DS51	150-1001-00		LAMP, LED: RED, $2 \mathrm{~V}, 100 \mathrm{MA}$	28480	5082-4403
DS52	150-1001-00		LAMP, LED: RED, $2 \mathrm{~V}, 100 \mathrm{MA}$	28480	5082-4403
DS53	150-1001-00		LAMP,LED: RED, 2V,100MA	28480	5082-4403
DS54	150-1001-00		LAMP, LED: RED, 2V,100MA	28480	5082-4403
DS61	150-1001-00		LAMP, LED: RED, $2 \mathrm{~V}, 100 \mathrm{MA}$	28480	5082-4403
DS63	150-1001-00		LAMP, LED: RED, 2V,100MA	28480	5082-4403
DS71	150-1001-00		LAMP, LED: RED, $2 \mathrm{~V}, 100 \mathrm{MA}$	28480	5082-4403
DS72	150-1001-00		LAMP, LED: RED, 2V,100MA	28480	5082-4403
DS81	150-1001-00		LAMP, LED : RED, 2V,100MA	28480	5082-4403
DS82	150-1001-00		LAMP,LED: RED, 2V,100MA	28480	5082-4403
DS83	150-1001-00		LAMP, LED: RED, $2 \mathrm{~V}, 100 \mathrm{MA}$	28480	5082-4403
DS84	150-1001-00		LAMP, LED: RED, 2V,100MA	28480	5082-4403
L571	108-0839-00		COIL,RF:FXD, 0.729 MHZ, SWITCHING REGULATOR	80009	108-0839-00
L671	276-0507-00		SHIELDING BEAD, 0 : 6 UH	78488	57-0180-7D 500B
Q621	151-0188-00		TRANSISTOR:SILICON, PNP	01295	2N3906
2671	151-0136-00		TRANSISTOR:SILICON,NPN	02735	35495
R1	315-0511-00		RES.,FXD,CMPSN:510 OHM, 5\%,0.25W	01121	CB5115
R2	315-0511-00		RES.,FXD, CMPSN:510 OHM,5\%,0.25W	01121	CB5115
R3	315-0511-00		RES.,FXD, CMPSN:510 OHM, 5\%,0.25W	01121	CB5115
R4	315-0511-00		RES., FXD, CMPSN:510 OHM,5\%,0.25w	01121	CB5115
R5	315-0511-00		RES.,FXD,CMPSN:510 OHM,5\%,0.25W	01121	CB5115
R11	315-0511-00		RES., FXD,CMPSN:510 OHM,5\%,0.25W	01121	CB5115
R12	315-0511-00		RES., FXD,CMPSN:510 ОHM,5\%,0.25W	01121	CB5115
R13	315-0511-00		RES., FXD, CMPSN:510 OHM,5\%,0.25W	01121	CB5115
R14	315-0511-00		RES., FXD, CMPSN:510 OHM,5\%,0.25W	01121	CB5115
R31	315-0511-00		RES., FXD, CMPSN:510 OHM,5\%,0.25W	01121	CB5115
R32	315-0511-00		RES., FXD, CMPSN:510 OHM,5\%,0.25W	01121	CB5115
R33	315-0511-00		RES., FXD, CMPSN:510 OHM,5\%,0.25W	01121	CB5115
R34	315-0511-00		RES., FXD, CMPSN:510 OHM,5\%,0.25W	01121	CB5115
R51	315-0511-00		RES., FXD, CMPSN:510 OHM,5\%,0.25W	01121	CB5115
R52	315-0511-00		RES. , FXD, CMPSN:510 OHM,5\%,0.25W	01121	CB5115
R53	315-0511-00		RES., FXD, CMPSN:510 OHM, 58,0.25W	01121	CB5115
R54	315-0511-00		RES., FXD, CMPSN:510 OHM,5\%,0.25W	01121	CB5115
R61	315-0511-00		RES., FXD, CMPSN:510 OHM,5\%,0.25W	01121	CB5115
R62	315-0511-00		RES., FXD, CMPSN:510 OHM,5\%,0.25W	01121	CB5115
R63	315-0511-00		RES., FXD, CMPSN:510 OHM,5\%,0.25W	01121	CB5115

Ckt No.	Tektronix Part No.	Serial/Model No. Eff Dscont	Name \& Description	Mfr Code	Mfr Part Number
R64	315-0511-00		RES.,FXD, CMPSN:510 OHM,5\%,0.25W	01121	CB5115
R71	315-0511-00		RES., FXD, CMPSN:510 OHM,5\%,0.25W	01121	CB5115
R72	315-0511-00		RES.,FXD, CMPSN:510 OHM,5\%,0.25W	01121	CB5115
R73	315-0511-00		RES., FXD, CMPSN:510 OHM, 5\%,0.25W	01121	CB5115
R81	315-0242-00		RES.,FXD, CMPSN:2.4K OHM, 5\%,0.25W	01121	CB2425
R82	315-0242-00		RES., FXD, CMPSN:2.4K OHM,5\%,0.25W	01121	CB2425
R83	315-0242-00		RES., FXD, CMPSN:2.4K OHM, 5\%,0.25W	01121	CB2425
R84	315-0242-00		RES.,FXD, CMPSN:2.4K OHM, 5\%,0.25W	01121	CB2425
R85	315-0511-00		RES., FXD, CMPSN:510 OHM,5\%,0.25W	01121	CB5115
R431	321-0289-00		RES.,FXD,FILM:10K OHM, 1\%,0.125W	91637	MFF1816G10001F
R432	321-0289-00		RES., FXD,FILM:10K OHM, 1\%,0.125W	91637	MFF1816G10001F
R535	315-0101-00		RES., FXD, CMPSN:100 OHM,5\%,0.25W	01121	CB1015
R571	315-0112-00		RES.,FXD, CMPSN:1.1K OHM,5\%,0.25W	01121	CB1125
R572	307-0111-00		RES., FXD, CMPSN:3.6 OHM,5\%,0.25W	01121	CB36G5
R621	321-0289-00		RES.,FXD,FILM:10K OHM, 1\%,0.125W	91637	MFF1816G10001F
R622	315-0332-00		RES.,FXD, CMPSN:3.3K OHM, 5\%,0.25W	01121	CB3325
R672	321-0289-00		RES.,FXD,FILM:10K OHM, 1\%,0.125W	91637	MFF1816G10001F
R673	321-0289-00		RES., FXD,FILM:10K OHM, 1\%,0.125W	91637	MFF1816G10001F
R674	315-0271-00		RES.,FXD, CMPSN:270 OHM,5\%,0.25W	01121	CB2715
R711	315-0201-00		RES., FXD, CMPSN: 200 OHM, 5\%,0.25W	01121	CB2015
S1	260-0760-00		SWITCH,SENS:10A, 250V,SPDT,SNAP ACTION	01963	E62-10A
S2	260-0760-00		SWITCH,SENS:10A,250V,SPDT,SNAP ACTION	01963	E62-10A
S3	260-0760-00		SWITCH,SENS: 10A, 250V,SPDT,SNAP ACTION	01963	E62-10A
S4	260-0760-00		SWITCH,SENS: 10A,250V,SPDT,SNAP ACTION	01963	E62-10A
S5	260-1116-00		SWITCH,SLIDE:SPDT	10389	23-021-144
S6	260-1116-00		SWITCH, SLIDE: SPDT	10389	23-021-144
S7	260-1116-00		SWITCH,SLIDE:SPDT	10389	23-021-144
S11	260-0760-00		SWITCH, SENS:10A, 250V,SPDT, SNAP ACTION	01963	E62-10A
S12	260-0760-00		SWITCH,SENS:10A, 250V,SPDT,SNAP ACTION	01963	E62-10A
S13	260-0760-00		SWITCH, SENS:10A, 250V,SPDT,SNAP ACTION	01963	E62-10A
S14	260-1116-00		SWITCH, SLIDE:SPDT	10389	23-021-144
S15	260-1116-00		SWITCH, SLIDE:SPDT	10389	23-021-144
S16	260-1116-00		SWITCH,SLIDE:SPDT	10389	23-021-144
S17	260-1116-00		SWITCH, SLIDE:SPDT	10389	23-021-144
S31	260-1116-00		SWITCH, SLIDE:SPDT	10389	23-021-144
S32	260-1116-00		SWITCH, SLIDE:SPDT	10389	23-021-144
S33	260-1116-00		SWITCH,SLIDE:SPDT	10389	23-021-144
S34	260-1116-00		SWITCH,SLIDE:SPDT	10389	23-021-144
S35	260-1116-00		SWITCH,SLIDE:SPDT	10389	23-021-144
536	260-1116-00		SWITCH,SLIDE:SPDT	10389	23-021-144
S37	260-1116-00		SWITCH,SLIDE:SPDT	10389	23-021-144
S41	260-1116-00		SWITCH,SLIDE:SPDT	10389	23-021-144
S42	260-1116-00		SWITCH,SLIDE:SPDT	10389	23-021-144
543	260-1116-00		SWITCH,SLIDE:SPDT	10389	23-021-144
S44	260-1116-00		SWITCH,SLIDE:SPDT	10389	23-021-144
S51	260-1116-00		SWITCH,SLIDE: SPDT	10389	23-021-144
S52	260-1116-00		SWITCH,SLIDE:SPDT	10389	23-021-144
S53	260-1116-00		SWITCH,SLIDE:SPDT	10389	23-021-144
S54	260-1116-00		SWITCH,SLIDE:SPDT	10389	23-021-144
S61	260-1116-00		SWITCH, SLIDE:SPDT	10389	23-021-144
S62	260-1116-00		SWITCH,SLIDE:SPDT	10389	23-021-144
S63	260-1116-00		SWITCH,SLIDE:SPDT	10389	23-021-144
S64	260-1116-00		SWITCH,SLIDE:SPDT	10389	23-021-144

Ckt No.	Tektronix Part No.	Serial/Model No. Eff Dscont	Name \& Description	Mir Code	Mfr Part Number
S81	260-1116-00		SWITCH, SLIDE: SPDT	10389	23-021-144
S82	260-1116-00		SWITCH, SLIDE:SPDT	10389	23-021-144
S83	260-1116-00		SWITCH, SLIDE:SPDT	10389	23-021-144
S84	260-1116-00		SWITCH, SLIDE: SPDT	10389	23-021-144
U1	307-0422-00		RES.,FXD,FILM:15 RES. NETWORK	73138	898-1-R242J
U11	307-0422-00		RES.,FXD,FILM:15 RES. NETWORK	73138	898-1-R242J
U21	156-0381-00		MICROCIRCUIT,DI:QUAD 2-INPUT EXCL OR GATES	01295	SN74LS86N
U31	156-0093-00		MICROCIRCUIT,DI:HEX. INVERTER	01295	SN7416N
U41	156-0093-00		MICROCIRCUIT,DI:HEX. INVERTER	01295	SN7416N
U51	156-0093-00		MICROCIRCUIT, DI: HEX. INVERTER	01295	SN7416N
U60	156-0472-00		MICROCIRCUIT, DI:13-INPUT NAND GATE	01295	SN74S133N
U61	307-0422-00		RES.,FXD,FILM:15 RES. NETWORK	73138	898-1-R242J
U70	156-0469-00		MICROCIRCUIT, DI:3-LINE TO 8-LINE DECODER	01295	SN74LS138N
U71	156-0093-00		MICROCIRCUIT,DI: HEX. INVERTER	01295	SN7416N
U80	156-0541-00		MICROCIRCUIT,DI:DECODER/DEMULTIPLEXER	01295	SN74LS139N
U101	156-0382-00		MICROCIRCUIT,DI:QUAD 2-INPUT NAND GATE	01295	SN74LSOON
U111	156-0382-00		MICROCIRCUIT,DI:QUAD 2-INPUT NAND GATE	01295	SN74LSOON
U121	156-0381-00		MICROCIRCUIT,DI:QUAD 2-INPUT EXCL OR GATES	01295	SN74LS86N
U131	156-0220-00		MICROCIRCUIT,DI:DUAL 4-BIT LATCH W/CLEAR	80009	156-0220-00
U141	156-0220-00		MICROCIRCUIT,DI:DUAL 4-BIT LATCH W/CLEAR	80009	156-0220-00
U171	156-0220-00		MICROCIRCUIT,DI:DUAL 4-BIT LATCH W/CLEAR	80009	156-0220-00
U181	156-0708-09		MICROCIRCUIT,DI:PROM U181	80009	156-0708-09
U201	156-0386-00		MICROCIRCUIT,DI:TRIPLE 3-INPUT NAND GATE	01295	SN74LSION
U211	156-0386-00		MICROCIRCUIT,DI:TRIPLE 3-INPUT NAND GATE	01295	SN74LSION
U221	156-0383-00		MICROCIRCUIT,DI:QUAD 2-INPUT NOR GATE	01295	SN74LS02N
U301	156-0464-00		MICROCIRCUIT,DI:DUAL 4-INPUT NAND GATE	01295	SN74LS20N
U311	156-0383-00		MICROCIRCUIT,DI:QUAD 2-INPUT NOR GATE	01295	SN74LS02N
U321	156-0478-00		MICROCIRCUIT,DI:DUAL 4-INPUT AND GATE	01295	SN74LS21N
U331	156-0535-00		MICROCIRCUIT,DI:TRI-STATE HEX BUFF	27014	DM8097M
U341	156-0535-00		MICROCIRCUIT,DI:TRI-STATE HEX BUFF	27014	DM8097M
U351	156-0381-00		MICROCIRCUIT,DI:QUAD 2-INPUT EXCL OR GATES	01295	SN74LS86N
U361	156-0381-00		MICROCIRCUIT,DI:QUAD 2-INPUT EXCL OR GATES	01295	SN74LS86N
U371	156-0535-00		MICROCIRCUIT, DI:TRI-STATE HEX BUFF	27014	DM8097M
U381	156-0708-10		MICROCIRCUIT,DI:PROM U381	80009	156-0708-10
U401	156-0388-00		MICROCIRCUIT,DI:DUAL D-TYPE FLIP-FLOP	01295	SN74LS74N
U411	156-0382-00		MICROCIRCUIT,DI:QUAD 2-INPUT NAND GATE	01295	SN74LSOON
U421	156-0480-00		MICROCIRCUIT,DI:QUAD 2-INPUT AND GATE	01295	SN74LS08N
U431	156-0172-00		MICROCIRCUIT,DI:DUAL RETRIG MONOSTABLE MV	80009	156-0172-00
U441	156-0535-00		MICROCIRCUIT,DI:TRI-STATE HEX BUFF	27014	DM8097M
U461	156-0381-00		MICROCIRCUIT,DI:QUAD 2-INPUT EXCL OR GATES	01295	SN74LS86N
U471	156-0381-00		MICROCIRCUIT,DI:QUAD 2-INPUT EXCL OR GATES	01295	SN74LS86N
U501	156-0388-00		MICROCIRCUIT,DI:DUAL D-TYPE FLIP-FLOP	01295	SN74LS74N
U511	156-0382-00		MICROCIRCUIT,DI:QUAD 2-INPUT NAND GATE	01295	SN74LS00N
U521	156-0599-00		MICROCIRCUIT,DI:RAM THREE STATE	80009	156-0599-00
U525	156-0599-00		MICROCIRCUIT,DI:RAM THREE STATE	80009	156-0599-00
U531	156-0385-00		MICROCIRCUIT,DI:HEX. INVERTER	01295	SN74LS04N
U535	156-0385-00		MICROCIRCUIT,DI:HEX. INVERTER	01295	SN74LS04N
U541	156-0383-00		MICROCIRCUIT, DI:QUAD 2-INPUT NOR GATE	01295	SN74LS02N
U561	156-0465-00		MICROCIRCUIT,DI:8-INPUT NAND GATE	01295	SN74LS30N
U571	156-0383-00		MICROCIRCUIT, DI: QUAD 2-INPUT NOR GATE	01295	SN74LS02N
U601	156-0388-00		MICROCIRCUIT,DI:DUAL D-TYPE FLIP-FLOP	01295	SN74LS74N
U611	156-0093-00		MICROCIRCUIT,DI:HEX.INVERTER	01295	SN7416N
U621	156-0599-00		MICROCIRCUIT,DI:RAM THREE STATE	80009	156-0599-00

Tektronix Serial/Model No. Mfr

Ckt No.	Part No. \quad Eff
U681	$156-0096-00$
U701	$15660382-00$
U711	$156-0382-00$
U721	$156-0599-00$

Fig. \&

Index No.	Tektronix Part No.	Serial/Model No. Eff Dscont	Qty	12345	Name \& Description	Mfr Code	Mfr Part Number
	067-0746-00		1	FIXTURE,CR	00 SYSTEM	80009	067-0746-00
-1	390-0498-00		1	- С СА . , TOP	(aching parts)	80009	390-0498-00
-2	211-0008-00		6	. screw, MA	$40 \times 0.25 \mathrm{INCH}, \mathrm{PNH}$ STL	83385	OBD
-3	129-0080-00		6	. POST, ELE	.875 inch Long	80009	129-0080-00
-4	333-2107-00		1	. PANEL, FR		80009	333-2107-00
-5	210-0586-00		5	. nUT, PLAI	ACHING PARTS)	78189	OBD
-6	210-0994-00		5	. WASHER, F	5 ID x $0.25{ }^{\text {" OD,STL }}$	83385	OBD

DIAGRAMS AND CIRCUIT BOARD ILLUSTRATIONS

Symbols and Reference Designators

Electrical components shown on the diagrams are in the following units unless noted otherwise:

$$
\begin{aligned}
\text { Capacitors }= & \text { Values one or greater are in picofarads }(\mathrm{pF}) . \\
& \text { Values less than one are in microfarads }(\mu \mathrm{F}) . \\
\text { Resistors }= & \text { Ohms }(\Omega) .
\end{aligned}
$$

Graphic symbols and class designation letters are based on ANSI Standard Y32.2-1975.
Logic symbology is based on ANSI Y32.14-1973 in terms of positive logic. Logic symbols depict the logic function performed and may differ from the manufacturer's data.

Abbreviations are based on ANSI Y1.1-1972.
Other ANSI standards that are used in the preparation of diagrams by Tektronix, Inc. are:

Y14.15, 1966	Drafting Practices.
Y14.2,1973	Line Conventions and Lettering.
Y10.5,1968	Letter Symbols for Quantities Used in Electrical Science and
	Electrical Engineering.

The following prefix letters are used as reference designators to identify components or assemblies on the diagrams.

A	Assembly, separable or repairable (circuit board, etc)	H	Heat dissipating device (heat sink, heat radiator, etc)
AT	Attenuator, fixed or variable	HR	Heater
B	Motor	HY	Hybrid circuit
BT	Battery	J	Connector, stationary portion
C	Capacitor, fixed or variable	K	Relay
CB	Circuit breaker	L	Inductor, fixed or variable
CR	Diode, signal or rectifier	M	Meter
DL	Delay line	P	Connector, movable portion
DS	Indicating device (lamp)	Q	Transistor or silicon-controlled
E	Spark Gap, Ferrite bead		rectifier
F	Fuse	R	Resistor, fixed or variable
FL	Filter	RT	Thermistor

1. TRUE HIGH and TRUE LOW Signals

Signal names on the schematics are followed by -1 or -0 . A TRUEHIGH signal is indicated by -1 , and a TRUE LOW signal is indicated by -0 .

SIGNAL-1 $=$ TRUE HIGH
SIGNAL-0 $=$ TRUE LOW

2. Cross-References

Schematic cross-references (from/to information) are included on the schematics. The "from" reference only indicates the signal "source," and the "to" reference lists all loads where the signal is used. All from/to information will be enclosed in parenthesis.

System Test Fixture component locations.

[^0]: A typleal 6800 microcomputer system that can be exercised by the system Test fixture is shown in fig. 3-2, This illustram tion shows how the basic interfacing signals used by the System rest fixture are generated. see the reprinted specification sheets in section a of this manual for detalled 6800 microcomputer system timing and operations. rnese specifications are reprinted by permission of motorola semia conductor. Inc.

[^1]: U421B = LATCH INSTRUCTION STROBE IF LAT INSTR CY IS TRUE.
 U421B = PIAE IF LAT INSTR CY IS FALSE.

