
1111•

TEK SPS BASIC
V02N02XM

System Software
CP57000/CP57500

COMMITTED TO EXCELLENCE

Tektronix, Inc.
P.O. Box 500
Beaverton, Oregon 97077

First Printing JAN 1980

COMMITTED ID EXCELLENCE

TEK SPS BASIC
V02/V02XM

System Software
CP57000/CP57500

INSTRUCTION MANUAL

Serial Number

PRODUCED BY SPS DOCUMENTATION GROUP 070-2501-00

SOFTWARE SUPPORT POLICY
Unless otherwise provided, Tektronix, Inc., agrees that during the one (1) year period following installation, if the

customer encounters a problem with this software which the customer's diagnosis indicates is caused by a software defect,
the customer may submit a Software Performance Report to Tektronix, Inc. For problems occurring in current, unaltered
releases of software, Tektronix, Inc., will respond to Software Performance Reports via a software maintenance periodical.
The software maintenance periodical will be provided at no cost to the customer for one year following installation and will
contain information for correcting or bypassing verified problems where possible, and will give notice of availability of
corrected software.

Any software updates released by Tektronix, Inc., to correct problems during the one (1) year period will be provided
to the customer at no charge on the standard distribution media specified in the software documentation. If media other
than the standard distribution media is requested, the customer will only be charged for the current cost of the optional
media.

SOFTWARE LICENSE
This software product, including subsequent improvements or updates, is furnished under a license for use on a

single controller. It may only be copied, in whole or in part (with the proper inclusion of the Tektronix, Inc., copyright notice
on the software), for use on that specific controller.

Specification and price change privileges are reserved.

Although the material in this manual has been thoroughly edited and checked for accuracy, Tektronix, Inc., makes no
guarantees against typographical or human errors. Also, Tektronix, Inc., assumes no responsibility or liability,
consequential or otherwise, of any kind arising from misinterpretation or misuse of the material in this manual. The
contents of this manual are subject to change without notice.

Copyright© 1980 by Tektronix, Inc., Beaverton, Oregon. Printed in the United States of America. All rights reserved.

U.S.A. and foreign TEKTRONIX products covered by U.S. and foreign patents and/or patents pending.

TEKTRONIX and TEK are registered trademarks of Tektronix, Inc.

DEC, LSl-11, PDP, RT-11, and UNIBUS are registered trademarks of Digital Equipment Corporation.

TEK SPS BASIC V02 System Software

PREFACE

This manual describes the commands, the functions, and the low-level
IEEE 488 Interface driver that are included in the TEK SPS BASIC V~2 and
V02XM System Software package. The peripheral device drivers that are a
part of this package are discussed in a separate manual. Other TEK SPS
BASIC V~2/V02XM packages are described in additional manuals which you
should consult when these software packages are added to your system.

All releases of TEK SPS BASIC V~2/V02XM System Software are documented
by this manual. Any exceptions to a command, function, option, or capability
being supported by a specific release of the software are noted where
appropriate. Information that pertains only to extended memory (XM) systems
is shaded.

This is not a BASIC primer. It is assumed that you are familiar with
a high-level language and need this manual as a reference for TEK SPS BASIC
and its signal processing and waveform handling techniques. It is recommended
that you read the first three sections before you start to program, and
then consult the remainder of the manual as needed. An attempt was made
to make the information more retrievable by using topical footers in
sections 4, 5, 6, and 8 and by printing the error codes on colored paper.
If you have comments on what was done or suggestions for how to improve
future manuals, please write via the "Your Comments Count" form in the
back of the manual.

i

TEK SPS BASIC V02 System Software

TABLE OF CONTENTS

SECTION 1 -- INTRODUCTION

Main Features of TEK SPS BASIC V02
Operating Concepts

The Interpreter
Two Modes of Operation
Modules and How They Are Used
The Scheduler

Defining the Terms
Program Structure and Control
Special Characters
Elements of Expressions
Instruments and Peripherals

SECTION 2 -- EXPRESSION EVALUATION

Numeric Expressions
Notation Formats
Numeric Constants and Variables
Arithmetic Expression Evaluation
Array Expression Evaluation
Array Zones
Waveform Expression Evaluation
Binary Number Limitations

String Expressions
String Constants and String Variables
Subscripted String.Variables
Concatenation
String Expression Evaluation

SECTION 3 -- GETTING STARTED

Loading the TEK SPS BASIC
Booting the System
Initializing the Software

How to Enter a Program
Running a Program

iii

1-1

1-1

1-5
1-5
1-5
1-6

1-8
1-13
1-13
1-14
1-15
1-21

2-1

2-1
2-1
2-1
2-2
2-5
2-8
2-9
2-12
2-14
2-14

2-15
2-15
2-15

3-1

3-1
3-1
3-3
3-4
3-5

TEK SPS BASIC V92 System Software

Text Manipulation in Immediate Mode
Making the Most of Memory Space

Use Subroutines
RELEASE Nonresident Commands and Drivers
Execute GETFREE
Remove all REM statements
Break Your Program into Segments

Instrument Communication
Fundamental Operations
Interrupt-Driven Programs

Data File Structures
Sequential Access Files
Random Access Files
Adding to a Sequential Access File
Reading in Arrays

SECTION 4 -- TEK SPS BASIC COMMANDS

Overview of System Commands
System Control Commands
Program Control Commands
Variable Definition Commands
Program Data Inputs/Output Commands
Peripheral Housekeeping Commands
Instrument Control Commands
Debugging Commands

Guide to Notation
Syntax and Descriptive Forms

Substitution Guide Lines
ABORT (Nonresident)
ATAN2 (Nonresident)
ATTACH
BOOT (Nonresident)
CANCEL (Nonresident)
CHAIN (Nonresident)
CHANGE (Nonresident)
CLEAR (Nonresident)
CLOSE
COPY (Nonresident)
DATE (Nonresident)
DEFINE (Nonresident)

iv

3-8
3-10
3-10
3-10
3-10
3-11
3-11
3-14
3-14
3-15
3-17
3-18
3-20
3-20
3-22

4-1

4-2
4-2
4-4
4-5
4-6
4-'7
4-8
4-9
4-10
4-10
4-14
4-17
4-19
4-21
4-24
4-26
4-28
4-31
4-34
4-35
4-37
4-40
4-43

TEK SPS BASIC V~2 System Software

DELETE
DETACH
DIM
DIR (Nonresident)
END
EOF (Nonresident)
FOR
FORMAT (Nonresident)
GET (Nonresident)
GETBLK (Nonresident)
GETFREE (Nonresident)
GETLINE (Nonresident)
GETLOC (Nonresident)
GETPRIORITY (Nonresident)
GOSUB
GOTO
HASH (Nonresident)
HOOK (Nonresident)
HOOKQ (Nonresident)
IF
IGNORE (Nonresident)
INPREQ (Nonresident)
INPUT (Nonresident)
INTEGER
LET
LIST
LISTVAR (Nonresident)
LOAD
LOCKKB (Nonresident)
LST (Nonresident)
MATCH (Nonresident)
NEXT
OLD
ONERR (Nonresident)
OPEN
OVERLAY (Nonresident)
OVLOAD (Nonresident)
OVLSAV (Nonresident)
PRINT (Nonresident)
PRIORITY (Nonresident)
PUT (Nonresident)
PUTBLK (Nonresident)

v

4-46
4-49
4-51
4-54
4-56
4-57
4-59
4-63
4-66
4-69
4-71
4-73
4-75
4-78
4-80
4-82
4-84
4-89
4-91
4-93
4-96
4-99
4-102
4-106
4-108
4-113
4-115
4-119
4-121
4-122
4-124
4-127
4-128
4-131
4-136
4-140
4-142
4-144
4-147
4-155
4-157
4-160

TEK SPS BASIC V02 System Software

PUTLOC (Nonresident)
RANDOM (Nonresident)
READ
READU (Nonresident)
RELEASE
REM
RENAME (Nonresident)
RENUM (Nonresident)
REPLACE (Nonresident)
RESCHEDULE (Nonresident)
RESET (Nonresident)
RETURN
REWIND (Nonresident)
RUN
SAVE (Nonresident)
SCHEDULE (Nonresident)
SETDATE (Nonresident)
SETTIME (Nonresident)
SQUISH (Nonresident)
STATUS (Nonresident)
STOP
SYSBLD (Nonresident)
TIME (Nonresident)
UNSCHEDULE (Nonresident)
VARTST (Nonresident)
VERSION (Nonresident)
WAIT (Nonresident)
WAVEFORM
WHEN (Nonresident)
WRITE (Nonresident)
WRITEU (Nonresident)
ZERO (Nonresident)

SECTION 5 -- FUHCTIONS

Numeric Functions
Absolute Value Function (ABS)
Arctangent Function (ATN)
Cosine Function (COS)
Exponential Function (EXP)
Integer Part Function (ITP)

vi

4-162
4-165
4-167
4-171
4-178
4-180
4-181
4-182
4-185
4-188
4-197
4-198
4-200
4-201
4-203
4-205
4-210
4-212
4-215
4-218
4-222
4-224
4-231
4-235
4-237
4-239
4-241
4-243
4-246
4-250
4-252
4-257

5-1

5-1
5-2
5-3
5-3
5-4
5-4

TEK SPS BASIC V~2 System Software

Log Function (LOG)
Random Number Function (RND)
Sign Function (SGN)
Sine Function (SIN)
Square Root Function (SQR)
Task Function (TSK)

Array Functions
Cross Function (CRS)
Maximum Function (MAX)
Mean Function (MEA)
Minimum Function (MIN)
Root-Mean Square Function (RMS)
Size Function (SIZ)

String Functions
ASCII Function (ASC)
Cancel Function (CAN)
Character Function (CHR)
Length Function (LEN)
Position Function (POS)
Segment Function (SEG)
String Function (STR)
Trim Function (TRM)
Value Function (VAL)

SECTION 6 -- IEEE 488 INTERFACE DRIVER

Introduction to the IEEE 488 Bus
A Typical System
Bus Signal Lines
Data Lines
Control Lines
Bus Messages

Introduction to the IEEE 488 Interface Driver
IEEE 488 Interface Function Subsets
Loading the IEEE 488 Interface Driver
Addressing Instruments on the IEEE 488 Bus
Driver Control of the Bus Signal Lines

Transferring Data with PUT or GET
The GET Command
The PUT Command
An Example Using PUT and GET

vii

5-5
5-6
5-7
5-7
5-8
5-8
5-9
5-9
5-12
5-13
5-13
5-14
5-15
5-16
5-16
5-17
5-18
5-19
5-19
5-21
5-23
5-24
5-24

6-1

6-1
6-1
6-4
6-4
6-5
6-7
6-9
6-9
6-11
6-12
6-13
6-14
6-14
6-18
6-20

TEK SPS BASIC V~2 System Software

Transferring Program Control on Interrupt
The WHEN Command
The IGNORE Command

IEEE 488 Interface Driver Commands
Requirements
Expression Evaluation
Command Summaries
GETSTA (Nonresident)
GIFES (Nonresident)
IFDTM (Nonresident)
POLL (Nonresident)
PPOLL (Nonresident)
RASCII (Nonresident)
RBYTE (Nonresident)
READBINARY (Nonresident)
SIFCOM (Nonresident)
SIFLIN (Nonresident)
SIFTO (Nonresident)
STERMC (Nonresident)
TIFL (Nonresident)
WASCII (Nonresident)
WBYTE (Nonresident)

SECTION 7 -- GLOSSARY

SECTION 8 -- URDERSTANDING ERRORS

Types of Errors
Fatal Errors
Warning Errors

Error Categories
Program Control Errors
Data Errors
Evaluation Errors
Hardware/System Errors
Instrument Errors
Operating System Errors
Peripheral Errors
Syntax Errors

viii

6-23
6-23
6-25
6-27
6-27
6-27
6-28
6-29
6-34
6-37
6-40
6-46
6-48
6-51
6-53
6-59
6-63
6-66
6-68
6-70
6-72
6-76

7-1

8-1

8-1
8-1
8-2
8-2
8-4
8-6
8-8
8-11
8-12
8-14
8-16
8-18

TEK SPS BASIC V~2 System Software

APPENDIX A -- ASCII & IEEE 488 (GPIB) CODE CHART

APPENDIX B -- ARCHIVING YOUR SOFTWARE

Hard-Disk Based Systems
System Software (without Instrument Checkout

Software) on Hard Disk
System Software with Instrument Checkout

Software on Hard Disk
Separate Package or Module on Hard Disk
Separate Package or Module on Floppy Disk
Instrument Checkout Software on Floppy Disk

Floppy-Disk Based Systems
System Software (without Instrument Checkout

Software) on Floppy Disk
TEK SPS BASIC on Minimum Number

of Floppy Disks
Separate Package or Module on Floppy Disk
Instrument Checkout Software on Floppy Disk

APPENDIX C -- POWER FAIL RECOVERY

Dump Program

APPENDIX D -- SOFTWARE PATCHING

Resident BASIC Patches
Patches to Nonresident Commands or Drivers

APPENDIX E -- DATA DESCRIPTORS

Descriptor Format

ix

A-1

B-1

B-3

B-3

B-4
B-5
B-6
B-7
B-9

B-9

B-10
B-11
B-12

C-1

C-2

D-1

D-2

D-3

E-1

E-1

TEK SPS BASIC V~2 System Software

APPENDIX F -- STANDARD HARDWARE BOOTING PROCEDURES
FOR TEK SPS BASIC yg2

M9301 Bootstrap ROM Card
M9312 Bootstram ROM Card
Standard ROM Bootstrap on SBT Module in CP4165

APPENDIX G -- A METHOD fOR MORE ACCURATE TIMING VITB
VAIT AND SIFTO

APPENDIX B -- SIZES OF TEK SPS BASIC yg21vg2xH
NORRESIDENTS COMMANDS AND DRIVERS

Approximate Size of TEK SPS BASIC V~2 Modules
Approximate Size of TEK SPS BASIC V~2XM Modules

x

F-1

F-1
F-1
F-2

G-1

H-1

H-1
H-4

@

SECTION 1

SECTION 2

SECTION 3

SECTION 4

SECTION 5

SECTION 6

SECTION 7

SECTION 8

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

APPENDIX E

APPENDIX F

APPENDIX G

APPENDIX B

TEK SPS BASIC V02 System Software

SELECTION LOCATION GUIDE

INTRODUCTION

EXPRESSION EVALUATION

GETTING STARTED

TEK SPS BASIC COMMANDS

FUNCTIONS

IEEE 488 INTERFACE DRIVER

GLOSSARY

UNDERSTANDING ERRORS

ASCII CODE CHART

ARCHIVING YOUR SOFTWARE

POWER FAIL RECOVERY

SOFTWARE PATCHING

DATA DESCRIPTORS

STANDARD HARDWARE BOOTING PROCEDURES
FOR TEK SPS BASIC V02

A METHOD FOR MORE ACCURATE TIMING
WITH WAIT AND SIFTO

SIZES OF TEK SPS BASIC V02/V02XM
NONRESIDENT COMMANDS AND DRIVERS

xi

Ill
IEI
Ill
ID
Ill
IEI
ID
Ill
Ill
Ill
Ill
El
Ill
Ill

El

TEK SPS BASIC V02 System Software

SECTION 1

INTRODUCTION

TEK SPS BASIC V02 is a powerful general-purpose programming language
which offers sophisticated tools for the control of instruments plus the
acquisition, processing, storage, and display of data. At the same time,
it retains the easy-to-use, easy-to-learn, user-orientation of traditional
BASICs. This manual describes the features that make TEK SPS BASIC V02
unique as well as some of the fundamentals of BASIC programming.

Main Features of TEK SPS BASIC Va2

Modular, space-efficient and versatile, TEK SPS BASIC can serve needs
ranging from a new user's five-line arithmetic calculation program to an
experienced assembly-level programmer's specialized device driver or
instrument control system. TEK SPS BASIC is file-compatible with Digital
Equipment Corporations RT-11 software. Running on DEC's PDP-11 family of
minicomputers and the TEKTRONIX CP4165 controller, it gives the programmer
access, through BASIC, to features of the operating system usually accessible
only through assembly-level interaction.

Here are some of the features of TEK SPS BASIC V02 that make this
language superior to other versions of BASIC:

Choice of standard memory or extended memory versions. For those who
need more than the standard 28K words of memory, TEK SPS BASIC V02 is
available in an extended memory (XM) version as well as a standard memory
version. Intended for use in systems with the DEC KT11D Memory Management
hardware, the XM version allows up to 96K words of extended memory to be
used for numeric array storage, for a total of 124K words of memory. Yet,
except for timing considerations, most of the differences between the
standard and XM versions are transparent. The full complement of TEK SPS
BASIC software packages is obtainable in either the standard or XM version.

Adaptable and expandable systems. The modular construction of TEK SPS
BASIC gives you the freedom to design a processing system that fits your
needs, rather than a general need. A variety of TEK SPS BASIC V02 software
packages can be used with the system software. In addition, by using
optional packages you can write your own commands for special applications.
Likewise, you can write software drivers for one-of-a-kind instruments.

1-1

Ill

TEK SPS BASIC V02 System Software

Full graphics capability. A graphics package is available to help you
display your results in an easy-to-understand format. These graphics tools
range from powerful commands like GRAPH and DISPLAY, which accept arrays
and waveforms as arguments and draw the data in them with axes and graticules 1

to a complete selection of move and draw commands which permit the user
to specify destination locations as absolute or relative, in user or screen
units.

Signal analysis capability. A set of signal analysis commands is also
available that greatly simplify computations such as Fourier transforms,
convolution, correlation, differentiation, and integration. Only one BASIC
statement is needed to perform each of these tasks.

Flexible instrument control. Drivers and/or command packages are
available for Signal Processing Systems instruments such as the TEKTRONIX
Digitizing Oscilloscope (DPO), R7912 Transient Digitizer, 7912AD Programmable
Digitizer, and the 7612D Programmable Digitizer. The system is also designed
to support and control general-purpose instrumentation. User-written drivers
and commands are easy to integrate into TEK SPS BASIC and can be created
by someone competent in assembly language programming, using an optional
command package. Instrument communication commands are clear and general,
efficient at moving data to and from instruments, and sufficiently flexible
to permit control of instrument idiosyncrasies in communication.

GPIB Drivers. For control of devices connected to a General Purpose
Interface Bus (GPIB), TEK SPS BASIC V02 includes a low-level IEEE 488
Interface driver. This driver gives you control over either a CP4100/IEEE
488 (Q-bus) Interface or a CP1100/IEEE 488 (UNIBUSR) Interface. Commands
range from primitive, line-level controls which accept string arguments
describing interface status to higher level directives which make GPIB
housekeeping details transparent to user programs. Interface time-out
duration is under user control, instrument data can be acquired using
direct memory access (DMA) protocol, and the driver recognizes error, EOI,
and SRQ conditions directly.

A second GPIB driver, the high-level IEEE 488 Instrument driver, is
available as a separate package. Designed especially for communication
with GPIB devices that conform to the Tektronix codes and formats, it
offers easier control of instruments such as the TEKTRONIX 7912AD Programmable
Digitizer and the TEKTRONIX 7612D Programmable Digitizer.

Scheduling and error-handling capabilities. Designed for optimum
instrument control, TEK SPS BASIC gives you complete control of the system's

1-2

TEK SPS BASIC V02 System Software

response to errors or interrupts, permitting the scheduling of routines
based on real-time instrument events, relative or absolute time delays,
or error conditions at any of 127 software-assigned priorities. Instrument
control functions can be segregated into separate tasks, protecting
individual tasks from being halted by errors or instrument failures in
other tasks. This, plus the ability to respond to an instrument when data
is available and to schedule programs, gives BASIC the power usually
reserved for a time-sharing system.

Maximum control of memory space. TEK SPS BASIC gives the user maximum
control over the controller memory space. Commands, drivers, and arrays
can be deleted to gain memory during program execution, and initial system
configuration parameters such as the number of instruments and peripherals
to be supported and the inclusion of graphics and string handling capabilities
are under user control. Furthermore, programs can be broken into segments
which can be loaded and executed as they are needed and then deleted or
overlaid when done. Even a fast overlay command, OVLOAD, is provided to
speed the execution of overlaid programs.

Ease and accuracy of arithmetic operations. As a programming language
at the BASIC level, TEK SPS BASIC gives you a complete software toolbox
for numeric and string computations. It is accurate to 7.2 decimal digits
and can operate either with or without floating-point hardware, configuring
itself to produce the most space- and time-efficient calculation. TEK SPS
BASIC's eight numeric and six array functions perform frequently needed
operations beyond the standard five operations of addition, subtraction,
multiplication, division, and exponentiation. All numeric operators and
functions accept as arguments virtually any combination of numeric variables,
arrays, segments of arrays, and waveforms. (A waveform is a special data
structure which simplifies signal processing applications by associating
a data sampling interval, a time-units label, and an amplitude-units label
with an array of signal-descriptive data.)

Array, waveform, and subarray processing. A single BASIC statement
is all that is needed to manipulate entire arrays or waveforms. Subarrays
allow you to process only that part of an array you are interested in.
Also, parts of arrays can be extracted from larger arrays or waveforms and
operated on independently.

String processing. String processing, or character manipulation, is
necessary to format output in a clear and easy-to-read manner. Strings in
TEK SPS BASIC can be arbitrarily long and need not have their length
explicitly declared. String variables are supported by a concatenation

1-3

TEK SPS BASIC V~2 System Software

operator and nine string functions which include conversions between numeric
and ASCII values of number strings. String arrays, which can be one- or
two-dimensional, can easily be searched (using the MATCH command) and may
have elements of arbitrary and varied lengths.

Peripheral Communication. TEK SPS BASIC communicates easily and
speedily with a complete range of peripherals which include graphic
terminal/keyboard, hard disk, floppy disk, cassette tape, magnetic tape,
paper tape reader and punch, and line printer. Its peripheral interfacing
code, like its instrument interfacing code, is written to be completely
independent of the device with which it communicates. Thus, new peripheral
drivers can be added to the system by TEK SPS BASIC users.

Random access files. Files are accessible and manipulable at any level
from byte to block, can be read or written in ASCII or binary, can be
formatted or unformatted, and can be accessed either serially or randomly.

Live keyboard. Immediate mode commands or program lines can be entered
from the keyboard while a program is executing. This feature can be disabled
by the LOCKKB command.

Unsolicited input. The user can interact with running programs through
either prompted or unsolicited input from the keyboard.

Patching capability. Special BASIC routines are included with your
software which allow you to update or correct errors in Resident BASIC or
nonresident commands.

1-4

TEK SPS BASIC V02 System Software

Operating Concepts

Now, let's briefly discuss some of the operating concepts of TEK SPS
BASIC. Material that the beginning user may pass over is set off in square
brackets.

The Interpreter

BASIC is an interpretive language. That is, as you type a program
line on the terminal, the line is being stored in the controller memory.
Each line is stored in sequence by line number. It doesn't matter in what
order you enter program lines; the interpreter/operating system always
keeps lines of text in line-number order.

When you execute a program, the interpreter/operating system takes
one line at a time from memory, in line number order, and executes the
command(s) in that line.

Interpretive languages are a great advantage when you are developing
programs. If a mistake is found, all you need do is retype the line in
error. New lines can be added at any time, and lines no longer needed can
be deleted in a snap.

When you have a complete, working program it can be saved on a
peripheral storage device, such as a disk or magnetic tape. These saved
programs can be loaded and run again at any time.

Two Modes of Operation

TEK SPS BASIC commands can execute in either immediate mode or program
mode.

Immediate Mode Operation. The BASIC interpreter can execute single
commands immediately, without the command being a part of a program. When
a command is typed at the terminal with no preceding line number, the
command is executed immediately. It is not stored in the controller memory.
Any BASIC statement can be executed in immediate mode, but some, like
PRIORITY or RETURN, have no meaning in this case.

1-5

TEK SPS BASIC V02 System Software

Program Mode Operation. When a BASIC statement is preceded by a line
number, the statement is not executed immediately. Instead, it is stored
in memory and executed when you execute the program or subroutine of which
it is part. RUN, which is used to start program execution, is the only
command that can not be entered in program mode.

Modules and How They Are Used

A key feature of TEK SPS BASIC is its modularity. The heart of the
TEK SPS BASIC interpreter/operating system is called the Monitor/Interpreter
or "Resident" BASIC. This is the software that keeps track of your program
and allows you to add or delete other modules as they are used. These
modules include peripheral drivers (routines that "talk" to the peripherals),
instrument drivers, mathematical modules (such as the Fourier transform,
correlation, differentiation, etc.), and various BASIC commands. The modular
concept frees the greatest amount of memory in the controller for programs
and data storage. Modularity also increases the flexibility of BASIC by
allowing you to add new commands and drivers when necessary. You can even
write your own.

Figure 1-1 is a block diagram of the TEK SPS BASIC V02 operating
system. Most of Resident BASIC, which includes the system device driver,
is always in memory. [A portion of Resident Basic is an overlay area into
which one of two files that are stored on the system device is automatically
overlaid as it is needed. The two files are TRAN.OVL and UNTRAN.OVL.
TRAN.OVL translates BASIC text into the internal, executable form in which
a program is stored in controller memory. UNTRAN.OVL converts the internal
form back to the BASIC language form that can be displayed with the LIST
command.]

Modules usually reside on the system storage device. They can be
copied to other peripheral devices if necessary. The system storage device
is determined when TEK SPS BASIC is initially brought into memory. It is
the peripheral device from which BASIC is loaded. For most operations
involving data transfers between the controller and a peripheral, the
system device is assumed if no other device is specified.

Modules can be loaded in two ways. One method is with the LOAD command.
When you LOAD a module, it becomes part of Resident BASIC. It is locked
in and can't be released until you specifically free it with the RELEASE
command.

1-6

TEK SPS BASIC V02 System Software

----
',

---- UNTR I

' I

\

l l
INSTRUMENT NONRESIDENT PERIPHERAL

DRIVERS COMMANDS DRIVERS

2501-01

Fig. 1-1. Simplified diagram of TEK SPS BASIC Va2.

The other method of loading modules is to let BASIC do it for you.
This "auto-loading" works only with nonresident commands (not drivers)
that are stored on the system device. When BASIC encounters a nonresident
command in a program (or in immediate mode) and that command is not in
memory, BASIC automatically fetches the nonresident command from the system
storage device and continues program execution.

When a module is auto-loaded, it is not locked in. It is automatically
released if room is needed later for another nonresident module, data, or
program text. [A tally is kept as to how often these auto-loaded commands
are used. When one has to be auto-released, the one that has had the least
recent use gets released.] One of the nonresident commands, STATUS, tells
you which modules are currently in memory. It also lets you know if they
have been auto-loaded.

[Because of the system overlay files, care must be used if BASIC is
to be executed while the system disk is removed from the system drive.
Before the system device is removed, all the commands and drivers that
will be needed must be in memory, none of the commands may require UNTRAN.OVL
to execute, and TRAN.OVL must be resident. (TRAN.OVL can be made resident
by entering an immediate mode command or by just hitting the RETURN key.)]

@ 1-7

TEK SPS BASIC V02 System Software

Figure 1-2 shows a more detailed diagram of TEK SPS BASIC V02. Here,
individual elements from acquisition instruments to storage peripherals
are presented. In the center of the diagram is the Monitor/Interpreter,
or Resident BASIC. Next to it are the nonresident commands and the peripheral
and instrument drivers that are loaded as needed. Resident BASIC communicates
with the various peripheral devices and instruments through the drivers.

The Scheduler

As a program executes, Resident BASIC must manage its resources such
as memory space and processing time in response to varying priorities,
task numbers, interrupt conditions, scheduled events, nested subroutines,
and other program operations. The mechanism which performs this resource
management is the Scheduler.

NOTE

An understanding of how the TEK SPS BASIC
Scheduler operates is essential for the
skillful and complete use of the language.
However, a beginning user may want to
return to this material as it becomes
relevant.

The Scheduler consists of three structures and the routines to
manipulate them. The structures are the current-job slot, the queue, and
the stack (see Fig. 1-3). These contain entries, called packets, which
represent the varip
of the next line to be executed in the routine, and the internal address
of the routine. The Scheduler always has two special packets, called idle
packets, which keep the Scheduler functioning even when there are no other
packets in the Scheduler. An idle packet has a priority of -1, a task
number of -1, and a line number of 0.

The current-job slot holds the packet of the currently executing
routine, which is called the current job. When no routine is being executed
(e.g., when READY has been printed on the terminal), an idle packet occupies
the current-job slot. It causes Resident BASIC to loop until an entry is
made into the queue. This is called idle mode.

1-8 @

INSTRUMENTS

INSTRUMENT
DRIVERS

PROCESSING
SOFTWARE

PERIPHERAL
DRIVERS

PERIPHERALS

l
l

l

TEK SPS BASIC V~2 System Software

• D

I ---- I
:.: ::

* rn ...
I ----

I l l I I I I I I []] ~

• • ' ...
* '

OTHER t
GPl.SPS

TD.SPS DPO.SPS or INSTRUMENTS INS.SPS

l ? J J
NONRESIDENT MONITOR/INTERPRETER _.. OTHER

COMMANDS MODULES

J• ., I • I ' ., ~

~

I'"""'"' .._

I

* I • ~ 1 ,.............. ,-......., ,.........., ,-......, ,-L.- ,-i--, r--'-- ,.....-''-i

LP DK DX DL pp PR CT KB OTHER t
PERIPHERALS

'"""-r- L......r-' "'--'.r---' ..____.,,- .._r--'

• ., • •

• ~ CIID

L.._.~1 ~_Ml

i--.i
L=-=- ~ :: --=--==---=--~

I 11t±J!'l l"t±H'I

I ~ ~~ I oITJ OJJ I ~
l1•• 1•1 .. 11··~·:.-=-=1

..a:::J: .:E:a.. *Instrument drivers can support up to 32 R7912's, 4
DPO's, and 4 IEEE 488 Interfaces.

tOther Instrument and peripheral drivers can be added

Illi- ~r==rr
wi'len needed to meet system requirements.

·-.

Fig. 1-2. Block diagram or the TEK SPS BASIC Va2 Operating System.

1-9

•

2501-13

QUEUE

CURRENT {
JOB

STACK

TEK SPS BASIC V02 System Software

"IDLE PACKET"

"PACKET"

TASK I PRIORITY
NUMBER I NUMBER

Fig. 1-3. The three structures or the Scheduler.

2501-03

The queue contains packets for routines which are ready to receive
system attention and resources. Its packets are ordered by priority. The
highest priority routine which has not yet begun execution is at the top
of the queue. The queue always holds an idle packet. When the queue is
"empty", the idle packet is at the top of the queue.

The stack contains packets for routines which have begun to execute
but which were "bumped" from the current job by a higher priority routine.
When the idle packet is bumped from the current-job slot (BASIC is no
longer in idle mode), the idle packet is put onto the stack.

Packets enter the Scheduler through the queue. Packets can be put
into the queue in several ways. An immediate mode statement causes packets
to be entered that edit, translate and execute the statement. A WHEN
statement can make the system respond to an interrupt by scheduling an
interrupt-handling routine which is represented by a packet inserted into
the queue. A SCHEDULE statement can cause a particular routine to be

1-10

TEK SPS BASIC V@2 System Software

scheduled for execution at a particular time; when that time occurs, a
packet describing that routine is entered into the queue.

The Scheduler manipulates the packets in its three structures using
the priority and task number assigned to each routine as it is entered.

Priority is like a ranking of routines by importance. A higher number
means a particular routine is more important and should be done sooner.
Priorities range from@ to 127, with 5@ the default. They can be assigned
by using the PRIORITY command or the WITH keyword in the WHEN or SCHEDULE
commands. Packets for immediate mode commands are entered into the queue
with a priority of 127.

The task number is a numeric name associated with a routine when its
packet is entered into the queue. Unlike priority, it implies no order of
importance, but is used only to identify different parts of the same task.
Task numbers between @ and 126 are assigned by using the AS TASK keywords
in the RUN, WHEN, and SCHEDULE commands. If AS TASK is not specified, WHEN
or SCHEDULE assigns the task number associated with the WHEN or SCHEDULE
command as it executes. Immediate mode commands are put into the queue
with a task number of 127.

The Scheduler uses the priority to monitor the execution of routines
and to determine whether a routine should continue executing or be suspended
to allow another routine to begin executing. At the completion of the
execution of each command of the current job, the Scheduler compares the
priority of the current-job packet against the priority of the packet at
the top of the queue. If the current job has a higher or equal priority,
its next command executes. If not, the packet in the current-job slot is
pushed onto the top of the stack, and the packet at the top of the queue
is moved to the current-job. The first command of the new current job is
executed.

If there is no next command in the current job (e.g., RETURN has just
been executed), the Scheduler compares the priority of the top packet on
the stack with the priority of the top packet on the queue. Whichever
packet has the higher priority is moved to the current-job slot and the
first command of the routine it represents executes. If the packets are
of equal priority, the packet from the stack is selected. (See Fig. 1-4.)

The task number is used to limit the impact of fatal errors. If a
fatal error occurs and the user has not set up other error-handling

1-11

PUT STACK
INTO

CURRENT JOB

TEK SPS BASIC V02 System Software

NO

EXECUTE
RESIDENT ROUTINE

OR COMMAND
FROM CURRENT JOB

"END","STOP"
OR

"RETURN"?

YES

QUEUE PRIORITY
>

STACK PRIORITY

YES

PUT QUEUE
INTO

CURRENT JOB

NO QUEUE PRIORITY
>

CURRENT JOB
PRIORITY

YES

SAVE
CURRENT JOB

ON STACK

PUT QUEUE
INTO

CURRENT JOB

NO

2194-03

Fig. 1-4. Diagram of the Scheduler's priority-based execution process.

procedures with the ONERR command, the Scheduler removes from its current-job
slot, queue, and stack all packets with the same task number as the task
generating the error. Packets with a different task number remain. This
gives the user the capability of confining the impact of errors to those
program segments which will be affected and permitting other program
segments to continue to execute. (See Section 8 for a complete discussion
of Resident BASIC's default error-handling procedures. Also, for a discussion
of the user's error-handling options, see the ONERR command in Section 4.)

1-12

TEK SPS BASIC V~2 System Software

Defining the Terms

Before going further into TEK SPS BASIC programming, it is necessary
to define some terms used throughout this manual. These terms describe the
fundamental parts of BASIC and waveform processing. Further definitions
can be found in the Glossary section of this manual.

Program Structure and Control

Program. A BASIC program is a set of one or more numbered statements
(instructions) that performs some operation when executed. A program can
be made up of one or more parts called subprograms or subroutines.

Statement. A statement is an instruction to the software to take some
action. For example, the statement LET X = 3 tells the software to place
the value of three into the variable named X. The statement name is LET.
Another statement is PRINT X. It tells the software to print the value of
X on the computer terminal. In TEK SPS BASIC, statements are also called
commands, and the two words can be used interchangeably.

Subprogram. A subset of a program is called a subprogram or routine.
It is a group of statements within a program that does a particular job.

Subroutine. A subroutine is a subprogram that terminates with a RETURN
statement. It can be repeatedly called and/or it can be called from different
parts of a program.

Line Number. Line numbers are used to order the execution of statements
in a program. Line numbers are integers between 1 and 32767, inclusive.
Statements with line numbers can be entered in any order, but they are
always stored and listed in ascending order. Statements are always executed
in line number order unless a GOTO or GOSUB is performed or a higher
priority routine interrupts.

Program Mode. This is one of the two modes under which a statement
can execute. A program-mode statement is preceded by a line number, and
each such statement is stored in the controller memory as it is entered.
Program-mode statements are not executed until the program execution is
begun by a RUN, OLD, CHAIN, GOTO, or SCHEDULE command, or by an interrupt
driven start-up.

1-13

TEK SPS BASIC V02 System Software

Immediate Mode. This is the second mode of statement execution. An
immediate mode statement has no line number and is not stored. An immediate
mode command is scheduled for execution as soon as it is entered from the
terminal.

Task. A task is a subprogram distinguishable from another subprogram
by the task number associated with it. A fatal error can occur in one task
and halt its execution without halting other tasks.

Task Number. This is the numeric name assigned, either explicitly or
by default, to a routine when it is scheduled for execution (entered in
the Scheduler queue). The name implies no order of importance or priority
of execution. It is only a way of identifying different subprograms in the
Scheduler. A task number between 0 and 126 can be explicitly assigned by
RUN, WHEN, or SCHEDULE. Immediate-mode statements always execute as task
number 127.

Priority. Priority is the rating of the relative importance of a task.
It is the basis for deciding in what order tasks execute.

Priority Number. The priority number assigned to a routine determines
in what order it will execute in relation to other routines. Also, a routine
with a high priority number can interrupt a routine with a low priority
number. Programs RUN with a default priority of 50, but the PRIORITY command
can change the priority number of a currently executing routine. The WHEN
or SCHEDULE command can assign a priority number from 0 to 126 to a routine.
Immediate-mode statements execute with a priority number of 127.

Special Characters

Backslash Character. The backslash character (\) is used to define
the end of a command when more than one command appears on a single line.
This character is entered on some terminals by typing shift-L. Several
commands may be entered on one line. For example:

100 PRINT "PROGRAM RUNNING"\GOTO 355

While the use of the backslash may save space when you have a series
of short LET statements, overuse of the backslash can make your programs
hard to read and difficult to debug.

1-14

TEK SPS BASIC V02 System Software

Control Characters. The TEK SPS BASIC control characters are instructions
to BASIC or to the keyboard terminal driver. Control characters are entered
by holding down the CTRL key on the terminal and striking the desired
character. BASIC prints an up arrow (A) followed by the corresponding
character when a control character is entered.

Control-0. A Control-0 inhibits the display of most output directed
to the terminal. Error messages are not suppressed. A second Control-0
allows the display of output. Any output sent to the terminal between the
suspension and resumption of the display is lost.

Control-P. This character terminates a program and returns BASIC to
the idle mode. It may be entered at any time. Control-P leaves files open,
disables all WHEN interrupts, and removes any pending tasks from the
Scheduler. During most operations, the Control-P is not recognized until
the operation is complete. This is to insure that the data is not left in
a "half-done" state.

Control-Q. A Control-Q resumes the terminal output that was temporarily
suspended by a Control-S. (Control-Q is not supported by TEK SPS BASIC
V02-01.)

Control-S. This temporarily suspends terminal output until a Control-Q
is entered. (Control-Sis not supported by TEK SPS BASIC V02-01.)

Control-U. This control character deletes the line being typed. All
characters back to, but not including the last carriage return are deleted.
BASIC responds to the Control-U by sending a carriage return and a line
feed to the terminal.

Control-Z. Control-Z is used to terminate input to the COPY command
when the source device is the system terminal.

Elements of Expressions

Expressions. An expression is defined by what it evaluates to. There
are four types of expressions in TEK SPS BASIC: numeric expressions, array
expressions, waveform expressions, and string expressions.

@ 1-15

TEK SPS BASIC V02 System Software

Numeric Expression. A constant, a variable, or any legal combination
of constants, variables, waveforms, arrays, arithmetic operators, functions,
and parentheses that evaluates to a single numeric value is considered a
numeric expression.

EXAMPLE: C*SQR(2) (C is a simple numeric variable)

NOTE

On the following pages, numeric expressions
are referred to simply as "expressions."

Array Expression. An array, an array zone, or any legal combination
of arrays, array zones, waveforms, numeric expressions, functions, arithmetic
operators, and parentheses that evaluates to an array is considered an
array expression. All arrays and arrays associated with specified waveforms
involved in an array expression must be the same size.

EXAMPLE: 4*A2/5.6+A1 (A1, A2 are arrays of the same size)

Waveform Expression. A waveform or any legal combination of waveforms,
arrays, numeric expressions, functions, arithmetic operators, and parentheses
that evaluates to a waveform is considered a waveform expression. Within
a waveform expression, all arrays and arrays associated with specified
waveforms must be the same size.

EXAMPLE: W1+3*W2 (W1, W2 are waveforms with associated arrays
of the same size)

String Expression. Any string constant, string variable, or any legal
combination of string constants, string variables, string functions that
return a string, parentheses, and the string operator (&) that results in

a string is considered a string expression.

EXAMPLE: "THIS"&C4$ (C4$ is a simple string variable)

Numeric Constant. A numeric constant (or simply a constant) is a
number expressed as a decimal value. A constant is entered as one or more
ASCII numeric characters (0-9) with an optional decimal point and an
optional positive or negative power of ten specification (E notation).

1-16

TEK SPS BASIC V02 System Software

Negative constants are preceded by a minus sign; positive constants may
optionally be preceded by a plus sign. Examples of legal constants are:

232 +33.34 6423E+5 -.!105 10E-13

The E notation in a constant refers to a power of ten. In the third example,
the value expressed is 6423 times 105 or 6423~0000.

The values expressible as a constant range from +1.70141E+38 to
-1.7!1141E+38 with the smallest possible fraction expressible as
±.2.93874E-39.

String Constant. A string constant (also called a string literal) is
one or more characters enclosed in single or double quotes. The maximum
length of a string constant is somewhat less than 80 characters (the maximum
length of a line BASIC will accept minus the other characters needed in
the statement). Three control characters, Control-P (returns BASIC to idle
mode), Control-U (deletes line being typed), and Control-M (carriage return)
cannot be included in a string literal. Some examples of string constants
are:

"TWENTY SIX LIONS SLEPT TODAY."
"'STRINGS MAY HAVE EMBEDDED QUOTES,'HE SAID."

Numeric Variable. Symbols used to represent single numeric values are
called numeric variables. These symbols can be one or two characters in
length. The first character must be an upper case letter (A-Z). The optional
second character may be either an upper case letter or a digit (0-9).
Examples are A, Z1, and JJ. Six variable names are not allowed, as they
are used as parts of statements. These are AS, AT, IF, IS, OF, and TO. A
numeric variable not dimensioned to an array is called a simple numeric

variable. An element of an array is called a subscripted numeric variable.

NOTE

On the following pages, numeric variables
are referred to simply as "variables."

String Variable. String variables are symbols used to represent
strings. The rules for naming string variables are identical to those for

1-17

TEK SPS BASIC V02 System Software

numeric variables, with the addition of a dollar sign ($). Some examples
of string variable names are A$, E5$, K9$, ZZ$. The strings represented
by string variables can be of any length, limited only by the amount of
controller memory available. A string variable not dimensioned to an array
is called a siaple string variable. An element of a string array is called
a subscripted string variable.

Arrays. Arrays are variables that represent more than one numeric
value or string. Arrays are defined in DIM, INTEGER, or WAVEFORM statements,
or they can be automatically defined in a program if certain commands are
used. In standard memory systems, array length (the number of elements an
array can have) is limited only by the amount of controller memory available.

Arrays can be one
arrays can be thought of as having rows and columns, or as a matrix.

Floating-Point Arrays. These arrays are defined either by a DIM or
WAVEFORM statement or automatically by some commands. Names for floating-point
arrays follow the same rules as names for simple numeric variables. Each
element in a floating-point array requires two words of controller memory.
Values in a floating-point array can range from -1.7@141E+38 to +1.7@141E+38
with the smallest possible expressible fraction being ±2.93874E-39.

Integer Arrays. Integer arrays are defined by the INTEGER statement,
or automatically defined in a program if certain commands are used. Rules
for naming integer arrays are the same as for naming simple numeric
variables. Values in an integer array are limited to integers in the range
of -32768 to +32767. Floating-point values stored in an integer array are
truncated to integers. (The number 3.9 is stored as 3; a -9.9 is stored
as -9.) Each element in an integer array requires one word of controller
memory.

String Arrays. String arrays are defined in a DIM statement only.
Each element in a string array is a complete string. The string elements
can be of differing lengths. The length of any element in the string array
is limited only by the amount of memory available in the controller. Names
for string arrays follow the same rules as for naming string variables.

1-18

TEK SPS BASIC V02 System Software

NOTE

On the following pages the term 'array'
refers to floating-point or integer arrays
only, not string arrays.

Array Zone. An array zone is a subarray of either a floating-point
or integer array. It is a contiguous portion of an array that is accessed
independently of the rest of the array. Array zones may appear anywhere
that arrays may appear unless otherwise stated in the command description.
They can be used with either integer or floating-point arrays, but not
with string arrays or waveforms. A colon(:) between two subscripts is
used to specify an array zone. For example, A(0:9) specifies the first ten
elements of array A as an array zone.

In doubly-dimensioned arrays, one dimension may be zoned, but not
both. Legal uses of array zones are shown below:

1. array(n:m,e)
2. array(e,n:m)
3. array(n:m)

Here e, n, and mare all numeric expressions yielding single values
that are rounded to integers. Expression n is the subscript for the start
of the zone, m is the subscript for the end of the zone, and e is a regular
array subscript.

The subarray referenced in (1) above includes the elements
array(n,e), array(n+1,e) , ... array(m,e)

The subarray referenced in (2) includes the elements
array(e,n), array(e,n+1), ... array(e,m)

The subarray in (3) includes the elements
array(n), array(n+1), ... array(m)

As an example of using an array zone, let's assume you want to find
the mean of a part of an array. The statement:

X = MEA(A1(50:99))

would return in variable X the mean of the 50 elements of array A1 starting
at the 51st element, A1(50).

@ 1-19

TEK SPS BASIC V02 System Software

Waveforms. A waveform is a variable that represents a floating-point
or integer array, a simple numeric variable, and two string variables that
have been associated by a WAVEFORM statement. The array contains the data
points of the waveform. The numeric variable contains the data sampling
interval (DSI) which is the time between elements. The strings contain the
horizontal and vertical units ('seconds' and 'volts' for example). The
sampling interval and units information is automatically updated if the
waveform is altered during program execution.

Operators. Operators determine the type of action to be performed on
one or more quantities. Three types of operators are available in TEK SPS
BASIC: arithmetic operators, relational operators, and the string operator.

Arithmetic Operators. The arithmetic operators are:

exponentiation
• multiplication
I division
+ addition

subtraction

These operators are used to create an arithmetic expression.

Relational Operators. Relational operators are used in IF statements
to express conditions which can be true or false. The relational operators
are:

= equal to

< less than

> greater than

<= less than or equal

>= greater than or equal

<> not equal

String Operator. There is one string operator, the ampersand (&). It
is used to make a new string by joining (concatenating) two or more separate
strings. For example, the following statement creates string C$ by assigning
it the result of concatenating strings A$ and B$:

C$=A$&B$

1-20

TEK SPS BASIC V02 System Software

Functions. In mathematics, a function defines the value of a dependent
variable based on the value of the independent variable. Similarly, a BASIC
function returns a value (or in some cases, an array of values) that results
from the action of the function using the given argument. A function does
not change the value of this argument.

A function is not like a command. It can only be used as a part of
an expression within a statement (such as LET or PRINT). Three different
function types are available in TEK SPS BASIC:. numeric functions, array
functions, and string functions.

Nwneric Functions. Functions that operate on numeric information and
return numeric information are called numeric functions. The argument of
a function may be a numeric expression, an array expression, or a waveform
expression. If the function's argument is a single-valued expression or
constant, the function returns a single value. If the argument is an array
(or waveform), the function computes a value for each element in the array
(or the waveform's array), and returns an array. The numeric functions are
ABS, ATN, COS, EXP, ITP, LOG, RND, SGN, SIN, SQR, and TSK.

Array Functions. Array functions always expect arrays or waveforms
as the argument of the function, and always return a single value. The
array functions are CRS, MAX, MEA, MIN, RMS, and SIZ.

String Functions. Functions that operate on strings or string
expressions, or create strings, are called string functions. Some string
functions return a number, some return an ASCII string. String-function
capability may be deleted at system load time, if desired. The string
functions are ASC, CAN, CHR, LEN, POS, SEG, STR, TRM, and VAL.

Instruments and Periphera1s

Device Names. A device name is a two or three letter mnemonic that
is used when referencing peripheral or instrument devices. The mnemonic
may be followed by a device number that represents which unit of the device
group is being specified. For an instrument, the device number is called
a hardware unit number (HUN). For peripherals, the device number is called
the drive number. In the command syntax the device name and the device
number are terminated by a colon. If the device number is not included
with the device name, zero is assumed. For example:

DK:
DK1:

@

disk drive zero
disk drive one

1-21

TEK SPS BASIC V~2 System Software

The following device names are currently recognized by TEK SPS BASIC:

Name:

KB
DK
DL
DX
DY
CT
pp

PR
LP
MT

VM

CLK
TD
DPO

Device:

system keyboard terminal
hard disk
DEC RL01 or equivalent hard disk
single-density floppy disk
dual-density floppy disk
cassette tape
paper-tape punch
paper-tape reader
line printer
9-track magtape
virtual memory
line frequency clock
R7912 Transient Digitizer
Digitizing Oscilloscope

System Device. The system device is that storage peripheral (the
device name and drive number) from which TEK SPS BASIC is loaded. The
system storage device is the default device (the one used if no device is
specified) for most peripheral-oriented commands. It is also the device
from which nonresident commands are auto-loaded.

Instrument Logical Unit Number. Each instrument is referenced by an
instrument logical unit number (ILUN). The ILUN is associated with a
particular instrument by the ATTACH statement. The maximum number of
instruments that can be attached at any one time is defined at system load
time (when the system so~ware is initialized). ILUNs are specified in
instrument commands (GET, PUT, ATTACH, DETACH, WHEN, and IGNORE).

ILUNs may be constants, variables, or expressions. In the command
syntax, they are always preceded by a pound sign (e.g., #K+3). ILUNs
eliminate the need to specify the instrument type and number every time
the instrument is accessed. This speeds program execution and reduces
storage needs. Also, by specifying a variable as the ILUN, subroutines can
be more general purpose. That is, one routine can be used with any instrument
of a specific type.

Peripheral Logical Unit Number. When peripherals are used for the
input or output (I/O) of program data, they are referenced by a peripheral
logical unit number (PLUN). The PLUN is associated with the peripheral

1-22

TEK SPS BASIC V~2 System Software

device or a file on the device by an OPEN statement. The maximum number
of PLUNs that can be in use at any one time is defined at system load time
(when the system software is initialized). The PLUN of zero is reserved
by BASIC and is permanently associated with the system keyboard terminal
(KB). PLUNs are specified in the program data I/O commands (READ, WRITE,
INPUT, PRINT, READU, WRITEU, and some forms of GET).

PLUNs may be constants, variables, or expressions, and in the command
syntax, they are always preceded by a pound sign (e.g., #PL+3). PLUNs
eliminate the need to specify the file name or device name and number
whenever the file or device is accessed. This speeds program execution and
reduces storage needs. Also, by specifying a variable as the PLUN, subroutines
can be more general purpose. That is, a single statement can output data
to (or input data from) any peripheral.

File-Structured Device. A file-structured device is a mass storage
peripheral device on which data is referenced (stored and retrieved) by
file name.

Directory. A directory is a table of all the names of the files stored
on a device, including pointers to where these files are stored.

Directory-Structured Device. A directory-structured device is a
file-structured peripheral that has a directory of the files stored on it.
The files are accessed by searching the directory for the file name and
using the associated pointer to find the actual location of the file. These
devices include:

floppy (flexible) disk
hard (cartridge) disk
virtual memory

Serial-Access Device. A serial-access device is a file-structured
peripheral on which the files are stored sequentially with the file name
stored in the beginning of the file rather than in a directory. The files
are accessed by searching the tape linearly (either forwards or backwards),
looking for the file name. These devices include:

@

mag tape
cassette tape

1-23

TEK SPS BASIC V02 System Software

Non-File-Structured Device. A non-file-structured device is a peripheral
on which data cannot be referenced (stored or retrieved) by a file name.
These devices include:

keyboard terminal
line printer
paper-tape punch
paper-tape reader

Files. Any collection of information stored on a peripheral device
is a file. Files stored on file-structured devices must be named. Information
written to a file remains in the file until the file is canceled or the
device is reinitialized. The files created by BASIC are either program
files or data files.

File Na.mes. File names must be string constants or string variables.
A file name consists of up to six-upper case letters or digits. The name
may be followed by an optional file-name extension. The extension consists
of up to three letters or digits, separated from the file name by a period.
You may use a name or extension that is longer than the six or three
character limit, but additional characters are ignored by the interpreter.
BASIC expects files containing nonresident commands and drivers to have
the extension SPS. No other types of files should have the extension SPS.
BASIC provides an extension of BAS for program files if no other extension
is specified. Some examples of legal file names are:

"PROG.BAS"
"DATA.DAT"
"A5566.ABC"
"GIN.SPS"
"TEST.04 11

"15565.A"

Program File. A program file contains a BASIC program. A regular
program file is created by the SAVE command and updated by REPLACE. The
contents of a program file (the BASIC program) are brought into controller
memory by an OLD, OVERLAY, or CHAIN statement. A fast overlay file, which
contains a BASIC program stored in a pretranslated form, is created by the
OVLSAV command and is brought back into memory with an OVLOAD statement.

Data Files. A data file contains program data. It is classified by
the type of data it holds (binary or ASCII), by how the data is stored
(formatted or unformatted), and by how the data is accessed (sequentially
or randomly) •

1-24

TEK SPS BASIC V~2 System Software

Data can be stored as either a binary number or an ASCII character

string. Numeric values are usually stored in two-word, floating-point
binary format; but one command (WRITEU) can optionally store numeric values
in 16-bit (one word) binary integer format. BASIC stores strings in ASCII
format with eight bits (one byte) used for each character. Of course, if
numeric characters are part of a string, they too are stored in ASCII
format.

Sometimes other information describing the data (data descriptors)
or delimiters between data elements are written into the file along with
the data. When this is the case, the data file is said to be formatted;

otherwise, the file is said to be unformatted. The data descriptor or
delimiters require space in the file in addition to the data they accompany.

The WRITE command stores and the READ command reads both floating-point
binary and ASCII data that is formatted by data descriptors. The PRINT
command outputs and the INPUT command retrieves only ASCII data which is
formatted by delimiters following the data items. The WRITEU command stores
and the READU command reads unformatted, binary (floating-point or integer)
and ASCII data.

Sequential Access. Sequential access is a method of file access in
which the data is stored serially from the beginning of the file and is
retrieved in the order in which it was stored.

Random Access. Random access is a method of file access in which the
data can be stored or retrieved, in any order, as logical units of data
called records. Each data record may consist of one or more data items,
but all the data records in a file must be the same length. Records are
stored and retrieved by record number. Where a record is written does not
depend on where a previous record was written in the file. Similarly, where
a record is read from does not depend on the position of the previously
read record. In TEK SPS BASIC a random access file is called a record I/O
(input/output) file.

@ 1-25

TEK SPS BASIC V02 System Software

SECTION 2

EXPRESSION EVALUATION

Numeric Expressions

All numeric expressions and arithmetic functions performed in TEK SPS
BASIC software are evaluated in floating-point format. This is true even
for integer arrays and waveforms. All elements in an integer array are
temporarily converted to floating-point numbers before any operation
involving them is performed. Constants appearing in a program are treated
as floating-point values regardless of whether they have a fractional
portion or not.

Notation Formats

Values are expressed in one of two ways. A value between .01 and
999999, inclusive, is printed in its entirety. For other values, the number
is printed in 'E' notation. The E notation may also be used when you input
numbers to a program.

Some examples
1. 23E+6
25.5E-4
-14.02E10

of numbers in E format are:
which equals 1230000
which equals .00255
which equals -140200000000

The value following the E is a power of ten which is multiplied by
the given number to produce the result. The plus sign is optional and may
be omitted from the exponent.

Numeric Constants and Variables

Constants and variables are the components which all numeric expressions
are built upon. A constant is simply a number appearing in an expression.
In the following statement, 4.56 is a constant and also the source expression
of the assignment statement:

500 LET X = 4.56

Variables are labels that represent quantities. In the above statement,
X is a variable, and after execution of the statement, X is set equal to

2-1

IE

TEK SPS BASIC V~2 System Software

the quantity 4.56. Before this statement is executed, X may have had any
value, or have been previously undefined (a value of zero is assigned to
a variable by BASIC until you give it a different value).

Arithmetic Expression Evaluation

Arithmetic expressions, as found in the LET, PRINT, and other commands
where an expression is valid, are evaluated according to a standard
precedence of operations. To illustrate this, consider the following
expression:

LET J = LOG(X+Y)+V

Given that the values of X, Y, and V have been previously defined,
evaluation of this expression follows in a natural order. That is, V cannot
be added to the LOG(X+Y) until LOG(X+Y) is evaluated. But, LOG(X+Y) cannot
be evaluated until the result of adding X to Y is found. No matter how
complicated an expression may be, it can always be broken down into a
series of operations involving one of the five basic math operators
(addition, subtraction, multiplication, division, and exponentiation) and
functions.

To avoid ambiguity in expression evaluation, TEK SPS BASIC follows a
standard operator precedence. This order is as follows:

1. Expressions within parentheses are evaluated first, using the
operator precedence defined below.

2. Function calls (such as LOG, EXP, etc.) are evaluated second.

3. Arithmetic operations are performed last and occur in the order
defined in Table 2-1.

When several operators of the same precedence occur in sequence (such
as in A+B+C-D), the expression is evaluated from lert to right.

2-2

TEK SPS BASIC V~2 System Software

Precedence

2

3

TABLE 2-1

Arithmetic Operator Precedence

Operation

exponentiation of
a positive value

multiplication
and division

addition and
subtraction or
negation

BASIC Symbol

• and I

+ and -

Notice that in exponentiation, the value being raised to a power (the
root) must be positive. Even though the exponent can be negative, the root
must be greater than zero. If it is not, a warning error is issued and the
absolute value of the root is used. BASIC limits exponentiation to positive
values in order to allow the exponent to be fractional.

The arrangement of operators, subexpressions (expressions within
expressions), and parentheses follows these rules:

1 •

or -) .

2.

Two subexpressions must be separated by an operator (A,*,I,+,

Two operators may not be adjacent.

3. Three of the five operators (A,*, and/} must always be preceded
and followed by a subexpression. The other two operators (+ and -) may
optionally be preceded by a subexpression but must always be followed by
a subexpression.

4. Parentheses must be used in pairs; for each left parenthesis
there must be a matching right parenthesis, and vice versa.

@ 2-3

TEK SPS BASIC V~2 System Software

The following shows some examples of illegal expressions and why they
are illegal:

Illegal Why illegal Correct

(A+B)(C-D) missing operator (A+B)*(C-D)
A/-B two adjacent operators A/(-B)
A/(*B) missing expression A/(N*B)
A/(B+C)*D) unmatched right parenthesis A/ ((B+C) *D)

When a minus sign is not preceded by a subexpression, BASIC interprets
the minus sign to mean "change the sign of the subexpression that follows. 11

In each of these expressions:

-A -A+B B*(-A)

the minus sign in front of the A changes the sign of the subexpression A.
The minus sign in the expression C/(-AAB) changes the sign of the result
of the subexpression AAB, not just A.

You may also omit the subexpression preceding a plus sign, but, if
so, BASIC takes no action with the plus sign. The expression that follows
the plus sign is unaffected by its presence. Though not illegal, such a
plus sign can just as well be omitted.

Let's consider a complex expression and discuss how it is evaluated
in BASIC. The statement is:

LET I = LOG(X+Y) + v I FAG + H

First, the value of X+Y is computed, since this subexpression is in
parentheses. The LOG of this sum is then computed. The next highest operation
is FAG. This evaluation is followed by the division of the variable V by
the result of FAG. The entire expression has now been reduced to LET I =
M + N + H where Mis the value of LOG(X+Y), N is the result of V/FAG, and
H is the original value of variable H. Evaluation now proceeds from left
to right, summing the three remaining values to produce the result I.

In some cases, the normal order of operator precedence does not permit
the desired solution for the problem under study. When this occurs, normal
operator precedence can be manipulated by the use of parentheses, since
operations enclosed in parentheses are always evaluated first.

2-4

TEK SPS BASIC V~2 System Software

When parentheses are nested (one or more pairs of parentheses enclosed
in an outer pair), the expression within the innermost pair of parentheses
is evaluated before the outer pairs. To help understand this, consider the
following expression:

LET I :(LOG(X+Y) + V) I (FA(G + H))

In this example, evaluation begins with the leftmost, innermost parenthetically
enclosed expression, X + Y. The sum of this expression is then operated
on by the LOG function, and to this result the value of V is added.

Now, the innermost parenthetical expression not yet evaluated is G+H.
This sum is computed and the value of F is raised to this power. This
result (FA(G+H)) is used to divide the result of the expression (LOG(X+Y)+V),
and the final result is placed in variable I.

Here's another way of looking at parentheses, and how they can alter
the normal order of evaluation. Consider the following examples:

1 •

2.
3.

X = A+B*C
Y = J*K/L*M
Z = A/B/C

In example one, the product of B*C is added to the value of A. If you
wish to add A and B first, then multiply by C, the statement to use is X
= (A+B)*C.

In example two, the product of J*K is divided by L, and this quotient
is then multiplied by M. If you wanted to divide the product J*K by the
result of L*M, the statement should be Y=(J*K)/L*M).

In example three, the quotient of A/B is divided by C. If you want
to divide A by the quotient of B/C, use the statement Z=A/{B/C).

Array Expression Evaluation

TEK SPS BASIC allows you to combine simple variables with arrays and
waveforms in expressions. In the following discussion, waveforms may be
substituted wherever arrays appear.

2-5

TEK SPS BASIC V02 System Software

There are three basic forms of array assignments. These are:

Simple numeric variable = array expression. When a simple numeric
variable (a variable that has not been dimensioned) is the destination of
a waveform or array expression, the variable is auto-dimensioned to an
array the size of the source array and set equal to the element-by-element
result of the expression.

Array = expression. Every element in the destination array is set
equal to the value of the expression.

Array = array expression. This is similar to the first case above.
The destination array and all arrays in the source expression must be of
the same size.

For a two-dimensional array, with the first subscript considered to
be the row number of a matrix and the second subscript considered to be
the column number, the array is filled row by row. As an example, consider
this routine that fills an 8-element one-dimensional array, A, with the
numbers 0 through 7. (Each element is set equal to its subscript number.)
Then a two-dimensional array B is set equal to A.

10 DIM A(7),B(1,3)
20 FOR K:(1 TO 1
30 A(K)=K
40 NEXT K
50 B=A
6(1 PRINT "FIRST ROW:"
1f1 PRINT B(0,0:3)
8(1 PRINT "SECOND ROW:"
90 PRINT B(1,0:3)

From the output below, you can see that the elements of B were assigned
the values of A, element by element, row by row.

FIRST ROW:
2 3

SECOND ROW:
4 5 6 1

Array expressions are evaluated in the same manner as arithmetic
expressions except the result is an array of numbers -- not a single number.

2-6

TEK SPS BASIC V02 System Software

All the arrays (or array zones) in the expression must contain the same
number of elements because the resultant array's values are calculated in
a linear manner, one element at a time. The first element of the result
is equal to the evaluated combination of the first elements of all the
arrays in the expression and any constants or simple variables in the
expression, and so on for each element. The following program demonstrates
the operation.

1r10 DIM X(2),Y(2),Z(2)
110 X(r1)=1
120X(1)=2
130 X(2)=3
140 Y=2
15rl Z=X+2*Y

After execution of this program, the arrays X, Y, and Z will have the
following values:

X(0) :

X(1): 2

X(2): 3

Y(rl): 2

Y(1): 2

Y(2): 2

Z(rl): 5
Z(1): 6
Z(2): 1

Line 1r10 of the program defines the four variables (X, Y, and Z) as
one-dimensional floating-point arrays of three elements each.

Lines 110 to 130 set each element in array X equal to the constant
on the right of the equal sign. Line 140 sets all three elements of array
Y equal to two. Since the array is specified as the destination and no
subscript is specified, all elements in the array are operated on.

The expression in line 15rl sets all elements in the Z array. This one
statement is the equivalent of the following three statements:

Z(0)=X(r1)+2*Y(r1)
Z(1)=X(1)+2*Y(1)
Z(2)=X(2)+2*Y(2)

Had array Z not been dimensioned in line 100, auto-dimensioning would
have occurred at line 15rl, producing the same results.

@ 2-7

TEK SPS BASIC V02 System Software

Array Zones

An array zone is treated exactly like a regular array but only those
elements in the zoned portion are operated on. A colon is used to delimit
the boundaries of the zone. For example, the following statement creates
a ten-element array (P) whose elements are equal to the first ten elements
of array M:

P = M(0:9)

If variable P had been previously defined as an array, it must have been
dimensioned to ten elements (for example, DIM P(9)). Array M may be
dimensioned to any size equal to or greater than ten.

There are three legal variations of zoned arrays. They are:

1. array (n:m,e)
2. array (e,n:m)
3. array (n:m)

In these examples, e, n, and mare all arithmetic expressions resulting
in a single value. The starting element of a zone is represented by n, and
m represents the end of the zone; e is a regular subscript expression.
Note that when two-dimensional arrays are referenced, only one dimension
may be zoned. Hence, array (n:m,y:z) is not a valid zone.

All the rules of array expression evaluation apply when working with
zoned arrays.

Although waveforms may not be zoned, the array part of the waveform
may be zoned. Consider the following statements:

350 WAVEFORM BIS AB(511),DI,HB$,VB$
360 X=MAX(AB(25:500))

Statement 360, which sets variable X equal to the maximum value in
the zoned portion of array AB is legal, since only the array component of
the waveform is specified. Had this statement been entered as

360 X=MAX(B(25:500))

an error would have resulted because now the waveform name is specified.

2-8

TEK SPS BASIC V~2 System Software

Waveform Expression Evaluation

Expressions containing waveforms are treated like array expressions,
except that each waveform's units and data sampling interval (DSI) are
taken into account. A waveform may have a floating-point or integer array,
and may be mixed with floating-point or integer arrays, waveforms, and
variables in the expression.

The automatic units processing provided by TEK SPS BASIC when you use
wavefonns can save you time and programming effort. Before using .waveform
expressions, you should understand how TEK SPS BASIC processes units and
data sampling intervals.

Table 2-2 shows all the combinations of expression components using
waveforms, with a waveform as the destination. In the table, W1 and W2 are
waveforms, A is an array equal in length to the waveform(s), and V is
either a numeric variable (floating-point or integer) or a numeric constant.
Note that when waveforms are mixed with arrays in waveform expressions,
the result may have no units or invalid units. Invalid units are marked
by a delta (li).

OPERATION

W1+V or V+W1
W1-V or V-W1
W1*V or V*W1
W1/V
W1"V or V"W1

W1+A or A+W1
W1-A or A-W1
W1*A or A*W1
W1/A
W1"A or A"W1

W1"W2

@

TABLE 2-2

Arithmetic Operations With Waveforms

RESULT

Result is waveform with:
(1) Horizontal units same as W1's.
(2) Vertical units same as W1's.
(3) Data sampling interval same as W1's.

2-9

V/W1
A/W1

W1+W2
W1-W2

W1*W2

W1/W2

TEK SPS BASIC V~2 System Software

Result is waveform with:
(1) Horizontal units same as W1's.
(2) Vertical units inverse of W1's.
(3) Data sampling interval same as W1's.

- - - - - - - - - - - - - - - -- - -
Result is waveform with:
(1) Horizontal units same as W1's (preceded by

delta if W1's horizontal units and data
sampling interval are not identical to W2's).

(2) Vertical units same as W1's (preceded by delta
if W1's vertical units are not same as W2's.)

(3) Data sampling interval same as W1's.

Result is waveform with:
(1) Horizontal units same as W1's (preceded by

delta if W1's horizontal units and data
sampling interval are not identical to W2's).

(2) Vertical units of W1 concatenated with
those of W2.

(3) Data sampling interval same as W1's.

Result is waveform with:
(1) Horizontal units same as W1's (preceded by

delta if W1's horizontal units and data
sampling interval are not identical to W2's).

(2) Vertical units being W1's vertical units
concatenated with the inverse of W2's
vertical units.

(3) Data sampling interval same as W1's.

2-10

TEK SPS BASIC V02 System Software

NOTE

An arithmetic function returns either a
single number or an array -- never a wave
form. When a waveform is an argument to
an arithmetic function, the function
operates on its array part only; units
and data sampling interval are not
associated with the result. The waveform
itself is, of course, not altered unless
it is the destination of the result of the
function operation.

Since an arithmetic function never return a waveform, if W2 is a
waveform, the statement

W2 = SIN(W2)

will set W2's vertical and horizontal units to null and its data sampling
interval to zero. Similarly, if W3 is a waveform

W3 = SIN(W2)

will nullify W3's units and data sampling interval (DSI), even if they had
been defined prior to the assignment statement. But, this second statement
will not change W2's units or DSI unless they are the same variables
associated with W3.

Here is an example of the automatic processing of waveform units and
data sampling interval in an array expression. Suppose A1, A2 and A3 are
arrays of equal size. A1 and A2 are filled with data; A3 is to hold the
results. The following program associates waveforms with these arrays,
assigns values to the units variables, and performs simple waveform
operations. D1, D2 and D3 are the data sampling intervals. H1$, H2$, and
H3$ are the string variables that hold the horizontal units. V1$, V2$, and
V3$ hold the vertical units.

10 WAVEFORM W1 IS A1,D1,H1$,V1$
20 WAVEFORM W2 IS A2,D2,H2$,V2$
30 WAVEFORM W3 IS A3,D3,H3$,V3$
40 D1=1E-6/51.2
50 D2:D1

@ 2-11

TEK SPS BASIC Vl2l2 System Software

6121 H1$="S"
7121 H2$=H1$
8121 V1$="V"
9121 V2$:V1$
1121121 W3=W1 *W2
11121 W1 =W3/W2

Line 1121121 yields the waveform, W3, with units defined as follows:

03 = 01 = 1E-6/51.2
H3$ = H1$ = "S"
V3$ = V1$&V2$ = "VV"

When line 11121 is performed, the data sampling interval size and
horizontal units of W1 are unchanged. However, the vertical units become:

V1$ = V3$&"/V" = "VV/V" = "V"

That is, TEK SPS BASIC software "cancels" the units.

Binary Number Limitations

Numbers in TEK SPS BASIC are represented with about 7.2 decimal digits
(24 binary bits) of accuracy. Many numbers cannot be fully represented by
the internal storage format and must be rounded up or truncated to the
nearest 24-bit binary number.

After execution of the following BASIC statement, the value of the
variable A is not actually 121.1.

10 LET A=.1

Because the number must be rounded to 24 bits, the variable A takes
on a value closer to 121.11211211211211211212. For most arithmetic operations, this
deviation in the 8th place is perfectly acceptable. But subtle problems
can develop when these numbers are used to control iterative operations.

In Example 1, you might expect the FOR/NEXT loop to terminate after
eleven iterations. It's a reasonable expectation, but an incorrect one.

2-12 @

TEK SPS BASIC V02 System Software

Example

10 FOR A=1 TO 2 STEP .1

50 NEXT A

When the variable A has an accumulated value of about 1.90000018 (on
the tenth iteration) and the step value of .10000002 is added, A's new
value exceeds the loop limit of 2 and the loop terminates.

When the control elements of a FOR/NEXT loop, or a loop controlled
by an IF statement, can be represented exactly within 24 binary bits, there
is no problem with early loop termination. Numbers that fit exactly include
all integers of 7 digits or less and any negative power of 2 such as
2-1=1/2, 2-2=1/4, 2-3=1/8, Most often, however, the loop control
elements do not meet these criteria or are calculated in the program and
are thus unknown to the programmer.

If the step value in Example 1 is used only to control the number of
iterations of the FOR/NEXT loop, the following method gives good results.

Example 2

10 FOR A=0 TO ITP((2-1)/.1)

50 NEXT A

The general form is:

FOR loop counter = 0 TO ITP((loop limit - loop start) I step value)

NEXT loop counter

If the loop counter is to be used as data as well as to control the
loop, an additional line provides the required value and avoids potential
inaccuracies that accrue because of rounding or truncation. The 3 lines
of Example 3 should be used instead of the 2 lines of Example 1.

@ 2-13

TEK SPS BASIC V02 System Software

Example 3

10 FOR A:a TO ITP((2-1)/.1)
20 AA=1+A* .1

6a NEXT A

The general form is then:

FOR loop counter = a TO ITP((loop limit - loop start) I step value)
LET data value = loop start + (loop counter * step value)

NEXT loop counter

String Expressions

String Constants and String Variables

The main components of a string expression are string constants and
string variables. A string constant appears in an expression as a sequence
of ASCII characters enclosed in single or double quote marks. In the
following statement, "AN 8-BIT BYTE" is a string constant:

1a!2J LET X$= "AN 8-BIT BYTE"

String variables are labels that represent strings. They are distinguishe1
from numeric variables by the dollar sign($). In the above statement, X$
is a string variable. After execution of the statement, X$ is set equal
to the 13-character string "AN 8-BIT BYTE". Before the statement executes,
X$ may be equal to any string of any length, or it may be undefined (not
explicitly assigned a value by a BASIC statement). If an undefined string
variable is used in an expression, BASIC will give it a default value of
the null or empty string, 1111

2-14

TEK SPS BASIC V02 System Software

Subscripted String Variables

A one- or two-dimensional string array may be dimensioned in the same
manner as a numeric array. The dimensions refer strictly to the number of
strings in each dimension. There is no assumption or restriction on the
length of any of the elements in the string array. Each element can be
defined as a different number of ASCII characters. A single element of a
string array is referred to as a subscripted string variable and may be
accessed only as such. Only the individual subscripted string variables
of an array can appear in an expression; string array operations are not
allowed.

Concatenation

The ampersand (&) is the only string operator. It specifies the
concatenation of strings. It links strings together without intervening
characters. For example, if A$ equals "THE", the statement

B$=A$&"SIS 11

would assign the string "THESIS" to B$.

String Expression Evaluation

The result of a string expression is a single string of ASCII characters.
String expressions basically follow the same order of evaluation as numeric
expressions. This order is:

1. String expressions in parentheses are evaluated first.

2. String function calls (such as CHR, SEG, and STR) are evaluated
next.

3. The concatenation operation is done last, from left to right.

For example, consider the string expression in this statement:

LET X$ = TRM(J$&K$)&SEG(A$,1,20)

2-15

TEK SPS BASIC V02 System Software

The subexpression J$&K$ is evaluated first, forming a new string from the
concatenation of J$ and K$. This new string is then trimmed of trailing
blanks by the TRM function. Next, another new string is formed from the
first 20 characters in A$ by the SEG function. Finally, the two intermediate
strings are concatenated to form the string that defines X$.

2-16

TEK SPS BASIC V02 System Software

SECTION 3

GETTING STARTED

Loading TEK SPS BASIC

In order to load TEK SPS BASIC from a peripheral device, the proper
SPS load module of the operating system (the .LDA file) for that device
must be on the medium. (Not all peripherals are supported by an SPS load
module. Check the individual discussions on each device driver in the
Peripheral Drivers manual to see if an SPS load module exists and what its
name is.) Also, before the software can be booted, an absolute loader must
have been installed on the medium by either the HOOK or HOOKQ command.
(The absolute loader is a stand-alone program which, in this case, loads
the operating system. The absolute loader is brought into memory by the
bootstrap program.) If you follow the archiving procedure in Appendix C
to make working copies of the TEK SPS BASIC System software, the correct
absolute loader is installed. See the discussions on the HOOK and HOOKQ
commands in Section 4 for more information.

The device name and drive number from which BASIC is loaded becomes
the system device. This is the device and drive from which commands are
autoloaded. It is also the default device and drive for many of the
peripheral commands (e.g., BOOT, CANCEL, COPY, DIR, OLD, OPEN, OVERLAY,
OVLOAD, READ, SAVE, WRITE, etc.) The system device driver is loaded with
the operating system; it is included in the SPS .LDA file for that device.

Booting the System

After the hardward system is properly connected and powered-up, insert
the medium with your copy of TEK SPS BASIC into the device for that medium.
If the device has more than one drive, use the drive you perfer.

Next, follow the bootstrap procedure for the ROM bootstrap card in
your controller. Some common hardware bootstrap procedures are briefly
discussed in Appendix F.

When the ROM bootstrap program of the controller issues its prompt,
enter the device name and the drive number from which BASIC will be loaded.
For example, if your software is on a DK hard disk in drive 1, enter:

DK1

3-1

IEJ

TEK SPS BASIC V02 System Software

Now, depending on which absolute loader has been installed on the
medium for your copy of BASIC, one of three things will happen.

1. If the SPS absolute loader was installed by the HOOK command,
TEK SPS BASIC is loaded automatically. This is the most common situation.

2. If the DEC RT-11 absolute loader was installed by the HOOK
command, the DEC RT-11 Operating System is loaded. To load TEK SPS BASIC,
enter:

RUN LOADER

in response to the RT-11 prompt, a dot(.). When LOADER prints its prompt,
an asterisk(*), enter the name of the SPS .LOA file for your device. (Do
not type the .LOA extension.) For example, if the device is a DK hard disk,
enter:

SPSDK

NOTE

To return to the DEC RT-11 Operating System
from TEK SPS BASIC, enter:

BOOT

This reboots the device with DEC RT-11
as the operating system.

3. If the LDA absolute loader has been installed by the HOOKQ
command, any file with the .LDA extension can be loaded. To load TEK SPS
BASIC, enter the name of the SPS .LDA file for your device in response to
the prompting asterisk (*). (Do not enter the .LDA extension.) For example,
if the device is a DK hard disk, enter:

SPSDK

3-2 @

TEK SPS BASIC V02 System Software

Initializing the Software

Once TEK SPS BASIC has been loaded into the controller memory, an
initialization routine begins. This routine executes only once, and then
deletes itself, turning control over to Resident BASIC. The initialization
process uses a set of parameters to define the size and capabilities of
Resident BASIC.

The initialization routine looks for a file named "SYSBLD.DEF" on the
system device. If the file is there, the user-defined parameters in the
file are used to initialize the system. You can create this file by executing
the SYSBLD command and answering the questions it asks. This allows you
to optimize your system's use of controller memory space to fit your needs.
See the SYSBLD command description in Section 4 for complete documentation.

If the file is not there, an internal list of default parameters is
used to initialize a system which has or allows:

* IEEE 488 capabilities
* string functions
* graphic capabilities
* no patch area
* 6 peripheral logical unit numbers
* 8 instrument logical unit numbers
* 4 peripheral drivers
* 4 instrument drivers
* 6 nonresident commands
* clock frequency of 60 Hz
* graphics mode keyboard driver

When the initialization process is complete, the version and release
numbers of the BASIC Monitor and the number of words of free memory is
printed on the system terminal. Then, to tell you that BASIC is in idle
mode and ready for your instructions,

@ 3-3

READY

*

TEK SPS BASIC V02 System Software

is printed on the terminal.

NOTE

Before continuing, it is strongly urged
that you make a complete copy of your
TEK SPS software if you have not already
done so. The original copy should be placed
in a safe location, and used only to
produce additional copies in the event
that your working copy is damaged.
Appendix B contains information about how
to copy TEK SPS BASIC.

How to Enter a Program

BASIC programs are usually entered from the terminal. Programs are a
series of lines of text, each with its own unique line number. Each line
of text contains one or more commands, instructing the system to take some
action. The syntax of all the system commands appears in Section 4 of this
manual.

BASIC is primarily a free-form language. That is, there are no specified
columns or positions in a line set aside for special purposes. Generally,
when a line is entered, the inclusion or omission of spaces is unimportant
except that at least one space must follow the command name and any keywords
in the command (such as THEN, AS, etc.).

If you make a mistake while typing in a line, you can use the RUBOUT
or DELETE key on the terminal to delete the incorrect character. Each time
the RUBOUT key is pressed, one character is deleted from the line.

If you decide it's easier to delete the whole line, type in Control-U.
(Press the CONTROL key and U at the same time.) This deletes the entire
line; everything up to but not including the last carriage return is
deleted.

3-4 @

TEK SPS BASIC V02 System Software

The maximum number of characters you can enter on a single line (before
typing a carriage return) is 79. If you type more than 79 characters, the
extra ones are not echoed (displayed on the terminal). BASIC waits for you
to enter a carriage return, a Control-U, rubout, or Control-P. Eighty
characters, including the terminating ca.rriage return, is the most you can
put on a single line.

A carriage return must terminate every line entered.

Running a Program

Let's try entering and running a simple program. The sample program
opens a file on the system device and writes out the square roots of values
entered from the terminal. Here's the program:

100 OPEN 111 AS "EXAMPL. TST" FOR WRITE
110 PRINT "ENTER A VALUE, NEGATIVE NUMBER TERMINATES"
120 INPUT X
130 IF X<0 THEN 160
140 WRITE #1,X,SQR(X)
150 GOTO 120
160 CLOSE 111
17fl OPEN 111 AS "EXAMPL. TST" FOR READ
18(1 EOF #1 GOTO 220
19(1 READ 111 ,X,SQ
200 PRINT "THE SQUARE ROOT OF";X;" IS";SQ
210 GOTO 190
220 CLOSE 111

230 STOP

This program, while quite simple, demonstrates some of the fundamental
basics of programming: input, computation, and output. Let's go over the
program, line by line, and see what it does.

The first statement prepares a file on the system device to receive
output. The file name is "EXAMPL. TST", and its peripheral logical unit
number (PLUN) is 1. The file name is necessary when storing data on all
peripherals except devices like a line printer or the paper-tape reader/punch.
The name distinguishes this file from any other files on the peripheral.
The FOR WRITE part of the statement tells the software that you will be
sending information to the file, and not reading from it.

3-5

TEK SPS BASIC V02 System Software

Line 110 prints a message on the terminal. Since no PLUN is specified
in the statement, the terminal is assumed to be the destination of the
message. This statement could have been written as

110 PRINT /l(J, 11 ENTER ...

or

110 PRINT //K, 11 ENTER ...

where variable K is equal to 0. In any case, if the PLUN is not specified
or is zero, the output goes to the terminal. The message informs the
operator (you) to enter a number from the keyboard. If a negative number
is entered (a number preceded by a minus sign), it signals the program to
stop accepting numbers from the terminal.

Line 120 is an INPUT statement. When the INPUT statement is executed,
a question mark (?) is printed at the terminal, prompting you to go ahead
and enter the number. Here, the variable Xis assigned whatever value you
entered from the terminal. Like the PRINT statement in line 110, no PLUN
is specified in the INPUT statement. The default device for the INPUT
statement is always the keyboard.

The test to determine whether to continue or end the program is made
in the IF statement at line 130. Here, the variable X is compared with 0.
The characters 11 X<0" mean "Xis less than 0". If so, program control
transfers to line number 160. If the test is false (X is equal to or greater
than 0), control goes to the next line in sequence, 140 in this case.

The WRITE statement in line 140 lists two expressions: X and SQR(X).
The PLUN is specified as #1, telling BASIC that the output of the WRITE
statement should go to PLUN #1, 11 EXAMPL. TST". No output appears on the
terminal this time. Instead, the floating-point binary representations of
the number you input for X and the results of the square root function
with X as the argument, are output to the file.

Line 150, a GOTO statement, tells BASIC to transfer control back to
the INPUT statement at line 120, where the sequence starts all over again.
If you enter a negative number at the INPUT statement, control goes to
line 160. Here, the CLOSE statement ends the file "EXAMPL.TST".

3-6 @

TEK SPS BASIC V02 System Software

In order to read the contents of the file, line 170 opens the file
again, only this time the keywords FOR READ are used.

We won't know how much data will be output to the file, so we use an
EOF (End of File) statement in line 180 to tell BASIC when to stop reading
from the file. The line number (220) following the keyword GOTO in the EOF
statement tells BASIC to transfer to line 220 when all the data has been
read from PLUN #1 .

Line 190 reads the data. This statement reads two floating-point,
binary numbers frcm the file (PLUN #1) and stores them in the variables X
and SQ.

After data is input from a file, it can be used by a BASIC program.
All we do here is print a line of output on the terminal with a PRINT
statement in line 200. (Since no PLUN is specified, the output goes to the
terminal.) The PRINT statement outputs the values of X and SQ (the numbers
read from the file) as ASCII characters representing the decimal values
for those numbers. Besides the X and SQ, line 200 prints string constants
that label the output. If you had INPUT a 4 in response to line 120, the
floating-point binary equivalent for 4 and 2 (its square root) would have
been stored by line 140 and read into the variables X and SQ by line 190.
So, if a 4 is INPUT in line 120, line 200 will PRINT the following string
characters:

THE SQUARE ROOT OF 4 IS 2

Line 210, another GOTO statement, transfers program control back to
line 190. When the file has no more data, control passes to line 220 which
closes the file.

The STOP statement at line 230 causes the message STOP AT LINE 230
to be printed on the terminal and returns the system to the idle mode.

Try this program yourself. To get it going, simply type RUN (followed
by a carriage return, of course).

@ 3-7

TEK SPS BASIC V02 System Software

Text Manipulation in Immediate Mode

We'll assume that you did enter and RUN the practice program shown
earlier and that it is still in the controller memory. Let's try altering
it some to give you a few ideas about how to manipulate a program with
immediate-mode commands.

For instance, to change one word of the message that is printed by
the program, you could enter:

CHANGE 110,"VALUE","NUMBER"

which makes line 110:

110 PRINT "ENTER A NUMBER, NEGATIVE NUMBER TERMINATES"

Also, if you prefer to terminate a program with a RETURN instead of a STOP
(to keep pending interrupts active), you could change line 230. Just reenter
it as:

230 RETURN

The new line 230 replaces the old 230.

Now suppose you want to save this program in a program file. Typing:

SA VE II ROOT"

writes the program in a program file named "ROOT .BAS" (SAVE supplies the
".BAS" extension by default) on the system device. Of course, you still
have the program in memory. If you want to look at it just type:

LIST

and the program listing is displayed on the terminal. But now you have a
copy of the program stored in a file as well.

To prove it to yourself, try this. First type:

DELETE TEXT

3-8 @

TEK SPS BASIC V02 System Software

to remove the program from memory. Now if you type:

LIST

no program is listed. All that is displayed is the regular message:

READY

*

meaning that the system is in idle mode waiting for instructions. To bring
a copy of the program back into memory, enter:

OLD "ROOT"

Notice that OLD also assumes a default file name extension of ".BAS". When
you type:

.. LIST

the program is once again displayed.

If you try to RUN the program again, however, you will get a message
that there is a P5 error in line 100. Looking up the meaning of the error
and looking at line 100, you learn that you can't OPEN the file "EXAMPL. TST"
for WRITE again. Before you can RUN the program another time, you'll have
to CANCEL the file (remove it from the device). You can do this in immediate
mode by typing:

CANCEL "EXAMPL.TST"

but you would have to do this every time you wanted to execute the program
again. A better idea is to add a line to the program, in front of line
100, that CANCELs the file. So, instead type:

90 CANCEL "EXAMPL.TST"

Now you could run the program repeatedly with no P5 errors. But what of
the copy of the program in the program file named "ROOT .BAS"? It doesn't
have a line 90. To update the copy of the program in the file, enter:

REPLACE "ROOT"

@ 3-9

TEK SPS BASIC V~2 System Software

The old file with that name on the system device is canceled and all of
the program in memory is written to a new file with the same name. (REPLACE,
like OLD and SA VE, assumes the default file name extension of ".BAS".)

To remove both files from the system device, type:

CANCEL "ROOT.BAS", "EXAMPL.TST"

Notice that you must include the .BAS extension for the file "ROOT.BAS".
CANCEL assumes no file name extension.

Making the Most of Memory Space

The less space your program requires, the more room you have for data.
Here are some ways to make a large program take up less memory space.

Use Subroutines

Make redundant lines of code into a subroutine and call the subroutine
with a GOSUB statement as it is needed.

RELEASE Nonresident Commands and Drivers

Memory space can be gained by removing all the nonresident commands
and drivers by executing a RELEASE ALL statement. This releases all
nonresident commands and all drivers except the system device driver and
the keyboard driver. If a driver can't be removed because an instrument
is ATTACHed or a file is OPEN, a warning error is issued, but all modules
that can be RELEASEd are removed.

Execute GETFREE

Before GETFREE calculates the amount of free memory, it compresses
the string storage area. So, just executing GETFREE can make more memory
available. (Executing STATUS also compresses the string storage area.)

3-10 @

TEK SPS BASIC V~2 System Software

Remove all REM statements

If you are careful never to transfer program control to a REM statement,
you can decrease the size of a program by deleting all its REM statements
before executing your program. See the discussion on the CHANGE command
in Section 4 for an example of how to remove all the REM statements.

If you have the storage space, you may want to store two versions of
a program: one with REM statements for documentation and one without, for
execution. As modifications are made to the program, update the program
file with the REM statements. Then, delete the REM statements from a copy
of the updated program before using it to replace the contents of the
program file used for execution.

Break Your Program into Segments

Make only part of your program resident at a time by using CHAIN,
OVERLAY, or OVLOAD (the fast overlay command). With each method, you break
your program into segments. Which method you choose depends on the
application. To help you decide which command to use, the actions of the
program loading commands, including OLD, are compared below.

Results of Program Loading Commands

old text

OLD deleted

CHAIN deleted

OVERLAY unchanged
except
lines
overlaid

OVLOAD

@

lines in
range of
fast overlay
file deleted

variables Scheduler Clock queue interrupts

deleted

remain
defined

remain
defined

remain
defined

cleared

cleared

unchanged

unchanged

3-11

cleared ignored

cleared ignored

unchanged unchanged

unchanged unchanged

TEK SPS BASIC V02 System Software

From the table, you can see that CHAINing program segments together
is generally inappropriate for applications using tasking or instrument
interrupts. It is used when each section is totally independent, except
for the variables. The segments are executed serially, with each segment
CHAINing to (loading) the next segment to be executed. In the. example
below, the first program segment executes and then, just before it finishes,
it CHAINs to the second segment, and so on. Here execution continues with
the first line of the second segment.

10 REM FIRST PROGRAM SEGMENT

500 CHAIN DX1:"PART2"
510 REM END OF FIRST SEGMENT

In this example, the subprogram stored in the program file named
"PART2" is something like:

100 REM SECOND PROGRAM SEGMENT

400 CHAIN DX1:"PART3"
410 REM END OF SECOND SEGMENT

Notice that the range of the line numbers in each segment can be
independent of the range of the line numbers of any other segment. This
is because the old program text is deleted from memory before the new text
is brought in.

Use OVERLAY or OVLOAD when instrument interrupts or pending tasks
must be kept active from one segment to the next. Also use OVERLAY or
OVLOAD when only a portion of the program is to be replaced. Of the many
ways to implement an overlay, this is one of the simplest:

10 REM MAIN PROGRAM

500 REM OVERLAY A SECTION OF CODE
510 DELETE 1000,1999

3-12

TEK SPS BASIC V02 System Software

520 OVERLAY DX1 :"PART2"
530 GOSUB 1000

7G0 REM OVERLAY ANOTHER SECTION
710 DELETE 1000,1999
720 OVERLAY DX1:"PART3"
730 GOSUB 1000

1G00 REM START OF OVERLAY AREA

1999 REM END OF OVERLAY AREA
2G00 RETURN

Here, a block of line numbers (1000 to 1999) is dedicated as the
program's overlay area. Then, before the main program loads an overlay
file, the old text in the overlay area is deleted because the lines of new
text might not overlay all the lines of old text. After the overlay section
is loaded, the main program calls it as a subroutine which means that a
line 1000 must exist in each overlay file.

For this example, the line numbers in each of the overlay files
("PART2" and "PART3") should lie in the range of the overlay area -- between
1000 and 1999. When using the OVERLAY command you needn't always meet this
condition. You may, in fact, want some lines of an overlay file to replace
or intermix with lines of the existing code, but this requires careful
programming. However, when you use the fast overlay command, OVLOAD, you
should limit the line number range in the overlay file to the range of the
overlay area of the main program. Before it loads the new program segment,
OVLOAD deletes from the main program any lines of text whose line numbers
are in the range of the line numbers in the overlay file.

3-13

TEK SPS BASIC V02 System Software

Instrument Communication

The heart of a signal processing system is the system's ability to
acquire data from instruments. Six instrument commands in TEK SPS BASIC
make data acquisition a straight-forward operation: ATTACH, DETACH, GET,
PUT, WHEN, and IGNORE.

Fundamental Operations

There are four fundamental operations involved in data gathering.
These operations and the corresponding commands are explained below.

Attaching an instrument. Usually, all the instruments are connected
to the controller via hardware data paths. The software, however, has no
means of communication with an instrument until the device has been logically
associated with a driver and an instrument logical unit number (ILUN).
This association is made with the ATTACH statement. Once an instrument is
attached, its ILUN is used when referencing that particular device.

Getting data from the instrument. The actual acquisition of data from
an instrument is accomplished with the GET statement. The GET statement
tells the instrument driver what information to get and where to put the
data it gets. The particular instrument is referenced by its ILUN, assigned
to the device with the ATTACH statement.

The actual arguments used in the GET command vary from instrument
driver to instrument driver. The driver manual for the particular instrument
you are working with describes in detail how to communicate with the device.

With some instrument drivers, the GET command can also be used as a
direct link between an instrument and a peripheral device. Here, the
destination is the peripheral logical unit number (PLUN) of a file on some
peripheral device. The data goes directly from the instrument to the
peripheral. This acquisition procedure is known as data-logging.

Putting data into the instrument. The BASIC command for sending data
or instructions to an instrument is the PUT command. This statement directs
the instrument to take some action. In the case of some digital oscilloscopes,
data in the form of waveforms or messages can be sent to the device for
display. The driver manual for your particular instrument describes what
kinds of data can be sent to the device.

3-14 @

TEK SPS BASIC V02 System Software

Detaching an instrument. Detaching is the opposite of attaching. When
an instrument is detached, the ILUN is no longer associated with any
instrument, and can be reassigned if necessary. Once an instrument is
detached, no further communications can take place with it until it is
attached again.

Interrupt-Driven Programs

In acquiring information from an instrument, it is sometimes necessary
to wait until some event occurs in the instrument that makes meaningful
information available for processing. A service request from an IEEE 488
device is one such event and the pushing of a call button on a Digitizing
Oscilloscope is another. To avoid making the controller sit idle until
that event occurs, BASIC permits programs to be interrupt-driven, that is,
to let instrument events (interrupts) control the flow of the program.
Efficiency of programs can be greatly increased when the controller can
turn its attention from routine internal processing to instrument communication
on signal from the instrument.

In BASIC, two commands regulate the communication of interrupt
conditions from instruments to the controller. The WHEN command permits
an instrument to interrupt and specifies what should be done when an
interrupt occurs. The IGNORE command disables the interruption.

Enabling an interrupt with the WHEN command. The WHEN command lets
the user tell the controller how to respond to a particular interrupt from
a particular instrument and assigns to that response a priority indicating
its relative importance in the processing being done. The response is
determined by the user with an interrupt-handling subroutine entered as
part of the current BASIC program.

Before control can pass to that subroutine, three things must happen:

1. A WHEN command must be executed which enables the program to
recognise the interrupt from the instrument when the event occurs.

2. The interrupting event must occur.

3. The priority of the running program must be less than the
priority assigned to the interrupt-handling subroutine by the WHEN statement.

@ 3-15

TEK SPS BASIC V02 System Software

When those three requirements are met, the current program finishes
the command that was executing when the interrupt was signaled. Next, the
location of the next command in that part of the program is stored. Control
then passes to the interrupt-handling subroutine's first line, which is
executed.

If no WHEN statement for a given interrupt has been executed, that
interrupt is ignored. If the interrupt specified in a WHEN statement does
not occur, the WHEN does not change the flow of program control. If the
priority of the interrupt-handling subroutine is less than or equal to the
priority of the currently running program, the program continues to run
until it completes or until its priority is lowered to less than the
priority of the interrupt-handling routine.

Once control has been given to the interrupt-handling routine, it
executes either until a RETURN statement is found or until another interrupt
whose routine has been assigned a higher priority occurs. In the first

case, the program which was suspended to let the interrupt-handling routine
execute is resumed. In the second case, the interrupt-handling routine
itself is interrupted, the location of its next command to be executed is
stored, and the higher-priority routine given control. Because WHEN
statements can specify any of several interrupting conditions for each
instrument at different priorities, BASIC is structured to permit more
than a dozen levels of suspended routines to be remembered and restored
in their prioritized order. Of course, if a WHEN has been executed and no
other program is running when the specified condition occurs, the
interrupt-handling routine immediately receives control of the computer's
resources.

Disabling interrupts with the IGNORE command. An IGNORE command
essentially cancels the action of a WHEN statement that specifies the same
instrument and interrupting event.

The ABORT command or a fatal error in a task disables the action of
all WHEN statements associated with that task number. END, STOP and Control-P
cancel the action of all previously executed WHEN statements.

3-16 @

TEK SPS BASIC V02 System Software

Data File Structures

Files are organized collections of stored information: either BASIC
programs, or data. Files are stored on peripheral devices such as disks,
magnetic tapes, or paper tapes. The potential length of any file is limited
only by the amount of storage available on the selected peripheral.

The types of information that can be written to a data file are: 1)
floating-point or integer numbers, 2) floating-point or integer arrays,
3) floating-point waveforms, 4) ASCII strings, and 5) binary data fetched
directly from a specified instrument. Since these data types can be mixed
in one file, it is necessary for the user to know in what order the different
pieces of information are stored.

There are several ways of getting information to a data file. Three
BASIC commands: WRITE, WRITEU, and PRINT can be used to transfer data from
a program to a file. These commands and their output are summarized below:

Command

WRITE

PRINT

WRITEU

Summary of Output Commands

Type of Output

numeric expressions,
array expressions,
waveform expressions,
and string expressions.

Format of Output

Floating-point binary values
and ASCII characters formatted
by data descriptors.

Same as WRITE plus string ASCII characters formatted by
arrays. (Numeric data is a carriage return at the end of

converted to ASCII strings.) each line of output. (Same

Same as WRITE except
waveform expressions
are not allowed.

format as when printed to
terminal, with spaces as
fillers.)

Unformatted floating-point and
integer binary values and
ASCII characters.

If data is written to a file with a WRITE statement, it must be read
with a READ statement. Similarly, data output with a PRINT statement must
be read with an INPUT statement, while data output with a WRITEU statement
must be read with a READU statement. The INPUT command can accept data

@ 3-17

TEK SPS BASIC V02 System Software

from either the terminal or a file. The READ and READU command can only
read information from a file. Likewise, PRINT can output data to either
the terminal or a file, while the WRITE and WRITEU commands write only to
a file. The three input commands and what they read are summarized below:

Command

READ

INPUT

READU

Summary of Input Commands

Type of Input

Numeric variables,
arrays, waveforms,
and string variables.

Same as for READ
(Numeric strings are
converted to numeric
data.)

Same as READ except
waveforms are not
allowed.

Format of Data

Floating-point binary values
and ASCII characters formatted
by data descriptors.

ASCII character strings followed
by a carriage return. (Numeric
strings may be followed by a
comma.)

Unformatted floating-point and
integer binary values and
ASCII characters.

Sequential-Access Files

A sequential-access file is a file with data written serially, from
the beginning of the file. The data must be read in the same order in which
it was written. For this reason, a sequential-access file is also called
a serial file. For simplicity, you might think of this type of file as
being written or read, data item by data item.

A TEK SPS BASIC sequential-access file is created by an OPEN FOR WRITE
statement. It is then filled with data by the WRITE, PRINT, or WRITEU
command. Once it is closed, with either a CLOSE or END statement, no more
information can be written to that file. It can only be reOPENed FOR READ.

Let's take a look at the contents of a data file created by the
following program.

100 OPEN 111 AS "EXAMPL .03" FOR WRITE
110 DIM A(511)
120 X=5

3-18 @

TEK SPS BASIC V02 System Software

120 X=5
130 A:RND(A)*X
140 WRITE 111,A,X,"END OF FILE"
150 CLOSE 111

This simple program first opens a file called EXAMPL.03 on the system
device. It then creates a 512 element array, A. Variable X is given a value
of 5 in line 120. This variable is used in the expression in line 130 to
fill array A with random numbers between 0 and 5.

The WRITE statement in line 140 writes the array, variable X, and the
message into the file. The file is closed for further writing by the CLOSE
statement in line 150.

After this program has executed, the contents of the file can be
pictured as follows:

Each box in the picture represents one piece of data. E1 through E512
represent the 512 elements of array A. Each of these entries is a 32-bit
floating-point number. Xis the 32-bit value of variable X. The message
is written as a series of ASCII characters, each eight bits in length.

Because the WRITE command is used, as the data is actually written
onto the peripheral, each item of information (such as an array, a number,
or string) is preceded by a data descriptor. These descriptors allow BASIC
to know what type of information is in the file. The descriptors are not
accessible to the BASIC program, however. It is up to the programmer to
know in what order data is stored in the file. Appendix E contains more
information about data descriptors and output formats.

If PRINT is used, all the data is output as ASCII characters. Numeric
data is converted to ASCII strings that represent the decimal equivalent
of the numeric data. These are called numeric strings.

PRINT does not output data descriptors but it does output a carriage
return at the end of each line of output. The INPUT command, which reads
data from a file filled by PRINT, expects each data item (an ASCII string)
to be followed by a carriage return. (Numeric strings may optionally be
followed by a comma instead of a carriage return.) But PRINT is intended
mainly for display of data. It does not automatically output a carriage

3-19

TEK SPS BASIC V02 System Software

return after each data item. It only automatically outputs a carriage
return after each line. For this reason you cannot simply PRINT data to a
file if you intend to later INPUT that data back to a program. The discussion
on the INPUT command in Section 4 shows how to PRINT data to a file if you
intend to INPUT that data.

If WRITEU is used, data descriptors are not written out. This provides
compatibility with DEC RT-11 FORTRAN programs. READU can be used to read
files written using WRITEU and other files containing unformatted binary
and ASCII. See the SYSBLD command in Section 4 for an example of how to
read such a file using READU.

Random Access Files

A random access file is a file in which data is stored as data records
that can be written or read in any order. In TEK SPS BASIC V02, a random
access file is called a record I/O (input/output) file.

A record I/O file is created by a DEFINE statement which determines
the size of the file. Then, when it is OPENed FOR UPDATE, it can be written
to by the record I/O form of WRITEU or read by the record I/O form of
READU. Once it is closed, by either a CLOSE or an END statement, it can
be reOPENed FOR UPDATE to read, change, or even add more data providing
there is room in the file for the record specified.

Since the data is accessed as a collection of data items, called a
data record, and not as single data items, it is up to the user to know
the type, order, and size of the data items in the record as well as the
record number of the record accessed. Programs demonstrating the use of
the record I/O forms of READU and WRITEU can be found in the command
descriptions of those commands in Section 4.

Adding to a Sequential-Access File

Once a sequential-access file has been closed, no more information
can be added to that file. However, it is possible, through programming,
to create a new file consisting of the old data and any additional information
required. The following program demonstrates how to add data to a numeric
data file.

3-20 @

TEK SPS BASIC V02 System Software

100 OPEN #1 AS 0$ FOR READ
110 OPEN #2 AS 11 SCRTCH 11 FOR WRITE WITH 2
120 EOF #1 GOTO 170
130 DELETE A
140 READ f/1 , A
150 WRITE f/2, A
160 GOTO 130
170 WRITE #2,N
180 CLOSE f/1
190 CLOSE f/2

200 CANCEL 0$
210 RENAME 11 SCRTCH 11 TO 0$
220 END

The original file name is stored in the string 0$. Line 100 OPENs
this file for READ. Another file, called 11 SCRTCH, 11 is OPENed for WRITE at
line 110. The EOF statement at line 120 sends program control to line 170
when the data in the original file is exhausted. The technique of using
the EOF statement allows you to read a file of any length, without knowing
beforehand the exact length of the file. (The EOF command does not cause
a program branch until the data file is exhausted.)

The DELETE statement at line 130 assures that variable A is not an
array. This is necessary because some of the data in the file might be
arrays. If so, variable A, being a simple numeric variable, will be
automatically dimensioned to the correct size when the array is read.

The READ statement at line 140 reads the next item of information
from the original file. It is immediately rewritten into the scratch file
at line 150. After the write, control goes back to the DELETE statement
and the read and write process takes place again.

When all the data has been read from the original file, control passes
to line 170 (because of the EOF statement in line 120), and the new
information, N, is written into the new file. Both files are CLOSEd in
lines 180 and 190, and the original file is deleted from the peripheral
by the CANCEL statement at line 200. Line 210 renames the scratch file to
the original file name contained in 0$.

Note that these files used the WRITE and READ statements exclusively.
Had the original file been created with one or more PRINT statements, this
program would not work. Likewise, if strings had been output to the original

3-21

TEK SPS BASIC V02 System Software

file, the program would have to know at what point these strings occur,
and specify a string variable in the READ and WRITE statements.

Reading in Arrays

An array can be read into memory from a peripheral device in many
ways. The entire array, zones of the array, or individual elements can be
read at one time. The action taken by BASIC is dependent on where the data
pointer (the position in the file of the next piece of data) is located,
and on the type of variable that will receive the data. Let's look at some
examples.

First, consider a file that contains a ten-element array. The file
has just been opened for read, and the data pointer is positioned at the
beginning of the file. The data descriptor tells BASIC that the information
is an array of ten elements. Now, the following statement is executed:

READ 411 , T

After this statement is executed, the simple numeric variable T is
auto-dimensioned to nine (ten elements, subscripts zero through nine), and
the data pointer is positioned at the end of the file. Array T now contains
all ten elements of the array in file #1.

Let's take another example using the same file. Here, two variables
are going to be used in the READ statement, each a five-element array. The
program follows :

DIM A(4) ,B(4)
READ #1,A,B

Assuming that the file has just been opened, and the data pointer is
at the beginning of the file, the execution of these two statements fill
both five-element arrays with data. The first five data elements in the
file go to array A, and the last five elements go to array B.

Reading arrays into subscripted variables. Individual elements of an
array can be read, one at a time, by using a subscripted variable in the
READ statement. Using the same example file, the following statements read
in two elements of the array, leaving the data pointer at the third array

3-22 @

TEK SPS BASIC V02 System Software

element in the file. C(0) will get the first element of the stored array
and C(3) will get the second element.

DIM C(5)
READ /11,C(0) ,C(3)

As you can see, there are many ways to read in arrays from a peripheral
file. Giving examples of each possible READ statement is impossible.
However, there are some rules you should know.

End of file conditions. If a READ statement needs more data to assign
to its arguments than is present in the file being read from, a fatal error
is issued. This can happen, for instance, if an array specified in a READ
is dimensioned to a size greater than the number of data elements left in
the file or if there are more variables in the READ statement than elements
in the file. The error can be avoided by executing an EOF statement prior
to the READ. However, the programmer should be prepared to correct the
situation in which some variables which may be used later in the program
have not been assigned values from the file.

Reading single data values as an array. This condition, while by no
means an error, can cause confusion. If a series of numeric expressions
(not arrays or waveforms) is written to a file, it can be read in again
as an array. For example, the following statements write out ten values
to file /11:

OPEN 111 AS "FILE" FOR WRITE
WRITE 111,A,B,C,D,E
WRITE /11,T1,T2,T3,T4,T5
CLOSE 111

When this file is read again, all ten values in the file can be placed
into one array with one READ statement. In the following example, a single
READ statement, referencing one array, is all that is needed to read in
the entire contents of the file:

OPEN 111 AS 11 FILE" FOR READ
DIM P(9)
READ 111 , P
CLOSE 111

3-23

TEK SPS BASIC V02 System Software

After execution of these statements, array P contains all ten values
written to the file in the previous example. Had array P been dimensioned
to fewer than ten elements, the array would have been filled, and the data
pointer would be positioned at the next available entry in the file. If
array P had been dimensioned to more than ten elements, a fatal error would
have been issued. Notice that, since the data items were written out
individually, P would not be autodimensioned by the READ statement.

3-24 @

TEK SPS BASIC V~2 System Software

SECTION 4

TEK SPS BASIC COMMANDS

This section of the manual contains a complete description of the
system commands. It does not discuss optional software modules such as
signal processing, graphics, and instrument drivers. These optional commands
and drivers are described in separate manuals which accompany the optional
software.

Each command description includes statement examples, syntax information,
and a general discussion of what the command does. Many descriptions include
suggestions for using the commands. Within the descriptions, information
that a beginning user need not read is enclosed in bold-face square brackets;
information that pertains only to extended memory (XM) systems is shaded.

@ 4-1

Ill

TEK SPS BASIC V02 System Software

Overview of System Commands

The descriptions of the TEK SPS BASIC V02 system commands appear in
this section in alphabetical order to make each one easier to find. But
for your assistance, all the system commands, with a brief description,
are listed below by use. Some commands appear in more than one list. An
asterisk indicates a nonresident command.

System Control Comnands

Commands in this category allow you to edit and list program text,
load and release modules, change system status and priority, bootstrap
another device, and enter and run programs.

* ABORT

* BOOT

* CHAIN

* CHANGE

DELETE

* GETLOC

* LIST

LOAD

* LOCKKB

* LST

Terminates a single task.

Reloads BASIC system software from a peripheral device.

Deletes the current program and loads and starts
executing the specified new program. Does not delete
variables.

Edits program text in memory.

Removes program lines, waveforms, arrays, and string
arrays from memory.

Obtains the contents of a specified memory location.

Prints all or part of the current program text on the
system terminal or specified peripheral device.

Loads specified drivers or commands into memory.

Limits system input to Control-P while a program is
running.

Prints all or part of the current program text on the
system terminal or specified peripheral device. FOR/NEXT
loops are indented and concatenated statements are
displayed with one command per line.

4-2

OLD

• OVERLAY

• OVLOAD

• PRIORITY

• PUTLOC

• RANDOM

RELEASE

REM

• RE BUM

RUR

• SETDATE

• SETTIME

• SYSBLD

@

TEK SPS BASIC V~2 System Software

Loads a new program or program segment into memory,
deleting all existing text and variables .

Loads a new program or program segment into memory
without affecting variables. Overlays lines with
matching line numbers, but does not delete other
program text in memory .

Performs a fast overlay of a pretranslated BASIC
program segment from a file created by an OVLSAV
statement .

Changes the priority of a running program.

Assigns a specified value to a memory location.

Sets seed value of the random-number generator
or returns seed value.

Removes nonresident commands or drivers from memory.

Allows inclusion of remarks in program listing.

Assigns new sequential line numbers to part or all
of program text in memory.

Starts program at line having lowest line number in
memory .
Sets the system date.

Sets the system time .

Defines the contents of file to set system parameters
at initialization time.

4-3

TEK SPS BASIC V02 System Software

Program Control Co111JDands

*

*

*

*

*

*

These commands affect and direct program flow.

END

EOF

FOR

GO SUB

GOTO

IF

IGNORE

INPREQ

NEXT

ONE RR

RESCHEDULE

RETURN

SCHEDULE

STOP

Terminates all program execution, closes all files,
disables instrument interrupts, returns to idle mode.

Designates a program line to receive program control
when data from a peripheral file is exhausted.

Specifies start of program loop and controlling
parameters.

Transfers program control to a subroutine or to one
of a list of subroutines.

Transfers program control to a specified line, or to
one of a list of specified lines.

Conditionally transfers control or executes another
command.

Prohibits change of program flow by specified
instrument conditions.

Permits unsolicited input of data from the keyboard
while a program is running.

Terminates FOR loop.

Allows processing of errors in a BASIC program.

Puts either the current task or the task on Scheduler
stack back on Scheduler queue.

Terminates the execution of a subroutine.

Queues a subroutine for execution at a specified time
or after a specified time lapse.

Terminates program execution, disables instrument
interrupts, and returns to idle mode.

4-4

* UNSCHEDULE

* WAIT

* WHEN

TEK SPS BASIC V02 System Software

Cancels the actions of a SCHEDULE command if the
specified time has not elapsed.

Stops execution of a program until a keyboard interrupt
is received or a specified amount of time has elapsed.

Allows specified instrument conditions to change
program flow.

Variable Definition Comm.ands

These commands allocate or reclaim storage space or assign values to
variables.

* ATAN2

* CLEAR

* DATE

DELETE

DIM

* GETFREE

* GET LINE

* GET PR I

* HASH

INTEGER

LET

Performs double-argument arctangent.

Initializes all variables and arrays to zero, string
variables to null strings.

Obtains system date.

Removes program lines, waveforms, arrays, and string
arrays from memory.

Assigns floating-point storage space for array
variables or defines string arrays.

Obtains the amount of free memory currently available.

Obtains the line number of the line being executed.

Obtains priority of task being exSQ,_uted.

Converts a string (hash key) to an index number that
can be used to access an indexed list for storing and
retrieving data.

Allocates integer-format storage for arrays.

Assigns the value of an expression to a variable,
array, waveform, or string variable.

4-5

• MATCH

• RANDOM

• TIME

• VERSION

WAVEFORM

TEK SPS BASIC V02 System Software

Obtains the index of the string array element
containing the search string .

Sets seed value of the random-number generator
or returns seed value .

Obtains system time.

Obtains the version and release numbers of a
nonresident command or driver or of the BASIC monitor.

Associates a data array with its data sampling
interval and units.

Program Data Input/Output CollDlands

Input/Output (I/O) commands concern data transfers between a program
and a peripheral device or file.

CLOSE

• DEFINE

• EOF

• GETBLK

• INPREQ

• INPUT

OPEN

• PRINT

Terminates I/0 with a device or file.

Creates a Record I/O file.

Designates a program line to receive program control
when data from a file is exhausted .

Obtains the contents of a block from a directory
structured device .

Permits unsolicited input of data from the keyboard
while a program is running •

Obtains ASCII values for variables from the keyboard
or other peripheral device or an ASCII file, and if
the variables are numeric, translates those values to
binary form.

Allows access to an existing data file, a new data
file, or a non-file-structured peripheral device •

Outputs ASCII information to the terminal or other
peripheral device or a data file.

4-6 @

* PUTBLK

READ

* REA DU

* RESET

* REWIND

* WRITE

* WRITEU

TEK SPS BASIC V02 System Software

Stores a physical block of data on a directory
structured device.

Obtains formatted binary and ASCII values for
variables from a peripheral device or file.

Obtains unformatted binary and ASCII values for
variables from peripheral device or file.

Resets a file that is OPEN for READ to the beginning
of that file.

Rewinds serial tape devices.

Outputs data in formatted binary and ASCII form to a
peripheral device or file.

Transfers unformatted binary and ASCII data to
peripheral device or file.

Peripheral Housekeeping Commands

Housekeeping commands allow you to transfer files between peripherals,
remove files, save programs, print the directory, and in general alter the
files on a device.

* CANCEL

* COPY

* DIR

* FORMAT

* HOOK

* HOOKQ

Removes specified files from a peripheral storage
device.

Transfers file from one peripheral device to another
device or file.

Prints on terminal or specified device a list of files
stored on a peripheral device.

Formats a CP110 cartridge disk (a Digital Equipment
Corp. cartridge disk or its equivalent).

Writes system bootstrap program on specified peripheral
device.

Installs an absolute loader for .LDA files on a disk.

4-7

* OVLS.AV

* REN.AME

* REPLACE

* SAVE

* SQUISH

* ZERO

TEK SPS BASIC V~2 System Software

Creates a file containing a pretranslated BASIC
program segment.

Changes the name of a file on a directory-structured
device.

Replaces specified file on a peripheral device with
program text currently in memory.

Stores program lines on a specified peripheral device.

Compacts files on a disk storage device.

Initializes the specified file-structured peripheral
device.

Instrwnent Control Commands

Instrument control commands make data transfers between a program and
an acquisition instrument. They are also used to control the operation of
the instruments.

ATTACH

DETACH

* GET

* IGNORE

* PUT

* WHEN

Allows communication with an instrument.

Terminates communication with an instrument.

Fetches data or status information from an instrument
and stores it in specified variables or in a specified
peripheral file.

Prohibits change of program flow by specified instrument
conditions.

Sends data or status information from memory to a
specified instrument.

Allows specified instrument conditions to change
program flow.

4-8

TEK SPS BASIC V~2 System So~ware

Debugging CollDlands

*

*

*

*

*

*

*

*

*

@

These commands help you find the causes of errors in your programs.

GETFREE

GETLINE

GETPRIORITY

LIST

LISTVAR

LST

PRUIT

STATUS

YARTST

Obtains the amount of free memory currently available.

Obtains the line number of the line being executed.

Obtains priority of task being executed.

Prints all or part of the current program text on the
system terminal or specified peripheral device.

Lists on terminal or specified device the names and
dimensions of all arrays, waveforms, variables, string
variables, and string arrays currently defined.

Prints all or part of the current program text on
the system terminal or specified peripheral device.
FOR/NEXT loops are indented and concatenated statements
are displayed with one command per line.

Outputs ASCII information to a specified peripheral
device. May be used to output the contents of program
variables or a message to the terminal.

Prints the current status of the system on the
terminal or specified peripheral device.

Tests for set bits.

4-9

TEK SPS BASIC V~2 System Software

Guide to Notation

Syntax and Descriptive Forms

The term syntax refers to the rules for allowable statement structures
in a programming language. The rules for a permissible BASIC statement are
shown in the syntax form for each command. This form indicates the command's
delimiters (punctuation), keywords, and legal arguments plus what is
required and what is optional. In the syntax form, the words describing
the command's arguments tell you what is acceptable but not what is the
meaning or use. To help clarify the meaning of the syntax form, most command
discussions also have a descriptive form, which indicates the purpose of
each syntax component. For example:

Syntax Form:

[line no.] RANDOM floating-point variable, floating-point variable

Descriptive Form:

[line no.] RANDOM high-order part of seed, low-order part of seed

The syntax form and the descriptive form work together to give you
ccmplete information on how to enter the command. However, the descriptive
form is only provided to make the meaning and use of the syntax form more
understandable. It should not be considered as an exact description of the
syntax.

Both the syntax and descriptive forms use these few simple conventions
to convey the legal variations of a command.

1. Items enclosed in square brackets are optional. The statement is
valid if these items are omitted. For example:

Syntax Form:

[line no.] VAIT [expression]

Descriptive Form:

[line no.] VAIT [number of milliseconds]

4-10

TEK SPS BASIC VQJ2 System Software

This command may be entered in any one of the following ways:

WAIT
WAIT 5QJQJ

1QJQJ WAIT
1QJQJ WAIT 5QJQJ

2. Optional entries within optional entries cannot be used by
the•selves. For example:

Syntax Form:

[line no.] STATUS [device name[constant]:][string expression]

Descriptive Form:

[line no.] STATUS [device name[drive no.]:][target file name]

The device name and the string expression (target file name) are
independently optional. However, the constant (drive number) may not be
entered unless the device name is entered. Thus, any of these are acceptable.

But,

STATUS
9QJQJ STATUS DX1 :"STAT .FIL"

STATUS "STAT.FIL"
750 STATUS LP:

STATUS 1

is not.

3. Stacked ite•s enclosed in braces •ake up a selection list
fro• which one ite• must be selected. For example:

Syn tax Form :

I #expression I
[line no.] CLOSE ALL

Descriptive Form:

@

l #peripheral logical unit number I
[line no .] CLOSE ALL peripheral logical unit numbers

4-11

TEK SPS BASIC V02 System Software

Either the pound sign and expression or the keyword ALL must be specified,
so either of these is legal:

CLOSE 411

550 CLOSE ALL

But, this is not:

550 CLOSE

4. Stacked items enclosed in square brackets make up a selection

list from which none or one may be selected. For example:

Syntax Form:

[line no .] DATE array [
variable]

string variable

Here, legal entries would include:

DATE
100 DATE D
150 DATE DA$

5. Three dots(...) indicate that the preceding item may be repeated.

For example:

Syntax Form:

[line no.] GOTO .)
line number I
expression OF line number[,line number] ...

When you choose the second form, the quantity of repeatable items (a comma
followed by a line number) is limited only by the length of an input line
(79 characters plus a carriage return).

6. Keywords and command delimiters should be entered as shown. For
clarity, the keywords and delimiters are printed in bold in the syntax and
descriptive forms.

Keywords are alphabetic symbols used in a BASIC statement. Keywords
must be entered as all upper-case characters. They may not be abbreviated
unless they are nonresident command names -- in which case, the first six
letters are all that must be entered. For example, while the resident

4-12

TEK SPS BASIC V~2 System Software

command, INTEGER, cannot be abbreviated, the nonresident command, SCHEDULE,
can be abbreviated to SCHEDU. If a command name can be abbreviated, it
will appear that way in the syntax form. The full command name appears in
the descriptive form.

Delimiters are characters which separate the elements in a BASIC
statement. They are the command's punctuation. The following characters
are valid delimiters used by TEK SPS BASIC:

De1imiter

Space
Comma
Semicolon
Colon
Apostrophe (or Single Quote)
Quotation Mark
Parentheses
Angle Brackets
Pound Sign
Equal Sign
At Sign

Symbol

blank

n

()
<>
I

=
@

7. A space must precede and follow each keyword. Exceptions are when
another delimiter is required by the syntax. In such cases the space may
be omitted if it would be a redundant delimiter.

Here are some examples of when a space is redundant: 1) The TAB
function keyword in the PRINT command is followed by an open parenthesis
so it is legal to omit the space. 2) The DEL keyword in the CHANGE command
is preceded by a comma. No space is needed here. 3) The CLEAR command has
no arguments and requires no space before the carriage return. Surrounding
such keywords by spaces is not wrong; but, any unnecessary spaces will not
appear in the program LISTing.

8. A line number must be a positive integer between 1 and 32767,
inclusive.

4-13

TEK SPS BASIC V~2 System Software

Substitution Guide Lines

To help you make a proper entry for a syntax item, the following
substitution guidelines are provided in Table 4-1. The terms used are
defined in Section 1 and included in the Glossary.

Specification

array

array expression

constant

device name

drive number

expression

floating-point array

TABLE 4-1

SYRTAX SUBSTITUTION CHART

Allowable Substitution

* a floating-point array
* a floating-point array zone

* an integer array

* an integer array zone

* an array (see list above)
* any legal combination of constants,

variables, arrays, waveforms, arithmetic
operators, functions, and parentheses that
evaluates to an array or array zone

* only a numeric constant

* a 2 or 3 letter mnemonic that is used to
reference an instrument or peripheral device

* a positive integer (base 10) that
designates which unit of the device
is specified

* a constant
* a variable (see list below)
* any legal combination of constants,

variables, arrays, waveforms, arithmetic
operators, functions, and parentheses
that evaluates to a single numeric value

* a floating-point array
* a floating-point array zone

4-14 @

TEK SPS BASIC V~2 System Software

SYNTAX SUBSTITUTION CHART (cont.)

Specification

floating-point variable

floating-point waveform

integer array

integer variable

integer waveform

line number

simple numeric variable

simple string variable

string array

string constant

@

Allowable Substitution

* a simple numeric variable
* an element of a floating-point array
* an element of a floating-point waveform

* only a waveform associated with a
floating-point array (waveforms may
be zoned)

* an integer array
* an integer array zone

* an element of an integer array
* an element of an integer waveform

* only a waveform associated with an
integer array (waveforms may not
be zoned)

not

*an integer between 1 and 32767, inclusive.

* only a simple numeric variable (not an
array or waveform element)

* only a string variable (not a string
array element)

* only a string array (string arrays may
not be zoned)

* characters enclosed in single or double
quotes

4-15

Specification

string expression

string variable

variable

waveform

waveform expression

TEK SPS BASIC V02 System Software

SYNTAX SUBSTITUTION CHART (cont.)

Allowable Substitution

* a string constant
* a string variable
* an element of a string array
* any legal combination of string constants,

string variables, string functions,
parentheses, and the string operator
(&) that results in a string

* a string variable
* an element of a string array

* a simple numeric variable
* an element of a floating-point array
* an element of an integer array
* an element of a floating-point waveform
* an element of an integer waveform

* a waveform associated with a
floating-point array

* a waveform associated with an
integer array

* a waveform (see list above)
* any legal combination of constants,

variables, arrays, waveforms, arithmetic
operators, functions, and parentheses
that evaluates to a waveform

4-16

TEK SPS BASIC V~2 System Software

Examples:

ABORT TASK 2
ga~ ABORT TASK N

Syntax Form:

ABORT (Nonresident)

[line no.] ABORT [TASK expression]

Descriptive Form:

[line no.) ABORT [TASK task number)

Purpose:

To allow a user to terminate one task without terminating other tasks.

Discussion:

The ABORT command halts execution of the given task. It cancels the
action of all WHEN statements with the specified task number. It removes
any SCHEDULEd routines with that task number from the clock queue. It also
removes any routines with that task number from the Scheduler queue and
stack. Thus, any subprogram associated solely with the stipulated task
number is not executed. (The function and parts of the Scheduler are
explained in Section 1.)

If the program is in the midst of an input/output process, the I/O
finishes before ABORT halts the task. Also, if ABORT is entered in the
immediate mode, the currently executing command finishes before ABORT
executes.

4-17 ABORT

TEK SPS BASIC V~2 System Software

Using the Command Syntax:

The optional expression following the keyword TASK specifies the task
number of the task to ABORT. The expression, when evaluated and rounded
to an integer, must be between a and 126, inclusive. If the keyword TASK
and the expression are omitted, the currently executing task is aborted.
That is, the task associated with the ABORT statement is the task aborted.
If the ABORT command is entered in immediate mode and no task number is
specified, only task 127 (the immediate mode task number) is ABORTed.

ABORT 4-18 @

TEK SPS BASIC V02 System Software

ATAN2 (Nonresident)

Examples:

150 ATAN2 A,B,C
160 ATAN2 B,X,Z(J)
170 ATAN2 A(5:15),B(20:30) ,C(0:10)

Syntax Form:

l floating-point variable I I floating-point variable I
[line no.] ATAN2 floating-point array , floating-point array ,

Descriptive Form:

floating-point waveform floating-point waveform

I floating-point variable I
floating-point array
floating-point waveform

[line no.] ATAN2 real source data,imaginary source data,
target for arctangent of imaginary/real

Purpose:

To perform a double-argument arctangent operation.

Discussion:

This command computes the arctangent of the quotient of the second
argument divided by the first argument, and stores the result in the third.
For example, if the three arguments are A, B, and C respectively, the
arctangent of B/A is stored in variable C. The answer is in the range of
± pi radians. (The arctangent function (ATN) has only half this range, ±
pi/2 radians.)

Assuming the statement,

ATAN2 A,B,C

@ 4-19 ATAN2

TEK SPS BASIC V~2 System Software

if the third argument (the target, C) is a waveform, its units and data
sampling interval (DSI) are set as follows:

1. If A is a waveform,
C's vertical uni ts = "RAD"
C's horizontal units = A's horizontal units
C's DSI = A's DSI

2. If A is not a waveform and B is a waveform,
C's vertical uni ts = "RAD"
C's horizontal units = B's horizontal units
C's DSI = B's DSI

3. If neither A nor B are waveforms,
C's vertical units = "RAD"
C's horizontal units = null string
C's DSI = 1

A warning error is generated if only one of the source arguments is
a waveform (as in the second case above). A warning error is also generated
if the source arguments are waveforms but their units and data sampling
intervals are not identical.

A warning error is issued if both of the source variables are zero.
In this case, the target is set to zero. With A and B the source variables
and C the target, consider these examples. If A,B, and Care floating-point
variables and both A and B equal zero, a warning error is issued and C is
set to zero. If A,B, and Care arrays of the same size, for each array
index, I, where both A(I) and B(I) equal zero, a separate warning error
is issued and C(I) is set to zero.

Using the Syntax Options:

Arrays and waveforms may be used together as arguments. Note, only
floating-point arrays or waveforms containing floating-point arrays may
be specified. All arguments must be of the same length.

ATAN2 4-20 @

TEK SPS BASIC V02 System Software

ATTACH

Examples:

100 ATTACH #N AS DP03:
210 ATTACH #1 AS INS7,3:WITH 4,5 @0

Syntax Form:

[line no.] ATTACH #expression AS device name[constant[,constant]]:
[[WITH expression[,expression] •••] @expression]

Descriptive Form:

[line no.] ATTACH

Purpose:

[{ hardware unit number }]
I il un AS device name . . :

pr llllary address[,secondary address of mainframe]
[[WITH secondary address of plug-in [,secondary address of plug-in] •••]
@ IEEE 4BB interface number]

To associate an instrument logical unit number (ILUN) with a specific
instrument.

Discussion:

Unless the communication is performed at a low level through the IEEE
488 Interface driver (GPI.SPS), an instrument must be ATTACHed before you
can use BASIC to communicate with it. The ATTACH command associates an
instrument logical unit number (ILUN) with an instrument. After that, only
the ILUN is used to reference the instrument, allowing you to write general
purpose data acquisition and control routines.

For the ATTACH command to function properly, the instrument must be
on-line (electrically connected to the controller) and powered up. Also,
the instrument driver must be in memory and the specified ILUN must not
already be in use (ATTACHed to another instrument).

An ILUN and instrument are dissociated by the DETACH command.

4-21 ATTACH

TEK SPS BASIC V02 System Software

Using the Syntax Options:

The expression following the pound sign (#) is the ILUN. When evaluated
and rounded to an integer, it must be between 1 and n, inclusive, where n
is the number of ILUNs specified at system initialization (derault value
of eight).

The instrument name must be a legal two- or three-letter mnemonic.
The optional constant represents either the hardware unit number (HUN) or
the IEEE 488 primary address of the instrument being ATTACHed. A second
optional constant representing the secondary address of an IEEE 488
instrument may follow the primary address. If the first constant is omitted,
the HUN or primary address is assumed to be zero. Omitting the second
constant implies there is no secondary address.

The expression following the at sign (@) is the number of the IEEE
488 Interface through which the IEEE 488 instrument is addressed. The
expression, when evaluated and rounded to an integer, must be between a
and 3, inclusive.

The optional keyword WITH followed by an expression list is used to
associate a single ILUN with a configuration of instruments that share a
common primary address and interface. Usually, the expression represents
the secondary address of plug-ins, while the constant following the primary
address is the secondary address of the mainframe. For example, a TEKTRONIX
7912AD Programmable Digitizer with two programmable plug-ins, such as the
7A16P and the 7B90P, can be assigned a single ILUN with a statement such
as line 210 in the examples. In this case, the mainframe is addressed as
#1 or #1;3 and the two plug-ins are addressed as #1;4 and #1;5. Used with
the high-level IEEE 488 Instrument driver, INS.SPS, this form of ATTACH
causes the internal routine which polls an IEEE 488 Interface when an SRQ
is detected to include the plug-ins in the poll of the ATTACHed instruments.
(The optional keyword WITH is not recognized by ATTACH V02-01.)

Application Example:

The following shows the necessary order of first LOADing the instrument
driver, then ATTACHing the instrument, before referencing it by an ILUN,
which in this case is 2.

ATTACH 4-22

TEK SPS BASIC V02 System Software

100 REM LOAD INSTRUMENT DRIVER
1 rn LOAD "DPO.SPS"
120 REM ASSOCIATE ILUN WITH INSTRUMENT
130 ATTACH #2 AS DP02:

200 REM REFERENCE INSTRUMENT BY ITS ILUN
210 GET WA FROM #2,A$

4-23 ATTACH

Examples:

BOOT
BOOT DX1:

Syntax Form:

TEK SPS BASIC V02 System Software

BOOT (Nonresident)

[line no.] BOOT [device name[constant]:]

Descriptive Form:

[line no.] BOOT [name of bootable device[drive number]:]

Purpose:

To reload system software from the specified peripheral device.

Discussion:

BOOTing is the process of reinitializing the system by reloading the
software. BOOTing also redefines the system peripheral device since the
system device is the device and the drive from which BASIC is loaded.

The BOOT command reads in the absolute loader from the specified
bootable device and passes control to that loader. The absolute loader
then loads TEK SPS BASIC, an .LDA file, or the DEC RT-11 Monitor, depending
on which absolute loader it is and how your system is configured.

BOOT 4-24 @

TEK SPS BASIC V02 System Software

NOTE

To BOOT a device you must first install the
appropriate absolute loader in the boot
strap blocks. Read the discussion on the
HOOK or HOOKQ commands for more information.

What happens when BOOT executes depends on which command -- HOOK or
HOOKQ -- was used to install the absolute loader on the disk. If HOOK
(without the FOR RT11 option) was used, TEK SPS BASIC is automatically
loaded.

If the absolute loader was installed by HOOKQ, BASIC is not automatically
loaded. Instead, a prompt (•) is printed on the terminal and the loader
waits for you to enter the name of a file whose extension is .LDA. Entering
SPSxx, where xx is the name of the bootable device (e.g., DX, DK, DL, or
DY), loads BASIC. Notice that you do not enter the .LDA extension or put
the file name in quotes.

[When TEK SPS BASIC is loaded under a DEC RT-11 Monitor, BOOTing loads
the DEC RT-11 Monitor. Running LOADER.SAV and entering SPSxx, where xx is
the name of the bootable device (e.g., DX, DK, DL, or DY), loads BASIC.
See the System Peripherals manual for further discussion.]

Using the Syntax Options:

After the BOOT command executes, the named device and drive number
become the system peripheral device -- the device and the drive number
from which nonresident commands are auto-loaded and (usually) the default
device when the device name is omitted. If the device name is omitted,
the current system device is bootstrapped. If the drive number is omitted,
zero is assumed.

The specified device must be one of the bootable devices such as DX,

DK, DL, or DY. Unless the device is DK or DX, its driver must be loaded
into memory before BOOT executes.

NOTE

The DL and DY drivers are not supported
by TEK SPS BASIC V02-01.

4-25 BOOT

TEK SPS BASIC vg2 System Software

CANCEL {Nonresident)

E:xamp1es:

1511 CANCEL DK: 11 TEST. DAT"
1611 CANCEL "PROO.BAS"
1711 CANCEL CT:/F,"NEW.BAS" ,"*.DAT" ,"LASER.*"
211g CANCEL DX1 :A$&" .BAS"

Syntax Form:

[line no •] CIUl<EL [de• Jee n..,ef conetent h] [1 I ~ I [,]] etdng ex preeefon

[,string expression] •••

Descriptive Form:

[line no.] CANCEL [device name[drive number]:][/forward or reverse switch[,])
file name [,file name] •••

Purpose:

To remove unwanted files from a peripheral device.

Discussion:

The CANCEL command logically removes the specified files from a
file-structured device. For a directory-structured device, the CANCELed
file names are deleted from the directory so space on the device is reclaimed
with this command. For a serial tape device, the file names are changed
to "*EMPTY", but no space is reclaimed. (Space on a serial tape device can
be reclaimed by ZEROing all or part of the device.)

Since files are stored in a contiguous manner, unused spaces are left
on the media when files are canceled. These unused spaces can be eliminated
on directory-structured devices with the SQUISH command. SQUISH shifts the
files together, leaving the free space in one contiguous area following
the remaining files.

CANCEL 4-26

TEK SPS BASIC V02 System Software

For a directory-structured device, the files specified must be CLOSEd
when CANCEL executes. All files must be CLOSEd on a serial tape device
when canceling files on it.

The CANCEL command does not issue a warning error if the specified
file cannot be found on the device.

Using the Syntax Options:

The CANCEL command defaults to the system device if no device is
specified. If the device specified is not the system device, its driver
must be LOADed into memory before the command is executed. When the drive
number is omitted, zero is assumed.

[If the peripheral is a serial tape, the /For /R switch (Forward or
Reverse) may be included to specify the direction of tape motion. Otherwise,
the tape is rewound before a forward search begins. The switches are ignored
with other devices. The switches are also ignored if a wild card specification
(*) is used. Then, the entire tape is searched for matching file names.]

The wild card specification, an asterisk (*), can be inserted in place
of either the file name, the extension, or both. If a file name is specified,
and an asterisk appears in place of the extension, all files with that
file name are canceled. Likewise, if the wild card appears in place of the
file name, all files with the specified extension are deleted. Asterisks
for both the file name and extension cancel all files on the device.

No default file name extension is provided with the CANCEL command.

4-27 CANCEL

TEK SPS BASIC V@2 System Software

CHAIN (Nonresident)

Examples:

1G@ CHAIN 'DECODE.SUB',1@@@
15@ CHAIN R$,R
27G CHAIN CT: /F, 11 PART3"

Syntax Form:

[line no.] CHAIN [device n•me[constant] , [/ I ~ I [, J]] [string e>qre.,ion][, ex prossion]

Descriptive Form:

[line no.] CHAIN [device name[drive number]:[/forward or reverse switch[,]]]
[proqram file name][,line number \\here execution continues]

Purpose:

To delete all text and bring a new program into memory without
disturbing variables.

Discussion:

This command is used to chain together segments of a large program.
Unlike the OVERLAY command, CHAIN deletes all program text in memory before
reading in the new program. The Scheduler stack and queue are cleared and
the actions of all WHEN and SCHEDULE statements are canceled. However,
like OVERLAY, CHAIN does not alter defined variables. That is, CHAIN is
like OLD except OLD deletes both text and variables; CHAIN deletes text
but not variables. CHAIN (as well as OVERLAY and OLD) does not CLOSE any
OPEN files.

If the optional line number is present, execution continues at that
line number in the new program. If that line does not exist in the new
program, the first line with a higher line number is used. For example,

CHAIN 4-28 @

TEK SPS BASIC V02 System Software

in line 100 above, execution would begin at line 1000 in the program
"DECODE.SUB" if there is a line 1000 in "DECODE.SUB"; otherwise, execution
begins at the first line whose number is greater than 1000.

[The new program executes with a task number equal to the task number
of the CHAIN statement, unless that task number is 127 (the immediate mode
task number). In that case, the task number is set to zero. Thus, the
immediate mode command

CHAIN "NEXT" , 1

causes "NEXT" to execute as task number zero, not 127.]

If the line number is omitted, what happens depends on if the CHAIN
command is issued in program mode or immediate mode. In immediate mode,
the next command entered in immediate mode is executed. In program mode,
execution continues with the first line of the new program. [Its task
number is equal to the task number of the CHAIN statement, except when
that task number is 127. Then the task number of the new program is zero.]

Since the optional line number in a CHAIN statement is an expression,
it is not altered by the RENUM command.

Using the Syntax Options:

If no device is named, the program is assumed to be on the system
device. If the named device is not the system device, its driver must be
in memory when CHAIN is executed. (The keyboard, KB, may not be specified.)
If no drive number is specified, zero is assumed.

[The Forward or Reverse switches (/F or /R) may be included in the
command if the peripheral is a serial tape device. The switch specifies
the direction of tape movement when searching for a file. If the switch
is omitted, the tape is rewound before a forward search for the file is
begun. The/For /R switch is ignored when the device is not a serial tape
device.]

A file name must be designated for a file-structured device. If no
extension is present in the file name, .BAS is assumed.

4-29 CHAIN

TEK SPS BASIC V02 System Software

If the optional expression is present, it is rounded to an integer
and used as a line number. It must evaluate to an integer between 1 and
32767, inclusive. What happens when it is included or omitted is explained
above.

CHAIN 4-30

TEK SPS BASIC V02 System Software

CHANGE (Nonresident)

Examples:

100 CHANGE 100,"XY"
200 CHANGE "XY","ZZ"

CHANGE 400, II OLD" , II NEW"
CHANGE 240,500,A$,B$,DEL

Syntax Fora:

[line no.] CHANGE [expression[,expression],]string expression[,string expression][,DEL]

Descriptive Form:

[line no.] CHANGE [line number[starting, line number ending],] text to be deleted
[,text to be inserted][,DELete to end of line switch]

Purpose:

To alter or delete program text in memory.

Discussion:

The CHANGE command is used to edit program text. It can operate on
any line of text in controller memory. Text is either altered or deleted
by this command. When the command is executed in the immediate mode, the
changed line or group of lines is printed on the terminal. When the CHANGE
command is executed in program mode, the altered lines are not printed.

A CHANGE command may only appear as the first command in a line; it
may not be preceded by a backslash(\).

If a RENUM command is executed on a program containing a CHANGE
command, the expressions in the CHANGE command representing line numbers
are not altered.

4-31 CHANGE

TEK SPS BASIC V02 System Software

Using the Syntax Options:

Any expression appearing in the command is truncated to an integer
value.

The optional first argument is the starting line number for the change
and the optional second argument is the ending line number. If the second
argument is not included in the command, only the first occurrence of the
old text in the line specified by the first argument is altered. To change
several occurrences of the old text in a single line, specify that line
number as both the starting and ending line number.

When both line numbers are omitted, every occurrence of the old
text in the entire program is altered.

The third argument is a string expression containing the text to be
changed. Text in the specified range of line numbers matching this string
is either deleted by the absence or changed by the presence of the optional
fourth argument (also a string). If two strings are present, every instance
of the third argument (the first string) found within the specified range
of line numbers will be replaced by the fourth argument (the second string).
If only one string appears, every instance of that string found within the
specified range of line numbers will be deleted.

If the keyword DEL appears as the final argument, each time the old
text is encountered within the specified range of text (and replaced or
deleted), the remainder of the line in which it is found is deleted. That
part of the line following the change and preceding the carriage return
at the end of the line is deleted. Note that neither the carriage return
nor any replacement text is deleted.

Application Examples:

The following examples demonstrate some variations of the CHANGE
command:

1) original text: 15a X=B+2.345+X

CHANGE

command:
result:

CHANGE 150, 11+2. 3", 11 +5. 5"
15a X=B+5.545+X

4-32

TEK SPS BASIC V02 System Software

2) original text: 150 X=B+2.345+X
command: CHANGE 150,"+2.3","+5.5",DEL
result: 150 X=B+5.5

3) original text: 150 REM THIS WAS A COMMENT
command: CHANGE 150 'II REM II ' DEL
result: 150

Notice in example 3 that the text is deleted. If you were to type
"LIST" following such a command, you would find line 150 gone. This
illustrates how you can save controller memory if you are careful never
to transfer control to a REM statement. After you OLD in a program, if you
type:

CHANGE "REM II ,DEL\RELEASE "CHANGE"

all REM statements are deleted from controller memory before you execute
the program. Since both line numbers are omitted, all REM statements are
deleted from the entire program. Be sure to include the space following
the REM so that it is not mistaken for part of a word used elsewhere in
the program. Failure to do so could produce unexpected results. A line
like:

200 PRINT "REMEMBER TO LOAD THE DRIVER"

becomes:

200 PRINT II

4-33 CHANGE

TEK SPS BASIC V~2 System Software

CLEAR (Nonresident)

Example:

100 CLEAR

Syntax ForJD:

[line no.] CLEAR

Purpose:

To initialize all numeric variables to zero; all string variables to
null.

Discussion:

CLEAR sets all defined variables (including arrays and waveforms) to
zero. Strings are set equal to null strings. This command allows the user
to initialize all the variables in a program to zero or null between
successive runs of the same program.

CLEAR 4-34

Examples:

400 CLOSE 115
450 CLOSE #J*2
500 CLOSE ALL

Syntax Form:

[line no.] CLOSE

Descriptive Form:

[line no.] CLOSE

Purpose:

TEK SPS BASIC V02 System Software

CLOSE

I #expression I
ALL

lfpllll I
ALL plms

To close the data file or device currently associated with the specified
peripheral logical unit number (PLUN) to further input or output.

Discussion:

Once a file has been CLOSEd, no further reference to that file can
be made by input/output commands such as READ, PRINT or INPUT until it is
OPENed again. The CLOSE statement releases the PLUN for use with other
OPEN files. If no other PLUNs require it, the driver for the device can
be RELEASEd (assuming it is not the system device) freeing the memory for
another purpose.

When a line printer is CLOSEd, a form feed (skip to top of page) is
output. When a paper punch is CLOSEd, a trailer (a blank length of tape
on the end) is punched on the tape.

@ 4-35 CLOSE

TEK SPS BASIC V02 System Software

If the associated file or device is OPEN FOR READ, the CLOSE command
merely dissociates the PLUN from it.

The CLOSE command has no effect if the specified PLUN is not currently
OPEN.

The END statement also closes open files.

NOTE

A sequential-access file can only be
reOPENed for READ. To add data to a
CLOSEd sequential-access file, a new file
must be OPENed for WRITE and the contents
of the original file plus the new data
written to it. However, a record I/O file
can be reOPENed for UPDATE allowing access
to it by the record I/0 form of either
the READU or WRITEU command.

Using the Syntax Options:

When an expression is supplied, it is evaluated and rounded to an
integer. This integer is then used as the PLUN of the file or device to
CLOSE. It must be between 1 and n, inclusive, where n is the number of
PLUNs allowed at initialization (default of six). It is illegal to attempt
to CLOSE the keyboard (PLUN zero).

If the keyword ALL is specified instead of a PLUN, all files and
devices currently OPEN are CLOSEd to further input or output. Each is
individually CLOSEd according to the rules discussed earlier.

CLOSE 4-36

TEK SPS BASIC V~2 System Software

COPY (Bonresident)

Exa11ples:

67CJ COPY CT1:/F,"PROG.LIST" TO LP:
COPY A$ TO DX1:B$
COPY "BASIC.DAT" TO KB:
COPY DK1: 11 FILE.*" TO PP:
COPY F$&".*" TO DX1:F$&".*"
COPY DX1 :"FILE. DAT" TO "TEST. DAT" INTO 5
COPY DX:"*.SPS" TO DK:"*.SPS"

Syntax Form.:

[line no.] COPY [de• ice nruoe[cons tenth] ~ I ~ I [, l] [stri"l ~ ,,..e,.ion l

TD [device namerconstant]:][string expression][INTO expression]

Descriptive Form.:

[line no.] COPY [device name[drive number]:][/Forward or reverse switch[,]]

Purpose:

[source file name] TD [device name[drive number]:][target file name]
[INTO number of blocks].

To transfer data from one peripheral device directly to another, or
to make a second copy of a file on a single peripheral.

Discussion:

This command provides a convenient means of transferring programs or
data frcxn one device to another or of creating additional copies of a file
on the same peripheral.

Transfers between files on the same peripheral are legal only if two
files may be OPEN simultaneously on that peripheral.

@ 4-37 COPY

TEK SPS BASIC V~2 System Software

There must be an unused peripheral logical unit number (PLUN) available
when the COPY command is executed because the COPY command temporarily
OPENs the source file. If a Control-P is typed while the COPY command is
executing, this PLUN is left open, preventing future use of that PLUN.
Also, if an error occurs during the COPY command, the source file might
be left OPEN. By executing STATUS you can detennine which PLUN is associated
with the source file and then CLOSE that PLUN. Or if you prefer, you can
enter a CLOSE ALL or END instead of using STATUS and explicitly closing
that one file. However, this second method closes all OPEN files.

When COPYing data from the keyboard (KB is the source device), pressing
the Return key outputs only a carriage return -- not the usual carriage
return and line feed. This means that you can use the keyboard to COPY
ASCII data directly to a file. The data -- ASCII strings -- will be
terminated (delimited) by a carriage return each time you press the Return
key. Such data files can be read by the INPUT command. To tenninate the
COPY command when the keyboard is the source device, enter a Control-Z.

Using the Syntax Options:

The first device and file name specified is the source. The second
device and file name specified is the target. The keyword TO separates the
two. If the target device is file-structured, no file may already exist
on it with the same name as the target file specified in the COPY command.
If the target device is not file-structured, a file name need not appear
with that device. It must be legal to write to the target device.

The system device is the default device for the COPY command. If the
device specified is not the system device or the keyboard (KB), its driver
must be LOADed into memory before the command is executed. When the drive
number is omitted, zero is assumed.

If the terminal keyboard (KB) is the source device, a question mark
(?) is printed when the system is ready to accept input. Enter your input
after the question mark (?) and terminate the input by entering a Control-Z.

[The Forward or Reverse switches (/F or /R) are used only if the
source device is a serial tape device. These switches specify the direction
of tape movement when searching for the source file. If the switch is
anitted, the tape is rewound before a forward search for this file begins.
For other peripherals, these switches are ignored. These switches are also
ignored if a wild card specification (•) is used.]

COPY 4-38

TEK SPS BASIC V~2 System Software

A wild card specification can be used in place of the file name, the
extension, or both. The wild card specification is indicated by an asterisk
(•). If the source extension is given as an asterisk, each file with the
specified name, regardless of extension, is transferred to the destination.
The file name may also be replaced by an asterisk. This causes all files
with the specified extension to be transferred. If the source has a wild
card in either the file name or extension, the destination must have a
wild card in the corresponding position, or be a device which doesn't
require a file name, such as line printer (LP) or the keyboard (KB).

~
If a wild card specification (*) is used
in the source file name and a serial tape
device which has more than one file with
that given name is the source device, the
command may not function predictably. The
data from the wrong file may be transferred.

There is no default file name extension provided with the COPY command.

If the target device is directory-structured, the INTO option can be
used. The expression following the keyword INTO stipulates the maximum
number of blocks required by the file being copied. The first sufficient
empty space on the target device is selected for the file. When the INTO
option is not used, one half of the largest empty space on the target
device is opened for the file. In either case if the specified or default
space exceeds the actual number of blocks required by the file, the unused
blocks are returned to an empty status.

Use of the INTO option with the wild card (*) notation is unnecessary.
The block number stipulation is ignored and as each file is transferred,
the first sufficient empty space on the target device is used for that
file.

When COPYing to a nearly full disk, use the INTO option or the wild
card notation(*). Half the remaining free space may not be large enough
for the file.

@ 4-39 COPY

TEK SPS BASIC V02 System Software

DATE (Nonresident)

Examples:

150 DATE A$
260 DATE A(0:2)
185 DATE D

DATE

Syntax Form:

[
simple numeric variable]

[line no.) DATE array
string variable

Descriptive Form:

[
target variable]

[line no.) DA TE target array
target string variable

Purpose:

To return the system date.

Discussion:

The DATE command either returns the system date in the specified
argument or prints the date on the terminal if the argument is omitted.
When the argument is supplied, the data is returned either as three array
elements or a string, depending on the type of variable specified.

DATE 4-40 @

TEK SPS BASIC V02 System Software

When the date is returned as three array elements, they are stored
in the array in this order:

first element
second element
third element

month (1-12)
day of month (1-31)
year (72-99)

When the date is returned in a string variable, it is of the form:

DD-MMM-YY

where:

DD
HMM
yy

day of month (1-31)
first three letters in name of month
year (72-99)

The system date is set by the SETDATE command. When the system is
booted, the date is cleared. Also, since the date is not automatically
updated, it should be reset each day.

Using the Syntax Options:

Specifying either a simple (not subscripted) variable or an array
returns the date in an array. If a simple numeric variable is used, it is
auto-dimensioned to a three-element integer array. If an array is used,
it must be dimensioned or zoned to three elements.

Specifying a string variable returns the date in that string.

Omitting the argument prints the date on the terminal in the string
variable format.

Application Example:

The DATE command can be used to print the date on program runs. A
simple method is to return the date as a string and print it. For example:

1!10 DATE D$
110 PRINT 1/N ,"RUNDATE: II ;D$

4-41 DATE

TEK SPS BASIC V02 System Software

where N is assumed to be the peripheral logical unit number (PLUN) of a
line printer that is OPEN FOR WRITE. To output the date in a different
format, such as 11 MMM DD, 19YY 11 , you could use the SEG function:

12 0 p RI NT fl N , II RUNDA TE : II ; SEG (D $, 4 , 6) ; II II ; SEG (D $, 1 , 2) ; " , 19 II ; SEG (D $, 8 , I

DATE 4-42

TEK SPS BASIC V02 System Software

DEFINE (Nonresident)

Examples:

DEFINE DX1:'RECORD.DAT' AS ARR 10,VAR,STG 2 WITH 100
DEFINE A$ AS ARR X*7,STG Z,IAR X WITH A*B/2
DEFINE 'TEST.DAT' AS VAR,VAR,STG 10 WITH 10

Syntax Form:

[line no.] DEFINE [device name[constant]:]string expression

AS l ::: expression l [1::: expression l] IAR expression ' IAR expression ••• WITH expression
SIG expression SIG expression

Descriptive Form:

[line no.] DEFINE [device name[drive ntJTiber]:] file name

AS l ::::~b~~ber of floating-point elements l
Integer ARray ntJTiber of integer elements
STrinG ntJTiber of characters in string

[lVARiable l]
ARRay ntJTiber of floating-point elements

' Integer ARray ntJTiber of integer elements •••
STrinG ntJTiber of characters in string

WITH ntJTiber of records

Purpose:

To allot space for a record I/0 file on the specified directory
structured device.

Discussion:

A record I/O (Input/Output) file is a data file with data can be
accessed randomly -- any logical record at a time -- in order to enter,

@ 4-43 DEFINE

TEK SPS BASIC V02 System Software

retrieve, or update a data record. In this sense, a data record is a set
of related items of data treated as a unit; all the records are the same
length. Instead of being OPENed for either READ or WRITE, a record I/0
file is OPENed FOR UPDATE, which allows both input and output operations.

The first step in using a record I/O file is to create a file of
sufficient length on a directory-structured peripheral device. The DEFINE
command does this and even makes it unnecessary for you to count the number
of words or bytes required. You need only describe (with keywords) the
contents of the data record and the number of records desired. The command
determines the size of the file by computing the number of bytes per data
record and multiplying this by the number of requested records. As the
command creates the file on the peripheral, the file is zeroed.

Once the file is created, it can only be written to in TEK SPS BASIC
by a special form of the WRITEU command. [Since the WRITEU command outputs
data to a file in an unformatted binary form, there are no data descriptors
and no logical end-of-record markers written on the file. This gives you
the flexibility to logically restructure the file when accessed.]

See the OPEN, WRITEU, READU, and CLOSE commands for related discussions.

Using the Syntax Options:

The device name is the peripheral on which the file is generated.
Unless this peripheral is a directory-structured device such as a hard or
floppy disk, a fatal error results. If no device is specified, the system
device is used. If the named device is not the system device, its driver
must be in memory when the command is executed. If no drive number is
supplied, zero is assumed.

A file name is required. It must not be the name of a file that already
exists on the peripheral. A fatal error is issued if it is.

The contents of a data record are described with the keywords ARR,
IAR, VAR, and STG. ARR describes a floating-point array with each element
four bytes long; IAR describes an integer array with each element two bytes
long. The experssion following ARR or IAR is the number of elements in the
array (not the dimension, but the size of the array). VAR describes a
single, floating-point variable, while STG describes a string variable.
The expression following STG is the number of characters, and therefore

DEFINE 4-44

TEK SPS BASIC V02 System Software

the number of bytes, in the string. (The keyword IAR is not supported by
DEFINE V02-!.J1 .)

The total number of bytes in a logical record is calculated from the
keyword information. This record length is then multiplied by the number
of records requested in the expression following the keyword WITH. This
product determines the minimum size of the file. [The actual size of the
file must be an integral multiple of a block (256 words). Thus, a file,
whose calculated size is 600 bytes (300 words), is really two blocks long.
Since there are no logical end-of-file markers on record I/O files, the
entire file space is accessible. Any room between the logical end-of-file
and the physical end-of-file may be used for additional data. The physical
end-of-file is the physical end of the last block.]

All numeric expressions are rounded to integers.

Application Example:

Let's look at a few examples. Suppose you wanted a record I/O file
named FLOPPY.IO on a floppy disk. Each record is to contain a string
variable 20 characters long, a floating-point variable, a floating-point
array of 512 elements, another floating-point variable, and finally two
more string variables of 10 characters each. There are to be 25 of these
records. The following DEFINE statement does this for you.

DEFINE DX 1 : "FLOPPY. IO" AS STG 20, VAR, ARR 512, VAR, STG 10, STG 10 WITH 25

[But since the DEFINE command only creates and zeroes a file and does not
section the file, you could also use:

DEFINE DX1:"FLOPPY.IO" AS STG 40,ARR 512,ARR 2 WITH 25

or even just:

DEFINE DX1:"FLOPPY.IO" AS STG 40,ARR 514 WITH 25

to allot space for the same file. Notice, in the latter two examples, how
the string variables are collected under STG and the numeric variables
under ARR.]

4-45 DEFINE

TEK SPS BASIC V02 System Software

Eiamples:

150 DELETE C$,677
DELETE ALL
DELETE TEXT,A,DD

575 DELETE 250,300,400

SyntaI Form:

DELETE

[line no.] DELETE !array I [waveform
string array ,
line number[,line number]
TEXT

array
waveform
string array
line number[,line
TEXT

nu.Ee,]] ••·

Descriptive Form:

[line no.] DELETE

Purpose:

ALL

array I waveform
string array
line number[startinq,line number ending]
all program TEXT in memory

ALL program text and data in memory

[

array
waveform

, string array
line number[starting,line number
all program TEXT in memory

To remove arrays, string arrays, waveforms, or program lines from
memory.

DELETE 4-46 @

TEK SPS BASIC V02 System Software

Discussion:

This command frees memory space by deleting defined arrays or sections
of program text. Deleting an array changes it to a simple floating-point
or string variable. Thus, deleting an array allows you to redimension it
to different specifications. Once deleted, the arrays or program lines are
not recoverable. Only the DELETE ALL form of the command removes simple
floating-point or string variables.

Since a DELETE ALL removes all program text from memory, a DELETE ALL
statement should not be followed by a backslash(\).

Using the Syntax Options:

An array is removed by explicitly naming it. If a waveform is specified,
the array, data sampling interval, and units strings are dissociated from
each other. But, the array is not deleted unless you specifically name the
array.

Line numbers are treated as single lines or sequential groups. If one
line number is given, that line is removed from memory. If two line numbers
appear in the DELETE statement in sequence, all lines within their range
(inclusive) are removed. Other combinations of line numbers delete either
one line, or a sequence of lines. Let's look at some detailed examples:

100 DELETE 50,200,600
200 DELETE 50,A,300,600
300 DELETE 50,200,600,700

Line 100 deletes all text between lines 50 and 200, inclusive, and
also line 600. The statement at 200 deletes line 50, array A, and all lines
between 300 and 600, inclusive. Line 300 deletes all lines between 50 and
200 and all lines between 600 and 700, inclusive.

The keyword TEXT removes all program statements, but does not alter
any variables. The actions of all WHEN, SCHEDULE, INPREQ, and ONERR
statements are canceled and the Scheduler's stack and queue are cleared.

The keyword ALL removes all program lines and all variables from
memory. The actions of all WHEN, SCHEDULE, INPREQ, and ONERR statements
are canceled and the Scheduler's stack and queue are cleared.

4-47 DELETE

TEK SPS BASIC V02 System Software

Uses:

DELETE can save you work. Suppose you want to use the same section
of program code in a new program that you have in a SAVEd program. OLD in
the program and DELETE the lines you don't wish to keep. Then, if necessary
RENUMber the section of code you retained before you start adding the new
code.

DELETE 4-48 @

TEK SPS BASIC V~2 System Software

Examples:

160 DETACH 111
170 DETACH llG

DETACH ALL

Syntax Form:

l
fexpressionl

[line no.] DETACH
ALL

Descriptive Form:

[line no.] DETACH l 'il m I
ALL ilms \

Purpose:

DETACH

To terminate communication with an instrument by dissociating an
instrument logical unit number (ILUN) from its associated instrument.

Discussion:

This command is the opposite of the ATTACH command. It dissolves the
logical connection between an instrument and an instrument logical unit
number (ILUN). When an ILUN is DETACHed, that ILUN is freed for use with
another instrument. The instrument is effectively no longer on line, and
no communication can take place with it until the instrument is again
ATTACHed.

DETACH issues no error if the ILUN is not ATTACHed.

@ 4-49 DETACH

TEK SPS BASIC V~2 System Software

Using the Syntax Options:

When an expression is given, it is rounded to an integer and used as
an ILUN. It must evaluate to a number between 1 and n, inclusive, where n
is the number of ILUNs requested at initialization (default of eight).
Only that ILUN is DETACHed.

When the Keyword ALL is used instead of an ILUN, every ATTACHed
instrument is dissociated from its corresponding ILUN.

DETACH 4-50

TEK SPS BASIC V02 System Software

DIM

Examples:

rn DIM X(99)
20 DIM P(511),R(A,B),X$(15)

Syntax Form:

[line no.] DIM I simple numeric variable!
simple string variable
floating-point array
string array

(expression[,expression])

[I simple numeric variable I]
simple string variable

, fl t" . t (expression[,expression]) oa 1ng-po1n array
string array

Descriptive Form:

[line no.] DIM

Purpose:

!simple numeric variable
simple string variable
floating-point array
string array

(first dimension [,second dimension])

[I simple numeric variable]
simple string variable

(first dimension[,second dimension)) •••
' floating-point array

string array

To allocate storage space for floating-point arrays and string arrays.

Discussion:

An array is a set of variables that are stored (contiguously) under
the same name. Each element is referenced by the array name and its index.
In TEK SPS BASIC, arrays can have one or two dimensions. That is, they can
be thought of as a single column of elements or as a matrix with rows and
columns.

@ 4-51 DIM

TEK SPS BASIC V02 System Software

The array indices are numbered from zero. An array A of DIMension N
has N+1 elements. The first element in A is A(0). The last element is A(N).
Similarly, a matrix B of DIMension I,J has I+1 by J+1 elements. The first
element in Bis B(0,0) while the last element is B(I,J).

The DIMension command reserves memory space for floating-point (numeric)
or string arrays. The space is allocated as the DIM statement is encountered.

standard memory systems, the size of a floating-point array is limited
amount of available free memory.

array, a fatal error is issued.

When a floating-point array is specified, two words of controller
memory are required for each element. Thus a floating-point array of N
elements needs 2*N words of memory. (To dimension an integer array which
requires only one word of memory per element, use the INTEGER command.)

The amount of memory needed for a string array cannot readily be
determined. When a string array is dimensioned, it initially requires one
word for each element. However, each string in the array can be of differing
length and can grow or shrink in length during program execution. In other
words, string length is dynamic. Thus, the amount of memory space required
for a string array depends on the length of each string, not just on the
number of elements in the array.

Auto-dimensioning:

Arrays may also be automatically dimensioned during program execution
of commands such as LET and READ. With such commands, if a simple numeric
variable is the destination of an expression which results in an array,
the simple numeric variable is dimensioned to the size of the source array.

Using the Syntax Options:

The numeric or string variable is the name of the array. Specifying
a simple (not subscripted) numeric variable allocates space for a
floating-point array. Using a string variable assigns storage for a string
array. In either case, if the specified variable is already an array, its
dimension(s) must not be changed. To redimension an array to new specification:
you must DELETE the array first.

DIM ~-52 @

TEK SPS BASIC V~2 System Software

The numeric argument in parentheses determines the number of dimensions
(one or two) and the size of the array. An expression is rounded to an
integer and used as the largest index -- not the number of elements in
a row or column. Specifying a single argument that evaluates to the integer
N allocates a one-dimensional array of N+1 elements. Supplying two arguments
creates a two-dimensional array. If the expressions evaluate to the integers,
I and J, space is allocated for a matrix of I+1 by J+1 elements.

@ 4-53 DIM

TEK SPS BASIC V02 System Software

DIR (Nonresident)

Examples:

15f1 DIR
DIR WITH BLOCK

16C1 DIR DX1: TO DX1: 11 DIRFIL"
DIR DK2:"*.BAS" TO LP:
DIR EXC

Syntax Form:

[line no.] DIR [EXC [device name[constant]:]]
[device nane[constant]:][string expression]

[WITH BLOCK] [TO [device nane[constant]:][string expression]]

Descriptive Form:

[line no.] DIR [
EXClude .SPS files [device name[drive number]:]]
[device nane[drive number]:] [file name or wild card specification]

[WITH starting BLOCK numbers printed] [TO [device name[drive number]:]
[file name to receive directory information]]

Purpose:

To send a listing of the directory of the files stored on a device
to the terminal, another device, or a file.

Discussion:

The DIRectory command lists the names of the files stored on a file
structured device. The listing can be sent to the terminal, a device such
as a line printer, or a file. The names of all or part of the stored files
can be selected. For each file listed, the name, size, and creation date
of the file is printed. For a block-structured source device, the starting
block numbers of the files can also be printed. When the source device is
a directory-structured device, the listing includes the unused blocks and
the number of free blocks on the device.

DIR 4-54 @

TEK SPS BASIC V02 System Software

Using the Syntax Options:

Everything except the command name is optional. Any specification to
the left of the keyword TO describes the source. Any specification to the
right of the TO describes the destination device or file. Omitting all
source specifications lists the directory of the system disk. Omitting the
keyword TO and all the associated destination specifications, sends the
listing to the terminal.

Specifying the keyword EXC lists all files on the source device except
those files with the .SPS extension. (The EXC option is not supported by
DIR V02-01.)

The source device must be file-structured. If no device is named, the
system device is assumed. If the device is not the system device, its
driver must be in memory before the DIR command is executed. If no drive
number is included, zero is assumed.

When a file name is included in the source, only that file's information
(plus the list of empty blocks for a block-structured device) is listed.
Usually, though, the file name has a wild card asterisk (*) specification
in it in order to print a part of the directory. If an asterisk is used
in the name portion of the file name, every file with the specified extension
is printed. If an asterisk appears as the extension, every file with the
specified name, regardless of extension, is printed. Using an asterisk in
place of both the name and the extension has the same effect as omitting
the file name: the entire device directory is printed.

[If the optional WITH BLOCK keywords are present, the starting block
numbers (in octal) of the files are also printed. If the device is not
block-structured, a warning error is issued and the WITH BLOCK directive
is ignored.]

The optional keyword TO is used to send the listing to some device
other than the terminal. The device following the TO becomes the destination
device. If this device is omitted, output goes to the terminal. The driver
for the destination device must be in memory before the DIR executes. If
the drive number is omitted, zero is used.

A file name must be supplied if the destination device is file
structured. A file with the same name must not already exist on the device.

4-55 DIR

TEK SPS BASIC V~2 System Software

END

Example:

199 END

Syntax Form:

[line no.] END

Purpose:

To end program execution and return BASIC to idle mode.

Discussion:

The END command terminates a running program. It clears the Scheduler
stack and queue of all tasks, returning the monitor to idle mode. END
cancels the action of all WHEN statements and clears the clock queue. It
also disables any INPREQ or ONERR command conditions and CLOSEs any OPEN
files. However, any ATTACHed instruments remain ATTACHed. (Notice that,
unlike STOP, END CLOSEs files.)

END may appear anywhere in a program and may even be omitted from a
program.

Since it clears the Scheduler, executing END halts all tasks, not
just the one in which it appears. To halt the current task and only that
task, use an ABORT statement with the task number omitted. This terminates
only the currently executing task. (ABORT does not CLOSE files. If you
need to free peripheral logical unit numbers (PLUNs), also use an appropriate
CLOSE statement.) To terminate the program, yet leave the Scheduler intact
for processing pending interrupts, use RETURN instead of END. (The function
and parts of the Schedules are explained in Section 1.) .

END 4-56 @

TEK SPS BASIC V02 System Software

Examples:

1a0 EOF #3 GOTO 33a0
246 EOF #A*2 GOTO 25699

Syntax Form:

EOF (Nonresident)

[line no.] EDF #expression GOTO line number

Descriptive Form:

[line no.) EDF #plun GOTO line number

Purpose:

To designate a program line to receive control when data from a
peripheral file is exhausted.

Discussion:

Normally, when you attempt to read beyond the end of a file, a fatal
error is issued and the program (task) stops. However, you may not know
beforehand the length of a file. In such a case, the EOF (End Of File)
command may be used. After this statement has been executed, an attempt
to read past the end of a file causes program control to be transferred
to the line number specified in the command.

More than one EOF command per file may be executed. The last EOF
command executed determines the line number to which control is transferred
when the file is exhausted.

4-57 EOF

TEK SPS BASIC V02 System Software

Using the Syntax Options:

The peripheral logical unit number (PLUN) specified must be a file
OPENed FOR READ or UPDATE before the EOF command can be executed. The
keyboard (PLUN zero) may not be used.

Application Example:

As an example, the following program reads an unknown number of strings
from a file, and displays the number of strings read.

1110 OPEN #3 AS DK2: 11 STRING.FIL 11 FOR READ
1111 EOF #3 GOTO 9110
1211 C:l1
130 INPUT fl3 , A$
140 C:C+1
150 GOTO 130
9110 PRINT "NUMBER OF RECORDS READ IS";C
910 CLOSE fl3

In this sample program, line 1110 prepares a file called STRING.FIL
on disk drive two to be read. The file is assigned to PLUN 3. From then
on, only #3 need be typed to access this file.

Line 110 instructs BASIC to jump to line 9110 when the file has been
completely read. Line 120 sets the string counter to zero. The variable C
is used to keep track of the number of strings in the file.

Line 1311 does the reading. The INPUT statement reads one string from
the file, and puts it into string A$. (This program assumes the strings
were output by a PRINT command.) Statement 1411 increments the string counter
by one, thus counting each string as it is read. Statement 1511 directs
BASIC back to line 130 to read another string.

When all strings have been read, program control automatically jumps
to line 9110, as directed in the EOF statement. Here, at line 9110, the PRINT
statement displays the message "NUMBER OF RECORDS READ IS" and the value
of C. Line 910 closes the file, and dissociates PLUN 3 from the file.

EOF 4-58

TEK SPS BASIC V02 System Software

FOR

Exaaples:

10 FOR I = 0 TO 100
20 FOR p = -9 TO 10 STEP .5
30 FOR Q = X TO Z STEP -N

Syntax For•:

[line no.] FOR simple numeric variable = expression TD expression[STEP expression]

Descriptive For•:

[line no.] FDR index =initial value TD limit [STEP increment]

Purpose:

To provide a program loop when paired with a matching NEXT statement.

Discussion:

The FOR command, paired with a matching NEXT command, forms a program
control loop. The lines within the loop are repeated as many times as the
FOR statement parameters define, using the following algorithm:

When a FOR command is encountered, the parameter expressions are
evaluated and the index variable is set to the initial value (the first
expression). Control then passes to the command following the FOR command.
When the matching NEXT statement (the NEXT statement having the same index
variable) is executed, the increment value (default value of one) is added
to the index. The new index value is compared with the loop limit value
(the second expression in the FOR statement). If the new index value is
less than or equal to the limit (or greater than or equal to the limit if
the increment value is negative), control passes back to the command
immediately following the matching FOR statement. The loop repeats in this
manner until the index is greater than (or less than if the increment is
negative) the limit value.

4-59 FOR

TEK SPS BASIC V02 System Software

The loop always executes at least once, no matter what its parameters
are.

The expressions in the FOR statement are evaluated only on the first
pass through the loop. Thus if variables are used to define the increment
and limit values of the loop, alteration of these variables within the
loop will not change the range of the index variable. The index variable
itself may be altered, however, to change the duration of the loop.

Negative steps are allowed in FOR loops. In this case, the initial
value of the index variable should be greater than the limit value. If it
is not, the loop executes only once.

For each FOR command in a BASIC program, there must be a matching
NEXT command. Loops may be nested (more than one FOR loop in progress at
a time) but an inner loop must be contained completely within an outer
loop. Examples of legal and illegal FOR/NEXT loops follow.

LEGAL ILLEGAL

~1~ FOR I = 1 TO 5 ~1~ FOR I • 1 TO 5

~: FOR J = 7 TO 1 STEP -1 20 FOR J = 7 TO STEP -1
NEXT J 30 NEXT I

40 NEXT I 40 NEXT J

In the legal example, the inner J loop is completely contained within
the outer I loop. In the illegal example, the J loop extends outside the
outer I loop.

Two notes of caution are in order here. When very large numbers are
incremented by very small numbers, unexpected results can occur. For
example, the following FOR loop will never terminate.

FOR I = 1000000 TO 1000001 STEP .01

This is because the step value (.01) is insignificant in relation to the
range values. Also, because of binary number limitations, when the increment
value is a fraction, the loop may not repeat as often as you might expect.
For more information about binary number limitations, see Section 2 of
this manual.

FOR 4-60

TEK SPS BASIC V02 System Software

In order for a FOR/NEXT loop to execute in immediate mode,the entire
loop must be concatenated on one line. For example:

FOR L = 0 TO 9\PRINT M$(L)\NEXT L

prints the first ten items of string array M$.

NOTE

Use care if you include within a FOR/NEXT
loop any statements such as those that OVERLAY,
CHANGE, or DELETE lines of program text. If the
actions of a FOR/NEXT loop modify program
text, any line that is added, overlaid,
altered, or deleted must not have a line
number smaller than that of the FOR statement.
A fatal error results if it does.

Using the Syntax Options:

The simple numeric variable is the loop index. The FOR command and
its matching NEXT command must use the same variable name for the loop
index.

The first expression is the initial index figure -- the value of the
index the first time through the loop.

The second expression is the limit value -- the number to which the
index is compared.

The optional expression following the keyword STEP is the increment
value, the number added to the index at the end of each pass through the
loop. The increment may be negative if the initial value is greater than
the limit. When the increment is omitted, the step size is assumed to have
a value of one.

@ 4-61 FOR

TEK SPS BASIC V02 System Software

Application Example:

The following is a classic "bubble sort" routine that arranges the
numbers in array A in ascending order:

100 REM NUMERIC BUBBLE SORT
]10 FOR I=1 TO SIZ(A)-1
120 IF A(I)>=A(I-1) THEN 190
130 FOR J=I TO 1 STEP -1
140 IF A(J)>=A(J-1) THEN 190
150 T=A(J)
160 A(J)=A(J-1)
170 A(J-1)=T
180 NEXT J
190 NEXT I

The outer loop searches down through the array looking for a number
out of order, an A(I) less than an A(I-1). When one is found, its correct
place in the part of the array already sorted is sought. The inner loop
is used to "bubble" the A(I) value up through the sorted values until it
is in its correct place. A variable, T, temporarily holds the value of
each A(J) when the values of A(J) and A(J-1) are switched.

The bubble sort is a very slow sort routine algorithm. For a fast
sort routine, see the example shown in the minimum (MIN) function discussion.

FOR 4-62

TEK SPS BASIC V02 System Software

Examples:

FORMAT DK1:
FORMAT DY:VER
FORMAT DK2: 10
FORMAT DK1:20,VER

FORMAT (Nonresident)

FORMAT DY1:10,SINGLE,VER

Syntax Form:

{
DK} [expression[,SINGLE][, VER]]

[line no.] FORMAT DY [constant]: SINGLE[, VER)
VER

Descriptive Form:

[

number of directory segments [,SINGLE density]]
. DK . [, VERi fy]

[line no.] FORMAT {Dv}[drive number]: SINGLE density [,VERify]

VERify

Purpose:

To format either a DEC RK05 (or equivalent) hard disk or a DEC RX02
(or equivalent) dual-density floppy disk.

Discussion:

Each disk device driver expects the disk to be formatted in a prescribed
manner (e.g., each sector is expected to contain a particular header
followed by a data space of set size.) These prescribed formats are discussed
in the Peripheral Drivers manual. Although most disks are factory-formatted,
the FORMAT command allows you to format two types of disks: the DEC RK05
(or equivalent) hard disk and the ·DEC RX02 (or equivalent) dual-density
floppy disk.

@ 4-63 FORMAT

TEK SPS BASIC V02 System Software

The FORMAT command also allocates room for the device directory and
initializes the disk, logically zeroing the directory and data areas. This
means that a disk which has been formatted by the FORMAT command does not
need to be initialized by the ZERO command before it is used for the very
first time. However, factory-formatted disks do need to be initialized by
ZERO.

~
The FORMAT command is intended for use on
a blank disk. It initializes the disk after
formatting it, so any data on the disk is
effectively erased and cannot be recovered.

Using the Syntax Options:

This command only formats disks that use the DK Hard Disk driver
(DK.SPS) or the DY Dual-Density Floppy Disk driver (DY.SPS). The appropriate
driver must be in memory when FORMAT executes. If the drive number is
omitted, the disk in drive 0 is formatted.

NOTE

The DY driver is not available in TEK SPS
BASIC V02-01. Also, FORMAT V02-01 does not
format an RX02 (or equivalent) disk.

The optional expression determines the number of directory segments
allocated. The expression, when evaluated and rounded to an integer, must
be between 1 and 31, inclusive. If this number is omitted, a default number
of directory segments are allocated. The default is 8 for the DK driver
and 4 for the DY driver.

The space allotted for the directory must be large enough to hold the
names of all the files to be stored on the disk. If most of the files are
large (ten blocks or more), the default value may suffice. However, if
most of the files are small (about two blocks in length), you may need
several times more than the default number of directory segments. For more
guidance on how many directory segments to allocate, see the Peripheral
Drivers manual.

FORMAT 4-64

TEK SPS BASIC V~2 System Software

If the device is DY, the disk can be formatted for either double-or
single-density data storage. Specifying the keyword SINGLE formats the
disk for single-density. Omitting it formats the disk for double-density.
The keyword is ignored if used with DK.

The command can also verify the disk. When the optional keyword VER
is used, the disk is checked for bad blocks after the formatting is done.
If any bad blocks are found, their block numbers (in octal) are printed
on the terminal. (Even if bad blocks are found, the disk will still be
initialized, but a P18 error is issued after the command finishes executing.)

As an example, the single statement:

FORMAT DK1:15,VER

formats the hard disk in drive 1, allocates 15 directory segments, checks
the disk for bad blocks, and initializes it.

@ 4-65 FORMAT

TEK SPS BASIC V02 System So~ware

GET (Ronresident)

Examples:

150 GET A1 FROM #3,A$
160 GET B$,C$ FROM #17,"SCAN","GRAT"
170 GET /11 FROM /IJ, "FAS"
180 GET #3 FROM #1
190 GET A$ FROM @0,TA,SA
240 GET AA$ FROM fl3; 4, "SET'?"

Syntax Form:

lex press ion

[line no.] GET {

variable }[{variable }] array array
wavefoIT11 ' wavefoIT11 • • • str~ng variable {;} str~ng variable
string array string array

{ #expression[;expression] [,string expression] ••• }
FROM @ . . [.] express ion, express ion , express ion

Descriptive Form:

#target pll.Jl to receive data

[line no.] GET {:::: :::~: }[{·}{::~:: ::::;:: }] ...
target string variable ; target string variable
target string array target string array

{
#source ilun [;secondary address] }

[,driver-dependent specification of data or status
FROM info Imation to be obtained frC111 instrunent] •••

@IEEE 488 interface number, talk address [,secondary address]

GET 4-66 @

TEK SPS BASIC V02 System Software

Purpose:

To acquire data or status information from a specified instrument.

Discussion:

The GET command fetches data or status information from an instrument
and stores it in variables in memory, or sends it directly to a peripheral
storage device.

The GET command is divided into two parts: the target and the source.
The target may be a single peripheral logical unit number (PLUN) or a list
of variables. If the target is a PLUN, data acquired from the instrument
is sent directly to the peripheral device. This method of acquisition is
known as "data-logging" and allows very rapid data acquisition. Not all
instrument drivers support data-logging. When used, only one PLUN can
appear in a GET statement. The PLUN must be OPEN for WRITE at the time the
GET statement is executed.

If the target variable is a simple numeric variable and the GET
acquires a waveform or array, depending on the instrument driver, the
target variable may be auto-dimensioned to an array of the appropriate
length and type.

The second portion of the command indicates the source instrument by
either the instrument logical unit number (ILUN) of the ATTACHed instrument
or the IEEE 488 interface number followed by an address. If the source is
indicated by an ILUN, one or more source strings may follow to communicate
driver-dependent information. Usually a one-to-one relationship exists
between a source string and a target variable. Each instrument driver
recognizes a different set of strings. For any instrument, only those
strings that its driver responds to should be used. Complete documentation
of the driver-dependent strings that a driver responds to can be found in
the manual for the specific instrument driver used.

When the GET command executes, the instrument must be on-line and the
required instrument driver must be LOADed in memory. Also, either the
instrument must be ATTACHed to associate it with the instrument logical
unit number (ILUN), or the communication must be through the low-level
IEEE 488 Interface driver, GPI.SPS, which is discussed in Section 6.

4-67 GET

TEK SPS BASIC V02 System So~ware

Using the Syntax Options:

No instrument driver uses all the legal syntax variations of the GET
command. The manual for each driver shows which of the forms are allowed
by that driver.

If the target is an expression following a pound sign(#), a peripheral
logical unit number (PLUN) is specified and the acquired data will be sent
directly to that peripheral.

If a list of one or more target variables is used, the data or
information is stored in the controller memory. The list may include numeric
variables, arrays, waveforms, string variables, and/or string arrays
depending on what the particular driver allows. Multiple targets are
separated by commas. Compound targets, whicn are used by the high-level
IEEE 488 Instrument driver, INS.SPS, contain semicolons. They allow the
transfer of composite data forms such as ASCII and numeric instrument
settings. (INS.SPS is not supported by TEK SPS BASIC V02-a1.)

The specification following the keyword FROM designates the source
instrument. If a pound sign (#) is used, the expression after it is the
instrument logical unit number (ILUN) of the ATTACHed instrument. The
optional semicolon and expression is used by the high-level IEEE 488
Instrument driver, INS.SPS, to specify the secondary address of the source
IEEE 488 instrument. (INS.SPS is not supported by TEK SPS BASIC V02-01.)
The optional string expressions are the driver-dependent strings which
determine what data or status information is acquired.

If an at sign (@) is used, the expression following it is the number
of the IEEE 488 interface through which the data or information is acquired.
When the at sign is specified, the low-level IEEE 488 Interface driver,
GPI.SPS is used. The expressions after the interface number are the primary
talk address and the optional secondary address of a device connected to
the IEEE 488 Interface Bus. See Section 6 for complete documentation.

GET 4-68

TEK SPS BASIC V02 System Software

GETBLK (Nonresident)

Examples:

15@ GETBLK DK1: 11 TEST.DAT",3,B(@:255)
46@ GETBLK X,A
32@ GETBLK DX:J*2,A$

Syntax Form:

[line no. J GETBLK [device name[constant]:] [string ex press ion,] . I string variable I
ex pr ess1on,

array

Descriptive Form:

[line no.J GETBLK [device name[drive number]:][file name, l

Purpose:

!target string variable I
block number,

target array

To obtain the contents of a block from a directory-structured peripheral
device.

Discussion:

The GETBLK command obtains a block of data from a directory-structured
device. (One block contains 256 16-bit words of data. One word can hold
one 16-bit integer or two 8-bit ASCII characters.) The block obtained can
be specified as an absolute block number of the device or as a block
relative to the start of a file. Depending on the argument used, the data
is returned in either a 256-element array or a 512-character string.

@ 4-69 GETBLK

TEK SPS BASIC V02 System So~ware

Using the Syntax Options:

The device must be directory-structured. If no device is named, the
system device is used. If the named device does not use the system device
driver, its driver must be LOADed before GETBLK executes. If the drive
number is omitted, zero is assumed.

Which block of data is obtained is determined by the expression and
the presence or absence of a file name. The expression, which must evaluate
to a non-negative number, is rounded to an integer. If the file name is
omitted, that integer is used as an absolute block number of the device
and its contents are obtained. If a file name is given, that integer is
added to the file's starting block number to produce the number of the
block returned. In either case, the resulting block number must be in the
range from zero to the largest block number of the device, inclusive.

The contents are returned in either an array or a string, depending
on which is specified. If an array is used, it must be dimensioned or zoned
to 256 elements to exactly hold the contents of the block. The array may
be either floating-point or integer, but you can save memory space by
specifying an integer array. If a string variable is used, the contents
are returned as a 512-character string.

GETBLK 4-70

Examples:

GETFREE Y
15 GETFREE S,X

Syntax Form.:

TEK SPS BASIC V~2 System Software

GETFREE (Ronresident)

[line no.] GCTFRE variable[,floating-point variable]

Descriptive Form:

[line no.] GETFREE target for amolJ"lt of free memory
[,target for amolJ"lt of free extended memory]

Purpose:

To obtain the amount of free memory available.

Discussion:

GETFREE obtains the number of words of controller memory that is free

of free memory, it compresses the string storage area in order to get the
most free memory available. Since this is a nonresident command, the number
of words of memory needed for the GETFREE command reduces the total of
free memory by that amount.

4-71 GETFREE

TEK SPS BASIC V~2 System So~ware

Using the Syntax Options:

The number of words of free memory is returned in the first argument,

If the optional argument is used
memory systems, a zero is returned. (GETFREE V~2-~1 does not support the
optional second argument.)

Application Example:

Suppose you have a choice of two routines to do the same thing. One
is fast, but requires a large amount of memory; the other is slow, but
uses much less memory. Assuming you want to use the faster routine if
possible, you put that in your program's overlay section. Then using the
GETFREE command to determine the available free memory space, your program
can OVERLAY the slower routine if necessary.

In the example below, N is the target value for the amount of free
memory; Wis the number of words the fast routine requires to execute.
After finding N, the program RELEASEs the GETFREE command to reclaim that
space. Then it compares N, plus S, the size of the GETFREE command, with
W. Thus, only if the remaining memory is too small does it OVERLAY the
fast routine with the slow routine. The fast routine in the overlay area
(lines 1111111 to 1999) is DELETEd before the slow routine is brought in
because the slow routine might not OVERLAY all the lines of the fast
routine.

5511 GETFREE N
5611 RELEASE "GETFREE"
5711 IF W<N+S THEN 6111
5811 REM DELETE FAST ROUTINE; OVERLAY THE SLOW, SMALL ROUTINE
5911 DELETE 1111111,1999
61111 OVERLAY DX1: 11 SMALL"
6111 REM CONTINUE

Normally if line 5711 were true, the line it transfers control to would
not be a REM statement but an executable statement beyond the section to
be skipped. A REM statement was used here just to demonstrate a method.

GETFREE 4-72

TEK SPS BASIC V~2 System So~ware

GETLINE (Nonresident)

Examples:

5a GETLINE Y
6a GETLINE A(I,J+K)

Syntax Form:

[line no.] GETLIN variable

Descriptive Form:

[line no.] GETLINE target variable

Purpose:

To obtain the line number of the currently executing line.

Discussion:

GETLINE is used to determine where program control is when the command
is executing. GETLINE statements are especially useful when you are debugging
a program, since it allows you to follow the flow of program execution by
printing the returned line numbers on the terminal or by storing them in
an array.

If GETLINE is issued in the immediate mode, zero is returned.

Application Example:

To follow program flow from the terminal, you can concatenate two
commands like:

GETLINE L\PRINT L

to each possible destination of a branch statement. Here the line number
is returned in L. For example:

4-73 GETLINE

TEK SPS BASIC V02 System Software

100 GOSUB N OF 1000,2000
110 X=Y+Z\GETLINE L\PRINT L

49a IF X> 900 THEN 4455

1000 X=SIN(T*W)\GETLINE L\PRINT L

2000 X=SIN(X)\GETLINE L\PRINT L

4455 X:X/CF\GETLINE L\PRINT L

would print the line number of the statement jumped to every time there
was a branch.

To follow the change in a variable along with the line number where
the change occurred, use a similar technique. For example, to follow the
changes in X concatenate something like:

GETLINE A(N)\B(N):X\N:N+1

to the end of each line that changes X. Here, the line number and the X
value are stored in arrays, A and B, that have been previously dimensioned
to the same size.

After running the program, executing:

FOR I:0 TO SIZ(A)-1\PRINT A(I) ,"X=";B(I)\NEXT I

would print the line numbers and their corresponding X values on the
terminal.

GET LINE 4-74

TEK SPS BASIC V02 System Software

Examples:

18G GETLOC "17765G",P
19G GETLOC X*2,M,0,6

Syntax Form:

GETLOC (Nonresident)

[line no.] GETLOC ,floating-point variable[,expression,expression] l expression I
string expression

Descriptive Form:

l decimal address I
[line no. l GETLOC ,target variable for contents of address

Purpose:

octal address

[,low-order bit number for obtaining segment of contents,
high-order bit number]

To allow examination of the contents of any controller memory location
or valid device or register address.

Discussion:

The GETLOC command is used by the PATCH files. This command is not
intended for general use.

The GETLOC command returns the contents of a controller memory location
or a valid interface address (explained below). The contents of the specified
address are returned in a floating-point variable. An even address references
a word (16 bits); an odd address, a byte (8 bits). Optionally, a segment
of the requested word or byte address can be examined.

4-75 GETLOC

TEK SPS BASIC V02 System So~ware

Valid Addresses:

Standard Me•ory Systems. One word (16 bits) can produce 216 unique
addresses -- 0 to 177777 octal. With byte addressing, this means you can
reference one of 64K distinct bytes (32K words) with a 16-bit address.
However, the highest 4K possible word addresses are reserved as peripheral
address space, leaving a maximun of 28K word addresses to use for controller
memory locations. Thus, for GETLOC, the valid addresses are the controller
memory locations (G to 157777 octal) plus those addresses in the peripheral
address space to which interfaces are strapped.

If the specified address is not valid for your system or controller,
a fatal error is issued.

Using the Syntax Options:

The first argument is the examined address. If the argunent is a
string, it must be the desired octal address. A string expression should
evaluate to a string of no more than eight octal digits. However, in
standard memory systems only the lower 16 binary digits (bits) of the value
represented by the string are used as the address.

If the argunent is nuneric, it must
be the decimal equivalent to the desired address. A numeric expression is
converted to binary and, if necessary, truncated to a 24-bit binary integer.
Again, in standard memory systems only the lower 16 bits are used as the
address; In
any case, if the address is even, an entire 16-bit word is referenced, if
the address is odd, only an 8-bit byte.

The second argument must be a floating-point variable. After execution
of the command, it contains the contents of the specified address as a
floating-point nunber.

GETLOC 4-76 @

TEK SPS BASIC V02 System Software

The optional third and fourth arguments are used to examine the
contents of a segment of the specified address. The third argument designates
the low-order bit number of the desired memory word or byte; the fourth,
the high-order bit number. The bits are numbered from zero. The range of
the segment must be ~ to 15 for an even (word) address and ~ to 7 for an
odd (byte) address.

4-77 GETLOC

TEK SPS BASIC V02 System Software

GETPRIORITY (Bonresident)

Examples:

150 GETPRI K
130 GETPRI K(VAL(A$))

Syntax Form:

[line no.] GETPRI variable

Descriptive Form:

[line no.] GETPRIORITY target variable

Purpose:

To obtain the priority of the task being executed.

Discussion:

Statements are executed on the basis of their assigned or default
priority value. (The Scheduler's priority-based execution process is
discussed in Section 1.) Assigned priorities range from 0 (lowest) to 126
(highest). BASIC runs at a default priority of 50, but the PRIORITY command
can be used to alter the system priority. Also, external interrupt routines
and routines scheduled by the SCHEDULE, RESCHEDULE, and WHEN commands can
have different priorities, either by specification or default.

When the GETPRIORITY command executes, it returns the system priority
in the specified variable. (Since the system priority is the priority of
the currently executing statement, a GETPRIORITY statement returns the
priority at which it executes.) This information can be used when setting
interrupt routine priorities.

GET PRIORITY 4-78

TEK SPS BASIC V~2 System Software

Application Example:

This command can be used to insure that an interrupt routine executes
at a higher priority than the current system priority. First, execute the
GETPRI command, then set the interrupt priority one higher than the returned
value. For example:

1~~ GETPRI N
11~ WHEN #1 HAS A$ AT N+1 GOSUB 1~~~

4-79 GETPRIORITY

TEK SPS BASIC V02 System So~ware

GOSUB

Examples:

200 GOSUB 1000
500 GOSUB X*2 OF 1000,2200,1200,1500

Syntax Form:

!line number
[line no.] GOSUB

expression OF line number[,line number]

Descriptive Form:

!line number
[line no.] GOSUB

line number selector OF line number

Purpose:

... I

To transfer program control either unconditionally to a single
subroutine or to one of a list of subroutines.

Discussion:

A subroutine is a sequence of statements terminated by a RETURN
statement. Subroutines are useful when certain program actions must be
repeated several times in a program. The program segment can be written
once and then activated (called) by any part of the main program any number
of times. A subroutine may call another subroutine, or even call itself.
The RETURN statement signals the end of the subroutine. Several RETURN
statements may appear in a subroutine.

The GOSUB command calls (transfers control to) the subroutine. When
the subroutine is finished executing (a RETURN command is encountered),
program control returns to the next command following the GOSUB. (If a
statement follows the GOSUB on the same line as the GOSUB, control returns
to it, not to the next line of code.)

GOSUB 4-80 @

TEK SPS BASIC V02 System Software

GOSUB calls a subroutine by transferring program control to a line
number which is assumed to be the first line of the subroutine. The transfer
can be either an unconditional GOSUB to a single, specified line number
or a computed GOSUB to one of a list of line numbers. When the computed
GOSUB is used, the current value of the expression is computed and program
control transfers to the line whose position in the list corresponds to
that value. For example, if the expression evaluates to 2, control passes
to the second line number in the list. So in example line 500 above, if
the expression X*2 equals 2, control goes to the subroutine beginning at
line 2200. When the current value of the expression is greater than the
number of line numbers in the list or less than 1, the GOSUB is ignored
and control passes to the statement following the GOSUB command. No warning
error is issued.

The line number specified or selected by the value of the expression
must be the line number of a statement in memory when the GOSUB command
executes.

Using the Syntax Options:

When only a line number is specified, program control is unconditionally
transferred to the subroutine indicated by that line number.

When an expression and the keyword OF are specified, the transfer of
program control is to one of a list of line numbers (subroutines). The
value of the expression, when evaluated and rounded to an integer, determines
which subroutine is called. If the value is in the range from 1 to n where
n is the number of line numbers in the list, control transfers to one of
these line numbers -- the line number whose position corresponds to that
value. However, if the value is out of range (i.e., less than 1 or greater
than n) control passes to the statement following the GOSUB.

4-81 GOSUB

TEK SPS BASIC V~2 System Software

GOTO

Examples:

50~ GOTO 675
1~0 GOTO X/2 OF 50~,450,780

Syntax Form:

lline number
[line no.] GOTO

expression OF line number[,line number]

Descriptive Form:

... \

lline number I
[line no.] GOTO

line number selector OF line number list

Purpose:

To transfer program control either unconditionally to a single,
specified line number or to one of a list of line numbers.

Discussion:

Normally, BASIC statements execute in the order of their line numbers
starting with the lowest line number in memory. The GOTO statement overrides
the normal flow of program execution, transferring program control to a
line other than the next sequential line of text. The transfer can be
either an unconditional GOTO to a single, specified line number or a
computed GOTO to one of a list of line numbers. When the computed GOTO is
used, the current value of the expression is computed and program control
transfers to the line whose position in the list corresponds to that value.
For example, if the expression evaluates to 3, control passes to the third
line number in the list. In example line 1~~ above, if the expression X/2
equals 3, control goes to line 780. When the current value of the expression
is greater than the number of line numbers in the list or less than 1, the
GOTO is ignored and control passes to the statement following the GOTO
command. No warning error is issued.

GOTO 4-82 @

TEK SPS BASIC V02 System So~ware

The line number specified or selected by the value of the expression
must be the number of a statement in memory when the GOTO command executes.

Using the Syntax Options:

When only a line number is specified, program control is unconditionally
transferred to that line number.

When an expression and the keyword OF are specified, program control
transfers to one of a list of line numbers. The value of the expression,
when evaluated and rounded to an integer, determines where program control
goes. If the value is in the range from 1 to n where n is the number of
line numbers in the list, control transfers to one of these line numbers
-- the line number whose position corresponds to that value. However, if
the value is out of range (i.e., less than 1 or greater than n) control
passes to the statement following the GOTO.

Application Example:

A computed GOTO can be used in a dispatch routine that sends control
to one of several places in the program depending on the current value of
an expression. For example:

100 PRINT "ENTER YOUR CHOICE, 1 TO 5"
110 INPUT N$
120 GOTO ASC(N$)-ASC("0") OF 500,550,700,400,200
130 PRINT 11 NUMBER OUT OF RANGE, TRY AGAIN"
140 GOTO 100

Here the transfer depends on what character is entered from the
keyboard. By allowing the number to be INPUT as a string (line 110), a
nonnumeric response will not cause an error. Then, by using the ASCII
function (ASC) in the expression in line 120, only a correct choice lets
the program continue beyond line 140. When a string beginning with a
1,2,3,4, or 5 is entered, transfer is made to one of the five line numbers
in the list (line 120). With any other character the value of the expression
is out of range and control passes to line 130. There, a message is printed
and then the unconditional GOTO (line 140) sends control back to line 110
where another response is solicited.

@ 4-83 GOTO

TEK SPS BASIC V~2 System So~ware

Examples:

95~ HASH A$(K),LL,P(K)
77~ HASH "~292~" , 197, J

Syntax Form:

HASH (Bonresident)

[line no.] HASH string expression,expression,variable

Descriptive Form.:

[line no.] HASH key, table size, target variable for index

Purpose:

To convert a string (hash key) to an index number that can be used
to access an indexed list such as an array or a record I/O file.

Discussion:

The HASH command can be used when inserting or retrieving data stored
in an indexed list such as an array or a record I/O file. It provides a
tool that allows faster access to the data stored in the list than can be
achieved by a simple search of the list.

The concept of hashing is this: Each unit of data (i.e., each array
element or each file record) is assigned its own key, such as an I.D.
number. This key is converted by a hashing function (in this case, the
HASH command) to an index that points to a position in the list. Then the
index is used to store the data unit. To retrieve the data, the same hashing
function (i.e., the same HASH statement) is used to convert the key to the
ind ex again •

HASH 4-84 @

TEK SPS BASIC V02 System Software

HASH always returns the same index for a given key and indexed-list
length. However, HASH may map more than one key to the same index number.
For this reason, when adding an item to the list, check the contents of
the position pointed to by the index to be sure that it is empty. Likewise,
when retrieving data, check that the data unit pointed to is the one sought.

If, when adding to an indexed list, the index returned by HASH points
to a list position that is already in use, the data should be stored using
another method. One of the simplest is to put the data in the next empty
position. (See the example routines.) But, whatever is done in this case,
the same method must be used to retrieve the data when the index does not
point to the desired item.

The HASH command uses an algorithm equivalent to this BASIC routine
where H$ is the hash-key string, N is the number of data units (elements
or records) in the indexed list, and I is the index.

110 I=0
120 FOR P=1 TO LEN(H$)
130 I=I+ASC(SEG(H$,P,P))*2A(P-1)
140 NEXT P
150 IF I>=N THEN I=I-ITP(I/N)*N
160 RETURN

The index number returned is modulo N (i.e., 0 ~I~ N-1). Notice that the
longer the hash key is, the longer the execution time will be.

This algorithm results in a reasonably even distribution of index
numbers. The distribution is best when the number of list items (possible
indexes) is a prime number. (For more information on hashing and hashing
functions see a book such as D.E. Knuth's The Art of Computer Programming
Volume III.)

NOTE

The HASH command is not available
with TEK SPS BASIC V02-01.

4-85 HASH

TEK SPS BASIC V02 System Software

Using the Command Syntax:

The string expression specifies the hash key. Each data unit (array
element or file record) should have its own unique key.

The expression is the number of data units in the indexed list (the
number of elements in the array or the number of records in the file).
When evaluated and rounded to an integer, it must be greater than zero.

The index that the hash key maps to is returned in the variable.

Application Exaaple:

Here are two routines that use HASH to determine which record I/O
file data record to write or to read. Since each data record consists of
a 67 character string (20 for a name, 40 for an address, and 7 for a phone
number) the data file is created by a statement like:

DEFINE DX:"ADDR.DAT" AS STG 67 WITH 53

In these routines, the hash key for each data unit (record) is the
name stored with the other information. The table size used in the HASH
statement is the number of records in the file, 53.

HASH

100 REM STORE A RECORD USING HASH
110 REM
120 REM OPEN THE FILE
130 OPEN 111 AS DX1:"ADDR.DAT" FOR UPDATE
140 REM GET NAME
150 PRINT "ENTER: FIRST NAME, LAST NAME"
160 INPUT NA$
170 REM USE NAME AS HASH KEY
180 HASH NA$,53,I
190 REM CHECK FOR EMPTY RECORD
200 READO #1<I>,S$=67
210 IF ASC(SEG(S$,1,1))=0 THEN GOTO 360
220 REM SEARCH FORWARD TO END OF FILE FOR EMPTY RECORD
230 FOR N=I+1 TO 52
240 READO #1<N>,S$=67
250 IF ASC(SEG(S$,1,1))=0 THEN GOTO 340
260 NEXT N

4-86

TEK SPS BASIC V02 System Software

27a REM SEARCH BACKWARD TO BEGINNING OF FILE FOR EMPTY RECORD
28a FOR N=I-1 TO 0 STEP -1
29a READU #1<N>,S$=67
300 IF ASC(SEG(S$,1,1)):0 THEN GOTO 340
310 NEXT N
320 PRINT 11 FILE FULL"
330 GOTO 440
340 I=N
350 REM GET REST OF INFORMATION
360 PRINT "ENTER: STREET ADDRESS"
37a INPUT A1$
38a PRINT "ENTER: CITY, STATE, ZIP"
39a INPUT A2$
400 PRINT "ENTER: PHONE NUMBER
410 INPUT PH$
420 REM WRITE RECORD IN FILE
430 WRITEU #1<I>,NA$:20,A1$=20,A2$=20,PH$=7
440 CLOSE #1
450 RETURN
500 REM
510 REM READ A RECORD USING HASH
520 REM
530 REM OPEN THE FILE
540 OPEN 111 AS DX1 :"ADDR.DAT" FOR UPDATE
550 REM GET NAME
56a PRINT "ENTER: NAME EXACTLY AS STORED"
570 INPUT NA$
58a REM USE NAME AS HASH KEY
59a HASH NA$,53,I
600 REM CHECK FOR A MATCH
610 READU #1<I>,S$=67
620 IF TRM(SEG(S$,1,20))=NA$ THEN GOTO 77a
630 REM IF NAME DOESN'T MATCH:
640 REM SEARCH RECORDS TO END OF FILE FOR A MATCH
650 FOR N=I+1 TO 52
660 READU #1<N>,S$=67
67a IF TRM(SEG(S$,1,20)):NA$ THEN GOTO 770
68a NEXT N
690 REM SEARCH BACKWARD TO BEGINNING OF FILE
700 FOR N=I-1 TO 0 STEP -1
710 READU #1<N>,S$=67
720 IF TRM(SEG(S$,1,20))=NA$ THEN GOTO 770
730 NEXT N

4-87 HASH

TEK SPS BASIC V~2 System So~ware

740' PRINT NA$;" NOT IN FILE"
750' GOTO 810'
760' REM PRINT CONTENTS OF RECORD
770' PRINT NA$
780' PRINT TRM(SEG(S$,21,40'))
790' PRINT TRM(SEG(S$,41,60'))
80'0' PRINT SEG(S$,61,67)
810' CLOSE #1
820' RETURN

The first routine (lines 10'~ to 450') stores the data records. If the
index (record ntllllber) returned by HASH points to an empty record, the data
is written in that record. If the index points to a nonempty record, the
routine searches for the next empty record and writes the data there. The
search is made from the individual record to the end of the file. If no
empty record is found in this first search, a second search is made from
the indicated record to the beginning of the file. Obviously if no empty
record is found on the second search, the file is full.

As you can see, as the file begins to fill, the speed advantage of
hashing over a sequential search is lost. For that reason, this technique
is seldom used with densely filled files. Instead, HASH is used to access
a hash table that is filled with pointers to where the data is stored.
Data records with hash keys that map to the same hash-table index are
linked together. However, such an example is beyond the scope of this
manual.

The second routine (lines 50'0' to 820') retrieves the information from
the file. The same kind of logic is used to find the desired record as was
used to store the record, except this time a particular name is sought
instead of an empty record. Thus, if the record pointed to does not contain
the desired name, a serial search is made first forward and then backward
through the file. But, the given name must be exactly as it is stored or
no match will be found.

HASH 4-88 @

TEK SPS BASIC V02 System Software

HOOK (Nonresident)

Exam.pies:

HOOK
100 HOOK DX1 :

HOOK DK: FOR RT11 "MONITR.SYS"

Syntax Form:

[line no.] HOOK [device name[constant]:] [FOR RT11 string expression]

Descriptive Form:

[line no.] HOOK [name of bootable device[drive number]:] [FOR RT11 file name]

Purpose:

To install either the SPS or the DEC RT-11 bootstrap program in the
bootstrap blocks of the specified disk.

Discussion:

The SPS bootstrap program is an absolute loader for a file containing
Resident BASIC, the software initialization routines, and the driver for
the HOOKed device. This file has a name with the form SPSxx.LDA, where xx
is the system device after that file is loaded (e.g., SPSDK.LDA is the
BASIC monitor file with DK as the system device). Such files are called
SPS .LDA files.

The HOOK command (without the FOR RT11 option) installs (writes) the
appropriate SPS bootstrap program into the bootstrap block of the disk in
the specified device. For example:

HOOK DX1:

installs the absolute loader for SPSDX.LDA on the floppy disk in drive 1.

4-89 HOOK

TEK SPS BASIC V02 System Software

After a peripheral device has been HOOKed, the BOOT command or the
ROM bootstrap loader in the controller may be used to bootstrap that device.
However, installing the SPS bootstrap program on a peripheral device does
not automatically assure that TEK SPS BASIC will be loaded the next time
that device is booted as the system device. The appropriate file (e.g.,
SPSDK.LDA, SPSDX.LDA, SPSDL.LDA, or SPSDY.LDA) must be present on the disk
before BASIC can be loaded.

[The DEC RT-11 bootstrap program loads a file with the ".SYS" file
name extension that contains the DEC RT-11 Monitor. This file must be on
the named device before the DEC RT-11 bootstrap program can be installed.
The HOOK command with the FOR RT11 option writes the first blocks of the
.SYS file into the bootstrap blocks of the disk, installing the DEC RT-11
bootstrap program.]

The HOOKQ command installs a general bootstrap program that loads any
.LDA file on the disk. See the HOOKQ command for more discussion.

Using the Syntax Options:

The device being HOOKed must be one of the bootable devices such as
DX, DK, DL, or DY. When no device is named, the system device is used.
Unless the device is DX or DK, the peripheral overlay file for that device
(e.g., DL.OVL or DY.OVL) must be on either the system device or the disk
being HOOKed. If the device being HOOKed does not use the system device
driver, its driver must be LOADed into memory before the HOOK command
executes. If the device number is omitted, zero is assumed.

NOTE

The DL and DY drivers are not supported
by TEK SPS BASIC V02-01.

[When the optional keywords FOR RT11 are used, the DEC RT-11 absolute
loader is installed. This feature allows you to recover the DEC RT-11
Monitor on a disk after you have HOOKed it for TEK SPS BASIC. The appropriate
file name with the .SYS extension must follow the keywords FOR RT11. The
named file should be the DEC RT-11 Monitor file. Its name depends on the
version of so~ware. For versions 1 and 2 of the DEC RT-11 Monitor, the
file is "MONITR.SYS"; for version 3, the file is "RKMNSJ.SYS". Omitting
this option installs the proper SPS absolute loader on the disk.]

HOOK 4-90

Examples:

HOOKQ
HOOKQ DX1:
HOOKQ DK4:

Syntax Form:

TEK SPS BASIC V~2 System Software

HOOKQ (Ronresident)

[line no.] HOOKQ [device nane[constant):)

Descriptive Form:

[line no.] HOOKQ [nane of beatable device[drive number):)

Purpose:

To install, on a disk, a bootstrap program which loads files that
have the .LDA extension.

Discussion:

The bootstrap program (absolute loader) is installed in the bootstrap
blocks of the designated disk. After a bootstrap is installed by HOOKQ,
the BOOT command or the ROM bootstrap loader in the controller can be used
to bootstrap the device. When the device is booted, a prompt (•) is printed
on the terminal. Any file on the specified device with an .LDA extension
can then be loaded by entering its file name followed by a carriage return.
When entering the file name, do not include the .LDA extension.

The bootstrap program does not provide Rubout or Control-U capabilities.
If you make a mistake while typing the file name, enter a carriage return.
The message "FILE NOT FOUND" will be printed followed by another prompt
for the file name.

4-91 HOOKQ

TEK SPS BASIC V02 System So~ware

Using the Syntax Option:

The specified device must be one of the bootable devices such as DX,
DK, DL, or DY. When no device is named, the system device is assumed.
Unless the device is DX or DK, the peripheral overlay file for that device
(e.g., DL.OVL or DY.OVL) must be on either the system device or the disk
being HOOKQed. If the specified device is not the system device, its driver
must be LOADed into memory before the HOOKQ command executes. When the
drive number is omitted, the disk in drive 0 is HOOKQed.

HOOKQ

NOTE

The DL and DY drivers are not supported
by TEK SPS BASIC V02-01.

4-92

TEK SPS BASIC V02 System Software

Examples:

100 IF A=B THEN GOTO 500
120 IF A$ = "STOP" THEN STOP
130 IF Q*5<=P/L THEN 450

Syntax Form:

IF

[line no.] IF relational operator I expression l
string expression

I statement I
THEN

line number

Purpose:

I expression

string expression

To conditionally transfer program control to a specified line, or
conditionally execute a statement.

Discussion:

When an IF statement is executed, the two expressions (or two string
expressions) are evaluated and then compared with each other. Depending
on the relational operator used, the result is either true or false. If
the result is true, the statement following the keyword THEN is executed
or if only a line number is specified, a GOTO to that line number is
performed. If the result is false, the next sequential statement is executed.
The next statement may either be concatenated to the same line of text as
the IF statement or be the next line of text.

The relationship operators used to determine if the condition is true
or false are:

4-93 IF

TEK SPS BASIC V~2 System So~ware

Operator Meaning

= equal
< less than
<= or =< less than or equal
> greater than

>= or => greater than or equal
>< or <> not equal

Strings are compared, character for character, from left to right.
The first inequality determines the result. The string with the higher
ASCII value at that character is considered the larger. Example: SUNRISE
and SUNNY; since R has a larger ASCII value than N, SUNRISE is larger than
SUNNY. If the two strings are of unequal length, and the end of the shorter
string is found before an inequality, the shorter string is assumed to be
the smaller (less). Example: RUN and RUNNING; RUN is less than RUNNING.
(Appendix A contains the complete ASCII character set and the corresponding
decimal values of each character.)

Using the Syntax Options:

The two expressions must be of the same type: either both numeric
expressions or both string expressions. Only single variables may be
compared. Thus, array elements can be specified, but not arrays.

If a command is specified after the keyword TBEB, it can be any
resident or nonresident command -- including another IF command. When a
line number is specified, it must be the number of a statement in memory
when the IF command executes.

App1ication Example:

Since any statement can follow the THEN in an IF statement, several
IF statements can be strung together to perform a logical AND operation.
That is, if the first expression is true, and if the second expression is
true, ••• and if the nth expression is true, then and only then perform
the statement following the final THEN. Otherwise, go to the next sequential
statement.

IF 4-94

TEK SPS BASIC V02 System Software

Consider the following IF statement:

100 IF Y=X THEN IF Y=Z THEN 550

This statement transfers program control to line 550 if the variable Y is
equal to both the variables X and Z.

To perform a logical OR operation, separate IF statements can r-- ~w

one another sequentially. For example:

100 IF Y:X THEN 550
110 IF Y=Z THEN 550

These statements transfer program control to line 550 if Y equals either
X or Z.

4-95 IF

TEK SPS BASIC V~2 System Software

!GROBE (Nonresident)

Examples:

150 IGNORE #N,TASK 2
170 IGNORE #3,A$
900 IGNORE 115
340 IGNORE @1 , 11 SRQ"
57a TGNORE TA~K ~
28!1 IGNORE ALL

Syntax Form:

[line no.] IGNORE
'

I express~on/ [,!TAS~ expressio_n I]}
@ ex pr essrnn \ str rng expression

TASK expression
ALL

Descriptive Form:

{ 1: ~~~ 488 interface number I [' i!:~vKert_a;ekpenn':bne: interrupt I] }
[line no.] IGNORE condition specification

TASK task number
ALL interrupt conditions for all Huns

Purpose:

To cancel the action of WHEN commands so all or specific subsequent
interrupts are ignored.

Discussion:

The WHEN command sets up a structure that allows a program to recognize
an instrunent interrupt and to schedule user-written interrupt subroutines
when the interrupt occurs. The IGNORE command cancels (nullifies the action
of) one or more WHEN statements with the result that one or more interrupts
are ignored •

IGNORE 4-96

TEK SPS BASIC V02 System So~ware

The IGNORE command has no effect on interrupts that have already
occurred and have already caused the interrupt routine to be scheduled for
execution. To ignore all interrupts and clear the Scheduler, use a STOP,
END, or Control-P. (The function and parts of the Scheduler are explained
in Section 1.)

Using the Syntax Options:

The instrument logical unit number (ILUN) following the pound sign
(I) represents a particular instrument. The expression following the at
sign (@) represents an IEEE 488 interface number. This second convention
is used when communication is with the low-level IEEE 488 Interface driver
(' 11GPI. SPS") discussed in Section 6. The ILUN or interface number indicates
from which instruments or interface to IGNORE an interrupt. If no specification
follows either of these, all WHENs specifying that ILUN or interface number
are canceled so all subsequent interrupts from that instrument or interface
are ignored •

The string expression is a driver-dependent interrupt specification.
It must be a string accepted by the driver for the specified ILUN or
interface. When used, the interrupt from the ILUN or interface as specified
by the string is IGNOREd. Other interrupts from that ILUN or interface are
not affected.

The expression following the keyword TASK is the task number of the
interrupt subroutine. This number, when rounded to an integer, must be
between 0 and 126, inclusive. If the TASK option is used with either the
ILUN or interface specification, all WHEN conditions associated with that
task number and ILUN or interface number are canceled. If the TASK option
is used alone, all WHEN conditions associated with the task number are
canceled.

When the keyword ALL is used, all WHEN conditions are canceled.

The options and resulting actions of the IGNORE command are summarized
in the table.

4-97 IGNORE

TEK SPS BASIC V02 System Software

Specification

f ILUN

#ILUN, interrupt
specification string

fILUN, TASK number

@IEEE 488 interface
number

@IEEE 488 interface
number, interrupt
specification string

@IEEE 488 interface
number, TASK number

TASK number

ALL

IGNORE

SUJIDlary of IGRORE co .. and

Which WHEN is Ignored

all WHENs with that ILUN

the WHEN with that ILUN and that string

all WHENs with that ILUN and that task number

all WHENs with that interface number

the WHEN with that interface number and that
string

all WHENs with that interface number and that
task number

all WHENs with that task number

all WHENs

4-98

TEK SPS BASIC V~2 System Software

IBPREQ (Bonresident)

Exaaples:

15a INPREQ GOSUB 1aaa
16a INPREQ CHAR, NOECHO GOSUB 61a
11a INPREQ CHAR GOSUB 44a
1aa INPREQ

Syntax Fora:

[line no.] INPREQ [[~~:~HD] GOSlll line number]
CHAR,NOECHO

Descriptive Form:

[[
CHARacter]]

[line no. J INPREQ NOECHD GOSlll line number
CHARacter, NOECHD

Purpose:

To permit unsolicited input from the keyboard during program execution.
When the input occurs, program control transfers to a subroutine to INPUT
it.

Discussion:

TEK SPS BASIC offers two ways to enter data from the keyboard to an
executing program via an INPUT statement -- with or without an input request
enabled. The normal (default) condition is that an input request is not
enabled. An input request is enabled by an INPREQ statement.

If an input request is not enabled (the default condition), the INPUT
command is used to solicit program data from the keyboard for a running
program. When an INPUT statement is encountered, a question mark (?) is

4-99 INPREQ

TEK SPS BASIC V92 System Software

printed on the terminal prompting the user to enter data from the keyboard.
Until then, if the keyboard is live (not locked by the LOCKKB command),
any input from the keyboard is interpreted to be new program text or an
immediate mode command.

If an input request is enabled by the INPREQ command, you can enter
unsolicited program data before an INPUT statement is executed. However,
then you cannot enter a line of program text or an immediate mode command
while a program is running. When an input request is enabled, all input
from the keyboard during program execution is interpreted to be program
data. When the data is entered from the keyboard, program control transfers
to a subroutine. The assumption here is that the subroutine which receives
control has an INPUT statement that uses the data, assigning the data to
its variables. That INPUT statement must be set up to expect data from the
keyboard. (The INPUT statement's peripheral logical unit number must be
omitted or be zero for the keyboard.)

The unsolicited input can be either a single character or a full line
of data. When a line of data is required, it must be terminated by a
carriage return. If a single character causes the transfer to the subroutine,
no carriage return is needed.

The data in a line of unsolicited input must follow the same rules
as solicited input. A line may contain several numeric values separated
by commas; but, because strings are terminated by a carriage return, only
one string value is permitted per line. Also, the data types must match
the variables in the INPUT statement. See the INPUT command for a complete
discussion of data types and variables.

If the INPUT statement needs more data than is supplied by the line
(or character), the program waits for additional input from the keyboard.
However, no question mark (?) is printed to tell you that this is the case.
In fact, while an input request is enabled, no INPUT statement in the
program will print a question mark to prompt data input. If a line of
unsolicited input supplies more data than is needed by the first INPUT
statement in the subroutine, the extra data is ignored.

You can also permit or suppress echoing of the character(s) as they
are entered for program input. In other words, you can choose whether or
not to have the data printed on the terminal as it is typed in.

INPREQ 4-100

TEK SPS BASIC V~2 System Software

If an INPUT statement is encountered in the program before the input
request is satisfied, the program waits until the input is completed. Then
that INPUT statement gets the data, and program control does~ pass to
the subroutine. If more data is entered in a line of input than the INPUT
statement wants, the extra data is discarded.

An input request remains enabled -- even after the data has been
assigned by an INPUT statement -- until cancelled. Executing an INPREQ
statement that has no arguments cancels the input request. Any unassigned
data that had been accepted as unsolicited input is discarded. CHAIN, OLD,
STOP, END, DELETE TEXT, DELETE ALL, or Control-P also cancels any input
requests and discards any unassigned data that may have been entered.

[INPREQ transfers control to the subroutine by scheduling the specified
line number with the same task number as the current task and at a priority
one greater than the current task. However, if the current task's priority
is 126, the subroutine is scheduled with that same priority (126). In that
case, the subroutine does not gain control until after the current task
terminates or the priority of the current task is lowered below 126 by a
PRIORITY statement.]

Using the Syntax Options:

An IRPREQ statement with no arguments cancels any previous input
request.

The optional keyword CHAR permits the entering of a single character
(with no carriage return) to cause a transfer to the subroutine. If this
keyword is omitted, entering a line of data (up to 79 characters terminated
by a carriage return) causes the transfer to the subroutine.

The optional keyword NOECBO suppresses the echoing of the input. If
NOECHO is specified, characters are not printed on the terminal when they
are entered. If this keyword is omitted, each character is printed on the
terminal as it is entered.

The line number following the keyword GOSUB is the starting line
number of the subroutine which is transferred to after the INPREQ statement
is satisfied.

@ 4-101 INPREQ

TEK SPS BASIC V02 System Software

Examples:

170 INPUT JJ,BV$
180 INPUT #5+C,OP

Syntax Form:

INPUT (Bonresident)

[line no.] INPUT [lex pression,] arra~ , I variable I [
wave1orm
string variable

Descriptive Form:

target variable

[line no.] INPUT [I source plln,]
target array
target waveform

variable I]
array

::;~~r~ariable •••

target variable
target array
target waveform

target string variable
['

target string variable

Purpose:

To allow values to be assigned to variables. The values are ASCII
characters, obtained from the terminal or other peripheral device or file.

Discussion:

]

The INPUT statement is used to enter data to a program while that
program is running. The entry can be from the terminal (the default device)
or from any other peripheral that can be OPENed FOR READ.

INPUT reads data that is in ASCII format rather than binary. Data
entered from the keyboard and data stored on a peripheral device by the
PRINT command are in this format. If a peripheral device other than the
keyboard is used to enter data with the INPUT statement, be sure that the
data is in ASCII format. (You can make a quick check of a file by COPYing
that file to the terminal. If the file is in binary format, the output
will be erratic.)

INPUT 4-102 @

...

TEK SPS BASIC V02 System Software

The data entered must match the type of variable specified in the
INPUT statement. If a numeric variable is specified, a numeric string must
be entered. This ASCII string is converted to a number and assigned to the
numeric variable. If you enter an illegal character, such as a letter other
than an E (which is used to signify a power of ten), an error results.

With strings, you can enter any ASCII character except Control-?, Control-U,
and carriage return. The maximum length of a string that can be INPUT from
a file is 388 characters. The maximum length INPUT from the keyboard is
79 characters. (Longer strings can be created by concatenation.)

The INPUT command accesses a file or device by its peripheral logical
unit number (PLUN), not by name. However, before a file or device other
than the keyboard (PLUN zero) can be INPUT from, it must be OPENed FOR
READ in order to assign a PLUN to that file or device. If the peripheral
referenced by INPUT has been OPENed FOR WRITE or UPDATE, a fatal error
results.

INPUT fro• the Keyboard:

If the INPUT is from the keyboard (and no INPREQ statement has been
executed), a question mark(?) is printed on the terminal as a prompt to
enter a piece of data. After the data is typed, followed by a carriage
return, the data is assigned to the specified variable(s) in the order of
their appearance in the INPUT statement. If more data is required than has
been entered, another prompt (?) is printed. This continues until values
for all the variables in the INPUT statement are obtained. (The question
mark appears only when the terminal is used as the input device.)

When more than one numeric variable is specified in the INPUT statement,
the individual n1111bers can be separated by either co11111as or carriage
returns. For example, when the statement:

150 INPUT A,B,C

executes and you want to enter the numbers 1, 2, and 3, to be assigned to
the variable A, B, and C, respectively. You may type either:

or
?1,2,3

?1
?2
?3

4-103 INPUT

TEK SPS BASIC V02 System Software

Remember, the question marks are printed on the terminal by the INPUT
command as a prompt. (The entries are shown in bold.)

Strings (strings of ASCII characters, including letters, numbers, and
punctuation) are simply typed in. No quotation marks are necessary (unless
you want the quotation marks included in the string). If a string is the
only argument specified in the INPUT statement, enter the string when the
question mark is printed, and terminate the entry with a carriage return.
If more than one string is specified, the input of each string must be
ended with a carriage return.

String and numeric variables can be mixed in an INPUT statement. But
remember, strings must be terminated with a carriage return. The following
example illustrates how numbers and strings can be mixed. The items in
bold are typed in from the keyboard.

LIST 15a\RUR
150 INPUT A,B,A$,B$,C
?3.45
?4.65,VOLTS
?SECONDS
?-1a.45E-a6

When line 150 executes, BASIC prints the ? on the terminal prompting
you to enter data. After you enter the data, variables A and B are assigned
the values 3.45 and 4.65, respectively. String variables A$ and B$ are
assigned VOLTS and SECONDS, respectively. Variable C equals -10.45E-06.

INPUT

When not using the INPREQ command, be sure
to wait for the prompt (?) before entering
data for an INPUT statement. Failure to
do so may result in incorrect data being
INPUT or even in deletion of program lines
if the premature data is interpreted as
a line number for system input. You will
be able to know if this is the case
because the non-idle mode system input prompt,
an asterisk within parentheses C•), will
be displayed preceding the echo of the data
as the data is typed in.

4-104 @

TEK SPS BASIC V~2 System Software

INPUT from a File:

Some of these same rules apply if the data entered is coming from a
device other than the keyboard. INPUT expects data from a file or device
to be as follows:

Values to be assigned to numeric variables must be
terminated (delimited) by a comma or a carriage return.

Values to be assigned to string variables must be
terminated (delimited) by a carriage return.

The discussion on the PRINT command explains how to PRINT data to a file
so that it can be read by INPUT.

INPUT reads a file or device in a sequential manner starting at the
beginning of the file with the first INPUT statement. Subsequent INPUTs
from the same file continue reading data from where the previous INPUT
ended.

Using the Syntax Options:

The expression following the pound sign (#) is the peripheral logical
unit number (PLUN) from which the data is INPUT. The expression, when
evaluated and rounded to an integer, must be between ~ and n, inclusive,
where n is the number of PLUNs allowed at initialization time (default of
six). When the pound sign and expression are omitted, the keyboard (PLUN
zero) is assumed.

The list of variables to be assigned values by the INPUT statement
may include integer or floating-point variables, integer or floating-point
arrays, integer or floating-point waveforms, and string variables. String
arrays are not allowed.

4-105 INPUT

TEK SPS BASIC V~2 System Software

IRTEGER

Example:

123 INTEGER A(5@0),TB(9),X(100,4)

Syntax Fora:

\
simple numeric variable I

[line no.] INTEGER
integer array

(expression[,expression])

['l s.imple numeric variable(]
(expression(,expression]) ...

integer array

Descriptive Form.:

lsimple numeric variable I
[line no.] INTEGER (first dimension[,second dimension])

integer array

['l s.imple numeric variable I]
. (first dimension[,second dimension]) •••

integer array

Purpose:

To allocate integer-format storage for arrays.

Discussion:

The INTEGER command functions like the DIM command except that each
element of the array is defined as a one-word integer instead of a two-word,
floating-point number. Thus, the allocated integer array uses half the
storage required for a floating-point array of the same dimension. An
integer array of dimension N uses N+1 words of storage. An integer array
of dimension N by M uses N+1 times M+1 words of storage.

Storage for an integer array is allocated as the INTEGER statement
is encountered. In standard memory systems, the size of an integer array

INTEGER 4-106 @

TEK SPS BASIC V02 System Software

is limited only by the amount of available free memory.

1 01~1~~2~,l~l•.I •ll)~~~,~-~:i'.~~;:1f,rji1::·'.~••• .
(1dlt). 1 il.ftjiei th If there is not enough free memory available to contain
the array, a fatal error is issued.

In TEK SPS BASIC, array indices are numbered from zero. An array A
of dimension N has N+1 elements. The first element is A(0). The last element
is A(N). Similarly, a matrix of dimension I,J has I+1 rows and J+1 columns
for I+1 times J+1 elements. The first element in B is B(0,0) while the
last is B(I,J).

Integer elements have a range of -32768 to +32767 (15 bits and a sign
bit). When floating-point values are stored in an INTEGER array, the values
are truncated to integers. (For example, 5.78 becomes 5 and -10.2 becomes
-rn.)

Integer and floating-point arrays may be used together in arithmetic
expressions. However, TEK SPS BASIC does not do integer arithmetic. During
expression evaluation, the elements of an integer array are temporarily
converted to floating-point.

If you want an integer variable, but do not need an array, you can
create an array with one element by using the INTEGER statement with the
expression equal to zero. (Example: INTEGER A(0).) This results in a one
element integer array. Future references to this array as a single variable
must include the subscript of 0.

Using the Syntax Options:

The simple numeric (not subscripted) variable is the name of the
integer array after the command executes. If an array is used, it must be
DELETEd if you are attempting to redimension it to new specifications. No
error is issued if it is redimensioned to its current specifications.

The expressions in parentheses determine the size and number of
dimensions (one or two) of the array. An expression is rounded to an integer
and used as the largest index -- not the number of elements -- in a row
or column of the array. Providing a single expression that evaluates to N
allocates a one-dimensional array of N+1 elements. Supplying two expressions
creates a two-dimensional array. If the expressions evaluate to M and N,
a matrix of M+1 by N+1 elements is defined.

4-107 INTEGER

TEK SPS BASIC V02 System Software

LET

Examples:

100 LET X = 5.7838
110 LET A(K) = X
112 LET B(15:30+J7) = B(5:20+J7)
114 LET X$ = "HELLO SPS"
120 B = P(0:100)*50/(X+Z)
130 A$(15) = "STRING 16 11 &BT$
170 Y = Y+1

Syntax Form:

array = array expression
{!

simple numeric variable I I expression . I}
[line no.] [LET] waveform waveform expression

array element = expression
string variable = string expression

Descriptive For•:

[line no.] [LET]

)
target simple numeric variable! !expression . I
target array = array expression
target waveform waveform expression

target array element = expression
target string variable = string expression

Purpose:

To assign a value to a variable, string variable, array, waveform,
array zone, array element, or waveform element.

LET 4-108

TEK SPS BASIC V02 System Software

Discussion:

The LET command is the workhorse of the Resident BASIC commands. This
is the command that causes BASIC to create and assign value(s) to a new
variable or auto-dimensioned array, or to change the value(s) of an existing
variable. The variable, array, waveform, or string variable on the left
of the equal sign (the target) is set equal to the value of the expression
on the right of the equal sign (the source). Note that the equal sign does
not mean "equal to" in the mathematical sense. Rather, it means "assign
the value of the expression on the right to the variable on the left."
Thus, the target will be equal to the source after the statement executes.
For this reason a LET statement is also called an assignment statement.

The action of the LET command is in two steps. First the expression
is evaluated. The expression, depending on its type, can result in a single
number, an array of numbers, a waveform, or a single string. (The rules
for expression evaluation are covered in Section 2 of this manual.) The
second step is to assign the resultant value(s) to the target variable.
How thi\f) is done depends on the type of both the target and the expression.
The legal combinations are discussed below. A summary of the action resulting
from the possible legal and illegal combinations are summarized in the
table following the discussion.

Using the Syntax Options:

The word LET is optional. Statements that begin with a variable name
and the equal sign are assumed to be LET statements.

When the target is a simple numeric variable and the source expression
evaluates to a single value, that number is assigned to the variable. If
the expression evaluates to an array or waveform, the variable is auto
dimensioned to a one-dimensional, floating-point array of the same size
as the source array (or source waveform's array). Even when the source is
a waveform, only an array is created -- not a waveform. This new auto
dimensioned array is set equal to the source array.

When the target is a floating-point array or array zone and the
expression evaluates to a single value, every element in the array or array
zone is set equal to that value. If the expression evaluates to an array
or waveform, the target array (or array zone) and the source array (or the
source waveform's array) must be the same size. The target array is set
equal to the source array.

4-109 LET

TEK SPS BASIC V02 System Software

When the target is an integer array or integer array zone, the action
is the same as for a floating-point array except that the source values
are truncated before they are assigned.

When the target is a waveform, its array is assigned values by the
rules for target arrays, explained above. If the expression evaluates to
a waveform, the target waveform's data sampling interval (OSI) and horizontal
and vertical units are set to those of the source waveform. If the expression
results in a single value or an array, the target waveform's OSI is set
to zero and its units are set to null strings. This is true even if the
target waveform's OSI or units had been previously assigned.

When the target is an array element, only one value can be legally
assigned to it. Unless the expression evaluates to a single number, an
error is issued. If the target is an integer array element, the source
value is truncated to an integer when it is assigned.

When the target is a string variable, the expression must evaluate
to a string. Notice that a string array may not be the target variable. A
single string array element may be referenced by its subscript, but

string arrays, unlike numeric arrays, cannot be filled with one LET

statement.

LET 4-110

Target Variable

simple numeric
variable

floating-point
array or waveform
element

integer array
or waveform
element

floating-point
array or array
zone

TEK SPS BASIC V02 System Software

Summary of LET Comm.and

Result of
Source Expression

single number

array or
waveform

string

single number

array,
waveform, or
string

single number

array,
waveform, or
string

single number

array or
waveform

string

4-111

Action

target set equal to number

target auto-dimensioned, then
set equal to source array (or
waveform's array)

error

target set equal to number

error

target set equal to
truncated number

error

each element of target set
equal to the number

arrays (or array zones) must
be same size, else error;
target set equal to source
array (or waveform's array)

error

LET

integer array
or array zone

waveform

string variable

LET

TEK SPS BASlC V02 System So~ware

Sumnary of LET Coamand, cont.

single number

array or
waveform

string

single number

array

waveform

string

single string

string array

numeric value,
array, or
waveform

4-112

same as for floating-point
array but number truncated

same as for floating-point
array, but values truncated

error

each element of target's array
set equal to the number;
target's DSI set to zero;
target's units set to null

target's array and source must
be same size, else error;
target's array set equal to
source; target's DSI set to
zero; target's units set to
to null

associated arrays must be same
size, else error; target's array,
DSI, and units set equal to
source's array, DSI, and units.

error

target set equal to source
string

error

error

TEK SPS BASIC V02 System Software

Examples:

LIST LP:,100,500
LIST

LIST

100 LIST DK1:"PRGM.LST",10,999
LIST DX:A$
LIST 20

Synta:x: Form:

[
expression[,expression] J

[line no.] LIST
device name[constant]: [string ex press ion] [,expression[,expression]]

Descriptive Form:

[

line number [starting,line number ending]
[line no.] LIST

device name [drive number]:[target file name]

[,line number[starting,line number

Purpose:

To list all or part of the current program text on the terminal or
the specified peripheral.

Discussion:

This command allows you to look at all or part of the program text
currently in memory. The text is printed on the terminal (the default
device) or another peripheral, such as a line printer.

When a program is listed, control characters are printed as the ASCII
letter preceded by an up-arrow (A). Because of this, programs LISTed to a
storage peripheral (such as a disk), cannot later be brought into memory
via the OLD, CHAIN, or OVERLAY commands. (The SAVE or REPLACE command must
be used to output a program that will be read into memory again by the OLD

4-113 LIST

TEK SPS BASIC V02 System So~ware

command.) A program that has been LISTed to a file can be displayed later
by COPYing the file to the keyboard terminal (KB) or a line printer (LP).
But remember, the purpose of LIST is to display, not to SAVE your program.

If a line to be listed contains more than 80 characters, the entire
line is printed and a warning error is issued. (The error is to tell you
that if you SAVE the line, it cannot be loaded again in its entirety.)

If a program containing a LIST statement is RENUMbered, the expressions
in the LIST command for line numbers are not altered.

Using the Syntax Options:

The named device is the peripheral to which the listing is sent. If
the device is omitted, the terminal is assumed. If the device is not the
system device or the terminal, its driver must be LOADed into memory before
the command is executed. If the drive number is omitted, zero is used.

A file name must be supplied with a file-structured device. A file
with that name must not already exist on the designated device.

The line numbers define the scope of the lisitng. If no line number
is present in the LIST statement, all program lines are printed. If only
one line number is given, only that line is listed. When two line numbers
appear in the command, all lines between and including those lines are
listed.

If there is no text which meets the given line number conditions,
nothing is output. If the target device is file-structured, no file is
created.

LIST 4-114 @

TEK SPS BASIC V02 System Software

LISTVAR (Nonresident)

ExaJDples:

LISTVAR
45 LISTVAR DK:"LIST.FIL"
65 LISTVAR LP:

Syntax Form:

[line no.] LISTVA [device name[constant]:[string expression]]

Descriptive Form:

[line no.] LISTVAR [device name[drive number]:[target file name]]

Purpose:

To list on the terminal or to a specified file or peripheral the names
and dimensions of all arrays, waveforms, variables, string variables, and
string arrays that are in memory.

Discussion:

LISTVAR allows you to see what is currently defined in memory. Every
variable, array, waveform, string variable, or string array name is listed,
either at the terminal or on a specified device.

When the LISTVAR output is directed to a file, it can later be printed
on the terminal by COPYing the file to the keyboard terminal (KB). Also,
it can be read back into memory by INPUTting that file one line at a time
as a string variable.

4-115 LISTVAR

TEK SPS BASIC V02 System So~ware

Using the Syntax Options:

If no device is specified, output goes to the terminal. Otherwise,
output is directed to the specified device. If the named device does not
use the system device driver, its driver must be in memory before LISTVAR
executes. If the device is file-structured, a file name must be included
in the command. The named file must not already exist on the device. When
the device number is omitted, zero is assumed.

Output Format:

The format of the output is explained below. Here XX stands for a
variable name, ZZZ stands for an array dimension, and spaces that always
appear are shown by a dashed underscore(_).

1) Floating-point arrays:
XX(ZZZ,ZZZ)

Five array names are printed per line with 14 characters
per each array. Each array specified includes two spaces
(or three spaces if the name has only one letter), name,
left parenthesis, first dimension, comma and second
dimension (if nonzero), right parenthesis, and spaces to
pad to 14 characters.

2) Integer arrays:
Same format as floating-point arrays.

3) Waveforms:

LIS TV AR

__xx __ Is__xx ,_xx ,_xx$,_xx$
One waveform is printed per line with 28 characters per
waveform. The parts of the waveform correspond to the parts
and sequence in the WAVEFORM command. The format is two
spaces (or three spaces if the waveform name has only one
letter), waveform name, four spaces, keyword IS, two spaces
(or three spaces if array name has only one letter), array
name, comma, one space (or two spaces if the name of the
data sampling interval variable has only one letter), the
DSI variable name, comma, one space (or two spaces if the
name of the horizontal units variable has only one letter),
horizontal units variable name with a dollar sign, comma,
one space (or two spaces if name of vertical units variable

4-116 @

TEK SPS BASIC V02 System Software

has only one letter), and vertical units variable name with
a dollar sign.

4) Numeric variables:
xx
Up to 12 variable names are printed per line with six
characters per each variable. The format is two spaces
(or three spaces if the name has only one letter), name,
and two spaces.

5) String variables:
XX$

Up to 12 string variable names are printed per line with
six characters per each variable. The format is two spaces
(or three spaces if the name has only one letter), name with
a dollar sign, and one space.

6) String arrays:
_XX$(ZZZ, ZZZ)

Up to five array names are printed per line with 14 characters
per each array. The specification of a string array includes
two spaces (or three spaces if the name has only one letter),
name, with a dollar sign, left parenthesis, first dimension,
comma and second dimension (if nonzero), right parenthesis,
and spaces to pad to 14 characters.

Output Exaaple:

@

The following is an example of the LISTVAR output.

FLOATING POINT ARRAYS
A(55) B(10,5)

INTEGER ARRAYS
C(500)

WAVEFORMS
J IS
K IS

JA, DJ, HJ$, VJ$
KA, DK, HK$, VK$

4-117

JA(511) KA(511)

LISTVAR

LISTVAR

TEK SPS BASIC V~2 System Software

NUMERIC VARIABLES
DJ DK

STRING VARIABLES
HJ$ HK$ VJ$ VK$

STRING ARRAYS
ST$(40)

4-118

TEK SPS BASIC V02 System Software

Examples:

100 LOAD "PP.SPS","USER.SPS"
150 LOAD PR:"GRAPH"

LOAD CT:/F,GR$

Syntax Form:

LOAD

[line no.] LOAD [de• ice n"'e[con stent l •] U ~Ir , JJ.tdng ~ P'eesion

[,string expression] •••

Descriptive Form:

[line no.] LOAD [device name[drive number]:][/ forward or reverse switch[,]]
driver or command name [,driver or command name] •••

Purpose:

To bring nonresident commands and instrument and peripheral drivers
into the controller memory from a peripheral device.

Discussion:

The LOAD command is the heart of SPS modularity. Together with the
RELEASE command, LOAD allows you to "customize" controller memory to give
you the most free memory space for a particular job. You may LOAD a
nonresident command or driver as you needed it and RELEASE it when done
with it.

Nonresident drivers cannot be auto-loaded. They must be explicitly
brought into memory by the LOAD command. Nonresident commands, however,
may be either explicitly LOADed or auto-loaded. When a driver or command
has been brought into memory by the LOAD command, it stays resident until
released with the RELEASE command. The LOAD command "locks in" modules;

4-119 LOAD

TEK SPS BASIC V~2 System So~ware

auto-loaded commands are released by BASIC whenever room is needed for
program text, arrays, drivers, or other nonresident commands.

Once nonresident commands are loaded, they can be used in programs
in the same manner as resident commands. LOADing frequently used commands
can shorten program execution time.

If the specified device is a serial access, file-structured device
such as cassette tape, no file may be open on it when LOAD executes.

Using the Syntax Options:

The system storage device is used by the LOAD command as the source
peripheral device if no other device is specified. If the named device is
not the system device, its driver must be LOADed into memory before a
command or driver stored on it can be LOADed. If the drive number is
omitted, zero is assumed.

[When a serial tape device is specified, the /F or /R (Forward or
Reverse) switches may be used. If a switch is not present, the tape is
rewound before a forward search for the file begins. If the device is not
serially structured, the /F or /R switch is ignored. If the end of tape
is reached before a specified file is found, a fatal error is issued.]

The LOAD command will only load files with .SPS extensions. The
extension need not be specified but if it is, it must be .SPS. (The .SPS
extension is reserved for the file names of nonresident commands and
drivers.

[When the specified device is paper tape, any unused command name may
be supplied. That name is then associated with the file loaded. When paper
tape is used, the correct tape must be in the tape reader before executing
the LOAD command.]

LOAD 4-120 @

TEK SPS BASIC V02 System Software

LOCKKB (Bonresident)

Examples:

10 LOCKKB
900 LOCKKB OPEN

Syntax Form:

[line no.] LOCKKB [OPEN]

Purpose:

To limit system input to a Control-P while a program is running.

Discussion:

Normally the keyboard is "live". You can enter a line of characters
(terminated by a carriage return) from the keyboard at any time during a
running program. If an input request condition is enabled by the INPREQ
command or an INPUT statement is waiting for data, this line is interpreted
to be program data. Otherwise this line is interpreted to be system input
-- either a new line of program text or an immediate mode command. However,
after a LOCKKB is executed, the keyboard is locked and the only system
input accepted while a program is running is a Control-P. (Of course,
system input is still accepted when no program is running.)

With the keyboard locked, input from the keyboard (while a program
is running) is only accepted if prompted by an INPUT command or allowed
by an INPREQ command.

A locked keyboard can only be made live again by executing a LOCKKB
OPEN statement. END, STOP, and Control-P will not restore the keyboard to
its normal (live) condition.

Using the Syntax Options:

When just the command name LOCKKB is used, the keyboard is locked.
When the keyword OPEB is specified, the keyboard is restored to normal.

4-121 LOCKKB

TEK SPS BASIC V02 System Software

LST (Bonresident)

Examples:

525 LST LP:,100,200
LST
LST 20

76<1 LST DK1: "LST .FIL", 100 ,200
LST DX:A2$

Syntax Form:

[.] [expression[,expression] J
line no. LST

device nane[constant]: [string expression][,expression[,expression]]

Descriptive Form:

[
line number[starting, line number ending]]

[line no.] LST device nane[drive number]: [target file name]
[,line number [starting, line number ending]]

Purpose:

To display all or part of the current program text on the terminal
or the specified peripheral device with indented FOR/NEXT loops.

Discussion:

The LST command is like the LIST command except for the way the program
lines are output. The line numbers are right-justified in a five-character
field and statements that were concatenated with a backslash (\) are output
on separate lines. Also, statements within a FOR/NEXT loop are indented
two print positions from the position of the FOR statement. When FOR/NEXT
statements are nested, the inner loops are indented from the outer loops.
For example, LIST displays a program like this:

LST 4-122

TEK SPS BASIC V02 System Software

*LIST
10 FOR I=1 TO 10
200 B=0
3000 FOR K=1 TO 1000
4000 C(K)=1 \ FOR J=1 TO 10\A(J)=1\NEXT J
10000 NEXT K
20000 NEXT I

while, LST displays the same program like this:

*LST
10 FOR I=1 TO 10

200 B=0
3000 FOR K=1 TO 1000
4000 C(K)=1\

FOR J=1 TO 10\
A(J):1\

NEXT J
10000 NEXT K

20000 NEXT I

If a section of a program is listed by LST, the indentations of any
statements within FOR/NEXT loops reflect the nesting from the beginning
of the program. For instance, LST displays lines 4000 through 20000 of the
example program this way:

*LST 4aaa, 3aaaa
4000 C(K)=1\

FOR J= 1 TO 10\
A(J)=1\

NEXT J
10000 NEXT K
20000 NEXT I

See the LIST command for more information.

NOTE

The LST command is not available
with TEK SPS BASIC V02-01.

4-123 LST

TEK SPS BASIC V02 System Software

MATCH (Nonresident)

Examples:

100 MATCH A$,B$,N
150 MATCH AR$,"THE",K,M
170 MATCH R$,W$&".MAC",W(N),W(N+2)

Syntax Form:

[line no.] MATCH strirg array,string expression,variable[,variable]

Descriptive Form:

[line no.] MATCH string array, search string, target variable for array index
[,target variable for search string's starting position]

Purpose:

To search a string array for a given search string.

Discussion:

The MATCH command searches a string array (the first argument) for
the first occurrence of the search string (the second argument). A match
is considered found if an element of the string array completely contains
the search string, either as an absolute match or as a substring. If a
match is found, the index of the element containing the search string is
returned in the third argument. If a match is not found, negative one (-1)
is returned instead. Optionally, the starting position of the search string
within the matching array element is also returned.

If the array is two-dimensional, the value returned in the third
argument is equal to the element's first subscript times the quantity, one
plus the maximum value of the array's second subscript, plus the elements
second subscript. For example, if a match is found in element A(I,J) of
an array A dimensioned M by N, the third argument is equal to I*(1+N)+J.

MATCH 4-124

TEK SPS BASIC V02 System Software

Using the Syntax Options:

The first argument is the string array to be searched. Remember,
string arrays cannot be zoned. The second argument, a string expression,
is the search string.

If a match is found, the index number of the first array element
containing the search string is returned in the third argument, a variable.
When no match is found, it will contain a -1.

The optional fourth argument is also a variable. When present, the
search string's starting position within the string element is returned
in it. As with the third argument, when no match is found, it will contain
a -1.

Application ExaJDple:

The match command can be used to check for a proper input string when
the returned index is used in a computed GOSUB or GOTO statement. In the
example below, the days of the week are entered into the string array, D$.
Then the program asks for a day name to be INPUT. Line 200 compares the
input string with the days of the week. Depending on which day is entered,
a specific subroutine is jumped to via a computed GOSUB statement (line
21!1). If there is no match, the -1 that is returned in N sends the program
back to line 18!1 to ask again for the INPUT. Otherwise, program control
transfers to the desired subroutine.

@

rn0 DIM D$(6)
11!1 D$(!1)="SUNDAY"
12!1 D$(1)="MONDAY"
13!1 D$(2)="TUESDAY"
14!1 D$(3)="WEDNESDAY"
15!1 D$(4)="THURSDAY"
16!1 D$(5)="FRIDAY"
17!1 D$(6)="SATURDAY"
18!1 PRINT "ENTER THE DAY OF THE WEEK"
19!1 INPUT S$
20!1 MATCH D$,S$,N
21!1 GOSUB N+2 OF 18!1,1!1!1!1,2!10!1,3!10!1,4!1!10,5!1!10,6!100,7!100

4-125 MATCH

TEK SPS BASIC V~2 System So~ware

Notice that since a match is recognized when the search string is a
substring as well as an exact match, entering the first three letters as
an abbreviation works just as well as entering the entire name. However,
just an "S" will always match D$(!1) and never D$(6).

MATCH 4-126 @

TEK SPS BASIC V02 System Software

NEXT

Example:

100 NEXT J

Syntax Form:

[line no.] NEXT simple numeric variable

Descriptive Form:

[line no.] NEXT index

Purpose:

To delimit the scope of a FOR/NEXT loop.

Discussion:

The NEXT command is the last statement in a FOR/NEXT program control
loop. See the FOR command documentation.

Using the Coamand Syntax:

The simple numeric variable is the loop index. The NEXT command and
its corresponding FOR command must use the same variable name.

@ 4-127 NEXT

TEK SPS BASIC V02 System Software

Examples:

OLD "DEMO.BAS"
150 OLD PR:
160 OLD DK2:A$
170 OLD CT1:/R,"SAMPLE",200

Syntax Form:

OLD

[line no.] OLD [d., ice name[constant] '] [I I ~ I [,]] [stdng ., pcession][,1 ine n"mbed

Descriptive Form:

[line no.] OLD [device name[drive number]:][/ forward or reverse switch [,]]
[program file name][,line number l'Alere execution starts]

Purpose:

To bring a BASIC program from the specified device into memory.

Discussion:

Programs that you have previously SAVEd on a peripheral device are
brought back into the controller memory with this command.

When the OLD command is executed, all currently defined variables,
arrays, waveforms, string variables, and string arrays are deleted, along
with any existing program lines in memory. Files are left OPEN, but actions
of all WHEN, SCHEDULE, INPREQ, and ONERR commands are cancelled and the
Scheduler is cleared. (The function and parts of the Scheduler are explained
in Section 1.) Then the named BASIC program is brought into memory. If the
OLD command encounters a line of text longer than 80 characters, a warning
error is issued, and the extra characters are dropped. Since the OLD command

OLD 4-128 @

TEK SPS BASIC V02 System Software

deletes all program text in memory, an OLD statement should not be followed
by a backslash(\).

When a line number is specified, execution automatically begins at
the line number (or the next higher line number if the specified one does
not exist). For example, in statement 170 in the example above, execution
would begin at line 200 in the program "SAMPLE".

[The new program executes with a task number equal to the task number
of the OLD statement, unless the OLD statement is in the immediate mode.
In which case, the task number is set to zero. Thus, the immediate mode
command

OLD "PROGRM",1

causes "PROGRM" to execute as task zero, not 127 which is the immediate
mode task number.]

If the line number is omitted, what happens depends on whether the
OLD command is issued in program mode or immediate mode. In program mode,
execution continues with the first line of the new program. [Its task
number is equal to the task number of the OLD statement, except when that
task number is 127. Then the task number of the new program is zero.] In
immediate mode, the next command entered in immediate mode (after the OLD
command executes) is executed.

To execute the new program, a RUN or GOTO (with a line number) can
be entered in immediate mode. [Starting the program with RUN makes its
task number zero unless the task number is explicitly stated. However,
starting the program with an immediate mode GOTO makes its task number
127, the immediate mode task number.]

For other commands that bring a stored program into memory see CHAIN,
OVERLAY, and OVLOAD.

Using the Syntax Options:

When no device is specified, the system device is used. If the named
device does not use the system device driver, its driver must be LOADed
into memory before the OLD command is executed. The keyboard (KB) may not
be specified. If the device is a serial-access, file-structured device,

4-129 OLD

TEK SPS BASIC V02 System Software

no files may be OPEN on it when OLD executes. If no drive number is
specified, zero is assumed.

[The Forward or Reverse switches (/F or /R) may be included in the
command if the peripheral device is a serial tape device. These switches
specify the direction of tape movement when searching for the file. If the
switch is omitted, the tape is rewound before the search for the file is
made. If the device is not a serial tape device, a /F or /R switch is
ignored.]

A file name must be specified for a file-structured device. If no
extension is present in the file name, .BAS is assumed.

If a line number is given, it must be an integer between 1 and 32767,
inclusive. What happens when it is included or omitted is explained above.

OLD 4-130

TEK SPS BASIC V~2 System Software

ORERR (Nonresident)

Examples:

150 ONERR IA GOTO 750
970 ONERR RETURN
890 ONERR RETURN GOTO 5~0

1~~ ONERR NOWARN
5~~ ONERR

Syntax Fora:

[!integer array I GOTO 1 . b] 1ne num er
variable

[line no •] ONE RR RETURN [GOTO line number]

NOVARN

Descriptive Form:

[
target for error information GOTO line number]

[line no.] ONERR RETURN [GOTO line number]
llOVARNing error messages

Purpose:

To allow the detection and handling of warning and fatal errors in a
BASIC routine.

Discussion:

Usually when an error occurs, an error message is displayed on the
terminal and, if the error is fatal, the task associated with it halts.
However, the ONERR command lets you process errors in your own way instead
of being forced to use BASIC's built-in error procedures. (These procedures
are outlined in "Understanding Errors", Section 8.)

4-131 ONE RR

TEK SPS BASIC V~2 System Software

With the ONERR GOTO form of the command you can write your own
error-handling routines. The error message is not displayed and, in most
cases, even if the error is fatal, the task committing the error is not
aborted. Instead, program control transfers to the specified line number,
which should be the first line of your error-handling routine.

[When an error occurs with an ONERR GOTO condition active, the specified
line number is entered in the Scheduler queue with a priority of 127 and
a task number equal to the current task number. Since the entered line
number has the highest priority possible, it becomes the current task as
soon as control returns to the Scheduler. Statements that only cause warning
errors finish executing before the user-written error handler is jumped
to via the Scheduler. Also, when errors occur during the execution of an
I/O command, the input or output finishes before control passes to the
Scheduler and on to the error routine. Otherwise, commands with fatal
errors do not complete execution and control returns to the Scheduler after
the line number is entered.]

[The ONERR GOTO form of the command prevents most fatal errors from
triggering the reset actions that halt a task's execution as outlined in
the section on errors. However, if the error is caused by an overflow of
the Scheduler stack or queue, a system reset is performed. The ONERR is
disabled so the program halts.]

ONERR cannot be used to handle a peripheral hardware I/O (P18) error.
If a P18 error occurs, any ONERR condition is ignored and the error is
handled as if an ONERR were not set up, but the ONERR remains enabled.

If more than one ONERR GOTO statement appears in a program and an
error occurs, program control transfers to the line number specified in
the most recently executed ONERR GOTO.

After an error is detected, the target array contains the information
about the error normally printed in the error message. The contents of the
array elements have the following meanings:

ONE RR 4-132

TEK SPS BASIC V02 System Software

Index

element 0

element 1

element 2

element 3

Content and Meaning

the line number of the command
where the error occurred (or 0
if in immediate mode)

The decimal equivalent of the
ASCII character in the error code

The numeric portion of the error code

A 0 or 1 if a fatal error;
a 2 if a warning error

If a fatal error occurs while the user-written error-handling routine
is executing, the ONERR is disabled. The new error is handled as if an
ONERR was not set up and the task is aborted. If a warning error occurs
during the user's error routine, a warning message is printed and execution
continues.

The error-handling routine is terminated by a form of the ONERR RETURN
statement. Program control can either be returned to the statement immediately
following the one that caused the error or be transferred to a specified
line number. In either case, the system priority returns to the priority
of the statement that caused the error. If a form of the ONERR RETURN
command is executed when no error has occurred, an error is issued.

You should use some form of the ONERR RETURN statement to exit the
error routine. If a regular GOTO statement is used, the system priority
remains at the priority of the error-handling routine, which is initially
set to 127. Also, the system will assume that the error routine is still
executing. Another error will either disable the ONERR or cause an error
message to be printed, as explained above.

If all you want to do is suppress the printing of warning error
messages and nothing else, use the ONERR NOWARN form of the command. It
does not cause transfer of control when an error occurs. If a transfer was
set up by a previously executed ONERR GOTO statement, that transfer is not
disabled.

To disable all ONERR conditions set up by previously executed ONERR
statements, execute the ONERR command using no keywords. Control-P, END,

4-133 ONE RR

TEK SPS BASIC V02 System Software

STOP, OLD, CHAIN, DELETE ALL, and DELETE TEXT also disable any ONERR
conditions. ONERR is not disabled when an error occurs unless the error
is fatal and the user-written error-handling routine is executing.

Using the Syntax Options:

The keyword GOTO sets up a transfer to the specified line number,
should an error occur. Either a simple numeric variable or an integer array
is used to return the information about the error. If a simple numeric
variable is specified, it is auto-dimensioned to a four-element integer
array. If an integer array is specified, it must contain exactly four
elements.

The keyword RETURN terminates a user-written error-handling routine.
This form of the ONERR command must appear only in the error-handling
routine. If the optional keyword GOTO followed by a line number is used
also, program control passes to the specified line number. If the GOTO and
line number are omitted, program control returns to the statement following
the command that committed the error.

The keyword NOVARN disables the display of warning error messages on
the terminal.

When the ONERR command name is used alone (omitting all keywords),
any previously executed ONERR conditions are disabled.

Application Example:

Suppose a program needs a particular instrument to be ATTACHed, but
doesn't know what instrument logical unit numbers (ILUNs) are free. It may
not even know if the instrument is already ATTACHed. Trying to ATTACH an
instrument to a ILUN that is not free causes an I3 error. Attempting to
ATTACH an already attached instrument to a different ILUN is an I15 error.
Normally, either error is fatal, but with the ONERR command, you can write
a routine to handle both possibilities. To help you understand how to use
ONERR, consider this over-simplified solution.

ONE RR

1~ REM SET UP ONERR TRANSFER
20 ONERR AR GOTO 5~~
3~ J=1

4-134

TEK SPS BASIC V02 System Software

40 K=J
50 ATTACH #J AS DP01:
60 IF J<>K THEN 40
70 REM DISABLE ONERR TRANFER
80 ONERR

490 REM IGNORE IF IMMEDIATE MODE ERROR
500 IF AR(0):0 THEN 650
510 REM TEST FOR EXPECTED LINE NUMBER
520 IF AR(0)<>50 THEN 590
530 REM TEST FOR INSTRUMENT ERROR
540 IF AR(1)<>ASC("I") THEN 590
550 REM CHECK FOR I3 or I15 ERROR
560 IF AR(2)=3 THEN 640
570 IF AR(2)=15 THEN 640
580 REM IF NOT I3 OR 115 ERROR, WRITE MESSAGE
590 PRINT CHR(AR(1));AR(2);" ERROR IN LINE";AR(0)
600 REM IF WARNING ERROR, RETURN; IF FATAL, ABORT
610 IF AR(3)=2 THEN 650
620 ONERR RETURN GOTO 670
630 REM INCREMENT ILUN AND TRY AGAIN TO ATTACH
640 J=J+1
650 ONERR RETURN
670 ABORT

Starting with the ILUN variable J set to 1 and a test variable K set
equal to J, the program tries to ATTACH DP01. If it works, K still equals
J so the program continues. If ATTACH fails, control transfers to the error
routine which expects an I3 or I15 error in line 50. By checking the
elements of the array AR, the routine determines if one of the expected
errors triggered the jump. Any other program error in any other line is
reported and, if fatal, ABORTS the current task (line 670). (Immediate
mode errors are ignored.)

If the error is as expected, the trial ILUN, J, is incremented and
control passes back to the main program (line 60). Since J no longer equals
K, the program jumps back to line 40. K is reset to J and another attempt
is made to ATTACH DP01. This loop continues until a free ILUN is found,
the ILUN already ATTACHed to DP01 is matched, or the legal range of ILUNs
is exceeded. That last possibility would ABORT the current task because
this error routine cannot recover from that or any other fatal error.

4-135 ONE RR

TEK SPS BASIC V02 System Software

OPEN

Examples:

100 OPEN #4 AS PR: FOR READ
110 OPEN #2 AS LP: FOR WRITE
120 OPEN 111 AS CT:/F,"CASSET.FIL" FOR READ
130 OPEN #K+2 AS DK:FL$ FOR WRITE WITH N INTO 10
140 OPEN IFN AS DX1: "RECORD.DAT" FOR UPDATE
150 OPEN 113 AS DK1: "LASER. 001 11 FOR WRITE INTO 6

Syntax Form:

[line oo •] OPEN '""pc e'9ioo AS [de• ice oruoe[coost.ot h J [/I~ I [, J] [str iog ex pcessioo]

FOR i=~~~E [WITH expression) [INTO expression) I
UPDATE

Descriptive Form:

[line no.) OPEN #plln AS [device name[drive number]:]
[/forward or reverse switch[,])[file name]

FOR 1:!~~E [WITH number of buffers) [INTO number of blocks) I
UPDATE

Purpose:

To allow access to an existing data file, a new data file, or a non
file-structured peripheral device in order for the input or output of data
to take place.

OPEN 4-136

TEK SPS BASIC V~2 System Software

Discussion:

The OPEN command makes a data file or device accessible for the input
or output of data by associating it with a peripheral logical unit number
(PLUN). Once the PLUN is assigned, the file or the device is referenced
by that number rather than by its name.

A PLUN may not be associated with a file already OPENed nor may the
same PLUN be assigned to more than one file or device at a time. A PLUN
must be freed by a CLOSE or END statement before it can be reassigned.

The terminal keyboard is permanently assigned to PLUN zero and is
always OPEN for both READ and WRITE. PLUN zero may not be assigned to any
other device or file. The keyboard may not be associated with another PLUN.

Using the Syntax Options:

In the command syntax, the PLUN is preceded by the pound sign(#).
Since the PLUN may be an expression, if it does not evaluate to an integer,
it is rounded to an integer value. The number of PLUNs that may be assigned
at any one time, n, is determined at system initialization. The value
assigned as a PLUN must be an integer between 1 and n, inclusive. The
default number of PLUNs is six. In this case, the numbers 1 through 6 may
be assigned as PLUNs. (To change the number of PLUNs allowed see the SYSBLD
command.)

The device name follows the keyword AS. When no device name is
specified, the system device is assumed. If the named device does not use
the system device driver, the driver for that device must be LOADed into
memory before OPEN executes. When the device named is a serial tape device,
only one file can be OPENed on it at a time. If the drive number is omitted,
zero is used.

[The optional forward or reverse switch /F or /R is for use with a
serial tape device being OPENed FOR READ. It causes a search of the tape
in a forward or reverse direction, respectively. If the switch is omitted,
the tape is rewound before a forward search is begun. The search ends when
the file is found or an end-of-tape is reached. If the device is not a
serial tape device being OPENed FOR READ, the /For /R is ignored.]

4-137 OPEN

TEK SPS BASIC V~2 System Software

The next argument in the command syntax is the file name. The file
name must be included if the specified peripheral is a file-structured
device such as disk or magtape. The file name is optional when the device
is a non-file-structured device such as a line printer or a paper-tape
reader or punch. (If a file name is included in a statement to OPEN a
paper-tape punch FOR WRITE, the file name is punched on the tape in
humanly-readable alphanumeric characters.) The OPEN command has no default
file name extension.

The OPEN command determines the mode of access to receive or send
data (random or sequential) by the keywords UPDATE, READ, or WRITE.

For random access, a file is OPENed as a record I/O file by using the
keyword UPDATE. The peripheral must be a directory-structured device, and
the file must already exist on it. (See the DEFINE command for information
on creating a record I/O file.) Once OPENed FOR UPDATE, a file is accessed
for input or output by using the record I/0 form of the READU or WRITEU
commands, respectively.

To receive data in a sequential manner from a peripheral device or
file you use the keyword READ. If a file name is given, that file must
already exist on the device. Files or devices OPENed for READ are accessed
for input only by the READ, INPUT, or regular form of the READU commands.

The keyword WRITE is used to send data to a peripheral in a sequential
manner. If the device is file-structured, a file is created. A file of the
same name must not already exist on the device or a fatal error results.
If the specified device is a paper-tape punch, leader is punched. (When
the punch is closed with the CLOSE or END command, leader is again punched.)
Files or devices OPENed for WRITE are accessed for output only by the
WRITE, PRINT, or regular form of the WRITEU commands.

[You can increase the speed of throughput to a file or device OPENed
FOR WRITE by using more than one buffer. Multiple buffers are specified
by the expression following the optional keyword WITH. The expression is
rounded to an integer if necessary. Using more than one buffer requires
additional memory for each extra buffer. See the Peripheral Drivers manual
for buffer sizes. If this option is omitted, a default of one buffer is
used.]

[The expression following the keyword INTO allows you to specify the
maximum size in blocks (256 words per block) of a file OPENed FOR WRITE

OPEN 4-138

TEK SPS BASIC V~2 System Software

on a directory-structured device. The result of the expression is rounded
to an integer if necessary. If this option is omitted, half of the largest,
contiguous free space on the device is used as the new file.]

[The file created by an OPEN for WRITE statement may be smaller than
the allotted or default space, but it cannot be larger. As your disk begins
to fill, the default (half the available space) may not be large enough,
even for small files. In order to use more than half of the largest,
contiguous free space for a file, you need to include the INTO specification
when OPENing a file FOR WRITE. If the allotted or default space exceeds
the actual number of blocks used by the file, the extra blocks are returned
to a free status when the file is CLOSEd.]

4-139 OPEN

TEK SPS BASIC V02 System Software

OVERLAY (Nonresident)

Examples:

100' OVERLAY DK1: 11 PROG2.BAS"
120' OVERLAY "NEXT"
150 OVERLAY CT:/R,B$
160' OVERLAY PR:

Syntax Form:

Descriptive Form:

[line no.] OVERLAY [device name[drive number]:][/ forward or reverse switch[,]]
[program file name]

Purpose:

To move a new program segment into memory, overlaying an existing
program segment. Execution continues if the command is executed in program
mode.

Discussion:

When very large programs are written, it is often desirable to break
them into several smaller segments and execute each segment one at a time.
The OVERLAY command allows this flexibility.

If the OVERLAY command is used in a program (not in immediate mode),
execution of the overlaid program is automatic. In this case, a portion
of the current program is overlaid by the program segment stored in the
specified file by a SAVE or REPLACE statement. Statements in the new program
whose line numbers match existing statements in memory replace those

OVERLAY 4-140

TEK SPS BASIC V02 System Software

existing lines. However, unlike CHAIN, OVERLAY deletes no other text.
Execution resumes with the next sequential statement following the OVERLAY
command. No variables are deleted, and files are left open. The line
containing the OVERLAY command must not be overlaid.

All lines read in with the OVERLAY command must have line numbers.
If a line contains more than 80 characters, a warning error is issued and
the remainder of the line is ignored.

For other commands that allow efficient use of memory space see the
discussions on CHAIN, GOSUB, and OVLOAD.

Using the Syntax Options:

When no device is specified, the system device is used. If the named
device does not use the system device driver, its driver must be LOADed
into memory before the OVERLAY command is executed. The keyboard (KB) may
not be the specified device. If the drive number is omitted, zero is
assumed.

[The /F or /R switches (Forward or Reverse) may be specified for a
serial tape device. The switch indicates the direction of the tape movement
when searching for the file. If the switch is omitted, the tape is rewound
before a forward search is begun. The search stops when the file is found
or an end of tape is reached. When used with other peripherals, the switch
is ignored.]

A file name must be specified if the device is file-structured. If
an extension is not included in the file name, .BAS is assumed.

4-141 OVERLAY

TEK SPS BASIC V02 System Software

Examples:

150 OVLOAD 11 PART2"
780 OVLOAD DK1:A$

OVLOAD (Nonresident)

170 OVLOAD CT:/R,"SECTN.3"

Syntax Form:

Descriptive Form:

[line no.) OVLOAD [device name[drive number):][/ forward or reverse switch[,))
file name of pretranslated text

Purpose:

To perform a fast overlay of a pretranslated BASIC program segment
from a file created by an OVLSAV statement.

Discussion:

The OVLOAD command allows faster execution of overlaid program segments
than the OVERLAY command. The program text brought into memory by OVERLAY
must be translated as it is loaded. However, the program text loaded by
OVLOAD has been stored in a translated form by an OVLSAV statement.

Before the fast overlay file is loaded, any text in memory with line
numbers in the range of the line numbers in the fast-overlay file are
deleted. The line containing the OVLOAD command must not be in this range.
Because the text is deleted, you cannot use an interleaved overlay technique
with OVLOAD as you can with OVERLAY. (OVERLAY overwrites lines but does
not delete lines.)

OVLOAD 4-142

TEK SPS BASIC V92 System Software

When the fast overlay file is loaded, there must be enough free memory
available for one input/output buffer, the translated text, and any extra
information about the text from the file. The size of the I/O buffer depends
on the type of the device the file is stored on. See the Peripheral Drivers
Manual for buffer sizes.

NOTE

A fast-overlay file created by the
standard memory version of OVLSAV
cannot be brought into memory by the
extended memory (XM) version of
OVLOAD, and vice versa.

Using the Syntax Options:

The named device must be file-structured. When no device is specified,
the system device is used. If the named device does not use the system
device driver, its driver must be LOADed into memory before the OVLOAD
command executes. If the drive number is omitted, zero is assumed.

[The /F or /R switches (Forward or Reverse) may be specified for a
serial tape device. The switch indicates the direction of the tape movement
when searching for the file. If the switch is omitted, the tape is rewound
before a forward search is begun. The search stops when the file is found
or_ an end-of-tape is reached. When used with other peripherals, the switch
is ignored.]

The string expression is the name of the fast overlay file. If an
extension is not included in the file name, 11 .BOL" is assumed.

4-143 OVLOAD

TEK SPS BASIC V02 System Software

OVLSAV (Bonresident)

Examples:

450 OVLSAV A$
OVLSAV DK1: "PART23. V11 11 , HJ00, 1500
OVLSAV DX1: "NEXT"
OVLSAV DL2: 11FAST2" INTO 5

Syntax Form:

[line no.] OVLSAV [device name[constant]:]string expression [INTO expression]
[,ex press ion[,ex press ion]]

Descriptive Form:

[line no.] OVLSAV [device name[drive number]:] file name for fast-overlay file
[INTO number of blocks][,line number [starting, line number ending]]

Purpose:

To create a file containing a pretranslated BASIC program segment
that can be loaded into memory by an OVLOAD statement.

Discussion:

As a BASIC program is entered from the keyboard terminal, the text
is translated into an internal form and stored in the controller memory.
Whenever a program in memory is displayed by a LIST statement or stored
on a peripheral by a SAVE or REPLACE statement, the program is converted
back to the familiar BASIC language form. This means that when a stored
program is brought into memory by an OLD, CHAIN, or OVERLAY statement,
time is required to translate the text back into the internal form. In
large, heavily overlaid programs this translation time can represent much
of the total execution time. OVLSAV provides the ability to save portions
of a BASIC program in its already translated (internal) form. When program
segments saved by OVLSAV are later loaded into memory by an OVLOAD statement,

OVLSAV 4-144

TEK SPS BASIC V02 System Software

the translation process is completely avoided and the time saving is
considerable.

Like SAVE, the OVLSAV can create a file from all or part of the program
text that is in controller memory. Specifying one or two optional line
numbers allows you to save in the given file only part of the program text
that is in memory. If there is text in memory in the range of the line
numbers specified, first, any file with the given file name is canceled
and then a new file is created from the specified text. If there is no
text in the range of line numbers specified or no text in memory at all,
no action is taken.

The starting and ending line numbers specified in the OVLSAV statement
or the starting and ending line numbers for the entire program (if no line
numbers are specified) are saved in the file with the translated text by
OVLSAV. Later, when this overlay file is brought into memory by OVLOAD,
any existing lines within this range of line numbers are deleted from the
program in memory before the fast overlay file is loaded.

Since the optional line numbers in the OVLSAV command are expressions,
they are not altered by the RENUM command.

NOTE

A fast-overlay file created by the
standard memory version of OVLSAV
cannot be brought into memory by
the extended memory (XM) version
of OVLOAD, and vice versa.

Using the Syntax Options:

The named device must be file-structured. If no device is given, the
system device is assumed. If the named device does not use the system
device driver, its driver must be LOADed into memory before OVLSAV executes.
When the device is a serial-access, file-structured device, no files may
be OPEN on it. If the drive number is omitted, zero is assumed.

The file name is required. If no file name extension is specified, a
default extension of 11 .BOL" is used.

4-145 OVLSAV

TEK SPS BASIC V02 System Software

If the target device is directory-structured (e.g., DK, DL, DY, or
DX), the INTO option can be used. The (rounded) expression following the
keyword INTO stipulates the maximum number of blocks required by the file.
When the INTO option is used, the first sufficient empty space on the
target device is selected for the file. When the INTO option is not used,
one half of the largest empty space on the target device is set aside for
the file. In either case if the specified or default space exceeds the
actual number of blocks needed for the file, the unused blocks are returned
to an empty status. (The INTO option is not supported by the OVLSAV V02-01.)

When storing a fast-overlay file on a nearly full disk, use the INTO
option. Half the remaining free space may not be large enough for the file.
In order to use all the available disk space, you will need to specify the
required number of blocks rather than use the default.

The optional expressions are rounded to integers and used as line
numbers to delimit the range of the text in memory to be included in the
fast overlay file. The expressions must evaluate to numbers between 1 and
32767, inclusive. If only one line number is used, only that line is saved.
If two line numbers are used, all program lines between and including those
lines are saved. When both line numbers are omitted, all the program text
in memory is saved in the file.

OVLSAV 4-146 @

TEK SPS BASIC V02 System Software

PRINT (Nonresident)

Examples:

150 PRINT A,B,C$
160 PRINT llL+2,A+B+C;" IS THE ANSWER"
180 PRINT TAB(40);"SUM IS";D
190 PRINT 100,(A*C+(D*D)),3.45E05;
200 PRINT
210 PRINT,,, ,DA$
220 PRINT /IN,

Syntax Form:

[line no.] PRINT [lex press ion,]

Descriptive Form:

[line no.] PRINT [ltarget pltn,]

Purpose:

expression
array expression
waveform expression
string expression
string array
TAB(expression)

expression
array expression

waveform expression
string expression
string array
TAB(colLJnn number)

expression
array ex press ion
waveform ex press ion
string ex press ion

string array
TAB(expression)

expression
array ex press ion I:, I waveform ex press ion
string ex press ion
string array
TAB(colLJnn number)

To output ASCII data to the terminal, a file, or peripheral device.

@ 4-147 PRINT

TEK SPS BASIC V02 System Software

Discussion:

The PRINT command outputs constants, strings, variables, string
variables, waveforms, arrays, and string arrays to the terminal or any
peripheral capable of being written to. The information is sent as ASCII
characters.

Formatting Your Output:

The comma and the semicolon. Two delimiters are available for separating
output items -- the comma and the semicolon. The comma divides a line of
printing into fields, 14 print positions wide. It is like hitting the tab
key on a typewriter when the tab-stops have been set at positions 14, 28,
42, .••• An item following a single comma is printed in the next free field
beyond the present position. (In line 280 of the example program below,
the number 54321 is printed in the fifth field because ST$ extends into
the fourth field.) Using two (or more) commas in a row is like hitting a
typewriter's tab key that many times -- one (or more) print fields are
skipped before the item after the commas is printed. If you specify n
commas, n-1 fields are skipped. (Line 290 shows this.)

The semicolon causes data to be printed in a concatenated form with
no extra spaces between two items. However, when a positive number is
output following a semicolon, a space does appear. This space is in place
of a plus sign (+). Printing the STR function of the number, instead of
just the number, eliminates this space, as in line 380 below.

Either of these delimiters, when used as the last character in a PRINT
statement, suppresses the carriage return and line feed normally output
by each PRINT statement. The result is that the next PRINT statement starts
printing from the position held by the previous PRINT statement -- the
PRINT statement ending with a comma or semicolon. Remember, however, that
a comma will cause a skip to the beginning of the next field, so, if a
comma is used, the next PRINT statement will start printing in the next
field. (See lines 40, 200, and 210 below.)

Tabulation. The TAB function causes the data item following it to be
printed starting at the column number specified. The columns are numbered
from zero. If the value of the TAB function is less than the current column
position or greater than 200, the function is ignored. To be effective,
the TAB function must be followed by a semicolon. If a comma is used instead

PRINT 4-148 @

TEK SPS BASIC V02 System Software

of a semicolon, the data item that follows it is printed in the next
available field (Lines 410 and 420 show this).

Blank lines. When a PRINT statement is used with no list of output
items, only the carriage return and line feed are output. This normally
prints a blank line. An exception to this is if the previous PRINT statement
ended with a comma or semicolon. In that case, the second PRINT statement's
carriage return and line feed finishes the line started by the previous
PRINT statement and no blank line is printed. (In line 150 below, the first
PRINT completes the previous line, but the next two PRINTs produce two
blank lines.)

Array output. When arrays are printed, each element is right justified
in a field 14 characters wide, five fields per line. A positive number is
preceded by a space; a negative number, by a minus sign. Array output
always begins on a new line.

Waveform output. Waveforms are output as four separate data sets.
First, the array is printed using the array output format. Next, the data
sampling interval, the horizontal units, and finally the vertical units
are output, each on a separate line.

String array output. The ability to PRINT a string array has been
included to simplify the handling of data from an IEEE 488 Interface. Each
element of the string array is printed separately, starting in column zero
and is followed by a carriage return and a line feed.

Formatting Example. Here is a sample program that demonstrates some
formatting techniques using PRINT statements. The column numbers at the
top of the sample program's output (Fig. 4-1) represent the fields in the
output line produced by the comma. The first number in each output line
corresponds to the line number of the PRINT statement that produced the
line.

10 REM
20 REM PRINT "COL" AT START OF EACH FIELD
30 REM
40 FOR I=1 TO 6\PRINT "COL",\NEXT I
50 PRINT
60 REM
70 REM PRINT STARTING COLUMN NUMBER FOR EACH FIELD
80 REM

4-149 PRINT

PRINT

TEK SPS BASIC V02 System Software

90 FOR 1=0 TO 70 STEP 14\PRINT STR(I),\NEXT I
100 PRINT
110 REM
120 REM SHOW WIDTH OF EACH FIELD
130 REM
140 FOR I=0 TO 56 STEP 14\PRINT "FIELD: ";STR(I);"-";STR(I+13),\NEXT I
150 PRINT\PRINT\PRINT
160 PRINT "LINE NO.","EXAMPLE OUTPUT"
1711 PRINT\PRINT
180 REM
190 PRINT,"A , OR ; AT END SUPPRESSES CARRIAGE RETURN, LINE FEED
200 GETLIN X\PRINT X,"LINES";X;" AND";
210 GETLIN X\PRINT X; 11 PRINTED ON SAME LINE"
220 GETLINE X\PRINT X, "LINE" ;X\PRINT, "PRINTED ON TWO LINES"
2311 PRINT
240 PRINT,"COMMA PRINTS NEXT ITEM IN NEXT FIELD"
250 GETLINE X\PRINT X,\FOR I=1 TO 4\PRINT !,\NEXT I
2611 PRINT
270 GETLIN X\PRINT X,123,1234500,-45,-34.9876
280 ST$="19 STRING CHARACTERS"\GETLIN X\PRINT X,"STRING 11 ,ST$,54321
290 GETLIN X\PRINT X,,,"SKIP TWO FIELDS"
300 PRINT
310 PRINT, "SEMICOLON CONCATENATES ITEMS"
32@ GETLIN X\PRINT X,\FOR I=1 TO 4\PRINT !;\NEXT I
330 PRINT
34@ GETLINE X\PRINT X,1234;765432;-4546;-1.234567E+08
350 GETLIN X\PRINT X,"THIS IS ";"A BUN";"CH OF STRINGS"
360 PRINT
370 PRINT,"PRINTING STR FUNCTION OF NUMBER REMOVES SPACE"
380 GETLIN X\PRINT X,\FOR I=1 TO 4\PRINT STR(I);\NEXT I
390 PRINT\PRINT
400 PRINT,"FOLLOW TAB FUNCTION WITH SEMICOLON, NOT COMMA"
41@ GETLIN X\PRINT X,TAB(4G);"POSITION 40","POSITION 56 11

42@ GETLIN X\PRINT X,TAB(40),"NOT IN 40","IN NEXT FIELD"
430 END

4-150 @

COL

0

COL

1 ..

TEK SPS BASIC V~2 System Software

COL

28

COL

56

FIELDS e-13 FIELD• 1 .. -27 FIELD• aa-.. 1 FIELD• .. 2-55 FIELD• 56-69

LINE NO.

eee
229

259
279
289
age

380

EXArlPLE OUTPUT

A • OR J AT END SUPPRESSES CARRIAGE RETURN. Lil'E FEED
Lil'ES eee AND 21e PRINTED ON SAP£ Lil'E
LINE 22e
PRINTED ON TWO LINES

COMl'IA PRINTS
1
123

STRING

NEXT ITEM IN !'EXT FIELD
2 3 4
1.23-tSeE+e& -46 -3 ... 9876

1g STRING CHARACTERS 54321
SICIP TWO FIELDS

SEMICOLON CONCATENATES ITEPIS
1 a 3 4
1234 76S432-4S46-1.23"tS7E+88

THIS IS A BUNCH OF STRINGS

PRINTING STR FUNCTION OF NUMBER REMOVES SPACE
123 ..

FOLLOW TAB FUNCTION WITH SEMICOLON. NOT COl'IMA
POSITION .. e POSITION 56

NOT IN 49 IN NEXT FIELD

COL

79

2501-04

Fig. 4-1. Output of exam.ple program. demonstrating the PRINT command.

PRINTing to a File:

When PRINTing to a file, care must be taken so that the data can be
INPUTed correctly. The following statement will provide a file that can
be displayed by the COPY command, but cannot be INPUT:

PRINT fJN ,A ,B

This is because the ASCII characters for A and B will be separated in the
file by spaces, which the INPUT command discards. The INPUT command requires
a carriage return as a delimiter between data items. (A comma is also a
valid delimiter between data items if the first item is numeric.)

The correct way to PRINT multiple data items is as follows:

4-151 PRINT

TEK SPS BASIC V02 System Software

PRINT #N,A\PRINT #N,B

This will place a carriage return between A and B.

When PRINTing arrays, the same care must be taken. Arrays should be
PRINTed to a file using a FOR/NEXT loop.

10 FOR I=0 TO SIZ(A)-1
20 PRINT #N,A(I)
30 NEXT I

Waveforms should be PRINTed to a file by first PRINTing the array
using a FOR/NEXT loop. Then the data sampling interval, horizontal units,
and vertical units should be PRINTed with separate PRINT statements to
allow the waveform to be INPUT back to memory.

Using the Syntax Options:

When the expression following the pound sign (#) is supplied, it is
rounded to an integer and used as the target peripheral logical unit number
(PLUN). The PLUN must be between 0 and n, where n is the number of PLUNs
allowed at initialization time (default of six).

When a PLUN is omitted, output goes to the terminal (PLUN zero). If
a nonzero PLUN is used, it must be OPEN FOR WRITE. If it is OPEN FOR READ
or UPDATE, a fatal error results.

Notice that a PLUN of zero is allowed. If you use a variable for the
PLUN, a program's output can be directed to one of several peripherals -
the terminal, a line printer, or a file. To direct output to peripherals
other than the terminal, simply OPEN the desired device or file FOR WRITE
and set the PLUN variable in the PRINT statement to the logical unit number
assigned to the file or device by the OPEN statement. Setting the PLUN
variable to zero sends output to the terminal.

If the PLUN is given, a comma must follow the PLUN, but this comma
does not serve as a formatting delimiter.

Numeric expressions, array expressions, waveform expressions, and
string expressions are permitted. However, string arrays may be neither
used in expressions nor zoned.

PRINT 4-152

TEK SPS BASIC V02 System Software

The keyword TAB specifies the tabulation printing function explained
above. The expression in parentheses is rounded to an integer and used as
the column value at which to start PRINTing the next data item. Columns
are numbered from zero.

Application Example:

If you PRINT to a file in the same manner you do to a terminal or
line printer, you will not be able to INPUT the data from the file back
into memory. To be able to INPUT a PRINTed file, each item in the file
must be separated by a delimiter acceptable to the INPUT command: a carriage
return (or a comma if the items are numeric).

This routine shows some methods for inserting the required delimiters.
To separate the numbers in line 30, commas between the numbers are explicitly
output to the file. By PRINTing the array in a loop (lines 50 to 80), a
carriage return separates each array element as it is output. Also each
string is printed with a separate statement to delimit it by a carriage
return (lines 90 and 100).

10 OPEN 111 AS DK1: "TEST .DAT" FOR WRITE
20 PRINT #1,"THIS IS A PRINTED FILE"
30 PRINT #1,10,",",20,",",30,",",40
40 DIM B(3)
50 FOR I=0 TO 2
60 B(I)=I*1.44
70 PRINT #1,B(I)
80 NEXT I
90 PRINT 111, "THIS IS ONE STRING"
100 PRINT 111, "THIS IS A SECOND STRING"
110 CLOSE II 1
120 REM
130 OPEN #1 AS DK1:"TEST.DAT" FOR READ
140 INPUT #1 A$,A,B,C,D
150 DIM BB(3)
160 INPUT 111 ,BB
170 INPUT #1,B$,C$
180 CLOSE #1
190 RETURN

4-153 PRINT

TEK SPS BASIC V02 System Software

Because explicit delimiters are output, after the file is CLOSEd and
OPENed FOR READ, the data can be INPUT into variables (lines 140 to
170). If line 30 changed to:

30 PRINT #1,10,20,30,40

and line 70 is replaced by:

85 PRINT #1,B

you would get a data error if you tried to INPUT the file as in lines 130
to 180. But you could display the contents of the file by COPYing it to
the terminal (KB) or a line printer (LP).

PRINT 4-154

TEK SPS BASIC V02 System Software

Examples:

150 PRIORITY 75
160 PRIORITY X+50

Syntax Form:

PRIORITY (Nonresident)

[line no.] PRIORI expression

Descriptive Form:

[line no.] PRIORITY level

Purpose:

To change the priority of a program while it is running.

Discussion:

Routines execute in the order of their priority numbers. In the
Scheduler queue, a routine with a higher priority number executes before
one with a lower number. Also, a routine of higher priority can interrupt
the execution of a routine of lower priority. (The Scheduler's priority-base
execution process is discussed in Section 1.)

A BASIC program RUNs at a default priority value of 50. With this
command you can assign one of 127 priority levels to a running program,
0 as the lowest and 126 as the highest.

A program maintains the priority of the last PRIORITY statement (or
the default value of 50) while it is running. If the priority of the system
is changed by a PRIORITY statement in a subroutine, the original priority
(the priority before the transfer caused by the GOSUB) is restored on
RETURN from that subroutine.

4-155 PRIORITY

TEK SPS BASIC V02 System Software

The system's priority can also be altered by WHEN or SCHEDULE command
interrupt routines (those subroutines that receive program control after
an instrument event has occurred or a user-designated time interval has
elapsed). The system takes on the priority specified by the associated
WHEN or SCHEDULE command. After completion of the interrupt routine, the
RETURN command restores the original system priority before returning
program control to the main program (or idle mode, depending on when the
interrupt occurred).

This priority number is not related in any way to the hardware priorit
levels in the processor.

Using the Command Syntax:

The priority level expression is rounded to an integer. It must
evaluate to a number between 0 and 126, inclusive.

Uses:

Interrupt routines can be effectively blocked (prevented from executing)
by raising the system priority to 126. Likewise, a scheduled routine that
has not interrupted the system because of a low priority can be forced to
execute by lowering the system priority to zero.

PRIORITY 4-156

TEK SPS BASIC V02 System Software

PUT (Nonresident)

Examples:

120 PUT "STO II INTO /IN ,B$
130 PUT A$,X5 INTO llJ,X$,Y$
140 PUT "SET?" INTO @0,LA,SA
270 PUT A$;A INTO 113;1

Syntax Form:

{::~:~s:::~ession }~ {::~:~s:::~ession }]
wavefonn expression {:} waveform expression •••
string expressrnn ' string expression
string array string array

[line no.] PUT [;]

{

#expression[;expression][,string expression] •• ·1
_ {array expression }

INTO @expression, expre~sion[,expression]

[{array expression }]
; expression[,expression] '''

Descriptive Form:

{

source
source

[line no.] PUT source
source
source

::~:~s:::~ession J~ {:~:~: ::~:~s::~~ession _ }]
waveform expression {:} source waveform expression ...
string exp,ression ' source string expression

[;]

INTO

string array source string array
#target ilun [;secondary ciddress]

[,driver-dependent specification of data
or status information to be sent to instrument]

@IEEE 488 interface number,

{
listen and secondary address pairs }
listen address [,secondary address]

[{ listen and secondary address pairs }]
; listen address [,secondary address]

4-157 PUT

TEK SPS BASIC V~2 System Software

Purpose:

To send data to a specified instrument.

Discussion:

This command allows you to control an instrument by setting internal
status in the instrument. With some instruments, data in the form of arrays
and waveforms can be sent to the device for viewing.

Like the GET command, the PUT command is divided into two parts, the
source and the target. The source is the data that is sent to the instrument.
This data may be in many forms, depending on the instrument referenced.
The target instrument is indicated by either the instrument logical unit
number (ILUN) of the ATTACHed instrument or the IEEE 488 interface number
followed by one or more addresses. With the ILUN, one or more driver
dependent strings may be used. These strings tell the instrument driver
what to do with the source data. Each instrument driver recognizes a
different set of strings. For any instrument, only those strings that its
driver responds to should be used. Complete documentation of the driver
dependent strings recognized by a driver is found in the manual for that
driver.

When the PUT command executes, the instrument must be on line and the
required instrument driver must be LOADed in memory. Also either the
instrument must be ATTACHed to associate it with the instrument logical
unit number (ILUN), or the communication must be through the low-level
IEEE 488 Interface driver, GPI.SPS, which is discussed in Section 6.

Using the Syntax Options:

No instrument driver uses all the legal syntax variations of the PUT
command. The manual for each driver shows which of the forms are allowed
by that driver.

The list of one or more source expressions may include numeric
expressions, array expressions, waveform expressions, string expressions,
and/or string arrays depending on what a particular driver allows. Multiple
source arguments are usually separated by commas, but the syntax of PUT
also accepts a semicolon. The semicolon option is used by the high-level

PUT 4-158 @

TEK SPS BASIC V~2 System Software

IEEE 488 Instrument driver (GPI.SPS) to suppress the sending of a delimiter
(the ASCII code for a comma) between the multiple source items. (INS.SPS
is not supported by TEK SPS BASIC V~2-~1.)

The specification following the keyword IBTO designates the target
instrument. If a pound sign (#) is used, the expression after it is the
instrument logical unit number (ILUN) of the attached instrument. The
optional semicolon and expression is used by the high-level IEEE 488
Instrument driver, INS.SPS, to specify the secondary address of the target
IEEE 488 instrument. (INS.SPS is not supported by TEK SPS BASIC V@2-@1.)
The optional string expressions are the driver-dependent strings which
determine how the data is used.

If an at sign (@) is used, the expression following it is the number
of the IEEE 488 interface through which the data is sent. When the at sign
is specified, the low-level IEEE 488 Interface driver, GPI.SPS, must be
used. The list of expressions after the interface number specifies the
primary listen and optional secondary addresses of devices connected to
the IEEE 488 interface bus. See Section 6 for complete documentation.

@ 4-159 PUT

TEK SPS BASIC V02 System Software

PUTBLK (Nonresident)

Examples:

600 PUTBLK DK1:"TEST.DAT",3,B(0:255)
150 PUTBLK X,A$
490 PUTBLK DX:J*2,A+.5

Syntax Form:

[line no.] PUTBLK [device name[constant]:)[string expression,) . I string expression l
expression,

array expression

Descriptive Form:

[line no.] PUTBLK [device name[drive number]:][file name,]

Purpose:

I source string expression l
target block number,

source array expression

To store a block of data on a directory-structured peripheral device.

Discussion:

The PUTBLK command stores data in a specified block on a directory
structured device. (One block holds 256 16-bit words of data; one word can
hold one 16-bit integer or two 8-bit ASCII characters.) The block number
in which the data is stored can be given as an absolute block number of
the device or as a block relative to the start of a file. The data stored
can be either a 256-element array or the first 512 characters in a string.

PUTBLK 4-160 @

TEK SPS BASIC V~2 System Software

Careless use of PUTBLK could overwrite the
contents of the wrong block of information
on the device. With this command, it is
possible to corrupt any file on the device,
including your copy of TEK SPS BASIC.

Using the Syntax Options:

The device must be directory-structured. If no device is named, the
system device is used. If the named device does not use the system device
driver, its driver must be LOADed before PUTBLK executes. If the drive
number is omitted, zero is assumed.

The expression and the presence or absence of a file name determine
in which block on the device the data is stored. The expression, which
must result in a non-negative number, is rounded to an integer. If the
file name is omitted, that integer is used as an absolute block number of
the device, and the data is stored in that block. If a file name is given,
that integer is added to the file's starting block number to produce the
number of the block where the data is stored. In both cases, the resulting
block number must be between ~ and the largest block number of the device,
inclusive.

An array or a string can be stored in the specified block. If an array
is given, it must be dimensioned or zoned to 256 elements. When the array
is floating-point, its elements are truncated to integers when stored in
the block. When a string is given, its first 512 characters are stored.
If the string has fewer than 512 characters, the remainder of the block
is filled with nulls.

4-161 PUTBLK

TEK SPS BASIC V92 System Software

PUTLOC (Nonresident)

Examples:

299 PUTLOC "176596","232"
219 PUTLOC P1+8,A

Syntax Form:

[line no.] PUTLOC !
expression I !expression I
string expression ' string epression

Descriptive Form:

[line no. J PUTLOC , I decimal address (l decimal val lE to be stored at address (

octal address octal val lE to be stored at address

Purpose:

To deposit a value in a valid controller memory location or in a
device address.

Discussion:

The PUTLOC command is used by the PATCH files. This command is not
intended for general use.

The PUTLOC command allows a BASIC user to assign a value to a word
of controller memory or to a valid interface address (explained below).
Only even addresses are acceptable to PUTLOC since only a full word (16
bits) can be referenced by this command.

PUTLOC 4-162

TEK SPS BASIC V02 System Software

Valid Addresses:

Standard Memory Systems. One word (16 bits) can produce 216 unique
addresses -- 0 to 177777 octal. With byte addressing, this means one of
64K distinct bytes (32K words) can be referenced with a 16-bit address.
However, the highest 4K possible word addresses are reserved as peripheral
address space for device and register addresses, allowing a maximum of 28K
words as controller memory space. Thus for PUTLOC, the valid addresses are
the even (word) controller memory locations (Q to 157776 octal) plus
those reserved addresses to which interfaces are strapped.

Bztended Memory Systems. Systems with memory-management hardware and
TEK ~PS B~SIC V02XM software have 18-bit a~dresses. This permits 256K byte
(128K word} addresses of whiQb the highest.4K word addresses are ·reserved
as i;>'ripheraladdress space. (This rneans,tor example, that a peripheral
stat~!!r register .WhiOh !s addressed· as 1641008·. in a standa.rd memorr:··system
must be a<5dressed as 7641008 in an XM system.) For extended memory (XM)
systems, the valid addresses .include the,possible even (word) controller
mem~r:r l.ol;)~tl()?'ls•·(0 ·to 751776·()(1'\;'.al.)· plus.the·.a<;idresses in the peripheral
~~91\'~.•·~·····~P~~; .• •.... ~~····~ip1l·····1p~.~~f'~ae~•·•· a£~•·•·~~l'~pped:

If the address given is odd or not valid for your system or controller,
a fatal error is issued.

~
It is possible to corrupt Resident BASIC
with this command, forcing a complete
software reload.

Using the Syntax Options:

The first argument is the address to which the value is assigned. If
the argument is a string, it must be the desired octal address. A string
expression should evaluate to a string of no more than eight octal digits.
However, in standard memory systems only the lower 16 binary digits are
used as the address. ~]cteri.<fed rn~~~ry•<{~M) <~,~,~~~~1·

~~i~I~. If the argument is numeric, it must be the decimal equivalent to the
desired address. A numeric expression is converted to binary and, if
necessary, truncated to a 24-bit binary integer. Again, in standard systems
only the lower 16 bits are used as the address;

4-163 PUTLOC

TEK SPS BASIC V~2 System Software

In any case the resulting address
must be even, else an error results.

The second argument is the assigned value. If it is a string expression,
it should evaluate to a string of no more than eight octal digits. However,
only the lower 16 binary digits are stored in the specified location. If
the argument is an expression, the result is truncated to an integer before
being assigned to the specified address.

PUTLOC 4-164

TEK SPS BASIC V~2 System Software

RANDOM (Nonresident)

Example:

155 RANDOM X,Y

Syntax Form:

[line no.] RANDOM floating-JXJint variable,floating-JXJint variable

Descriptive Form:

[line no.] RANDOM high-order part of seed, low-order part of seed

Purpose:

To set the seed value of the random number generator or to obtain the
current seed value.

Discussion:

The seed is the value used by the random number generator to calculate
the next number of the random number sequence. The RANDOM command uses two
variables as the high- and low-order parts of a 32-bit integer seed. The
first variable sets the high-order 16 bits; the second, the low-order 16
bits. The RND function of TEK SPS BASIC (not to be confused with the RANDOM
command) uses the seed value to produce a new psuedo-random number each
time the function is called. The actual sequence length is about 231
different numbers. (It is not necessary, however, to execute the RANDOM
command in order to use the RND function.)

The RANDOM command can also be used to return the value of the seed.

Each time TEK SPS BASIC is loaded, the seed is initialized to 216+3.
(This corresponds to the first and second variables being set to 1 and 3,
respectively, before RANDOM executes.) The initialization process occurs
only at system software load time, not each time the RANDOM command is
brought into memory. A statement such as:

4-165 RANDOM

TEK SPS BASIC V~2 System Software

X=1\Y=3\RANDOM X,Y

resets the seed to its value at system load time.

Using the Syntax Options:

To allocate the seed value, each variable should be set to an integer
value that is greater than or equal to -215 but less than or equal to
215-1. One variable must contain a nonzero value. Should a non-integer
value be used when setting the seed, it will be truncated to an integer.
An out-of-range value is set to the nearest in-range integer.

To return the value of the seed, use the RANDOM command with both
variables set to zero. After the command has executed, the two variables
contain the seed value, the high-order part in the first variable and the
low-order part in the second.

Uses:

NOTE

The RANDOM command arguments must be simple
numeric variables or singly subscripted array
elements, not constants or expressions.

The RANDOM command can be used to start the random number generator
at a predetermined point. This allows a program to produce the same random
numbers each time it is run. This is a very convenient tool for debugging
programs or repeating statistical analyses.

Also, continuous, non-overlapping random sequences can be generated
from separate program runs by using the RANDOM command. This is done by
returning the current seed at the end of each run and then setting the
seed variable to those values prior to the next run.

RANDOM 4-166

TEK SPS BASIC V02 System Software

Examples:

100 READ #A,A(10:30),C$
150 READ #3,A1,C(3)

Syntax Form:

[line no.] READ #ex pressi.on,

Descriptive Form:

READ

variable
array
waveform
string variable

[!variable]
array

' waveform • • •
string variable

. target array target array I target variable I [target variable IJ
[line no.] READ #rource plln, t t fi ' t t fi • • • arge . wave orm arge wave orm

target string variable target string variable

Purpose:

To input data from a peripheral device or a data file filled by the
WRITE command, allowing floating-point, integer, or ASCII values to be
assigned to the specified variables.

Discussion:

Although INPUT and READU also input data to a program, READ is the
most commonly used command to input data stored on a peripheral device.
It reads data files filled by the WRITE command or by the GET command when
data-logging (sending data directly to a peripheral from an instrument).
READ brings in the data stored on a peripheral, and assigns values to
variables, arrays, waveforms, and string variables.

The READ command accesses a file or device by its peripheral logical
unit number (PLUN), not by name. Thus, before a file or device can be read,
it must be OPENed FOR READ in order to assign a PLUN to it. If the peripheral
is OPEN FOR WRITE or UPDATE, a fatal error results.

4-167 READ

TEK SPS BASIC V02 System Software

The file or device is read in a sequential manner starting at the
beginning of the file with the first READ statement. Subsequent READs to
the same file continue reading data from where the previous READ ended.
(By using a RESET statement you can begin READing from the first of the
file again without closing and reopening the file.)

The variables listed in the READ statement must match the data types
available to read. For example, if you want to define C$, the next piece
of information in the specified file must be a string. (The maximum length
of a string that can be READ is 388 characters.) Likewise, floating-point
and integer variables specified in the READ statement must match the data
coming from the peripheral. For this reason you need to know the order in
which various data types were output to the peripheral.

Array dimensions, however, need not be consistent. Arrays can be read
either as entire arrays, as a series of smaller subarrays, or as individual
elements. You can read the array as two or more smaller arrays by specifying
in the READ statement two or more arrays of smaller dimension than the
source array. You can read an array as individual elements by specifying
array elements, perhaps with a FOR/NEXT loop. (If you specify a simple
numeric variable, it will be auto-dimensioned as explained later.)

[The READ command can tell the type of data in a file by the data
descriptors that are written into the file along with the data by the WRITE
command (or by GET when data logging). The data descriptors delimit the
data in the file and inform the READ command of the size and type of the
data that is next in the file. These data descriptors are not something a
BASIC user needs to be concerned with unless the file being output is to
be accessed by software other than TEK SPS BASIC. (The TEK SPS BASIC data
descriptors are described in Appendix E.) Because the WRITE command writes
data descriptors on a file and stores numbers as well as ASCII characters,
a file output by WRITE and input by READ is sometimes called a formatted
binary file.]

If the size of the data file is unknown, the EOF statement may be
used to cause program control to transfer to a specified line when the end
of the file is reached.

If a Control-P is typed at the keyboard while a waveform or array is
being input, the entire array (or subarray) is read before program execution
terminates.

READ 4-168 @

TEK SPS BASIC V02 System Software

Auto-dimensioning:

If a simple numeric variable is specified in the READ statement and
the next piece of data to be read is an array or the remainder of a partially
read array, the simple numeric variable is auto-dimensioned to the size
of the array (or the remainder of the array). Auto-dimensioning may cause
auto-loaded, nonresident commands to be released if room is needed for the
array.

Using the Syntax Options:

The expression following the pound sign (#) is the peripheral logical
unit number (PLUN) from which the data is read. The expression, when
evaluated and rounded to an integer, must be between 1 and n, where n is
the number of PLUNs allowed at initialization time (default of six). The
terminal keyboard, PLUN zero, may not be specified.

The list of variables to be assigned values by the READ statement may
include integer or floating-point variables, integer or floating-point
arrays, waveforms, and string variables. String arrays are not allowed.
The type of the variable must match the type of the next value in the file.

Application Example:

READ is often used to retrieve waveforms or arrays stored in a disk
file. For example, the following routine reads in an unknown number of
waveforms from a file.

100 WAVEFORM WA IS A(511),DS,H$,V$
110' OPEN IF 1 AS DX 1 : "DATA. FIL 11 FOR READ
120 EOF //1 GOTO 800
130 READ 1/1,WA
140 REM
150 REM ROUTINE TO PROCESS EACH
160 REM WAVEFORM GOES HERE
170 REM

790 GOTO 130
800 CLOSE I/ 1
810 RETURN

4-169 READ

TEK SPS BASIC V02 System Software

The desired file is assigned PLUN 1 by an OPEN statement (line 110).
Then from a loop (lines 130 to 790), each waveform is individually read
in and processed before the next is read. When the file is empty, the EOF
statement (line 120) transfers program control out of the loop to where
the file is CLOSEd (line 800) before the routine terminates.

READ 4-170

TEK SPS BASIC V02 System Software

READU (Nonresident)

Examples:

150 REA DU 111 , A, B
160 READU #N,C,DA,D$=SF,B
170 READU #2<9>,A,A$=10
180 READU #J<K>,X,Y,Z,T$=L,A

Syntax Form:

I variable

[line no.] READU #ex press ion[<expression>], array
string variable = ex press ion !

[I variable
, array

string variable

Descriptive Form:

[line no.] READU #source plLn [<record number>],

I target variable

string I target array
target string variable = number of characters in

[I t.cget
variable

'"JJ·· , target array
target string variable = number of characters in

Purpose:

To read DEC RT-11 FORTRAN-compatible data files (files written without
TEK SPS BASIC data descriptors) and record I/O files (TEK SPS BASIC
random-access files).

4-171 RE ADU

TEK SPS BASIC V02 System Software

Discussion:

Data files that have been created by a DEC RT-11 FORTRAN program or
by the WRITEO command can be read with this command. The variable names
specified in the READO command determine how much information is transferred
from the file to the program. Waveforms may not be specified in this
command. READO inputs the data in as many bytes (eight bits per byte) as
the data type of the variables requires. The following table describes the
amount of data transferred for the four possible variable types:

Floating-point variable
Floating-point array
Integer array
String variable

4 bytes
4 bytes per element
2 bytes per element
number of bytes specified
by expression following
equal sign (=).

The following example demonstrates how the READO command can be used
to input various data types.

100 INTEGER I(2)
110 DIM A(2)

500 OPEN #N AS F$ FOR READ
510 READO #N,A,C$=10,I,X

The data will be input as follows:

A(0) gets first 4 bytes
A(1) gets next 4 bytes
A(2) gets next 4 bytes
C$ gets next 10 bytes
I(0) gets next 2 bytes
I(1) gets next 2 bytes
I(2) gets next 2 bytes
x gets next 4 bytes

(string of length 10)

Altogether, the READO command in line 510 reads in 32 bytes of data.

READO 4-172

TEK SPS BASIC V02 System Software

[The files read by the READU command contain neither the TEK SPS BASIC
data descriptors nor delimiters between data items. Thus, READU cannot
tell the type or size of the data it is to read. For this reason, the files
input by READU are sometimes called unformatted binary files.] Because
BASIC has no means of determining the type of data in the file, it is your
responsibility to read in the data in the same order as it was written.
It is possible, for example, to inadvertently read a string into a
floating-point array.

With the regular form of READU, the data is read sequentially, starting
at the beginning of a file with the first READU statement. Subsequent
inputs from the same file continue reading where the previous READU ended.

When the record I/O (input/output) form of READU is indicated -- by
the presence of the angle brackets (<>) -- the mode of access is random.
Any data record in the file may be read in any order. The record I/O form
of READU determines where in the file the data is read from by multiplying
the given record number by the data record length. The length of the data
record is computed by summing the byte count of the variables in the input
list of the READU statement. (The byte count used for each type is discussed
above.) For example, if A is an array of 25 elements, the statement:

READU #N<7>,A$=10,A

reads in a data record 110 bytes long starting with the 770th byte of data
in the file assigned PLUN #N. READU calculates this by first computing the
byte count for the given variables (25*4+10) and then multiplying this
result of 110 by 7, the given record number.

The data record length is calculated each time a record I/0 form of
READU is executed. So when using record I/O, you must input or output an
entire data record with each READU or WRITEU statement, even if you want
to access only a part of a record.

The READU command accesses a file by its peripheral logical unit
number (PLUN), not by file name. Before executing READU, the file must be
OPEN FOR READ or UPDATE depending on which form of READU is used. When the
regular (sequential-access) form of READU is used, the file must be OPEN
FOR READ. To use the record I/O (random-access) form of READU, the device
must be directory-structured and the file must be OPEN FOR UPDATE.

4-173 READU

TEK SPS BASIC V~2 System Software

Using the Syntax Options:

The expression following the pound sign (#) is the peripheral logical
unit number (PLUN) from which the data is read. The expression, when
evaluated and rounded to an integer, must be between 1 and n, where n is
the number of PLUNs allowed at initialization time (default of six). The
terminal keyboard, PLUN zero, may not be specified.

The optional expression in angle brackets (<>) specifies the record
I/O form of READU. The expression, when evaluated and rounded to an integer,
is used as the number of the data record to be read. The records are
nuabered from zero. When the angle brackets and expression are omitted,
the regular form of READU is assumed.

The list of variables to be assigned values may include floating-point
variables, floating-point or integer arrays, and string variables. String
arrays are not allowed. A string variable must be followed by an equal
sign (=) and an expression indicating the number of characters (bytes) to
assign that string variable.

Application Example:

To illustrate how useful record I/O is, consider this binary search
routine. Here we assume that there are two data files: a name file and an
information file. In the name file each record consists of only the name
(2a bytes long) and a pointer -- the record number of the record in the
information file where the rest of the data about that person is kept. The
first record (record zero) of the name file has a blank name field and
contains the number of names in the file in the pointer field. In the
information file each record is 1aa bytes long. The first 4a bytes is the
person's street address stored as two ASCII strings, 2a characters (2a

bytes) each.

To get the data stored in the information file for a given person,
the name file is searched for the desired name. Then the number stored
with the name is used to access the record in the information file where
the rest of the data is stored. Using the record I/O form of READU allows
random access of the records in both files.

The name file is kept in alphabetical order. Being small, compared
with the information file, it is much faster to sort and much easier to

REA DU 4-174

TEK SPS BASIC V02 System Software

keep in alphabetical order as names are added to or deleted from the file.
By having the file in alphabetical order and by using record I/O, a binary
search can be used to find the desired name. [The binary search keeps
dividing the search area in half as it zeros in on the name it is looking
for. So, compared to the number of names in the file, it needs few tries
to find the desired name. In fact, a binary search of a record I/O file
requires at most p reads of the file where p is the nearest power of 2
greater than or equal to the number of records in the file (i.e., 2P = >
number of records). So, a binary search needs no more than p tries to find
a match.] Depending on the size of the file, a binary search can be
considerably faster than a serial search.

The example below is a subroutine that prints a part of a data record
from the information file -- the street address. It asks for the desired
name (line 530) and then calls the binary search routine to find the record
number where the data is stored, R, (line 580). If the name is not in the
file, the search routine returns a negative record number. The address
subroutine, after checking to be sure a match was found (line 610), reads
the entire record pointed to (line 650). It then prints the address which
is stored in the first 40 bytes of the record (lines 670 and 680).

500 REM SUBROUTINE TO FIND ADDRESS
510 REM
520 REM GET SEARCH NAME
530 PRINT "WHOSE ADDRESS DO YOU WANT";
540 INPUT S$
550 REM SEARCH NAME FILE FOR NAME
560 REM GET RECORD NUMBER OF DATA
570 REM IN INFORMATION FILE
580 GOSUB 1000
590 REM IF RECORD NUMBER NEGATIVE, EXIT
600 REM NAME WAS NOT IN FILE
610 IF R<0 THEN RETURN
620 REM OPEN INFORMATION FILE FOR UPDATE
630 OPEN /12 AS DX1:"INFO.FIL" FOR UPDATE
640 REM READ IN RECORD POINTED TO
650 READO #2<R>,F$=100
660 REM PRINT ADDRESS FROM RECORD
670 PRINT SEG(F$,1,20)
680 PRINT SEG(F$,21,40)
690 REM CLOSE FILE, RETURN
700 CLOSE 412

4-175 RE ADU

TEK SPS BASIC Vl12 System Software

710 RETURN
7211 REM
7311 REM BINARY SEARCH OF NAME FILE
7411 REM
7511 REM OPEN NAME FILE FOR UPDATE
10011 OPEN #1 AS DX1:"NAME.FIL" FOR UPDATE
11110 REM READ FIRST RECORD FOR NUMBER OF NAMES
10211 READU #1<0>,NA$=20,N
1030 REM INITIALIZE LOWER,UPPER BOUNDARIES
11140 L= 1
1050 U=N
1060 REM IF UPPER < LOWER, EXIT (NO MATCH)
1070 IF U<L THEN 1280
1080 REM FIND THE APPROXIMATE MIDDLE RECORD
10911 REM IN SEARCH INTERVAL
1100 M=ITP((L+U)/2)
1110 REM READ MIDDLE RECORD
1120 READU #1<M>,NA$=20,R
1130 REM IF MATCH, EXIT SEARCH SUBROUTINE
1140 IF S$=TRM(NA$) THEN 1310
1150 REM IF SEARCH NAME <NAME IN MIDDLE RECORD
1160 REM LOOK IN TOP HALF OF SEARCH INTERVAL
1170 IF S$<NA$ THEN 1240
1180 REM IF SEARCH NAME > NAME IN MIDDLE RECORD
1190 REM LOOK IN BOTTOM HALF OF SEARCH INTERVAL
12011 REM ADJUST LOWER BOUNDARY UPWARD TO MIDDLE +1
1210 L=M+1
1220 GOTO 1070
1230 REM ADJUST UPPER BOUNDARY DOWNWARD TO MIDDLE -1
1240 U=M-1
1250 GOTO 1070
1260 REM IF NO MATCH PRINT MESSAGE
1270 REM AND RETURN NEGATIVE RECORD NUMBER
1280 PRINT "NAME NOT FOUND IN FILE"
1290 R=-1
1300 REM CLOSE FILE AND RETURN
1 3 10 CLOSE 111
1320 RETURN

Before the binary search can start, the routine needs to know how
many names are in the file. Reading the number in the pointer field of the
first record (record zero) gives the number of names, N (line 1020). The

REA DU 4-176 @

TEK SPS BASIC V02 System Software

binary search of the names is done by looking at the approximate middle
record, M, of the search interval. If a match is found, you're done. But
if not, the search interval is cut in half and the middle record of the
new interval (line 1100) is examined for a match. The search continues
until a match is found (line 1140) or the search interval becomes less
than one (line 1070).

The first search interval is the entire file so the lower boundary,
L, is set to 1 and the upper boundary, U, to N. As the search zeros in on
the name, the interval is made smaller and smaller. Depending on whether
the search name is less than or greater than the name in the currently
examined record, the new search interval is the top or bottom half of the
old search interval. This means, either the upper boundary is decreased
to 1 less than the midpoint (line 1240), or the lower boundary is increased
to 1 more than the midpoint (line 1210).

4-177 REA DU

TEK SPS BASIC V~2 System Software

RELEASE

Examples:

6~~ RELEASE ALL
6~5 RELEASE "FFT","WAIT","CT"
62~ RELEASE T$(J),B$
63~ RELEASE AUTO

Syntax Form:

[line no.] RELEASE AUTO AUTO !{string expression}[•{string expression}] •••

ALL

Descriptive Form:

[line no.] RELEASE all AUTO-loaded commands ' all AUTO-loaded commands • • • !{driver or command nane } [{ driver or command name }]

All drivers and nonresident commands in memory

Purpose:

To remove peripheral and instrument drivers and nonresident commands
from memory.

Discussion:

Modules that have been loaded with the LOAD command, as well as
auto-loaded nonresident commands, are released from memory with this
command. If a module was loaded with the LOAD command, the RELEASE command
is the only way to remove it from memory. (Auto-loaded nonresident commands
are released automatically when room is needed for arrays, program text,
another nonresident command, or a driver.)

RELEASE 4-178

TEK SPS BASIC V~2 System Software

Using the Syntax Options:

The string expression must evaluate to the file name of the command
or driver being RELEASEd. An extension need not be specified but if it is,
it must be .SPS. (The .SPS extension is reserved for nonresident command
and driver file names.)

If the keyword AUTO is used, all auto-loaded nonresident commands are
deleted.

If the keyword ALL is used, all nonresident commands and drivers
(except the system device driver, the keyboard driver, and any drivers of
ATTACHed instrument or OPENed peripherals) are deleted from memory.

4-179 RELEASE

TEK SPS BASIC V02 System Software

REM

Examples:

100 REM THIS STATEMENT CAN BE USED
102 REM TO INSERT COMMENTS IN YOUR PROGRAMS

Syntax Form:

[line no.] REii text

Purpose:

To allow insertion of comments in the body of a program.

Discussion:

No action is taken when a REM statement is encountered in a program.
Its purpose is solely to allow textual remarks to be included in a program
for documentation.

No commands may follow the REM statement on a line. This is because
the statement delimiter (\) is considered to be part of the remark. Execution
continues with the next program line.

It should be noted that some processing time (though minimal) is spent
in recognizing and jumping past the REM statement. For maximum efficiency,
REM statements should not be put inside loops in your program.

Also, although it is permitted in BASIC, program control should not
be transferred to a REM statement. That is, a REM statement should not be
the designated statement in a GOTO, GOSUB, IF, EOF, ONERR, SCHEDULE, WHEN,
or other such command. The reason is that you may want to reduce the size
of the program by removing the REM statements with the CHANGE command prior
to execution. (See the CHANGE command for a discussion on how to do this.)
If you have transferred control to a REM statement, you can't later remove
it without rewriting part of your program.

REM 4-180

TEK SPS BASIC V02 System Software

RENAME {Nonresident)

Examples:

50 RENAME "THIS" TO "THAT"
60 RENAME DX1: "BASICF.DAT" TO "NEW.FIL"

Syntax Form:

[line no.] RENAME [device name[constant):)string expression TO string expression

Descriptive Form:

[line no.) RENAME [device name[drive number):)old file name TO new file name

Purpose:

To change the name of a file on a directory-structured device.

Discussion:

The first file name specified is the old name. This name must currently
exist in the directory of the specified device. The second file name is
the new name. This is the name that the file will have after execution of
the command. If a file already exists on the specified device with the new
file name, an error is issued.

Using the Syntax Options:

The device must be directory-structured. If no device is specified,
the system device is assumed. If the specified device does not use the
system device driver, its driver must be LOADed into memory before RENAME
executes. If the drive number is omitted, zero is assumed.

The first string expression is the file name being changed. The string
expression following the keyword TO is the file name it will have after
the RENAME command executes.

4-181 RENAME

TEK SPS BASIC V02 System Software

REHUM (Honresident)

Examples:

50 RENUM
60 RENUM STEP 5

RENUM 100,200 TO 3000 STEP 5
RENUM 100,300 STEP 20
RENUM 100,200
RENUM 500 STEP 20

Syntax Form:

[line no.] RENUM [expression[,expression]] [TD expression] [STEP expression]

Descriptive Form:

[line no.] RENUM [line number[starting,line number ending]]
[TD new line number starting] [STEP increment]

Purpose:

To renumber BASIC program line numbers in memory.

Discussion:

This command renumbers all or part of your program. It does not allow
you to overlay any existing line numbers, or to rearrange the flow of your
program lines. All GOSUB and GOTO statements in memory are updated to point
to the new line numbers, even those outside the range of lines being
renumbered. This includes statements with an implied GOTO or GOSUB such
as WHEN, SCHEDULE, and some UNSCHEDULE, EOF, IF, and ONERR statements.

RENUM 4-182

TEK SPS BASIC V02 System Software

NOTE

RENUM updates explicit line numbers, not
expressions used as line numbers. Thus,
RENUM does not alter the optional line
number expressions in CHAIN, CHANGE, LIST,
OVLSAV, REPLACE, RENUM, or SAVE.

Using the Syntax Options:

All expressions in the command are truncated to integers between 1
to 32767.

The first and second optional arguments delimit the part of a program
to RENUMber. The first expression is the old starting line number -- where
renumbering begins. The second is the old ending line number -- where
renumbering ends. All lines between and including these lines are renumbered.
When the second expression is omitted, renumbering continues to the end
of the program. Omitting both of the first two expressions renumbers the
entire program.

The expression following the keyword TO defines the new starting line
number. When this is omitted, what is used as the new starting line number
depends on what else is specified or not specified. If an old starting
line number is present, it remains as the new starting line number.
Otherwise, the step size (default ten) is used as the new starting line
number.

The expression following the keyword STEP specifies the step (increment)
size between renumbered lines. When omitted, the default is ten.

Application Example:

The RENUM command allows you to expand a section of a program by many
lines. For example, to allow room to insert more than nine lines of code
between line 100 and line 110, type:

RENUM 110 TO 200

4-183 RENUM

TEK SPS BASIC V02 System Software

This renumbers all lines from the old line 110 onward (at the default step
size of ten) to 200, 210 •••• Now you could insert up to 99 new lines between
lines 100 and 200.

The same technique can be used to make an overlay section from lines
1000 to 1999 in a main program. If, for instance, the section of code to
be overlaid is from 515 to 950, you first make room for more lines beyond
line 950 by typing:

RENUM 951 TO 2000

Then, renumber the overlay section with:

RENUM 515,950 TO 1000

Next, SAVE or REPLACE the main program. Finally, OLD in the overlay program
segment and renumber its starting line number to 1000 with:

RENUM TO 1000

Check the overlay program's new ending line number. If its final line
number is larger than 1999, choose a smaller step size than the default
of ten, or make your overlay area in the main program larger.

REN UM 4-184

TEK SPS BASIC V02 System Software

REPLACE (Nonresident)

Examples:

150 REPLACE "PROG2"
REPLACE DK1: "SUB", HIJ00 ,2000
REPLACE CT: /R, F$
REPLACE DL2: "MAILST" INTO 10

Syntax Form:

[line no.] REPLAC [device name[constant]:] [1{~}[,]J string expression

[INTO expression][,expression[,expression]]

Descriptive Form:

[line no.] REPLACE [device name[drive number]:] [/forward or reverse switch[,]]
program file name [INTO number of blocks]
[,line number [starting, line number ending)]

Purpose:

To allow the user to update a previously SAVEd program.

Discussion:

The REPLACE command cancels the specified file and then saves all or
part of the program text that is in memory in a program file of the same
name. If the given file does not exist on the device, the program text is
simply saved.

Specifying the one or two optional line numbers allows you to save
only part of the program text in memory. If there is no text in the range
of the line numbers specified (or no text in memory at all) the REPLACE
command takes no action; no file is canceled and nothing is output to the
device. This situation generates no error.

@ 4-185 REPLACE

TEK SPS BASIC V02 System Software

Since the optional line numbers in the REPLACE command are expressions,
they are not altered by the RENUM command.

If a line of text is longer than 80 characters, a warning error is
issued. The line in question should be corrected and the file REPLACEd.
The OLD command, used to load programs that have been SAVEd or REPLACEd,
does not accept lines longer than 80 characters.

If the device is directory-structured, the SQUISH command may be used
to compact into one area any noncontiguous free (unused) blocks that are
created by the REPLACE and CANCEL commands.

[For a serial tape device, if the old file is located, its name is
changed to "*EMPTY". No change is made to the data in the file. The new
program file is written after the last file on the tape. Since you cannot
SQUISH a serial tape device, no free space is gained on the device.]

For faster execution of segmented programs use the OVLSAV command
instead of REPLACE and then use the OVLOAD command instead of OVERLAY.

Using the Syntax Options:

The named peripheral must be a file-structured device. If no device
is given, the system device is assumed. If the specified device does not
use the system device driver, its driver must be LOADed into memory before
REPLACE executes. If the device is a serial tape device, no files may be
OPEN on it. If the drive number is not specified, zero is assumed.

[The Forward or Reverse switches /F or /R may be included in the
command if the peripheral is a serial tape device. The switch specifies
the direction of the tape movement when searching for a file. If the switch
is omitted, the tape is rewound before a forward search for the file is
made. Searching stops when the file or an end-of-tape is reached. The /F
or /R switch is ignored when the device is not a serial tape device.]

Since the device is file-structured, a file name is required. Carelessly
specifying the wrong file name can REPLACE a file that you do not want to
alter. If no extension is present in the file name, .BAS is assumed.

If the target device is directory-structured (e.g., DK, DL, DY, or
DX), the INTO option can be used. The (rounded) expression following the
keyword INTO stipulates the maximum number of blocks required by the file

REPLACE 4-186

TEK SPS BASIC V02 System Software

being saved. When the INTO option is used, the first sufficient empty space
on the target device is selected for the file. When the INTO option is not
used, one half of the largest empty space on the target device is set aside
for the file. In eittmr case, if the specified or default space exceeds
the actual number of blocks needed for the file, the unused blocks are
returned to an empty status. (The INTO option is not supported by REPLACE
V02-01.)

When storing a program file on a nearly full disk, use the INTO option.
Half the remaining free space may not be large enough for the file. In
order to use all the available disk space, you will need to specify the
required number of blocks rather than use the default.

The optional expressions are rounded to integers and used as line
numbers. They must evaluate to numbers between 1 and 32767, inclusive. If
one line number appears, only that line is saved. When two line numbers
are used, all program lines between and including those lines are saved.
When the line numbers are omitted, all the program lines in memory are
saved.

4-187 REPLACE

TEK SPS BASIC V02 System Software

RESCHEDULE (Nonresident)

Examples:

150 RESCHEDULE
290 RESCHEDULE STACK
170 RESCHEDULE WITH 51
340 RESCHEDULE STACK WITH N+5

Syntax Form:

[line no.] RESCHE [STACK] [WITH expression]

Descriptive Form:

[line no.) RESCHEDULE [STACK] [WITH priority level]

Purpose:

To put either the current job or the routine at the top of the Scheduler
stack back on the Scheduler queue and to allow the Scheduler to select a
new current job.

Discussion:

The RESCHEDULE command alters the contents of the Scheduler, which
is the mechanism in the BASIC operating system that controls the flow of
program execution. (The function and parts of the Scheduler are explained
in Section I.) RESCHEDULE removes either the current job or the routine
at the top of the Scheduler stack and places it back on the Scheduler
queue. RESCHEDULE then performs a RETURN. This means that after the change
is made, the Scheduler chooses a new current job from between the routine
at the top of the stack and the routine at the top of the queue (the highest
priority routine) . The top of the stack is the new current job unless the
top of the queue has a higher priority.

RESCHEDULE 4-188 @

TEK SPS BASIC V02 System Software

When the routine is RESCHEDULEd, its priority can be optionally
changed. This command does not change the task number associated with the
routine.

Using the Syntax Options:

If the optional keyword STACK is used, the routine at the top of the
stack is removed from the stack and placed back in the queue. Then the
currently executing routine (the routine in which the RESCHEDULE command
appears) is terminated. When this keyword is omitted, the currently executing
routine is susoended and placed back in the queue. The line number associated
with this routine is the line number of the command following the RESCHEDULE
command. When this routine resumes (by its packet being popped off the
queue), execution continues with the command following the RESCHEDULE
command.

The optional keyword WITH and its expression specify the priority
assigned the routine being RESCHEDULEd. The expression when rounded to an
integer must be between 0 and 126, inclusive, where 126 has highest priority.
If this keyword and expression are omitted, the priority of the routine
is unchanged.

Application Example:

Time slicing is a method of dividing the use of a device among several
applications. The example below shows how to use RESCHEDULE to produce a
form of time slicing in which three tasks of equal priority take turns
executing. A fourth, high priority task oversees the turn taking by
periodically interrupting the currently executing task. Each time it takes
control, this fourth task SCHEDULEs itself to interrupt again and RESCHEDULEs
the interrupted task, allowing the next task to have a turn.

100 REM TASK 0
110 REM
120 LOAD "CLK"
130 CLOSE 111
140 OPEN 111 AS LP: FOR WRITE
150 SCHEDULE WITH 1 AS TASK GOSUB 1000
160 SCHEDULE WITH AS TASK 2 GOSUB 2000
170 SCHEDULE WITH AS TASK 3 GOSUB 3000

4-189 RESCHEDULE

TEK SPS BASIC V02 System Software

180 SCHEDULE AFTER .2 WITH 126 AS TASK 4 GOSUB 4000
190 RETURN
1000 REM
1010 REM TASK
1020 REM
1030 PRINT #1,"A";
1040 GOTO 1000
2000 REM
2010 REM TASK 2
2020 REM
2030 PRINT #1,"B";
2040 GOTO 2000
3000 REM
3010 REM TASK 3
3020 REM
3030 PRINT #1,"C";
3040 GOTO 3000
4000 REM
4010 REM TIME SLICING TASK
4020 REM
4030 SCHEDULE AFTER .2 WITH 126 AS TASK 4 GOSUB 4000
5040 PRINT #1," ";
5050 RESCHEDULE STACK

Typing RUN causes line 100 to start executing as task 0. This task
loads the clock driver needed by the SCHEDULE command and OPENs the line
printer for output. It then puts tasks 1,2, and 3 in the Scheduler queue
and task 4 in the clock queue. The RETURN in line 190 signals the end of
task 0. Then task 1 is popped off the Scheduler queue and starts executing
the loop at line 1000.

Approximately two tenths (0.2) of a second after task 4 (the time
slicing task) is put in the clock queue, the clock driver transfers task
4 to the Scheduler queue. Its high priority (126) puts it at the front of
the queue. Then, since its priority is higher than task 1's, it interrupts
task 1. Task 1 is pushed onto the Scheduler stack and task 4 becomes the
current job.

As task 4 executes it SCHEDULEs itself for 0.2 of a second later by
putting task 4 (itself) back in the clock queue. Then, just before exiting,
it RESCHEDULEs the task it interrupted. That is, it removes task 1 from
the stack and places it back on the Scheduler queue. Since tasks 1, 2, and
3 have the same priority, task 1 is put into the queue behind task 3.

RESCHEDULE 4-190

TEK SPS BASIC V02 System Software

With task 1 removed, only the idle packet (task -1) is left on the
stack. When task 4 completes, task 2 is popped off the Scheduler queue and
starts executing its loop at line 2000. It continues until its timed turn
is over -- until the 0.2 of a second has elapsed and task 4 is once again
put in the front of the Scheduler queue by the clock driver. Then task 4
interrupts task 2 and does what it did before, except this time it takes
task 2 from the stack and puts it back on the Scheduler queue (behind task
1). After task 4 finishes, task 3 has its turn as the current job, executing
the loop at line 3000 until task 4 interrupts again to give task 1 a second
turn, and so on.

The following set of diagrams illustrates the action of the Scheduler
while this time-slicing program runs:

queue

current
job

stack

queue

current
job

stack

task -1

task -1

n
task -1
task 0

task -1

n

A. In idle mode, BASIC patiently waits with
the idle packet (task -1) occupying both the
current task and the front of the queue.

B. Typing RUN enters task 0 into the front of
the queue.

4-191 RESCHEDULE

queue

current
job

stack

queue

current
job

stack

queue

current
job

stack

RESCHEDULE

task -1
task 3
task 2
task 1

task 0

task -1
task 3
task 2

task 1

task -1
task 3
task 2
task 4

task 1

TEK SPS BASIC V02 System Software

C. Task 0 replaces task -1 which is pushed onto
the stack. Task 0 puts tasks 1,2, and 3 into
the queue and task 4 into the clock queue.

D. When a RETURN is encountered, task 0
completes and task 1 is popped off the queue.
Task 1 starts executing its loop.

E. After approximately 0.2 of a second, task 4
is put in the queue by the clock driver.
Its high priority puts task 4 at the front
of the queue.

4-192 @

queue

current
job

stack

queue

current
job

stack

queue

current
job

stack

@

task -1
task 3
task 2

task 4

task
task -1

task -1
task 1
task 3
task 2

task 4

task -1
task 1
task 3

task 2

TEK SPS BASIC V~2 System Software

F. Because of its higher priority, task 4
interrupts task 1. Task 1 is pushed onto
the stack.

G. Task 4 puts itself into the clock queue and
removes task 1 from the stack -- placing it
back on the queue.

H. When task 4 completes, task 2 is popped off
the queue. Task 2 starts executing its loop.

4-193 RESCHEDULE

queue

current
job

stack

queue

current
job

stack

queue

current
job

stack

RESCHEDULE

task -1
task 1
task 3
task 4

task 2

task -1
task 1
task 3

task 4

task 2
task -1

task -1
task 2
task 1
task 3

task 4

TEK SPS BASIC V02 System Software

I. After approximately another 0.2 seconds,
task 4 is again put in the queue by the clock
driver.

J. High priority task 4 interrupts the current
task; task 2 is pushed onto the stack.

K. Task 4 puts itself in the clock queue and
removes task 2 from the stack and places it
back in the queue.

4-194

queue

current
job

stack

queue

current
job

stack

queue

current
job

stack

@

TEK SPS BASIC V02 System Software

task -1
task 2
task 1

task 3

Fl
task -1
task 2
task 1
task 4

task 3

task -1
task 2
task

task 4

task 3
task -1

L. When task 4 exits, task 3 is popped from the
queue and starts executing its loop.

M. After approximately 0.2 seconds, high
priority task 4 is entered at the front of the
queue again.

N. Task 4 takes over once more; task 3 is
pushed onto the stack.

4-195 RESCHEDULE

queue

current
job

stack

RESCHEDULE

TEK SPS BASIC V~2 System Software

task -1

task 3
task 2
task

task 4

Fl

O. Task 4 puts itself in the clock queue again
and takes task 3 from the stack and puts it
back on the queue. When task 4 completes,
the Scheduler looks like diagram D.

4-196

Examples:

RESET fl3

59 RESET #J+2

Syntax Form:

TEK SPS BASIC V92 System Software

RESET (Nonresident)

[line no.] RESET #expression

Descriptive Form:

[line no.] RESET #plln

Purpose:

To reset a sequential-access file, which is already OPEN for READ,
to the beginning of that file.

Discussion:

The RESET command performs a CLOSE and OPEN for READ on the specified
file. The file may then be read again. The file must be currently OPEN for
READ.

If the peripheral logical unit number (PLUN) specified is associated
with a paper tape reader (PR), RESET has no effect. The tape is not
repositioned to the beginning of the tape, but is left in its current
position.

Using the Command Syntax:

The expression for the PLUN is evaluated and rounded to an integer.
If it evaluates to zero (the keyboard), a warning error is issued and
nothing is done.

@ 4-197 RESET

TEK SPS BASIC V02 System Software

RETURN

Example:

650 RETURN

Syntax Form:

[line no.] RETURN

Purpose:

To return program control to the statement following a GOSUB command
or to the statement that was about to be executed when an instrument event
occurred.

Discussion:

The RETURN command has a variety of functions. In its simplest use,
the RETURN command signals the end of a subroutine. When the command is
executed, program control goes back to the command immediately following
the GOSUB command that called the subroutine. The simple program below
demonstrates this function. The subroutine starting at line 1000 sums the
two values A and B, and places the result in variable X. The RETURN statement
sends control back to line 120 (the statement following the GOSUB), and
the result is printed at the terminal.

100 INPUT A,B
110' GOSUB 1000
120 PRINT X

1000 X = A+B
1010 RETURN

RETURN also serves as the end of an interrupt routine. When an event
occurs, control goes to the line number specified in the associated WHEN

RETURN 4-198

TEK SPS BASIC V~2 System Software

or SCHEDULE command. This transfer occurs (depending on the system priority)
after completion of the command that is currently executing (or immediately
if BASIC is in the idle mode). When the interrupt program is complete, the
RETURN command sends program control back to the line that would have been
executed next had the interrupt not occurred. If BASIC was in idle mode
when the interrupt occurred, the RETURN puts BASIC back into the idle mode.

RETURN should be used in place of END or STOP when more than one task
is executing or interrupts are allowed. Both END and STOP clear the Scheduler
stack and queue, clear the clock queue, and cancel the action of any WHEN
statements. RETURN leaves these structures intact to execute any remaining
tasks and process pending interrupts.

[This command functions by returning control to the Scheduler with
an indication that the current job is completed. The Scheduler then selects
the new current job as described in Section 1.]

If the Scheduler stack and queue are empty when RETURN executes,

READY

•

is printed on the terminal to indicate that the system is in idle mode.

4-199 RETURN

TEK SPS BASIC V02 System Software

E:x:amples:

REWIND MT:
170 REWIND CT 1:

Synta:x: Form:

REWIND {Nonresident)

[line no.] REWIND device name[constant]:

Descriptive Form:

[line no.] REWIND device name[drive number]:

Purpose:

To rewind a serial-tape device.

Discussion:

If the specified device is not capable of being rewound (such as a
disk), the command is ignored.

Using the Synta:x: Options:

Since a tape device cannot be the system device, there is no default
device. The device driver must be LOADed into memory before execution of
the REWIND command. If the drive number is omitted, zero is assumed.

REWIND 4-200

TEK SPS BASIC V~2 System Software

RUB

Exam.ples:

RUN
RUN AS TASK N

Syntax Form:

RUN [AS TASK expression]

Descriptive Form:

RUN [AS TASK task number]

Purpose:

To start the execution of the program in memory at the lowest numbered
line.

Discussion:

The RUN command transfers control to the program line in memory with
the smallest line number. It automatically sets the program priority level
to the default value of 5~. It also assigns a task number, either the
optionally specified number or the default value of zero.

[Several other commands can be used to start a program executing. For
instance, an OLD or a CHAIN command that designates a starting line number
not only loads a program but also begins execution of it. When the OLD or
CHAIN is a part of a program, the new program is assigned the same task
number as the old program of which the OLD or CHAIN is a part. If the OLD
or CHAIN is entered in immediate mode (has the immediate mode task number
of 127), the task number of the program is reset to zero, the default task
number of the RUN command.]

@ 4-201 RUN

TEK SPS BASIC V02 System Software

[It is desirable that programs not run as task 127 because task 127
cannot be ABORTed under program control. Only a Control-P, an immediate
mode ABORT with no task number specified, or a fatal error in task 127
will halt it. That is why the system will not assign task 127 to programs
started under the RUN, OLD, or CHAIN commands.]

[An immediate mode GOTO can also be used to start a program, but it
does not give this protection. The program runs as task 127. In a debugging
situation, this may be acceptable, since normal termination may not be
expected and a Control-P is often used to halt a program being debugged.
However, because of the task number assignment mechanism, an inunediate
mode GOTO statement specifying the lowest numbered program line in memory
is not the same as the RUN conunand.]

Using the Syntax Option:

RUN must be executed in the immediate mode. It cannot be preceded by
a line number.

The expression following the optional keywords AS TASK is rounded to
an integer and used as the task number. It must evaluate to an integer
between 0 and 126, inclusive. When the keywords and expression are omitted,
a task number of zero is assumed.

RUN 4-202

TEK SPS BASIC V(12 System Software

SAVE (Ronresident)

Eimaples:

SAVE "TEST.BAS"
SAVE DK2:"SIGNAL11

13'1 SAVE CT:NM$,5'1,5(1(1
15(1 SAVE "ONE.LIN", 1(1(1

SAVE DL2: 11 MAILST 11 INTO 9

SyntaI Form:

[line no.] SAVE [device name[constant]:][string expression] [INTO expression]
[,expression[,expression]]

Descriptive Form:

[line no.] SAVE [device name[drive number]:] [program file name]
[INTO number of blocks] [,line number [starting, line number ending]]

Purpose:

To save lines of program text on a peripheral device.

Discussion:

SAVE allows you to save all or part of the program that is in memory
on a peripheral storage device.

Specifying the one or two optional line numbers allows you to SAVE
only part of the program text that is in memory. If there is no text in
the range of the line numbers specified (or no text in memory at all), a
file is not created, and nothing is output to the device.

Since the optional line numbers in the SAVE command are expressions,
they are not altered by the RENUM command.

4-203 SAVE

TEK SPS BASIC V~2 System Software

If a line of text to be SAVEd is longer than 8~ characters, a warning
error is issued. The line in question should be corrected and the file
REPLACEd. The OLD statement, used to load programs that have been SAVEd,
does not accept lines longer than 8~ characters.

For faster execution of segmented programs, use the OVLSAV command
instead of SAVE and then use the OVLOAD command instead of OVERLAY.

Using the Syntax Options:

If no device is given, the system device is assumed. If the named
device does not use the system device driver, its driver must be LOADed
into memory before SAVE executes. (The keyboard, KB, may not be specified.)
When the device is a serial tape device, no files may be OPEN on it. If
the drive number is not specified, zero is assumed.

A file name is required for a file-structured device. (Non-file-structured
devices are permitted to allow you to output a program to a paper-tape
punch, PP). If no extension is present in the file name, .BAS is assumed.

If the target device is directory-structured (e.g., DK, DL, or DX)
the IRTO option can be used. The (rounded) expression following the keyword
INTO stipulates the maximum number of blocks required by the file. When
the INTO option is used, the first sufficient empty space on the target
device is selected for the file. When the INTO option is not used; one
half of the largest empty space on the target device is set aside for the
file. In either case if the specified or default space exceeds the actual
number of blocks needed for the file, the unused blocks are returned to
an empty status. (The INTO option is not supported by SAVE V~2-~1.)

When storing a program file on a nearly full disk, use the INTO option.
Half the remaining free space may not be large enough for the file. In
order to use all the available disk space, you will need to specify the
required number of blocks rather than use the default.

The optional expressions are rounded to integers and used as line
numbers. They must evaluate to numbers between 1 and 32767, inclusive. If
one line number appears, only that line is SAVEd. When two line numbers
are used, all program lines between and including those lines are SAVEd.
When the line numbers are omitted, all the program lines in memory are
SAVEd.

SAVE 4-204 @

TEK SPS BASIC V02 System Software

SCHEDULE (Bonresident)

Examples:

550 SCHEDULE GOSUB 900
150 SCHEDULE AFTER 3600 GOSUB 1000
700 SCHEDULE AT "9:10:00 11 GOSUB 1000
160 SCHEDULE AFTER .333 WITH 53 AS TASK 10 GOSUB 500
70 SCHEDULE AT 11 18:30:45 11 WITH 5 GOSUB 330

Syntax Form:

[line no.] SCHEDU [WITH expression][AS TASK expression] [
ArTER ex press ion J
AT string expression

GOSUB line number

Descriptive Form:

[line no.] SCHEDULE [WITH priority level][AS TASK task number] [
ArTER number of seconds]

AT time specification

GOSUB line number

Purpose:

To schedule a subroutine for execution after a specified amount of
time has elapsed or at a specified time.

Discussion:

SCHEDULE gives BASIC the ability to perform subroutines at predetermined
times, depending on the priority of the system. The time can optionally
be specified as either a time interval to wait before scheduling a subroutine
or a specific time at which to schedule a subroutine.

4-205 SCHEDULE

TEK SPS BASIC V~2 System Software

[When the SCHEDULE command executes, it places the information given
about the subroutine in the clock queue. After the specified time has
elapsed or at the specified time of day, the clock driver removes the
information from the clock queue and enters the subroutine in the Scheduler
queue. The task starts executing according to the rules for the Scheduler
as explained in Section 1.]

This means that the transfer to the subroutine does not take place
until two conditions are met: 1) the specified time elapses or the specified
time of day (according to the system time) is reached, and 2) the priority
of the system is less than the priority assigned to the scheduled subroutine.
(If no priority is specified, a default priority of 51 is assigned. Note
that this is one greater than the default program priority of 5~.) When
these conditions are met, program control passes to the subroutine. The
system assumes the priority level of the subroutine until a RETURN is
encountered, terminating the subroutine (or until it is interrupted by a
higher priority routine). Then control returns to the command that was
about to be executed when the transfer occurred and the priority of the
system reverts to the level of the system prior to the transfer.

The timing is not exact. If a command is executing when the subroutine
is scheduled, the command finishes executing before the priority comparison
is made. If the currently executing command is a complex input/output
statement or a complex math operation, it may be several seconds before
even a high priority subroutine can take control.

Up to 24 routines can be scheduled at a time. If equal priority
routines are ready for execution at the same time, the first routine
scheduled is executed first.

The clock driver •cLK.SPS• must be in memory before the SCHEDULE
command executes. If the system has no line frequency clock, executing
SCHEDULE causes an error.

Once a routine has been entered in the clock queue, it can be removed
from the clock queue by the UNSCHEDULE command. This means that the action
of a SCHEDULE statement can be canceled by UNSCHEDULE if the specified
time has not elapsed. END, STOP, and Control-P not only clear the clock
queue but also clear the Scheduler as well, so all p~nding tasks and
interrupts are cancelled.

SCHEDULE 4-206

TEK SPS BASIC V02 System Software

NOTE

The SCHEDULE command cannot be used with the
PDP 11/03 or the CP4165 standard line time
clock. This command assumes a DEC KW11-L (or
equivalent) line frequency clock.

Using the Syntax Options:

You can specify the time interval to wait either as a relative number
of seconds from the time SCHEDULE executes or as an absolute time of day.
When neither time specification is given, the subroutine is scheduled
immediately.

An expression following the keyword AFTER specifies the time interval
(in seconds) the clock driver is to wait before scheduling the subroutine.
For example:

3600 is one hour
60 is one minute

,333 is about 1/3 of a second

The best resolution using the AFTER form is 1/60 of a second.

A string expression following the keyword AT specifies the time of
day at which the clock driver is to schedule the subroutine. The string
expression must evaluate to a string of the form:

where:

8 HH:MM:ss•

HB is the hour. It can be one or two digits representing
an integer between a and 23, inclusive.

MM is the minute. It can be one or two digits representing
an integer between a and 59, inclusive.

SS is the second. It can be one or two digits representing
an integer between a and 59, inclusive.

The best resolution using the AT form is 1 second.

4-207 SCHEDULE

TEK SPS BASIC V02 System Software

When this form is used, the time-of-day specification is compared to
the system time, and the difference between the two times is used to
determine when to schedule the subroutine. For this reason, the system
time should be set by the SETTIME command before SCHEDULE is executed. If
the time of day specified is earlier (less} than the system time, the
subroutine is scheduled immediately.

The optional keyword WITH and its expression specify the execution
priority to be assigned to the subroutine. The expression is evaluated and
rounded to an integer. It must be between 0 and 126, inclusive, where 126
has highest priority. If this is omitted, a priority of 51 is used (one
higher than the default system priority of 50).

The expression following the optional keywords AS TASK specifies the
task number of the subroutine. This expression, when evaluated and rounded
to an integer, must be between 0 and 126, inclusive. When this task
specification is omitted, the task number used is the number of the currently
executing task. However, when the AS TASK and task number are omitted from
an immediate mode SCHEDULE statement, the subroutine is scheduled as task
number 0.

The line number following the keyword GOSUB indicates the starting
line number of the subroutine.

Application Example:

The following example program demonstrates how the SCHEDULE command
can be used to sample a waveform from an instrument every 30 seconds and
write that waveform to a peripheral storage device.

SCHEDULE

10 REM -- LOAD CLOCK DRIVER
20 LOAD "CLK.SPS"
30 REM SCHEDULE THE SUBROUTINE
40 REM ASSUME PERIPHERAL DRIVER AND INSTRUMENT DRIVER ARE ALREADY
50 REM IN MEMORY, AND THE INSTRUMENT IS ATTACHED AS ILUN #2
60 REM FILE ON PERIPHERAL IS OPENED AS PLUN #1
70 SCHEDULE AFTER 30 GOSUB 2000
80 REM -- SOME OTHER PROGRAM COULD GO HERE

4-208

TEK SPS BASIC V02 System Software

1090 REM -- THIS ROUTINE IS ENTERED EVERY 30 SECONDS
2000 GET #1 FROM #2
2010 REM -- SCHEDULE THE ROUTINE AGAIN
2020 SCHEDULE AFTER 30 GOSUB 2000
2030 REM -- RETURN TO THE MAIN PROGRAM
2040 RETURN

4-209 SCHEDULE

TEK SPS BASIC V~2 System Software

SETDATE (Bonresident)

Examples:

SETDATE "16-NOV-98 11

10@ SETDATE A$
25@ SETDATE A$&B$(1@)

SETDATE DT

Syntax: Form:

{ array expression }
[line no.] SETDAT t . .

s ring express ion

Descriptive Form:

[line no.] SETDATE date specification

Purpose:

To set the system date.

Discussion:

The SETDATE command allows the user to specify the date to the BASIC
monitor. Once the date has been set, it can be returned by the DATE command.
Also, any files SAVEd, REPLACEd, OPENed FOR WRITE, or DEFINEd on a
directory-structured device will have that date. If the system date is not
set, the date is null.

If the system software is reloaded, the date is cleared.

Using the Command Syntax::

The system date may be set by either an array expression or a string
expression. (SETDATE V@2-@1 does not allow the array expression argument.)
The specified date must be a valid date.

SETDATE 4-210

TEK SPS BASIC V~2 System Software

When the date is specified by an array expression, it must result in
exactly three elements. The value of each element is rounded to an integer
and used in this order:

first element

second element

third element

is the month. It must be between
1 and 12, inclusive.

is the day of the month. It must be
between 1 and 31, inclusive,
and it must be a valid day for the month
specified.

is the year. It must be between
76 and 99, inclusive.

When the date is specified by a string expression, it must evaluate
to a string of the form:

where:

@

"DD-MMM-YY"

DD is the day of the month. It must be one or two
digits representing an integer between 1 and 31,

inclusive, and it must be a valid day for the
specified month.

MMM is the first three characters in the name of
the month.

YY is the year. It must be two digits representing
an integer between 76 and 99, inclusive.

4-211 SETDATE

TEK SPS BASIC V02 System Software

E:x:am.ples:

SETTIME "9:33:30"
100 SETTIME A$

SET TIME
SETTIME TM

Syntax Form.:

SETTIME (Nonresident)

[line no.] SETT IM farray ex press ion]
Lstri.ng expression

Descriptive Form.:

[line no.] SETTIME [time specification]

Purpose:

To set the system time.

Discussion:

The SETTIME command allows the user to specify the time of day to the
BASIC monitor. The system must have a line frequency clock (e.g., a DEC
KW11-L line frequency clock or an equivalent) before SETTIME can set the
system time. If the system has a line frequency clock but the time of day
has not been set, the system time reflects the elapsed time since the
system software was loaded.

The system time can be returned by the TIME command. In addition, the
form of the SCHEDULE command that has the AT time-of-day specification
uses the system time to calculate the time interval to wait before initiating
a subroutine's execution by entering the subroutine into the Scheduler
queue. When using this form of SCHEDULE, the SETTIME command should be
executed prior to the SCHEDULE command. (The function and parts of the
Scheduler are explained in Section 1.)

SETT I ME 4-212

TEK SPS BASIC V02 System Software

SETTIME can also be used to turn off the line frequency clock by
executing the command with no arguments. This allows the user to eliminate
the time-keeping routine during time-critical data processing. After the
clock is turned off, the system time remains unchanged until another SETTIME
command resets the time and turns the clock back on.

The system time is not automatically changed from 23:59:59 to 0:0:0.
Instead, the time continues to increment. You should reset the time after
midnight.

If the system has no line frequency clock, executing SETTIME causes
an error.

Using the Syntax Options:

Specifying the optional array expression or string expression sets
the system time and turns on the line frequency clock if it has been turned
off. It must be a valid time. (SETTIME V02-~1 does not allow the array
expression argument.)

When the time is specified by an array expression, it must result in
exactly three elements. The value of each element is rounded to an integer
and used in this order:

first element

second element

third element

is the hour. It must be between
a and 23, inclusive.

is the minutes. It must be between
a and 59, inclusive.

is the hour. It must be between
a and 59, inclusive.

When the time is specified by a string expression, it should evaluate
to a string of the general form:

@ 4-213 SETTIME

where:

TEK SPS BASIC V02 System Software

HH is the hour. It can be one or two digits
representing an integer between a and
23, inclusive.

MM is the minute. It can be one or two digits
representing an integer between a and
59, inclusive.

SS is the second. It can be one or two digits
representing an integer between a and
59, inclusive.

Other acceptable forms are "HH", "HH: 11 , "HH :MM", and "HH :MM:"

Omitting the string expression turns off the line frequency clock.

SETTIME 4-214

TEK SPS BASIC V02 System Software

SQUISH (Ronresident)

Examples:

15a SQUISH DL :
16a SQUISH DK: TO DK1:
17a SQUISH DX1: ,VER

Syntax Form:

[line no.] SQUISH device name[constant]: [TD device name[constant] :] [•I VER. . !]
str mg ex press1on

Descriptive Form:

[line no.] SQUISH source device name[drive number]:[TD target device name[drive number]:]
[,bad block VERification switch]

Purpose:

To compress the directory and files on the target device. All free
(unused) blocks are then located in one area, following the files on the
device.

Discussion:

As files are removed from a directory-structured device, empty spaces
are created. These spaces appear as unused blocks when a directory of the
device is displayed. These canceled files cause two problems: space is
still required in the directory to note the location of the unused blocks
and available free storage space is fragmented. The SQUISH command can
delete these "unused" directory entries, compressing the remaining files
into contiguous locations. This results in one larger area of free storage
space, rather than several smaller areas. Any file with an extension of
.BAD is not moved. (The .BAD extension should be reserved for signaling
the location of damaged blocks.)

@ 4-215 SQUISH

TEK SPS BASIC V02 System Software

If power to the controller is interrupted
while SQUISH is compressing the files
on a device, all data on that device may
be lost.

The command can also be used to transfer copies of all the files from
one device to another device, leaving the source device unchanged. However,
the target device is zeroed and given a new directory with the same number
of segments as the source device, so any data on the target device prior
to the execution of SQUISH is effectively deleted. This makes it unnecessary
to initialize the target device with the ZERO command beforehand.

~
When SQUISHing the files from one device
to another, any data previously stored on the
target is lost by the SQUISHing operation.

SQUISH with the VER option is used to verify the source device itself
before any files are moved or transferred. If any bad (physically damaged)
blocks are found, the block numbers (in octal) are printed on the terminal.
The SQUISH is not done if any bad blocks are found.

Using the Syntax Options:

The source device must be specified but the keyword TO and the target
device are optional. If the target device is supplied, the source device's
files are transferred to the target device. If the target device is omitted,
the source device is also the target device so its files are moved to
contiguous locations (compressed) on the device. If the target device is
DY, the disk must be in double-density format. (See the FORMAT command.)
This means that an RX02 (or equivalent) disk formatted for single density
can be SQUISHed to a double-density format RX02 disk, but should not be
SQUISHed to itself, using the DY driver. (If a single density disk is
SQUISHed to itself with the DY driver, the data will remain in single
density format; however, the number of free blocks will be set to the
double density value. This disk will still be usable, but errors may result
from the incorrect number of free blocks.)

SQUISH 4-216

TEK SPS BASIC V02 System Software

The device(s) must be directory-structured. If either device does not
use the system device driver its driver must be LOADed before SQUISH
executes. When a driver number is omitted, zero is assumed.

If the optional keyword VER (or a string expression evaluating to
"VER") is used, the source device is checked for bad blocks.

Uses:

NOTE

The DL and DY drivers are not
available in TEK SPS BASIC V02-01.

SQUISHing one disk to another disk is a convenient way of making a
back-up copy of your software. (See Appendix B for details.)

4-217 SQUISH

E:xamples:

STATUS
STATUS LP:

TEK SPS BASIC V!.12 System Software

STATUS (Konresident)

2511 STATUS DK1:"STAT.FIL"
4711 STATUS SCHED

Syntax: Form:

[
device name[constant]: [string ex press ion] [, SCHED]]

[line no.] STATUS string expression[,SCHED]
SCH ED

Descriptive Form:

[
device name[drive number]:[target file name][,SCHEDuler information flag]

[line no.] STATUS target file name[,SCHEDuler information flag]
SCHEDuler information flag

Purpose:

To print the status of the system on the specified device or file.

Discussion:

STATUS outputs either general information about the system or the
contents of the Scheduler. In either case, the output can be displayed on
the terminal, printed on a device such as a line printer, or sent to an
ASCII format file.

If a target file is named, that file must not already exist on the
device. (The STATUS command opens, fills, and then closes the file.) The
information in the file can later be output to a device such as a line
printer or keyboard terminal with the COPY command.

STATUS 4-218

TEK SPS BASIC V02 System Software

When the keyword SCHED is omitted, the information that is provided
includes:

1. The number of words of free memory. Fo:r extended memo:ry (XM)
systems, the number of words of free array-sto:rage memory is also displayed.

2. The names of any peripheral and instrument drivers in memory
plus the maximum number allowed.

3. The names of nonresident commands in memory plus the maximum
number allowed. (Those auto-loaded are designated by the word AUTO.)

4. The maximum number of files that can be open at one time and
the names of each OPEN file including the operation for which it is open
and its peripheral logical unit number (PLUN).

5. The maximum number of instruments that can be attached at one
time and the list of attached instruments. Given with each instrument is
its instrument logical unit number (ILUN) and its interface number for
IEEE 488 devices.

Below is sample output of the STATUS command when the keyword SCHED
is omitted.

@

*STATUS
FREE MEMORY 3090 WORDS

DRIVERS IN MEMORY (6 PERIPH., 2 INSTR. MAX)
DK
KBG
DPO
IV

NONRESIDENT COMMANDS IN MEMORY (12 MAX)
SCHEDU (AUTO)
PRINT (AUTO)
STATUS (AUTO)
DIR
CHANGE (AUTO)

OPEN FILES (4 MAX.)
DK0: FOO IS OPEN FOR WRITE AS PLUN #1
DK0: PWRFAL.DOC IS OPEN FOR READ AS PLUN #4

4-219 STATUS

TEK SPS BASIC V02 System Software

ATTACHED INSTRUMENTS (2 MAX.)
IV0: IS ATTACHED AS ILUN #1
DP00: IS ATTACHED AS ILUN #2

READY

*
When the optional keyword SCHED is specified, the contents of the

Scheduler queue, the current-job slot, and the Scheduler stack are output.
(The operation and the structures of the Scheduler are described in Section
1.) Four pieces of information about each item on the Scheduler are printed:

1. Its task number.

2. Its priority.

3. The line it came from -- the line that put it on the stack or
queue (or the currently executing line for the current job).

4. Its line number -- the line where execution begins or resumes
when it becomes the current job. (The line number of the current job will
always be the line number of the STATUS SCHED statement.)

The contents of the Scheduler is of interest only when a program is
running. Below is a sample output of a STATUS SCHED statement and the
program in which it was executed:

*RUN
TASK PRI FROM LINE

-1 -1 0 0
1 11 1{/J 20000

QUEUE .•• 2 22 20 20{/J{IJ{/J
CURRENT •.• 0 5f1 10{/J{IJ{/J 10{1J0{1J
STACK ••• 0 5f1 100{/J 1{/J 1{/J

0 5f1 10{/J 1{/J{/J

-1 -1 {/J 0

HI
1
2

READY

STATUS 4-220

At
20 have
at line

TEK SPS BASIC V02 System Software

*LIST
10 SCHEDULE WITH 11 AS TASK 1 GOSUB 20000
20 SCHEDULE WITH 22 AS TASK 2 GOSUB 20000
100 GOSUB 1000\PRINT "HI"
110 RETURN
1000 GOSUB 10000
1010 RETURN
10000 STATUS SCHED
10010 RETURN
20000 PRINT TSK(0)
20'310 RETURN

the time the STATUS SCHED command executes, both
put line 20000 into the queue. Line 1'3 SCHEDULEd
2000'3 as task 1; line 2'3 SCHEDULEd it as task 2.

line 10 and line
the subroutine
Also, the GOSUBs

in lines 100 and 1000 have caused lines 100 and 1'31'3, respectively, to be
pushed onto the stack.

The two idle packets, which always remain in the Scheduler, have task
numbers and priority numbers of -1. They, of course, came from no line
number and have no line numbers, so zeros are assigned to their "come from"
and line number values.

Notice that the next-to-the-last item on the stack, line 100, came
from line 1'30. This is because the GOSUB command in line 100 is followed
by a command in the same line. When the subroutine called by the GOSUB in
line 100 exits, control returns to the PRINT command in line 100.

Using the Syntax Options:

When you omit both the optional driver name and target file name, the
information is sent to the keyboard terminal. When the target device name
is omitted but a target file is named, the system device is assumed. If
the target device name is stipulated but the target file name is omitted,
the device must not require a file name (e.g., a line printer). If the
named device does not use the system device driver, its driver must be
LOADed into memory before STATUS executes. If the drive number is omitted,
zero is assumed.

Specifying or omitting the keyword SCHED determines what status
information is output. When SCHED is used, the contents of the Scheduler
is output. When SCHED is omitted, the general information about the system
is output.

4-221 STATUS

TEK SPS BASIC V~2 System Software

STOP

Example:

105 STOP

Syntax For•:

[line no.] STOP

Purpose:

To stop all program execution and return to idle mode.

Discussion:

The STOP command terminates a running program. It clears the Scheduler
stack and queue of all tasks, returning the Monitor to idle mode. (The
function and parts of the Scheduler are explained in Section 1.) STOP
cancels the action of all WHEN statements and clears the clock queue. It
also disables any INPREQ and ONERR conditions. However, all OPEN files
remain OPEN, and all ATTACHed instruments are left ATTACHed.

The STOP command may appear anywhere in a program. Any number of STOP
commands may be used.

If the command is executed in immediate mode, the message

STOP

is printed on the terminal. If the command is executed in program mode,

STOP AT LINE XIX

is printed, where XXX is the line number of the STOP command.

STOP differs from END in the printing of this message and in that
file are left OPEN. END CLOSEs any OPEN files.

STOP 4-222

TEK SPS BASIC V02 System Software

Since it clears the Scheduler, executing STOP halts all tasks, not
just the one in which it appears. To halt the current task and only that
task, use the ABORT command without specifying a task number. This terminates
the currently executing task.

4-223 STOP

TEK SPS BASIC V02 System Software

SYSBLD (Bonresident)

Example:

SYSBLD

Syntax Form:

[line no.] SYSBLD

Purpose:

To allow the user to define the contents of the "SYSBLD.DEF" file.
This file is used by Resident BASIC to set the system parameters at
initialization.

Discussion:

After BASIC is loaded, no dialog takes place between the user and the
Monitor to obtain the parameters to set the capabilities and size of the
system. Instead, the initialization routine searches for a file named
"SYSBLD.DEF" on the system device. If the file is not there, an internal
list of default parameters is used to initialize the system. If the file
is there, the user-defined parameters in the file are used.

The SYSBLD command lets you create or change the "SYSBLD.DEF" file.
Then, the parameters in "SYSBLD.DEF" are used to initialize the system the
next time BASIC is loaded from that disk and every time after that until
the file is CANCELed or SYSBLD is executed again to change them.

To create the file, SYSBLD displays several questions on the terminal
and records your responses. Depending on the question, acceptable answers
are a Y or N, a number, or a file name -- followed by a carriage return.
In all cases a carriage return by itself is also acceptable and means that
you choose the default answer. The derault answer is given with each
question.

SYSBLD 4-224 @

TEK SPS BASIC Va2 System Software

After the questions are answered, if a "SYSBLD.DEF" file already
exists, it is canceled before the new file is written onto the system
device. From then on, whenever you load BASIC from this disk, the parameters
you defined using the SYSBLD command initialize the system.

If the parameters you set require a system to be too large, initialization
will fail when you reboot. Before it dies, however, the Monitor will cancel
the "SYSBLD.DEF" file and display the following message:

REQUESTED SYSTEM EXCEEDS AVAILABLE MEMORY.
ATTEMPTING TO CANCEL 'SYSBLD.DEF' FILE FROM SYSTEM DEVICE.

RELOAD SOFTWARE.

Since the faulty "SYSBLD.DEF" file is canceled, you can reload BASIC and
execute SYSBLD again.

Below are the questions SYSBLD asks and a discussion of the possible
answers. The questions, printed in bold, are just as they are displayed
on the terminal.

RETAIN IEEE 488 (GPIB) CAPABILITIES (Y,N,CR, DEFAULT IS Y)?

The resident portion of the IEEE 488 code is a collection of routines
that handle interrupts and routines that are commonly used nonresident
commands and drivers to communicate with IEEE 488 devices. If you delete
this by responding with an N, you will not be able to use a nonresident
IEEE 488 driver. If you have no need of an IEEE 488 driver, deleting it
saves between 65a and 88a words of controller memory depending on the
version of the BASIC Monitor.

RETAIN STRING FUNCTIONS (Y,N,CR, DEFAULT IS Y)?

The string functions available in TEK SPS BASIC are explained in
Section 5. If your answer to this question is an N, all string functions
are deleted. This saves approximately 36a words of memory. Strings can
still be used, but string functions cannot.

RETAIN GRAPHICS CAPABILITIES (Y,N,CR, DEFAULT IS Y)?

All graphics commands access common routines in Resident BASIC. If
these resident routines are deleted, graphics modules cannot be used. The

@ 4-225 SYSBLD

TEK SPS BASIC V02 System Software

affected commands include all the commands in the Graphics Package and
certain instrument-specific graphics commands such as TDPLOT and ADPLOT.
If you have no need of any graphics routines, answering with an N saves
about 1100 to 1300 words of controller memory depending on the version of
the BASIC Monitor.

HOW MANY WORDS DO YOU VANT AS A PATCH AREA?
(DEFAULT IS a)?

TEK SPS BASIC gives you the ability to alter Resident BASIC, nonresident
commands, and drivers. These modifications are done by the PATCH files
when software updates are released via the SPS Programming Update. If a
nonzero value should be entered here, it will be supplied with the other
information in the SPS Programming Update. Unless this situation applies,
use the default answer -- a 0 or just a carriage return. Appendix D contains
software patching information.

HOW MANY PERIPHERAL LOGICAL UNIT NUMBERS DO YOU VANT?
(DEFAULT IS 6)?

Each file on a file-structured device and each peripheral device (such
as a line printer) OPEN at any one time requires a unique peripheral logical
unit number (PLUN). The number of peripherals you can OPEN at a time is
limited by the number you supply here. If you want to use a line printer
and have two disk files OPEN at the same time, you need at least three
PLUNs. However, 17 words of memory are required for each PLUN requested.
You can save memory by specifying only the number of PLUNs you are actually
going to OPEN at once. See the OPEN command description for more information.

Even if you answer with a 0 to this question, PLUNs 0 and will still
be set up. This is because PLUN 0 is required for the keyboard and some
commands, like COPY, need an extra PLUN to execute.

HOW MANY INSTRUMENT LOGICAL URIT NUMBERS DO YOU VANT?
(DEFAULT IS 8)?

Your answer here determines the number of instruments you can ATTACH
at one time. Eleven words of memory are required for each instrument logical
unit number (ILUN) requested. You can save controller memory by requesting
only the number of ILUNs you need. If you have only two instruments, 2 is
a good answer here.

SYSBLD 4-226 @

TEK SPS BASIC V~2 System Software

HOV MANY PERIPHERAL DRIVERS DO YOU WANT TO USE AT ONCE?
(DEFAULT IS 4)?

Only four words of memory are required at initialization for each
peripheral driver you request, but remember that additional room will be
needed for the driver when it is LOADed. The number you give here (or the
default of 4) does not include the keyboard terminal driver and the system
device driver that are loaded at initialization. If your only other
peripheral is a line printer, 1 is a sufficient answer.

HOW MANY INSTRUMENT DRIVERS DO YOU WANT TO USE AT ONCE?
(DEFAULT IS 4)?

Each different type of instrument requires its own driver. Four words
of memory are needed for each instrument driver you request (plus room for
the driver when it is LOADed). If you need three different instrument
drivers in memory at the same time, answer this question with a 3.

HOW MANY NONRESIDENT COMMANDS DO YOU VANT RESIDENT AT ONCE?
(DEFAULT IS 6)?

Your answer to this question limits the number of nonresident commands
you can have in memory at one time. Six words of memory will be needed
for each nonresident command requested (plus room for the command itself
when it is brought in). A carriage return response allows six nonresident
commands to be resident at once. If your applications require more nonresident
commands per program and if each command executes often, you should consider
giving a number large enough to meet your programs' needs. If you have the
memory space to spare, this will prevent the continual loading and releasing
of commands and, therefore, speed execution.

ENTER LINE CLOCK FREQUENCY IN HZ.
(DEFAULT IS 6a)?

If you are using TEK SPS BASIC in a location where the electrical
current is 50 Hz, enter 50. Otherwise use the default value (a carriage
return or 60). A meaningless answer such as 75 will be accepted, but your
system will not keep time correctly.

4-227 SYSBLD

TEK SPS BASIC V02 System Software

WHICH KEYBOARD DRIVER DO YOU WANT RESIDERT?
(TYPE FILER AME
GRAPHICS . . KBG (DEFAULT)
RO GRAPHICS • •
TV • • • • • •

EHARCED GRAPHICS . •

KBN
ICBT
ICBE) ERTER FILE BAME:?

If you answered with a Y (or carriage return) to the graphics
capabilities question, answer this with KBG or KBE. Though slower than
KBG, KBE allows the high resolution graphics available with a TEKTRONIX
4014 Computer Display Terminal. KBE is compatible with any TEKTRONIX
4010-Series terminal, but it provides the high resolution graphics only
when used with a 4014 terminal equipped with the Enhanced Graphics Module.
If your answer to the graphics question was an N, save memory by answering
KBN or KBT. Use the TV mode keyboard driver if you have a TV type terminal.
(The enhanced graphics option is not supported by TEK SPS BASIC V02-01.)

The following program will display the contents of your present
"SYSBLD.DEF" file for a standard memory system. Each answer to all but the
keyboard driver question is stored as one word -- the first three as ASCII
characters, the next seven as integers. The answer to the keyboard driver
question is stored as nine ASCII bytes, but this program reads only the
first three. Because there are no data descriptors or delimiters between
data items, READU is used to read the data from the file.

SYSBLD 4-228 @

TEK SPS BASIC V02 System Software

10 REM READ PARAMETERS FOR 'SYSBLD.DEF'
20 REM NO DELIMITERS OR DATA DESCRIPTORS IN FILE
30 REM USE READU COMMAND
40 OPEN #1 AS "SYSBLD.DEF" FOR READ
50 DIM A$(3)
60 INTEGER A(6)
70 REM FIRST 3 STORED AS 2-BYTE STRINGS
80 FOR N=0 TO 2
90 READU #1,A$(N)=2
100 NEXT N
110 REM NEXT 7 STORED AS INTEGERS, READ IN AS ARRAY
120 READU /!1,A
130 REM LAST PARAMETER IS STRING
140 READU #1,A$(3)=3
1 50 CLOSE /! 1
160 REM LABEL AND PRINT CONTENTS
170 DIM S$(3),T$(6)
180 S$(0): 11GPIB
190 S$(1)="STRING FUNCTIONS
200 S$(2)="GRAPHICS
210 S$(3) ="KEYBOARD DRIVER
220 T$(0)="PATCH AREA
230 T$(1)="PLUNS
240 T$(2)= 11 ILUNS
250 T$(3)="PERIPHERAL DRIVERS
260 T$(4)="INSTUMENT DRIVERS
270 T$(5)="NONRESIDENT COMMANDS
280 T$(6)="CLOCK FREQUENCY
290 PRINT,"CONTENTS OF 'SYSBLD.DEF'
300 PRINT
310 FOR N=0 TO 2
320 PRINT,S$(N);TAB(36);A$(N)
330 NEXT N
340 FOR N=0 TO 6
350 PRINT,T$(N);TAB(35);A(N)
360 NEXT N
370 PRINT,S$(3);TAB(36);A$(3)
380 RETURN

From a loop, line 90 reads in two ASCII bytes for the answer to each
of the first three questions and stores them in a string array, A$. Then
line 120 reads an integer array, A, to obtain the answers to the next seven

4-229 SYSBLD

TEK SPS BASIC V~2 System Software

questions. Finally, line 14a reads in the keyboard driver file name as the
last item in the string array. The rest of the program produces a labeled
display of the file's contents. If you prefer, you could simply PRINT the
two arrays that hold the information, A$ and A, by replacing lines 16~
through 37a with:

16a PRINT A$,A

SYSBLD 4-230

TEK SPS BASIC V02 System Software

TIME (Nonresident)

Examples:

25<1 TIME T$
31 C1 TIME A (0' : 2)
10'0 TIME T

TIME

Syntax Form.:

[
simple numeric variable]

[line no.] TIME array
string variable

Descriptive Form:

[
target variable]

[line no.] TIME target array
target string variable

Purpose:

To return the system time.

Discussion:

The TIME command either returns the current system time in the specified
argument or prints the time on the terminal if the argument is omitted.
When the argument is supplied, the time is returned either as three array
elements or as a string, depending on the type of the specified variable.

The system time can be set by the SETTIME command. If the time is not
set, the system time reflects the time interval since the system software
was loaded. The system time does not wrap around at midnight from 23:59:59
to 0':0:0, but it continues to increment. If the time exceeds 24 hours, it
should be reset by the SETTIME command.

4-231 TIME

TEK SPS BASIC V02 System Software

If the system does not have a DEC KW1-L or equivalent line frequency
clock, executing TIME (or SETTIME) causes an error.

When the time is returned as three array elements, they are stored
in the array in this order:

first element

second element

third element

hour (0-23 or higher if the system time
is not reset after 23:59:59)

minute (0-59)

second (0-59)

When the time is returned in a string variable, it is of the form:

HH:MM:SS

where:

HH is the hour (0-23 or higher if the system time is
not reset after 23:59:59)

MM is the minute (0-59)

SS is the second (0-59)

Using the Syntax Options:

Specifying either a simple (not subscripted) numeric variable or an
array returns the time in an array. If a simple numeric variable is used,
it is auto-dimensioned to a three-element integer array. If an array is
used, it must be dimensioned or zoned to exactly three elements.

Specifying a string variable returns the time in that string.

Omitting the argument prints the time on the terminal in the string
variable format.

TIME 4-232

TEK SPS BASIC V@2 System Software

Application Example:

The TIME command can be used to print the current time on program
runs. A simple method is to return the time as a string and PRINT it. For
example:

1@@ TIME T$
1 rn PRINT HN, "TIME: 11 ;T$

where N is assumed to be the peripheral logical unit number (PLUN) of the
line printer.

TIME can also be used to calculate the running time of a program or
subroutine to the nearest second. For example:

1@@ TIME T1
11@ REM FIRST LINE OF ROUTINE

8@@ REM LAST LINE OF ROUTINE
81@ TIME T2
82@ REM CALCULATE RUNNING TIME
83@ REM ASSUME LESS THAN AN HOUR
840 REM SUBTRACT SECONDS, BORROW IF NECESSARY
85@ IF T2(2)>=T1(2) THEN 890
86@ IF T2(1)=@ THEN T2(1):6@
87@ T2(1)=T2(1)-1
88@ T2(2)=T2(2)+6@
89@ T2(2)=T2(2)-T1(2)
9@@ REM SUBTRACT MINUTES, BORROW IF NECESSARY
91@ IF T2(1)>=T1(1) THEN 93@
92@ T2(1)=T2(1)+6@
93@ T2(1)=T2(1)-TI(1)
94@ PRINT "RUNNING TIME",T2(1);" MINUTES",T2(2);" SECONDS"
95@ RETURN

The first statement of the routine being timed returns the beginning
time in the auto-dimensioned array, T1. Then, just before the routine
terminates, the ending time is returned in another auto-dimensioned array,
T2. The running time is the difference of the two times, but you cannot
just subtract one from the other. Here we assume the running times will

@ 4-233 TIME

TEK SPS BASIC V~2 System Software

be less than an hour and simply subtract, first the seconds and then the
minutes, borrowing when necessary. However, you could, instead, convert
both times to the total number of seconds, subtract, and convert the answer.
The result is printed on the terminal in the form:

RUNNING TIME: MM MINUTES SS SECONDS

TIME 4-234

TEK SPS BASIC V~2 System Software

UBSCHEDULE (Bonresident)

Examples:

35a UNSCHEDULE GOSUB 35a~
49a UNSCHEDULE TASK 4
51a UNSCHEDULE ALL

Syntax Form.:

I GOSUB line number !
[line no.] UNSCHE TASK expression

ALL

Descriptive Form:

IGOSUB line number I
[line no.] UNSCHEDULE TASK task number

ALL scheduled line numbers

Purpose:

To remove a subroutine from the clock queue, preventing it from being
scheduled for execution (entered into the Scheduler queue).

Discussion:

The SCHEDULE command places into the clock queue the information
needed to schedule a subroutine. Then, after the specified time has elapsed
or the specified time of day is reached, the clock driver enters this
subroutine into the Scheduler queue, scheduling it for execution. The
UNSCHEDULE commands allows you to remove the subroutine from the clock
queue before the specified time has passed, preventing the subroutine from
being scheduled for execution. This command has no effect on subroutines
already in the Scheduler queue. (The function and parts of the Scheduler
are explained in Section 1.)

The clock driver "CLK.SPS" must be in memory when UNSCHEDULE executes.

@ 4-235 UNSCHEDULE

TEK SPS BASIC V02 System Software

Using the Syntax Options:

The line number following the keyword GOSUB should be to the beginning
line number of a subroutine specified in a previously executed SCHEDULE
command. When this specification is used, .all entries associated with that
line number are removed from the clock queue. If no entries have that line
number, no error results.

The expression following the keyword TASK represents a task number.
When evaluated and rounded to an integer, it must be between ~ and 126,
inclusive. When this specification is used, all entries associated with
that task number are removed from the clock queue.

The keyword ALL clears the clock queue.

Application Example:

For demonstration, the following program schedules a routine for
execution 3@ seconds from the time line 5@ is executed. If the processing
in lines 6@ to 170 is completed before the 3@ seconds have elapsed, the
UNSCHEDULE command is used to prevent the routine from executing.

1@ REM -- LOAD THE CLOCK DRIVER
2@ LOAD "CLK.SPS"
30 REM -- SCHEDULE THE SUBROUTINE AT LINE 1@0~ FOR
40 REM -- EXECUTION 30 SECONDS FROM NOW

UN SCHEDULE

50 SCHEDULE AFTER 30 GOSUB 1@0QJ
6@ REM -- PROGRAM GOES HERE

170 REM -- PROGRAM COMPLETE IN LESS THAN 30 SECONDS
18@ UNSCHEDULE 1000
19@ RETURN
980 REM -- EXECUTE THIS ROUTINE IF PROGRAM TAKES
990 REM -- LONGER THAN 30 SECONDS
100QJ PRINT "TIME HAS ELAPSED"

1100 REM -- RETURN TO THE INTERRUPTED PROGRAM
1110 RETURN

4-236

TEK SPS BASIC V02 System Software

VARTST (Nonresident)

Examples:

16a VARTST B(I),"20",Q
19a VARTST A$,J+2,X
75a VARTST B$&C$,"1a00",Y

S7ntax Form:

[line no.] YARTST , ,variable I expression I lex press ion I
string expression string expression

Descriptive Form:

I dee imal val Le to be tested I •
[line no.] YARTST

octal val Le to be tested

1
decimal specification of bits to be tested I

, target for test result
octal specification of bits to be tested

Purpose:

To test if any of the bits set in the second value are also set in
the first value.

Discussion:

The VARTST command converts the results of the first two arguments
into 16-bit binary integers and then compares these two integers. If any
of the bits set in the first converted value are also set in the second,
VARTST returns a 1 in the third argument. If none of the same bits are
set, VARTST returns a 0 in the third argument. (A bit is set if it is a 1
and not set if it is a 0.)

VARTST does not alter the values of any variables that may appear in
the numeric expressions or string expressions used as the first two
arguments. It changes only the value of the third argument -- to a 1 or 0.

4-237 VARTST

TEK SPS BASIC Va2 System So~ware

Using the Syntax Options:

The first argument is the value tested; the second argument is the
value to which the first is compared.

If either of these arguments is a string expression, it is interpreted
as an octal value. This string expression must evaluate to a string of no
more than eight octal digits. However, only the lower 16 binary digits
(bits) are used in the comparison. If either of the first two arguments
is an expression, it is truncated to a 32-bit integer and again only the
lower 16 bits are used.

Application Example:

This command can be used to test the contents of an integer array N
for odd elements. In the sample routine below, any odd values are then
made even by incrementing them by 1.

1aaa FOR I:a TO SIZ(N)-1
1a1a VARTST N(I),"1",R
1a2a N(I)=N(I)+R
1a3a NEXT I

When an array element N(I) is even, R is a. When an element is odd,
a 1 appears in the last bit, so R equals 1. In line 1a2a adding a a to an
even number, keeps it even; adding a 1 to an odd number makes it even.

Also, the result of a VARTST statement can be used to direct program
flow. For example:

1aa VARTST A$,B$,R
11a aoTo R+1 oF 1aaa,2aaa

Here, a program branches one of two ways depending on if any bit set
in the octal value in A$ is also set in the octal value in B$.

VARTST 4-238 @

TEK SPS BASIC V02 System Software

VERSION (Nonresident)

Examples:

65 VERSION DK1: "UNLOG 11

75 VERSION "MOVE.SPS",N$
VERSION "WAIT"
VERSION BASIC

Syntax Form:

l [device name[constant]:]~ { ~} [,] J string ex press ion l
[line no.] VERSIO [,string variable]

BASIC [,string variable]

Descriptive Form:

~[device name[drive number]:] [/forward or reverse switch[,]]!
[line no.] VERSION) driver or command name [,target string variable]

lBASIC monitor [,target string variable]

Purpose:

To obtain the version and release numbers of a driver, a nonresident
command or, the BASIC monitor.

Discussion:

All TEK SPS BASIC modules contain version and release information so
that updates can be recognized even though the command or driver name is
the same. This command is used to obtain the version and release numbers
of drivers, nonresident commands, and the BASIC monitor. (The version and
release of Resident BASIC is also displayed each time the system is booted).

4-239 VERSION

TEK SPS BASIC V~2 System Software

The information is returned as a string with the format:

Vxx-yy

is the release number,
It is output to the terminal unless

the optional string variable is included.

Releases of nonresident modules are independent of other modules,
including Resident BASIC. However, all nonresident modules with a given
version number are compatible with all Resident Monitors with the same
version number but not with Monitors with a different version number.

Using the Syntax Options:

The named device is the peripheral on which the module is stored. If
the device name is omitted, the system device is assumed. If the named
device does not use the system device driver, its driver must be LOADed
into memory before VERSION is executed. When the drive number is omitted,
zero is assumed.

[The /F or /R switches (Forward or Reverse) may be specified for a
serial tape device. The switch indicates the direction of the tape movement
when searching for the file. If the switch is omitted, the tape is rewound
before a forward search is made. When used with other peripherals, the
switch is ignored.]

The string expression is used as a file name of a nonresident command
or driver. If the file name contains an extension, it must be .SPS. When
the name of a module is specified, the version and release numbers of that
nonresident command or driver are returned. When the keyword BASIC is
specified, the version and release numbers of the BASIC monitor are returned.
(The keyword BASIC is not supported by VERSION v~2-a1.)

Using the optional string variable returns the information in the
specified string. Omitting it sends the information to the terminal.

VERSION 4-240

TEK SPS BASIC V02 System Software

WAIT (Ronresident)

Examples:

15<.J WAIT
16<.J WAIT 6<.J0

Syntax Form:

[line no.] WAIT [expression]

Descriptive Form:

[line no.] WAIT [number of milliseconds]

Purpose:

To halt program execution until a keyboard interrupt occurs, or a
specified amount of time has elapsed.

Discussion:

The WAIT command produces either a timed or untimed pause in execution.
When used with the optional expression, it causes the program to wait the
stated number of milliseconds. For example:

190 WAIT 500

halts processing for one-half second.

Omitting the expression produces a pause of indefinite length and
enables an interrupt from the keyboard. Execution halts until a character
is typed at the terminal. Any printing or control character, except
Control-P, may be typed. (Control-P will stop the program completely.)

If an instrument interrupt occurs while the WAIT statement (in either
of its forms) is executing, the task associated with the event is scheduled

4-241 WAIT

TEK SPS BASIC V02 System Software

(entered in the Scheduler queue), but no further processing occurs until
the WAIT command has completed execution. (The function and parts of the
Scheduler are explained in Section 1.)

This command is not designed to provide precise timing but to
cause a wait of sufficient length for a particular event to occur.

Its accuracy is dependent upon other operating system functions which are
allowed to take place concurrently such as input/output or interrupt
handling. If the number of these conflicting functions is minimized, the
timing of the WAIT command can be fairly accurate. However, the time that
the system takes to switch from one command to another cannot be readily
determined. It is assumed that the time required to switch from the previous
command to the WAIT command, plus the time taken to evaluate the expression,
is one millisecond. Therefore, the value of the expression is decremented
by one (1) before the timing loop is executed.

Using the Syntax Option:

The optional expression specifies the approximate number of milliseconds
(1/1000 of a second) that program execution WAITs. The expression, when
evaluated, is rounded to an integer. If the expression is omitted, the
resulting untimed pause must be terminated by a keyboard interrupt.

Application Exaaple:

Sometimes it is necessary to stop a program long enough to adjust an
incoming signal, change equipment setup, or load a new disk. The WAIT
command provides this untimed pause. For example:

200 PRINT "PRESS RETURN WHEN READY TO CONTINUE"
21G WAIT

would halt a program until a key on the keyboard is pressed.

WAIT 4-242

TEK SPS BASIC V02 System Software

WAVEFORM

Examples:

14~ WAVEFORM AA IS A,IA,HA$,VA$
15~ WAVEFORM W1 IS B1(511),IB,HB$,VB$

Syntax Form:

! simple numeric variable I IS
[line no.] WAVEFORM

waveform

Descriptive Form:

! simple numeric variable(expression[,expression]) I •
array[(expression[,expression])]

numeric variable, simple string variable,simple string variable

! simple numeric variable I IS
[line no •] WAVEFORM

waveform

Purpose:

!simple numeric variable(first dimension[,second dimension])!

array[(first dimension[,second dimension])]

data sampling interval,horizontal units,vertical units

To associate a name with an array, a related data sampling interval,
and units string variables, for convenience of computation.

4-243 WAVEFORM

TEK SPS BASIC V02 System Software

Discussion:

A waveform is a variable name associated with a data array, a data
sampling interval variable, and two string variables for horizontal and
vertical units information. The assumption here is that the array elements
represent a digitized signal and that the data sampling interval (DSI) is
the time between the array's data elements. The first string variable is
for the measurement's horizontal units (typically "S" for seconds), and
the second string variable is for its vertical units (typically "V" for
volts). The array, DSI variable, and the units string variables may be
referenced by other commands besides the WAVEFORM command associates them.
They may be assigned values before and after the association is made.
However, care should be used to insure that the DSI variable is not assigned
a negative value by any prior or shared use of that variable.

The advantage of using a waveform rather than an array is that automatic
units processing is provided with waveform operations. Once a waveform has
been created, it can be used in almost any expression where an array is
valid. For waveform processing rules and results, see the table "Arithmetic
Operations With Waveforms" in Section 2. Also, see the LET command discussion
for information on the results of waveform assignments.

After a waveform has been declared, the array and associated variables
can still be referenced individually, without affecting the other variables.
For example, the array can be used as the destination of an arithmetic
statement and not cause any change to the three associated variables. The
array can even be DELETEd and redimensioned to different specifications
without deleting the waveform. Only when the waveform name is specified
are the other variables altered.

Zones may not be used in conjunction with the waveform name. To use
the zone feature, the associated array name must be used instead.

Waveforms are removed from memory by the DELETE statement. When you
do this, the waveform is deleted, so the array and variables are dissociated
from each other. The individual variables and the array are not deleted,
however.

WAVEFORM 4-244

TEK SPS BASIC V02 System So~ware

Using the Syntax Options:

The first argument is the waveform name. Only a simple numeric variable
(not an array element) or a previously declared waveform variable may be
specifed here. If a waveform variable is used, it must be redefined with
the same variables and string variables named in its earlier declaration.
If the array specifications are included, they must not change the array's
previously declared dimensions unless the array has been DELETEd since the
last time it was declared.

The arguments following the keyword IS name the four components of
the waveform association: the array, the DSI, the horizontal units, and
the vertical units.

The array, the first of these four arguments, can be specified by
either a simple numeric variable (not an array element) or an array variable.
If a simple numeric variable is used, it must be explicitly dimensioned
to an array here by supplying its dimension specifications. These dimension
specifications -- the one, or optionally two, expressions enclosed in
parentheses -- are rounded to integers and used to define an array in the
same manner as the DIM command expressions are used. The simple numeric
variable is dimensioned to a floating-point array before the waveform
association is established. If an array is given, its dimension specifications
may be restated, but they may not be changed unless the array is DELETEd
first. The array may be either floating-point or integer.

The second of the four parts of a waveform is the DSI variable. It
is followed by the two units string variables which must be simple string
variables (not string array elements). The first string variable is assumed
to hold the horizontal units; the second, the vertical units.

These four variables need not be unique to a single WAVEFORM command.
For instance, the same DSI variable and units string variables may be used
in several different WAVEFORM statements. However, if the contents of a
DSI variable or a units string variable changes for one of the waveforms,
it changes for any other waveforms that use this same variable.

@ 4-245 WAVEFORM

TEK SPS BASIC V02 System Software

WHEN (Nonresident)

Examples:

500 WHEN #J HAS T$ AT N GOSUB 2000
600 WHEN 113 HAS II ACQ" GOSUB 5050
700 WHEN 112 HAS "CB 1" AT 100 AS TASK 2 GOSUB 1000
800 WHEN @0 HAS 11 SRQ" GOSUB 3000

Syntax Form:

[line no.] WHEN !;\expression [HAS string expression] [AT expression]

[AS TASK expression] GOSUB line number

Descriptive Form:

[line no.] WHEN lfilun I [HAS driver-dependent interrupt specfication]
@IEEE 488 interface number

[AT priority level] [AS TASK task number] GOSlll line number

Purpose:

To allow change in program flow based on an instrument interrupt.

Discussion:

This powerful command gives TEK SPS BASIC the ability to change the
normal flow of program execution if an event (instrument interrupt) occurs.
It allows BASIC to perceive and respond to the specified instrument
interrupt. After the WHEN executes, if the specified event occurs, control
transfers to the specified subroutine -- a user-written interrupt routine
-- as soon as the system priority is lower than the specified priority.
These priority comparisons are made only at the end of the execution of
each command of the currently executing routine; routines can be interrupted,
commands cannot.

WHEN 4-246 @

TEK SPS BASIC V~2 System Software

The driver for the specified instrument or interface must be in memory
when the WHEN command is executed. The instrument must be connected and
powered up.

WHEN stores the interrupt information in the required driver. The
information remains there until the proper IGNORE command removes it or
the task associated with the WHEN is ABORTed. However, some or all of this
information can be modified (overwritten) by executing another WHEN
statement. Because the information is stored, BASIC can respond to more
than one occurrence of the same event. (STOP, END, or Control-P nullifies
the actions of all WHEN commands.)

The transfer to the subroutine does not take place until two conditions
are met: 1) the specified event occurs, and 2) the priority of the system
is less than the priority specified in the WHEN command. (If no priority
is specified, an instrument default priority is assigned. This value may
be found in the instrument driver manual.) When these conditions are met,
program control passes to the subroutine. The system assumes the new
priority level of the event until a RETURN statement is encountered. At
that time, the priority of the system reverts to the level the system was
operating at before the transfer took place. Control returns to the command
that was about to be executed when the transfer occurred.

[In terms of the action in the Scheduler, when a WHEN command executes,
the interrupt information is stored in the required driver, permitting
BASIC to recognize the given interrupt. When the event occurs, a packet
with the stored line number, priority number, and task number is entered
into the Scheduler queue. As soon as this packet's priority is higher than
the current job's priority, the current job is interrupted and pushed onto
the Scheduler stack. Then the interrupt routine's packet is popped off the
Scheduler queue and the interrupt routine starts executing. When it finishes
(a RETURN is encountered), the interrupted routine is popped off the stack
and resumes executing. (The function and parts of the Scheduler are explained
in Section 1.)]

The manual for the instrument driver being used gives complete
documentation on possible interrupts and the valid interrupt specification
strings.

4-247 WHEN

TEK SPS BASIC V~2 System Software

Using the Syntax Options:

Any expression used in a WHEN command is rounded to an integer.

The expression following the pound sign (#) or the at sign (@) indicates
the instrument or interface from which an interrupt will be recognized.
If a pound sign (#) is used, the expression is the instrument logical unit
number (ILUN) to which an instrument is ATTACHed. When evaluated, it must
be between 1 and n, inclusive, where n is the number of ILUNs specified
at system initialization (default value of eight). If an at sign(@) is
used, the expression represents the number of the IEEE 488 interface through
which more than one instrument may be controlled. In this case, instead
of an instrument-specific driver, the low-level IEEE 488 Interface driver
("GPI. SPS") must be used. This driver and its set of special commands are
described in Section 6. When evaluated, the expression for an interface
number must be between 0 and 3, inclusive.

The string expression following the keyword HAS is a driver-dependent
interrupt specification. It must be a string accepted by the driver for
the given ILUN (or interface). If the HAS and expression are omitted, the
driver's default string is used. If the driver has no default string, an
error is issued.

The expression following the keyword AT is the priority level for the
interrupt routine. It must evaluate to an integer between 0 and 126,
inclusive. If the AT and expression are omitted, a driver-dependent default
value is assumed.

The expression following the keywords AS TASK is the task number for
the interrupt routine. It must evaluate to an integer between 0 and 126,
inclusive. If the AS TASK and task number are omitted, the number of the
currently executing task is used. However, if the WHEN is entered in
immediate mode and the AS TASK and task number are omitted, task number
0 is assigned to the interrupt routine.

The keyword GOSUB precedes the line number of the user-written interrupt
routine -- the subroutine to which control is to be passed.

WHEN 4-248 @

TEK SPS BASIC V02 System Software

Application Example:

Below is a simple example of using the WHEN command. After the
instrument driver is LOADed and the instrument is ATTACHed, the WHEN
statement (line 110) allows the program to recognize the pushing of the
DPO call button as an interrupt. Until the WHEN is executed, you could
push the call button as much as you like, but the program would not respond.
After line 110 executes, however, pushing Call Button 1 causes program
control to transfer to the interrupt routine that GETs data from the
instrument. Because WA is declared as a waveform (line 50), all four parts
of the waveform -- the array, data sampling interval, horizontal units and
vertical units -- are defined when the data is acquired by line 1040. When
the RETURN is encountered, the subroutine terminates and control returns
to the calling program.

10 REM APPLICATION OF THE WHEN COMMAND
20 REM USING THE DPO
30 REM LOAD THE DRIVER AND
40 REM ATTACH THE INSTRUMENT
50 LOAD 11DPO.SPS 11

60 ATTACH #1 AS DP00:
70 REM DECLARE A WAVEFORM
80 WAVEFORM WA IS AA(511),SA,HA$,VA$
90 REM ENABLE CALL BUTTON 1 AS AN INTERRUPT
100 REM WITH A PRIORITY HIGHER THAN DEFAULT
110' WHEN /11 HAS 11 CB1 11 AT 60 GOSUB 10'20
120 REM PROGRAM CONTINUES

900 RETURN
1000 REM CB1 INTERRUPT SUBROUTINE
1010 REM STORE SIGNAL IN DPO'S MEMORY LOCATION A
1020 PUT 11 ST0 11 INTO #1, 11A11

1030 REM ACQUIRE THE WAVEFORM
10'40 GET WA FROM fl 1 'II A II
1050 REM REST OF INTERRUPT ROUTINE

1500 RETURN

4-249 WHEN

TEK SPS BASIC Vl12 System So~ware

WRITE (Nonresident)

Examples:

51111 WRITE /IN, WA
1511 WRITE #1,A(5:511,111),C$
21111 WRITE #X-6,A(I),D2$
2511 WRITE #4,"THIS IS THE END"

Syntax: Form:

array expression
expression

[line no.) WRITE #ex press ion,
expression j [
wav~form expre~sion '
str 1ng ex press1.0n

array ex press ion
waveform ex press ion
string expression l··

Descriptive Form:

I expression
. arra expression

[lrne no.) WRITE #target pl lil, ~ .
wave.arm express1on
string ex press ion

[I expression l]
array expression

' wav~form ex pre~sion • • •
str 1ng express1on

Purpose:

To store floating-point or integer values or ASCII characters on a
peripheral device.

Discussion:

The WRITE command outputs numeric data in a binary format to the
specified peripheral for later input by a READ statement. Since the binary
value of numeric data is written (as opposed to the ASCII representation
of numbers output by the PRINT statement), less peripheral storage space
is used. Strings, however, are still output in ASCII format. The READ/WRITE
pair is provided for ease of inputting/outputting arrays and waveforms.

The WRITE command accesses a file or device by its peripheral logical
unit number (PLUN), not by name. Before you can WRITE to a file or device,

WRITE 4-250

TEK SPS BASIC V~2 System Software

you must OPEN it FOR WRITE thereby assigning the PLUN. If the peripheral
is OPENed FOR READ or UPDATE, a fatal error results.

If an array or waveform is being output by WRITE when a Control-P is
typed at the terminal, the entire array or waveform is output before the
program terminates.

[When the WRITE command outputs values to a file, it also writes into
the file data descriptors that describe the type and size of the data. The
data descriptors are later used by READ when inputting the data. These
data descriptors need not concern a BASIC user unless the file being output
will be accessed by software other than TEK SPS BASIC. (The TEK SPS BASIC
data descriptors are described in Appendix E.) Because the WRITE command
writes data descriptors on a file and stores numbers in binary format, not
ASCII, a file output by WRITE and input by READ is sometimes called a
formatted binary file.]

Using the Syntax Options:

The expression following the pound sign (I) is the peripheral logical
unit number (PLUN) to which the data is output. The expression, when
evaluated and rounded to an integer, must between 1 and n, where n is the
number of PLUNs allowed at system initialization time (default of six).
The terminal keyboard, PLUN zero, may not be specified.

The list of data to be output may include expressions, array expressions,
waveform expressions, and string expressions.

4-251 WRITE

TEK SPS BASIC V02 System Software

WRITEU (Bonresident)

Exa•p1es:

15a WRITEU #3,A,INTEGER B,C
25a WRITEU #2<9>,A,A$=10
35a WRITEU #F,A(11:20),X$=LEN(X$),Y
45a WRITEU #N<M>,N+1,A(1:5)/2,Y$=N

Syntax For•:

[line no.] WRIJ[U #expression[<expression>], l [IN~£G£R] { :;~::s:~::essio~} l
string expression = expression

[l
{ expression } l]

, [INTEGER] array expression • • •
string expression = expression

Descriptive Form:

[line
no.] WRIT£U ftlarget plun [(recor~ nunber>{] 'expression } l

[INT£G£R conversion flag] .
array expression

string expression = nunber of characters in string

[l
{ expression } l]

, [INT£G£R conversion flag] array expression •••

string expression = nunber of characters in string

Purpose:

To output program data to a DEC RT-11 FORTRAN-compatible data file
(a file without TEK SPS BASIC data descriptors) or to a record I/O file
(a TEK SPS BASIC random-access file).

WRITEU 4-252

TEK SPS BASIC V02 System Software

Discussion:

Data output to a peripheral by the WRITEU command can be input from
the peripheral by a DEC RT-11 FORTRAN program or by the READU command.

A numeric expression or an array expression is output in two-word,
single precision, floating-point format unless it is immediately preceded
by the keyword INTEGER. When the keyword INTEGER is used, the result of
the expression (or each element of an array expression) associated with
the INTEGER keyword is truncated to an integer and output in one-word
(16-bit) integer format. Waveforms are not output by the WRITEU command.

Strings are output as one byte per ASCII character. The expression
following the equal sign specifies the number of characters to write. The
string output is fitted to this length. If the length of the string is
less than this value, trailing blanks (spaces) are added to the string to
make it the specified length. If the string is longer than the given value,
only the specified number of characters is output.

The byte count required for the different expressions are:

Expression
Array expression
String expression

By deCault:
4 bytes
4 bytes/element
number of bytes specified
in expression following
equal sign (=)

Preceded by INTEGER:
2 bytes
2 bytes/element
error

TEK SPS BASIC does not perform integer arithmetic; the results of all
numeric expressions are floating-point values. Thus, how WRITEU stores
numeric values in a file cannot depend on the source elements of the
expression. The output format depends only on the presence or absence of
the keyword INTEGER. The following example shows how the WRITEU command
outputs various expressions:

100 INTEGER I(2)
11G DIM A(2)

5GG OPEN #N AS F$ FOR WRITE
51G WRITEU #N,INTEGER A,C$=10,I,X

4-253 WRIT EU

TEK SPS BASIC V@2 System Software

Since the first array expression in line 51@ (A) is preceded by the
INTEGER keyword, the results are written to the file in integer format.
The second array expression (I) is not preceded by the keyword INTEGER,
so the results are written in floating-point format. That A is a floating-point
array or I is an integer array is of no consequence. Therefore, the data
will be output as follows:

A(a) output as first 2 bytes (truncated to integer)
A(1) output as next 2 bytes
A(2) output as next 2 bytes
C$ output as next 1@ bytes (string of 1@ characters)
I(a) output as next 4 bytes (converted to floating point)
I(1) output as next 4 bytes
I(2) output as next 4 bytes
x output as next 4 bytes

Altogether, the WRITEU statement in line 51@ outputs 32 bytes of data.

[WRITEU does not output the TEK SPS BASIC data descriptors as the
WRITE command does. Nor does WRITEU output any delimiters between data
items, such as a carriage return, the way the PRINT command does. For this

reo ei utt RIUrotecl ormatted binary
files.]

With the regular form of WRITEU, the data is stored serially, starting
at the beginning of a file with the first WRITEU statement. Subsequent
outputs to the same file continue writing where the previous WRITEU ended.

When the record I/O (input/output) form of WRITEU is indicated -- by
the presence of the angle brackets (<>) -- the mode of access is random.
Any data record of the file may be written to, in any order. Multiplying
the given record number by the data record length determines where on the
file the data is written. The length of the data record is computed by
summing the byte count of the items in the output list of the WRITEU
statement. The byte count required for each data type is discussed above.

The record length is calculated each time a record I/O form of WRITEU
is executed. Thus, when using record I/O, you must output an entire data
record with each WRITEU statement, even if you want to write only a part
of a record.

WRITEU 4-254

TEK SPS BASIC V02 System Software

The WRITEU command accesses a file or device by its peripheral logical
unit number (PLUN), not by name. Before executing WRITEU, the peripheral
must be OPEN FOR WRITE or UPDATE, depending on which form of WRITEU is
used. When the regular (sequential-access) form of WRITEU is used, the
peripheral must be OPEN FOR WRITE. To use the record I/O (random-access)
form of WRITEU the file must be OPEN FOR UPDATE. Record I/O files can only
be stored on directory-structured devices.

Using the Syntax Options:

The expression following the pound sign (#) is the peripheral logical
unit number (PLUN) to which the data is output. The expression, when
evaluated and rounded to an integer, must be between 1 and n, where n is
the number of PLUNs allowed at system initialization time (default of six).
The terminal keyboard, PLUN zero, may not be specified.

The optional expression in angle brackets (<>) specifies the record
I/O form of WRITEU. The expression, when evaluated and rounded to an
integer, is used as the number of the data record to be written. The records
are numbered from zero. When the angle brackets and expression are omitted,
the regular form of WRITEU is assumed.

The list of data to be output may include expressions, array expressions,
and string expressions but not waveforms. By default, all numeric values
(including integer array elements) are written in floating-point format.
Any numeric item in the list may be output in integer format by specifying
the keyword INTEGER immediately preceding the item. A string expression
must be followed by an equal sign (=) and an expression indicating the
number of characters (bytes) to output.

Application Example:

The description of the READU command has an example of how to use
READU. There, two files are used to store data about a group of people
a name file and an information file. The name file, which is kept in
alphabetical order, contains, with each name, the record number of the
information file where the rest of the data is stored. To get or change
the data in the information file, the name is searched for in the name
file. When the name is found, the number associated with the name tells
you which record in the information file to read or update.

4-255 WRITEU

TEK SPS BASIC V02 System Software

Here, we want to show how to update a portion of the information file
the address which is stored as two strings in the first 40 bytes of the

file. We assume that the routine to do this calls the binary search
subroutine (explained in the READU description) to find the desired record
number, R, in the information file (line 3060). If the name asked for in
line 3030 cannot be found in the name file, the search subroutine returns
a negative record number. In this case the address-changing subroutine
terminates (line 3080). Otherwise the desired record is read, updated, and
rewritten on the file in response to input from the keyboard.

2970 REM SUBROUTINE TO UPDATE ADDRESS
2980 REM
2990 REM OPEN INFORMATION FILE FOR UPDATE
3000 OPEN il2 AS DX1: 11 INFOR.FIL" FOR UPDATE
3010 REM GET NAME TO SEARCH FOR
3020 PRINT "WHOSE ADDRESS NEEDS CHANGING";
3030 INPUT S$
3040 REM BINARY SEARCH OF NAME FILE FINDS
3050 REM NUMBER OF DESIRED RECORD IN INFORMATION FILE
3060 GOSUB 1000
3070 REM EXIT SUBROUTINE IF NAME NOT IN FILE
3080 IF R<0 THEN 3190
3090 REM READ RECORD THAT NEEDS UPDATING
3100 READU #2<R>,F$=100
3110 REM GET NEW ADDRESS
3120 PRINT "ENTER NEW ADDRESS IN 2 LINES"
3130 PRINT "FIRST LINE:";
3140 INPUT L 1 $
3150 PRINT "SECOND LINE:";
316(1 INPUT L2$
3170 REM WRITE UPDATED RECORD
318(1 WRITEU #2<R>,L1$=20,L2$=20,SEG(F$,41,100)=60
31 90 CLOSE 112
3200 RETURN

Line 3100 reads the entire record as a single 100 character string.
Then the new address is asked for -- to be entered as two lines in separate
strings, L1$ and L2$ (lines 3120 to 3160). Finally, the updated record is
replaced on the file in line 3180. If either L1$ or L2$ is less than or
greater than 20 characters in length, it is padded with spaces or truncated
to exactly 20 characters. The remaining 60 bytes of information in the
file are rewritten unchanged.

The subroutine OPENs and CLOSEs the information file. If several
changes were to be made, normally the subroutine would not do this.

WRITEU 4-256

TEK SPS BASIC V02 System Software

Examples:

150 ZERO CT1:"0LD.FIL"
ZERO DK2:
ZERO DK: 10

160 ZERO CT:/F,A$

Syntax Form:

Descriptive Form:

ZERO (Nonresident)

[line no.] Z£RO device name[drive number]:

[
number of directory segments]
[/forward or reverse switch[,]][file name at which to start zeroing tape]

Purpose:

To initialize a file-structured peripheral, effectively erasing all
information on that peripheral.

Discussion:

When a device is ZEROed, all information on that device is logically
erased. Though any data on the device is not actually replaced by zeroes,
it is no longer accessible by BASIC.

With a directory-structured peripheral, the ZERO command initializes
the directory, effectively canceling all files on the device.

4-257 ZERO

TEK SPS BASIC V02 System Software

With a serial-access device, an end-of-medium (e.g., end-of-tape)
marker is written at the beginning of the medium. If a file name is included,
the end-of-medium marker is placed at the beginning of the specified file,
logically erasing all information on the medium, including and beyond that
file.

All files on the specified device must be CLOSEd before ZERO executes.

The ZERO command removes all information
from the peripheral device.

Using the Syntax Options:

The device specified must be file-structured. If the named device
does not use the system device driver, its driver must be LOADed before
ZERO executes. If the drive number is omitted, zero is assumed.

The optional expression may be used with a directory-structured device.
It determines the number of segments allocated for the device directory.
The expression, when evaluated and rounded to an integer, must be between
1 and 31, inclusive. When this expression is omitted, a dafult value, which
is stored in the device driver, is used. (See the Peripheral Drivers manual
for the default number of directory segments provided for a particular
directory-structured device driver.)

The space allotted for the directory must be large enough to hold the
names of all the files to be stored on the device. If most of the files
are large (ten blocks or more), the default value may suffice. However,
if most of the files are small (about two blocks in length), you may need
several times more than the default number of directory segments. For more
guidance on how many directory segments to allocate, see the Peripheral
Drivers manual.

The optional file name may be used with a serial-access device. If a
file name is specified, that file and all files physically following it
on the medium are deleted.

[If the device is serial tape and a file name is given, the /F or
/R switch (Forward or Reverse) may be included. The switch specifies the

ZERO 4-258

TEK SPS BASIC V~2 System Software

direction of the tape movement when searching for the named file. If the
switch is omitted, the tape is rewound before a forward search begins. The
search stops when the file is found or an end-of-tape marker is reached.
If the device is not a serial-tape device or the file name is omitted, the
switch is ignored.]

4-259 ZERO

TEK SPS BASIC V02 System Software

SECTION 5

FURCTIONS

In TEK SPS BASIC, a function returns a value (or in some cases, an
array of values) that results fran the action of the function using the
given argument. A function does not change the value of the argument. Of
course, if the argument is a variable and it is also assigned the result
of the function, it is altered. But this is caused by the action of the
assignment, not by the action of the function operation.

A function can only be used as part of an expression within a statement,
such as a LET, PRINT, or IF statement. More than one function may appear
in a statement. A function may include other functions in its argument -
even itself.

TEK SPS BASIC has three types of functions: numeric functions, array
functions, and string functions. The three types are discussed separately
in this section.

Numeric Functions

A numeric function performs math operations on specified values, and
returns the result to the expression in which it appears. Depending on the
argU11ent, a nwneric function returns a single nwneric value or an array
of n1111eric values. When the argument is a numeric expression, one number
is returned. When the argument is an array or waveform expression, an array
of numbers is returned -- one number for each element in the argument array
or the array associated with the argument waveform. The array of values
is the result of the function being applied to each of the array (or
waveform) elements in turn.

Notice that the result of a numeric function is never a waveform.
When a waveform is the argument, the function operates with its associated
array only. The data sampling interval (DSI) and the units strings are not
used by the function and are not associated with the result. The waveform
argument, as with any function argument, is not altered by the function
operation unless it is also assigned the result of the function expression.

@ 5-1 Numeric Functions

IE

TEK SPS BASIC V02 System Software

Thus, if W1 and W2 are waveforms, the statement:

W2 = ABS(W1)

will make W2's DSI equal to zero and W2's horizontal and vertical units
equal to null--even if they were previously defined. Of course, W1's DSI
and unit are unchanged. But the statement:

W1 = ABS(W1)

will nullify W1's units and DSI. This is not because of the action of the
function but because of the rules of waveform assignments as described in
the LET command. When a waveform is assigned an array, the waveform's DSI
is set to zero and its units are set to null.

Absolute Value Function
ABS

Returns: The absolute value of the argument.

Syntax: Examples:

l expression }
ABS(array expression.)

waveform expression

150 IF ABS(X-Y)>Z THEN 550
270 A=ABS(A)

Colllllents: The absolute value function always returns a nonnegative value
according to these rules:

if argument is: the ABS function returns:
positive the argument
negative the negative of the argument
zero zero

Uses: In TEK SPS BASIC, it is illegal to raise a negative value or zero
to a power. However, you can use the absolute value function to raise a
negative value to an integer power. For example, to raise any nonzero
number X to the fifth power, you could use:

X5=ABS(X)A5*SGN(X)

Numeric Functions -- ABS 5-2

TEK SPS BASIC V02 System Software

Since the power is an odd integer, the answer has the same sign as the
number. The sign function (SGN) is used to give the answer the correct
sign.

Arctangent Function
ATN

Returns: The arctangent of the argument.

Syntax: Examples:

{
expression }

ATN (array expression.)
waveform expression

170 A1=ATN(Y/X)
330 PRINT ATN(E/SQR(1-E*E))

Comments: The result of the arctangent function is in the range of
.±J?i/2 radians.

Uses: Since the arctangent of 1 equals one fourth Pi (Pi/4), the following
is a very accurate way of defining Pi in a program:

150 PI=4*ATN(1)

Cosine Function
cos

Returns: The cosine of the argument.

Syntax: Examples:

l expression l
COS(array expression.)

waveform expression

990 TN=SIN(X)/COS(X)
450 PRINT M*COS(N)

Comments: The argument is assumed to be an angle expressed in radians.

Uses: The cosine function and the sine function are used to find the other
trigonometric functions.

5-3 Numeric Functions -- ATN/COS

TEK SPS BASIC V02 System Software

Exponential Function
EXP

Returns: The value of e raised to the power of the argument.

Syntax: Examples:

{
expression l

EXP (array expression.)
waveform expression

190 SH:(EXP(E)-EXP(-E))/2
730 IF EXP(X)=N THEN 490

Colllllents: The mathematical constant, e, is the base for the natural
logarithm (approximately 2.71828). The allowable range of the argument is
from -88.5 to 88. If the argument is out of range, an error message is
issued. If the argument is less than -88.5, zero is returned; if the
argument is greater than 88, the largest possible number in TEK SPS BASIC
(approximately 1.70141E+38) is returned.

Uses: The EXP function is used to find the hyperbolic functions. For
example, line 190 in the examples above finds the hyperbolic sine of E.

Integer Part Function
ITP

Returns: The integer part of the argument.

Syntax: Examples:

{
expression l

ITP(array expression.)
waveform expression

210 IF ITP(X)=X THEN 730
390 PRINT ITP(A/B)

Comments: The result is equal to the sign of the argument times the
greatest integer in the absolute value of the argument. For example, if
the argument is 5.7, 5 is returned; and if the argument is -19.9, -19 is
returned.

Uses: The integer part function discards the fractional portion, truncating
a value to an integer. To round a positive number P to an integer use:

P=ITP(P+.5)

Numeric Functions -- EXP/ITP 5-4

TEK SPS BASIC V@2 System Software

To round a negative number G to an integer use:

G=ITP(G-.5)

While, if the value X can be either positive or negative, use:

X:ITP((ABS(X)+.5)*SGN(X))

The integer part function can also be used to test for even or odd
integers. For example, the statement:

77@ IF X:ITP(X/2)*2 THEN 1a1a

causes transfer of program control to line 1a1a if X is an even integer.

Log Function

LOG

Returns: The natural logarithm (log to the base e) of the argument.

Syntax: Examples:

l expression l
LOG (array expression.)

waveform expression

43a N:BA(LOG(P)/LOG(B))
55a PRINT LOG(ABS(X))

Coaments: The argument must be greater than zero. If it is not, a warning
error is issued and a zero is returned.

Uses: The natural log function can be used to find the logarithm of a
positive value, P, to a positive base, B, by the statement:

LG=LOG(P)/LOG(B)

Similarly, to convert the ratio of two voltages, E1 and E2, to decibels
use:

DB:2a*LOG(E1/E2)/LOG(1a)

@ 5-5 Numeric Functions -- LOG

TEK SPS BASIC V02 System Software

Random Number Function
RND

Returns: A pseudo-random, floating-point number between zero and one.

Syntax: Examples:

RND ({ =~~:;s:!;~ession. l)
waveform expression

105 A=100*RND(A)
670 IF RND(0)<.5 THEN 475

Colllllents: The argument is a dummy argument; it is not used by the function
except to determine how many numbers to return. All numeric functions
return an array of values when the argument is an array expression or a
waveform expression. When this is the case, the random function returns
an array with a different random number in each element. But if A is an
array, the statement:

A:RND((1)

will set each element in A equal to the same random number.

The pseudo-random number is produced by the random number generator.
The number that is returned depends on the seed value used by the random
number generator. To change or obtain the current seed value, use the
RANDOM command.

Uses: You can use the random function to produce a random number between
two value, N1 and N2. Assuming that N1 is less than N2, you could use:

RN:(N2-N1)*RND(0)+N1

Notice that a zero was used as the argument. Since it is a dummy argument,
any numeric expression could be used.

Numeric Functions -- RND 5-6 @

TEK SPS BASIC V02 System Software

Sign Function
SGN

Returns: One of the three values (+1, -1, or a) to indicate the sign of the
argument.

Syntax: Examples:

SGR (l ::::;·:~:ession. l)
waveform expression}

44a IF SGN{X)=a THEN 59a
12a X=X*SGN{X)

Comments: The sign function returns a value indicating the sign of the
argument as follows:

if argument is: value returned:
positive +1
negative -1
zero a

Uses: The sign function can be used to execute different portions of a
program depending on whether a value is positive, negative, or zero. For
example, the statement:

1a0 GOSUB SGN(N)+2 OF 100a,2aaa,3a~0

would cause a branch to one of three subroutines depending on the sign of N.

Sine Function

SIR

Returns: The sine of the argument.

Syntax: Examples:

l expression }
SIR (array expression.)

waveform expression

450 CT:COS(X)/SIN(X)
3Ba PRINT M*SIN(N)

Comments: The argument is assumed to be an angle expressed in radians.

Uses: Sometimes, to test a program, you might need a sine wave with a
particular amplitude and number of cycles. The following program segment
generates a sine wave of N cycles with amplitude A in array B.

5-7 Numeric Functions -- SGN/SIN

TEK SPS BASIC V02 System Software

10~ FOR I=a TO SIZ(B)-1
110 B(I)=A*SIN(N*6.283185/SIZ(B)*I)
120 NEXT I

Here, 6.283185 is approximately 2 times Pi radians. The array size function
(SIZ) returns the number of elements in the array B. Of course, the larger
the array, the better the resolution will be.

Square Root Function
SQR

Returns: The square root of the argument.

Syntax: Examples:

{
expression }

SQR (array expression.)
waveform expression

230 M:SQR(X*X+Y*Y)
920 PRINT SQR(ABS(A*B/C))

CollDlents: The argument must be greater than or equal to zero. If it is
negative, an error is issued and the square root of the absolute value of
the argument is returned.

Task Function
TSK

Returns: The task number of the currently executing command.

Syntax: Examples:

l expression }
TSK(array expression)

waveform expression

140 A(TSK(0),I)=N
880 IF TSK(0):J THEN 10~~

Coll!llents: The argument is a dummy argument; it is not used by the function
except to determine whether to return a single number or an array with
each element equal to the same task number.

The task function returns the task number associated with the statement
in which it appears. If this function is used in an immediate mode statement,
it always returns a 127, the immediate mode task number.

Numeric Functions -- SQR/TSK 5-8

TEK SPS BASIC V02 System Software

Array Functions

Array functions are provided in TEK SPS BASIC to compute several of
the most common array parameters such as the mean value of the array or
waveform. Unlike a numeric function, an array function always return a
single value only. The argument may be the whole array, a zoned portion
of the array, or a waveform. The specified array or waveform is not altered
by any of the array functions. Except for the CRS function, an array or
waveform variable name is the only argument required for an array function.

Cross Function

CRS

Returns: The interpolated position of the first point at which an element of
the argument array or waveform equals or crosses the specified threshold value.
If the threshold is not equaled or crossed, a minus one (-1) is returned.

Syntax:

CRS([(expression[:expression])],expression))array I
waveform

Descriptive Form:

CRS(!array I [(starting position[:ending position])],threshold level)
waveform

Examples:

100 X:CRS(WA(I+3:J+4),.7)
150 PRINT (CRS(A,MAX(A))

Comments: The cross function differs from other TEK SPS BASIC functions
in that it can take on several forms as the syntax indicates.

The purpose of the CRS function is to find the position (the array
subscript for one dimensional arrays) at which a specific level is crossed.
The search can start at any point in the array. If no location is specified
(no starting position specified), the search starts at the first element,
element zero.

5-9 Array Functions -- CRS

TEK SPS BASIC V02 System Software

The array or waveform is searched linearly from the given starting
position or from the default starting position of zero. If the element in
the starting position is less than the threshold value, the search stops
when an element equal to or greater than the threshold is found. If the
starting element is greater than the threshold, the search stops when an
element equal to or less than the threshold is found.

Searching continues until the threshold is equaled or crossed or the
specified ending position is reached. If no ending position is given, the
end of the array or waveform is the default ending position.

When the threshold equals the value of an element, an exact position
is returned. But when the threshold value is crossed between two elements,
an interpolated position is returned. If the threshold is never crossed
or equaled, a minus one (-1) is returned.

If the array or the waveform's array is one-dimensional, the position
corresponds to a subscript of an element or to an interpolated subscript
indicating a position between two elements.

[When the array is two-dimensional, the meaning of the position in
terms of the elements' subscripts is obscure. It is still the interpolated
position between two elements. But in this case, the integer portion of
the number returned is equal to the first element's first subscript times
a quantity one greater than the array's maximum second subscript, plus the
element's second subscript. So, for a cross position between elements
A(I,J) and A(I,J+1) of an array DIMensioned M by N, the integer portion
of the returned value equals I*(N+1)+J.]

The CRS function is best understood with the help of some examples.
Consider the statement:

C1=CRS(W,.5)

When this statement is executed, array (or waveform) W is searched.
The value of the starting position (element zero in this case, since no
starting position was specified), is noted and a search is made for the
first array element that crosses the 0.5 level. If the value of the starting
element is less than the threshold of 0.5 level, the search stops when an
element equal to or greater than 0.5 is found. If the value of the starting
element is greater than the threshold level, the search stops when an
element equal to or less than 0.5 is found.

Array Functions -- CRS 5-10 @

TEK SPS BASIC V02 System Software

If an element is found that exactly equals 0.5, its position (the
array subscript for one-dimensional arrays) is returned. If the threshold
is not matched, but is crossed between two consecutive array elements, an
interpolated position (an interpolated subscript value) is returned. If
the level is never crossed, the function returns minus one (-1).

In this example:

X:CRS(W(45),.5)

the starting position is specified. The search starts at element 45, and
continues until the a.5 level is crossed, or the end of the array is
reached. While in this example:

X:CRS(W(45:522),.5)

both the starting and ending positions are specified. Here the search
starts at subscript 45 of array (or waveform) W and continues until either
the array crosses the a.5 level or element 522 is reached. Note that a
waveform may be referenced, even if zoning is used.

Figure 5-1 graphically demonstrates the CRS function. The statement
used in the demonstration is:

LET X:CRS(A,.02)

Referring to the figure, notice that the a.02 level is crossed between the
fourth and fifth array elements (subscripts three and four). The CRS
function automatically interpolates the actual crossing point (3.5) and
returns that value.

Had the demonstration statement been:

LET X:CRS(A(4:8),.02)

the result, X, would have been six. This is because only elements four
through eight are searched. In this zone of the array, the a.02 level is
crossed at subscript six.

Uses: The CRS function can be combined with other functions to locate a
particular element in an array. For example, to find the subscript, MX,
of the maximum value in array BX, use the statement:

MX=CRS(BX,MAX(BX))

5-11 Array Functions -- CRS

VALUE

TEK SPS BASIC V02 System Software

.¢4~

.¢35

.030

.¢25

.¢2~

.¢15

.¢1¢

.~¢5

1
I
I
I
I
I
I
I

ARRAY A

v Cross at 3.5

...._. _ _.____.__........,'-'--'---'----'--L-- - - - - - - -

2 3 4 5 6 7 8

SUBSCRIPT
2033-11

Fig. 5-1. Searching array A with LET X=CRS(A,.a2).

Similarly, to find the subscript, MN, of the minimum value in array
BX, use:

MN=CRS(BX,MIN(BX))

Maxiaum. Function
MAX

Returns: The largest value in the argument.

Syntax: E:x:aaples:

1 array I MAX()
waveform

500 PRINT MAX(AA)
250 LET C:MAX(A(50:99))

Uses: An example using the MAX and MIN functions together can be seen in
the following statement. This single statement will normalize an array to
values between zero and one inclusive, an extremely valuable procedure in
waveform processing.

A:(A-(MIN(A)))/(MAX(A)-MIN(A))

Array Functions -- MAX 5-12

TEK SPS BASIC V02 System Software

The array A is normalized by subtracting the minimum value of the
array from each element in array A. Each of the resulting values is then
divided by the difference of the maximum and minimum values of the original
array. The result, a normalized array, is placed in the original array
location A.

Mean Function
MEA

Returns: The mean value of the argument.

Syntax: Examples:

I array ! MEA(
waveform

)

190 IF MEA(A)=N THEN 550
240 L=MEA(B(X:Y))

Comments: The MEA function sums all the elements in the argument, then
divides the sum by the number of elements in the argument.

Uses: One use of the MEA function is to remove a DC level in a waveform.
To do this, just subtract the mean value from all elements of the array.
For example:

W=W-MEA(W)

After execution, array W has a mean value near zero.

Minimum Function
MIN

Returns: The smallest value in the argument.

Syntax: Examples:

I array I MIN()
waveform

990 PRINT MIN(B(100:199))
310 IF MIN(A)<MIN(C) THEN 670

5-13 Array Functions -- MEA/MIN

TEK SPS BASIC V02 System Software

Uses: Here the MIN function is combined with other array functions to
make a fast number sorting routine. The numbers in array A are sorted into
a new array B, in ascending order. The contents of array A, however, are
destroyed by the process.

1a0 DIM B(SIZ(A)-1)
1 rn MX=MAX(A)
120 FOR I=a TO SIZ(A)-1
13a B(I):MIN(A)
140 A(CRS(A,MIN(A))=MX
150 NEXT I

The routine uses a loop to put the current minimum from A into B (line
13@). Then in line 140, the current minimum is replaced by A's maximum
value, MX. This prevents that element from being the minimum value the
next time through the loop. When the routine is finished, B holds the
sorted numbers but A is filled with the same number, its maximum value.

This sort can be easily modified to sort numbers into descending
order. Either interchange all occurrences of the MIN and MAX functions or
change line 120 to:

120 FOR I=SIZ(A)-1 TO 0 STEP -1

so the array B fills in reverse order.

Root-Hean-Square Function
RMS

Returns: The root-mean-square of the argument.

Syntax: Examples:

I array I RMS(
waveform

Array Functions -- RMS

)

5-14

94a X=RMS(A(0:N))
35@ PRINT RMS(B)

TEK SPS BASIC V02 System Software

Comments: The root-mean-square is found by summing the squares of the
argument's elements, dividing this sum by the number of elements in the
argument, and taking the square root of the resulting quotient.

As an example of the RMS function, suppose that one cycle of a sine
wave resides in array C. The following program would print 0.7071 on the
terminal:

100 C:(C-MIN(C))/(MAX(C)-MIN(C))*2-1
110 PRINT RMS(C)

In the example, line 100 normalizes the waveform to values in the range
of minus one to plus one. Line 110 then calculates the RMS value of the
waveform and prints the result.

Size Function
SIZ

Returns: The number of elements in the argument.

Syntax: Examples:

l ~rey I SIZ(
waveform

)
200 FOR I=0 TO SIZ(A)-1
440 IF SIZ(B)<>SIZ(D) THEN 590

Comments: The SIZ function always returns the number of elements in the
array, not the value to which the array was dimensioned. For example, an
array dimensioned to 511 would have a size of 512 and a two dimensional
array dimensioned to 3,4 has a size of 20.

Uses: This function is useful when data is fetched from an instrument or
peripheral and the destination array is auto-dimensioned. Some instruments
capture variable-sized arrays. The SIZ function provides a convenient way
of determining the length of the array without tedious programming steps.
Thus to dimension an array B to the same size as an auto-dimensioned array
A, use:

DIM B(SIZ(A)-1)

5-15 Array Functions -- SIZ

TEK SPS BASIC V02 System Software

String Functions

TEK SPS BASIC includes a set of string functions which perform
operations such as finding a particular sequence of characters in a string
or converting strings to numbers or vice versa. Five of the string functions
(CAN, CHR, SEG, STR, and TRH} return a string; the other four (ASC, LEN,
POS, and VAL} return a decimal value.

String functions are always part of a statement, such as a LET or
PRINT statement. They can be nested together to produce many useful functions
in a single command.

String functions can be deleted at load time (system software
initialization) by creating the proper system parameter file with the
SYSBLD command. This reduces the size of Resident BASIC, but then the
string functions may not be used.

ASCII Function
ASC

Returns: The decimal equivalent of the seven bit ASCII code of the
first character of the string argument.

Syntax: Examples:

ASC(string expression} 130 LET K:ASC("D")
150 GOTO ASC(N$)-64 OF 100,250,470

Comments: The ASC function looks at only one character. If a string of
several characters is operated on, the value of only the first character
is determined. If the argument is a null string, zero is returned. The
ASCII values for all possible characters can be found in Appendix A.

The ASCII function (ASC) is the inverse of the character function
(CHR). This means that these two statements are equivalent.

PRINT "A"
PRINT CHR(ASC("A"))

String Functions -- ASC 5-16 @

TEK SPS BASIC V@2 System Software

The ASCII function examines only the first character in the string
argument. However, by using it with the segment function (SEG) you can
find the ASCII values of all the characters in a string. In this routine,
an array A is dimensioned to have as many elements as there are characters
in a string. (The LEN Function returns the length of a string.) Then the
array is filled with the ASCII values of the characters in A$. Since the
characters in a string are numbered from 1 and array elements, from zero,
the ASCII value of the Ith character in the string is put into A(I-1).

If
A would

10@ DELETE A
110 DIM A(LEN(A$)-1)
120 FOR I=1 to LEN(A$)
130 A(I-1)=ASC(SEG(A$,I,I))
14@ NEXT I

A$ is the string "ABCDEF", after the routine executes, the array
hold the following

A(0) 65
A(1) 66
A(2) 67

values:

A(3) 68
A(4) 69
A(5) 70

Cancel Function
CAN

Returns: A modified version of the argument string in which matching
characters on either side of a slash (/) are cancelled.

Syntax: Examples:

CAN(string expression) 15'6 B$:CAN(F$)
155 C1$:CAN("VV/V")

Comments: The function searches the specified string for a slash(/). If
found, each character preceding the slash (/) is compared to every character
following the slash(/). If a match is found, the two matching characters
are removed from the string. If a match is not found, the original string
is returned.

For example, if the specified string contained the characters "AA/VA",
the CAN functions would cancel the matching characters and return the
string "A/V".

5-17 String Functions -- CAN

TEK SPS BASIC V02 System Software

Uses: This function is performed automatically on waveform units during
waveform arithmetic. For example, a waveform representing a voltage with
vertical units of "V" for volts when multiplied by a waveform representing
current with vertical units of "A" for amps produces a product waveform
whose vertical units are "VA", or volts times amps. If you then divided
that product by the current waveform, the intermediate result would be a
waveform with vertical units of "VA/A". TEK SPS BASIC automatically cancels
the units to produce the final result of "V". The redundancy has been
eliminated. The CAN function is provided for users who want to do their
own processing in waveform arithmetic.

Character Function
CHR

Returns: A one-character string whose ASCII code in decimal is equal to
the argument.

Syntax:

CHR {expression)

Examples:

180 C$:C$&CHR(68)
440 F$: 11 FILE."&CHR(I)
560 PRINT CHR(7);

Comments: The result of this function is one ASCII character. The character
is determined by the value of the specified expression. If the expression,
when evaluated and rounded to an integer, is less than zero or greater
than 127, it is treated modulo 128. For a value greater than 127, 128 is
subtracted from it until the remainder is between zero and 127. For a value
less than zero, 128 is added to it until the result is nonnegative.

In the examples above, line 180 appends the letter "D" to the string
C$. In line 560, the bell character is sent to the terminal, causing the
terminal bell to ring.

The character function (CHR) is the inverse of the ASCII function
(ASC). Thus, these two statements are equivalent:

PRINT 65+N
PRINT ASC(CHR(65))+N

A complete list of all ASCII characters and their decimal values is
included in Appendix A.

String Functions -- CHR 5-18

TEK SPS BASIC V~2 System Software

Uses: Some control characters cannot be entered as a string directly from
the keyboard, as they are used as editing commands. These control characters
and their decimal equivalents are:

Carriage return = 13
Control-P = 16
Control-U = 21
Rubout = 127

The CHR function allows these characters to be entered indirectly.
For example, since 13 is the decimal value of the ASCII code for a carriage
return, the statement:

PRINT "XXXXXXX";CHR(13);"ZZZZZZZ"

would print seven Z's on top of seven X's.

Length Function
LEN

Returns: The number of characters in the specified string.

Syntax: Exam.p1es:

LEN(string expression) 400 X:LEN("HELLO"&CC$(8))
20~ FOR N:1 TO LEN(T$)

Comments: The total number of characters in the string, including nonprinting
control characters and any leading or trailing blanks, is found by this
function.

Position Function
POS

Returns: The position of the first occurrence of the second string within the
first string.

Syntax:

POS(string expression,string expression,expression)

5-19 String Functions -- LEN/POS

TEK SPS BASIC V02 System Software

Descriptive Form:

POS(source string,search string,starting position)

Examples:

150 IF POS(A$,C$(R),1)<>0 THEN 490
345 K=POS(D$,"START",X)

Co•ments: This function finds the location of one or more characters in
a string. The first string specified is the string searched. The second
string is the sequence of characters to look for. The last argument specified
tells the POS function where to start the search. The positions are numbered
from left to right, starting with 1.

If the second string is not found in the first string, the function
returns a zero. If the second string is a null string (a string with length
zero), then the value of the third argument is returned.

If the starting position (third argument) is less than 1, the first
position is used. If it is greater than the length of the first string,
zero is returned.

As an example, suppose A$ contains ABCDEFGHIJKLM, and B$ contains
GHI. The statement

PRINT POS(A$,B$,1)

would cause the number seven to be printed on the terminal.

Uses: The position function can be used to find a substring in a string
or to test for the presence of a substring in a string. Besides this, POS
can be used to find the delimiters that divide a string into substrings.

For example, this routine uses POS, as well as the length (LEN) and
segment (SEG) functions to separate A$ into its three substrings. Here the
substrings are of indefinite length but they are delimited by exclamation
marks(!). Line 100 finds the position of the first exclamation mark. Line
110 finds the position of the second by making the starting position of
the search one greater than the position of the first exclamation mark.
Then lines 120 through 140 use this information to break A$ into three
separate strings.

String Functions -- POS 5-20

TEK SPS BASIC V02 System Software

100 L:POS(A$,"!",1)
110 M:POS(A$,"!",L+1)
120 T1$=SEG(A$,1,L-1)
130 T2$=SEG(A$,L+1,M-1)
140 T3$=SEG(A$,M+1,LEN(A$))

If A$ is equal to "BUY NOW!PAY LATER!NOTHING DOWN", then after the
routine executes the three new strings would contain the following.

T1$: BUY NOW
T2$: PAY LATER
T3$: NOTHING DOWN

Segment Function
SEG

Returns: A substring of the specified string.

Syntax:

SEG(string expression,expression,expression)

Descriptive Form:

SEG(source string,position of substring's first character,
position of substring's last character)

Examples:

7a0 Z$=SEG(A$,K,J)
670 IF SEG(A$,I,I)<>"5" THEN 880

Comments: The substring is taken from part of the specified source string.
The first expression specifies the position of the first character of the
substring. If this expression has a value of one, the new string will begin
with the first character of the source string. Likewise, if this value is
five, the new string begins with the fifth character in the source string.
The second expression specifies the last character in the new string. The
positions in the source string are numbered from left to right, starting
with 1.

5-21 String Functions -- SEG

TEK SPS BASIC V02 System Software

For example, if A$ contained the string "THIS IS A STRING EXAMPLE",
which has a length of 24 characters, the statement

PRINT SEG(A$,11,16)

would print the following string:

STRING

If the starting position (first expression) has a value less than 1,
the first position is used. If the ending position is greater than the
length of the source string, the actual length of the source string is
assumed. Should the starting position be greater than the length of the
string, a null string (a string of no length) is returned. Likewise, if
the ending position is less than 1, a null string is returned. The same
is true if the ending position is less than the starting position.

Uses: This function is used to create one or more new strings from a
source string, or to look at part of a source string. So, while the position
function (POS) lets you quickly find a particular substring in a source
string, when you need to find one of a range of characters in a source
string, use SEG.

For example, this routine looks for a string of integers in the source
string A$, and returns it in a new string, N$.

1(10 FOR I:1 TO LEN(A$)
11G IF SEG(A$,I,I)>:"(1" THEN IF SEG(A$,I,I)<="9" THEN 17'1
12(1 NEXT I
13(1 REM NO NUMERS IN STRING
14(1 N$=""
15@ GOTO 220
16'1 REM NUMBER FOUND IN STRING
17@ FOR J=I+1 TO LEN (A$)
18@ IF SEG(A$,J,J)<"f1" THEN 21G
19'1 IF SEG(A$,J,J)>"9" THEN 21(1
2aa NEXT J
21(1 N$:SEG(A$,I,J-1)
22(1 RETURN

The loop in lines 1(10 to 12a, scans across the source string, one
character at a time, looking for a numeric character. Notice that the
compound IF statement in line 11(1 is true only if the character in the Ith
position is a character between (1 and 9, inclusive. If a numeric character

String Functions -- SEG 5-22

TEK SPS BASIC V02 System Software

is found, that loop is exited. The loop variable I points to the position
of the first character in the integer substring.

Now another loop is used to find the end of the integer substring.
The FOR loop in lines 170 to 200 scans for a nonnumeric character. When
that is found or the end of the string is reached, the second FOR loop's
variable, J, points to the position just to the right of the last numeric
character. Thus, line 210 sets N$ to the integer substring in A$.

If no numeric character is found by the first loop, N$ is set to the
null string in line 140.

Returns:

String Function
STR

A string which represents the numeric value of the
specified expression.

Syntax: Examples:

STR (expression) 550 PRINT STR(K+45.6)
770 V$:A$&STR(J)

Comments: The STR function is used to create a string of ASCII characters
which represent the decimal value of an expression. It is the opposite of
the VAL function. This is the same routine BASIC uses when values are
printed at the terminal with the PRINT statement.

The string created by STR will not have any leading spaces or zeros,
but will have a leading minus sign (-) if the value of the expression is
negative.

Uses: The STR function can be used whenever you need to convert a
floating-point value to a string representation of its decimal value. For
example, these statements:

100 FOR I=1 TO 4
110 OPEN III AS "DATA." &STR (I) FOR READ
120 NEXT I

open four files named "DATA.1", "DATA.2", "DATA.3" and "DATA.4 11 for READ
on the system device.

@ 5-23 String Functions -- STR

TEK SPS BASIC V92 System Software

Trim Function
TRH

Returns: A copy of the argument string trimmed of any trailing blanks.

Syntax: Examples:

TRH(string expression) 6a9 GF$:TRM(GF$)
7a9 PRINT TRM(P$(J))&SEG(B$,1,29)

Comments: Strings can be "tidied up" with the TRM function. Any spaces
at the end of the specified string are removed by this function. The
function starts at the end of the string, and terminates with the first
non-space character.

Uses: When a statement like

WRITEU #1,A$:49

is used to write a string into a data file, blanks are added to the end
of A$ if the actual length of A$ is less than the 4a characters specified.
Later, when A$ is read from the file by READU, the trim function can be
used to remove the added blanks. For example:

READU 111, A$:49
A$:TRM(A$)

Value Function
VAL

Returns: The decimal value represented by the specified string.

Syntax: Examples:

VAL(string expression) 589 PRINT VAL (CC$)
709 X=VAL(SEG(A$,1,4))

Comments: The VAL function is the opposite of the STR function. Here, the
result is a number equal to the decimal value represented by the string.
It is the same routine used by the INPUT statement to convert ASCII
characters to their decimal value.

String Functions -- TRM/VAL 5-24 @

TEK SPS BASIC V02 System Software

If the string does not represent a number, a warning error is issued
and zero is returned. If the number is too large to convert, a warning
error is generated and the largest possible number (approximately 1.7@141E+38)
with correct sign is returned. Likewise, if the number is too small to
convert, zero is returned and a warning error is given. The legal characters
in a string representation of a decimal number are the digits 0 through
9, plus and minus signs(+,-), the decimal point (one only), and the
letter E. Blanks in the string are ignored.

Uses: The VAL function is used to convert a string representation of a
decimal number to a floating-point value. For example, if the scale factor
of an instrument is returned in all but the first three characters of a
string, A$, the statement:

SF:VAL(SEG(A$,4,LEN(A$)))

defines the scale factor, SF.

5-25 String Functions -- VAL

TEK SPS BASIC V~2 System Software

SECTION 6

IEEE 488 INTERFACE DRIVER

This section describes the low-level IEEE 488 Interface driver which
accompanies the TEK SPS BASIC System Software. This software module, named
"GPI.SPS", is an instrument driver for either a CP4100/IEEE 488 Interface
or a CP1100/IEEE 488 Interface.

The section starts with a brief discussion of the IEEE 488 Standard-1975
Interface Bus which is also called the General Purpose Interface Bus (GPIB).
Then the functional subsets of the IEEE 488 standard supported by the
interface driver are presented. Next is a general discussion of how the
driver is used, particularly with the instrument commands GET, PUT, WHEN,
and IGNORE. The command descriptions for the interface driver's nonresident
commands are at the end of the section.

Introduction to the IEEE 488 Bus

The IEEE 488 bus is a versatile instrument bus designed to provide
an effective communications link for data and instructions. The bus itself
is entirely passive. The active components of the interface are contained
within each device. Instruments designed to operate according to this
universal standard can be connected directly to the bus and operated by a
controller with appropriate programming. The instructions and data generated
by instruments can be coded in either ASCII or binary. The IEEE standard
specifies only the mechanical, electrical, and functional aspects of the
interface. The operational, or device dependent, aspects of the system are
purposely not specified to allow greater flexibility as to the types of
devices that can be interconnected.

A Typical System

The IEEE 488 bus uses eight data lines and eight control lines.
Information is transferred bit-parallel, byte-serial by an asynchronous
handshake. The handshake signals guarantee that each data byte has been
transferred properly before allowing another byte to be transferred across
the bus. This allows instruments with different data transfer rates to
operate together if they conform to the handshake state diagrams defined
in the IEEE 488 standard.

6-1

TEK SPS BASIC V~2 System Software

Types of Instruments. Instruments connected to the bus can be classifiec
as either controllers, talkers, or listeners. A controller designates which
devices are to talk or listen and exercises other bus management functions;
at any given time, there can be only one controller-in-charge. A talker
is a device capable of transmitting data and instructions on the Data
lines; there can be only one talker at a time to avoid confusion in message
and data transfer. A listener is a device capable of responding to data
or instructions received on the Data lines; there can be more than one
listener at a time.

A device need not be a talker or listener or controller at all times.
It may be idle part of the time. Some devices (such as a digital multimeter)
may alternately function as talkers or listeners depending on whether they
are generating data or receiving instructions.

A typical system is diagrammed in Fig. 6-1. It includes a controller
(such as a TEKTRONIX CP4165 Controller), a talker (such as a counter or
digital multimeter), and a listener (such as a line printer or signal
generator). Also included is a TEKTRONIX 7912AD Programmable Digitizer
which may either talk or listen.

Types of Messages. Messages on the bus are either interface messages
or device-dependent messages. Interface messages are used to manage the
interface functions of the instruments. They designate talkers and listeners,
determine local or remote operation of devices, indicate service requests,
and communicate other important interface conditions. Device-dependent
messages, by contrast, are not used to change the state or configuration
of the interface, but are used to control the operating modes or device
functions of designated instruments. Device-dependent messages can also
be data, such as waveform data generated by the TEKTRONIX 7912AD Programmable
Digitizer.

Maximum Number of Devices. Up to 15 devices can be connected on the
IEEE 488 bus. More than 15 devices can be interfaced if they are not
directly connected to the bus but are interfaced through another device.
Such a scheme is used for the programmable plug-ins housed in a 7000-Series
programmable mainframe such as the 7912AD; the mainframe interfaces the
programmable plug-ins to the bus. Secondary addresses are used to distinguish
the mainframe and the plug-ins. More than half of the main devices connected
at any time must be powered-up for the system to be operational.

6-2 @

TEK SPS BASIC V02 System Software

CP4165 CONTROLLER,
ABLE TO TALK, LISTEN

AND CONTROL

r---- -.,
I I

COUNTER,
ABLE TO TALK

AND LISTEN

CP4100/IEEE 488
INTERFACE

SIGNAL GENERATOR,
ONLY ABLE
TO LISTEN

7912AD
PROGRAMMAGLE

DIGITIZER,
ABLE TO TALK AND

LISTEN

DATA UN~ I DI01
DI02-
DI03 -
DI04-
DIOS
DI06-
DI07-
DIOB-

HANDSHAKE LINES {
NRFD
DAV -
NDAC-

MANAGEMENT LINES

(ATN
) SRQ

l IFC
REN
EOI

2501-05

Fig. 6-1. A typical system based on the IEEE 488 Bus.

Maximum Cable Length. The maximum length of cable that can be used
to connect a group of devices on the bus is 2 meters times the number of
devices or 20 meters, whichever is less. Cables may be connected in either
a star or a linear configuration, or in a combination of the two methods.
(See Fig. 6-2 .)

Electrical Specifications. The relationship between the binary logic
states of the bus and the voltages present on the signal lines is as
follows:

Logical 1 corresponds to a low voltage level (+a.8 V or less)
and the signal is said to be "asserted".

Logical a corresponds to a high voltage level (at least +2.0 V)
and the signal is said to be "unasserted".

6-3

TEK SPS BASIC V02 System Software

~

0 0
A B c D E F

8 Q
2384-13

Fig. 6-2. An IEEE 488 system can be conCigured in either a star or
linear manner without impairing the bus electrical
characteristics.

The electrical states are based on standard TTL (Transistor-Transistor
Logic) levels where the power source does not exceed +5.25 Volts DC
referenced to logic ground.

Bus Signal Lines

The IEEE 488 bus is functionally divided into eight data lines and
eight control lines. The eight control lines consist of three handshake
lines and five management lines. This bus structure is diagrammed in Fig.
6-1.

Data Lines

The eight Data Input/Output lines (DI01 through DI08) are bidirectional
active-low lines used to convey data or device-dependent messages. Device
addresses and universal commands are also transferred over these lines
when ATN is asserted. One byte of information is transferred over the bus
at a time. DI01 represents the least significant bit in the byte; DI08
represents the most significant bit. Data is transferred in byte-serial,
bit-parallel fashion. Data bytes can be formatted in ASCII with or without

6-4

TEK SPS BASIC V~2 System Software

parity, or they can be formatted in machine-dependent binary code. The
term "machine-dependent binary code" refers to an internal binary format
used by a device to store certain programs and data.

Control Lines

The three handshake lines are used to communicate a handshake sequence
that is executed between the talker and all designated listeners each time
a byte is transferred over the data lines. This handshake sequence prevents
the talker from placing a new byte on the bus until the slowest listener
has captured the previous byte. Thus the talker can not transmit at a rate
faster than can be received by the slowest listener. The three active-low
handshake lines are NRFD, DAV, and NDAC. (See Fig. 6-3 for a basic timing
relationship among these signals). Their functions are:

@

NRFD (Not Ready For Data) -- This signal line is asserted until
all assigned listeners are ready to receive the next data byte.
When all of the assigned listeners have released NRFD, the NRFD
signal is unasserted, thereby allowing the talker to place the
next byte on the Data lines.

DAV (Data Valid) -- The DAV signal line is asserted by the talker
shortly after placing a valid byte on the Data lines. This
tells each listener to capture the byte presently on the Data
lines. DAV can not be asserted until NRFD has been unasserted.

NDAC (Not Data Accepted) -- This signal line is asserted until all
the listeners have captured the byte currently on the data lines and
released NDAC. When the slowest listener has captured the data byte and
released NDAC, NDAC is unasserted thereby allowing the talker to remove
the byte from the data lines. At that point, the DAV line is unasserted
and the entire handshake cycle is repeated.

6-5

ATN
(CONTROLLER)

DAV
(TALKER)

NRFD
(LISTENER)

NDAC
(LISTENER)

DATA
LINES

TEK SPS BASIC V~2 System Software

I

1r1 lLJ
I I

:liJ I I
I

FIRST DATA BYTE TALK ADDRESS J
INTERFACE MESSAGE DEVICE DEPENDENT MESSAGE

2501-06

Fig. 6-3. A typical handshake sequence.

The five management lines are used to control data transfers over the
data lines. The management lines perform important interface operations
such as detecting an interrupt from a device, setting a device to remote
control, and flagging the end of a message. These five active-low signal
lines are ATN, IFC, SRQ, REN, and EOI; their functions are:

ATN (Attention) -- Asserted by the controller-in-charge to
specify how information on the data lines is to be interpreted. When
ATN is not asserted, the information on the data lines is interpreted
as device-dependent messages and data. When ATN is asserted,
the data lines convey universal commands, addressed commands, talk
addresses (My Talk Address, MTA), listen addresses (My Listen
Address, MLA), or secondary addresses (My Secondary Address, MSA).
Just which addresses and commands are sent depends upon the
byte currently on the data lines. The codes corresponding to
various commands and addresses are defined in Appendix E of the
IEEE 488 standard.

IFC (Interface Clear) -- Asserted by the system controller
to initialize the interface functions of all instruments to an
inactive state and return control to the system controller. The IFC

6-6

TEK SPS BASIC V~2 System Software

function effectively performs an UNListen, an UNTalk and a Serial Poll
Disable and resets all devices except the system controller to the
idle state.

SRQ (Service Request) -- Asserted by an instrument to request
service from the controller-in-charge. The controller usually
interrupts its current task and conducts a serial poll to
determine which device asserted SRQ. The controller can then
branch to an interrupt service routine where appropriate action
is taken. After the interrupt has been processed, the controller
may resume execution of the previous task.

EOI (End Or Identify) -- Asserted by a talker to indicate
the last byte of its message. When EOI is asserted with ATN,
the controller is conducting a parallel poll of the devices
connected to the bus.

REN (Remote Enable) -- Asserted by the system controller
to allow devices on the bus to go to Remote mode, thereby
allowing remote control of their programmable functions. When in
Remote mode, the front panels of the instruments are disabled except
for any non-programmable functions.

Bus Messages

As previously noted, messages on the data lines are either interface
messages or device-dependent messages. When the ATN line is asserted by
the controller, all devices "pay attention" since interface messages are
to be transferred over the data lines. (By "pay attention" it is meant
that all devices handshake and process all bytes transferred on the bus.)
Interface messages can generally be classified as follows:

1) talk addresses
2) listen addresses
3) secondary addresses
4) universal commands
5) addressed commands

The first three categories refer to how a device is to be addressed.
That is, they designate whether a device is to be a talker or a listener.
To designate a device as a talker, the controller asserts ATN and places

@ 6-7

TEK SPS BASIC V~2 System Software

the device talk address on the data lines. Similarly, the controller
designates a listener by asserting ATN and placing the device listen address
on the data lines. In cases where secondary addressing is designed into a
particular device, it is necessary to transmit the device secondary address
with ATN asserted following the primary talk or listen address.

The fourth category listed (universal commands) consists of those
interface commands which affect all devices connected to the bus, regardless
of whether they are currently addressed as talker or listeners. Examples
of universal commands are LLO (Local Lockout) and DCL (Device Clear).

The fifth category in the list (addressed commands) consists of those
interface commands which affect all devices currently addressed as listeners.
One exception, TCT (Take Control) is sent to a single device that has been
addressed to talk. Other examples of addressed commands are GTL (Go To
Local) and GET (Group Execute Trigger). A complete list of universal and
addressed commands is provided in Appendix E of the IEEE 488 standard.

In contrast to interface messages, device-dependent messages are sent
with ATN unasserted and are transmitted only between a designated talker
and one or more designated listeners. A device-dependent message can be
either an instruction (e.g., set the input polarity to normal) or data
(e.g., 3.456 volts). The format of instructions and data is entirely up
to the device designer. Instructions and data are normally coded in ASCII
or binary, but this is not required by the IEEE standard.

This has only been a brief introduction to the IEEE 488 interface.
Further information can be found in IEEE Standard 488-1975, IEEE Standard
Digital Interface for Programmable Instrwnentation. A detailed description
of the actual handshake timing sequence is covered in Appendix B of the
standard.

6-8

TEK SPS BASIC V02 System Software

Introduction to the IEEE 488 Interface Driver

IEEE 488 Interface Function Subsets

The IEEE 488 standard is designed in such a way that not all devices
on the bus need to have the same capability to comply with the standard.
The instrument designer can choose from a "menu" of ten device functions,
and implement only those capabilities (known as "functional subsets") that
are appropriate to a particular device. The functional subsets are described
in detail in the standard. The degree to which the controller (computer)
with a CP4100/IEEE 488 or a CP1100/IEEE 488 interface, operating under TEK
SPS BASIC and the low-level IEEE 488 Interface driver (GPI.SPS), implements
each of the ten interface functions is described below.

1) Source Handshake Function: SH1
The SH function provides a device with the ability to initiate
and terminate transfer of messages on the eight data lines.
Subset SH1 means it has full capability with no states omitted.

2) Acceptor Handshake Function: AH1
The AH function provides a device with the capability to
guarantee proper reception of messages on the eight data lines
as well as the capability of delaying initiation or termination
of such messages. Subset AH1 means it has full capability with
no states omitted.

3) Talker function: TE5 or T5

@

The T function enables a device to send device-dependent data
(including status information) over the bus to other devices.
Subset TE5 means it is an extended talker honoring secondary
addresses, responds to serial poll, has talk only mode, and is
unaddressed if MLA (My Listen Address) and MSA (My Secondary
Address) are received. Subset T5 means it is a basic talker,
responds to serial poll, has talk mode only, and is unaddressed
if MLA is received. (MLA and MSA are established by software.)
Response to serial poll is accomplished by using the driver's
nonresident commands plus PUTLOC and GETLOC. However, the driver
assumes it is controller-in-charge.

6-9

TEK SPS BASIC V02 System Software

4) Listener Function: LE3 or L3
The L function allows a device to receive device-dependent data
over the bus from other devices. Subset LE3 means it is an
extended listener honoring secondary addresses, has listen only
mode, and is unaddressed if MSA (My Secondary Address) is received
and it is in the TPAS (Talker Primary Addressed State). Subset
L3 means it is a basic listener, has listen only mode, and is
unaddressed if MTA (My Talk Address) is received. (MTA and MSA
are established by software.)

5) Service Request Function: SR1
The SR function enables a device to asynchronously request service
from the controller-in-charge of the interface bus. Subset SR1 means
it has full capability.

6) Remote/Local Function: RL1
The RL function provides a device with the capability to select
between two sources of information: remote (programmed control)
or local (front-panel control). Subset RL1 means it has full
capability.

7) Parallel Poll Function: PP0
The PP function allows a device to present one bit of status to
the controller-in-charge without being previously addressed to
talk. Subset PP0 means it has no capability for responding to
a parallel poll.

8) Device Clear Function: DC1
The DC function allows devices to be cleared (initialized)
either individually or in groups. Subset DC1 means it has full
capability.

9) Device Trigger Function: DT1
The DT function allows the operation of a device to be triggered
(initiated) either individually or as part of a group. Subset
DT1 means it has full capability.

10) Controller Function: C1, C2, C3, C4, and C25
The C function provides a device with the capability of sending
device addresses, universal commands, and addressed commands
over the bus. Subsets C1, C2, C3, C4, and C25 mean it can be
system controller, send Interface Clear (IFC) and take charge,

6-10

TEK SPS BASIC V~2 System Software

send Remote Enable (REN), respond to a Service Request (SRQ),
send interface messages, perform a parallel poll, and take control
synchronously. Receiving control and passing control can be implemented
through the driver's nonresident commands plus PUTLOC and GETLOC,
but these functions are not supported by the driver since it
assumes it is controller-in-charge.

Loading the IEEE 488 Interface Driver

In order to use the low-level IEEE 488 Interface driver "GPI.SPS"
and its commands, the IEEE 488 capabilities must have been retained
when the system software was loaded. This is the default condition. If these
capabilities were deleted, however, it means the user-defined parameter file
"SYSBLD.DEF" on the system device has the IEEE 488 capabilities parameter
set to N for No. In that case, you will have to run SYSBLD to create a new
"SYSBLD.DEF" file that retains the IEEE 488 capabilities and then
reload the system software. (See the SYSBLD command description in Section 4.)

If IEEE 488 capabilities were retained, the next step is to
LOAD the driver into controller memory from the peripheral device.
Assuming the driver is stored on the system device, the following command
can be used:

LOAD "GPI.SPS" or simply LOAD "GPI"

where "GPI.SPS" is the name of the IEEE 488 Interface driver module. (The
LOAD command assumes the .SPS extension.)

When the driver is no longer needed, it may be removed from memory
by executing:

RELEASE "GPI"

Notice that again the .SPS extension is assumed.

The IEEE 488 Interface driver supports up to four interfaces. The
first interface installed in the system controller is strapped as interface
zero. The second interface is strapped as interface one and so on. This
allows one controller with four interfaces to control four separate IEEE
488 systems with up to 15 devices (including the controller) connected to
each interface.

6-11

TEK SPS BASIC V~2 System Software

The low-level IEEE 488 Interface driver "GPI.SPS" is different from
other instrument drivers in TEK SPS BASIC. The IEEE 488 interface is not
ATTACHed. Instead of associating an instrument logical unit number (ILUN)
with the interface, another convention is used. When communicating with
the IEEE 488 interface, the specific interface card is indicated by an at
sign (@) preceding the interface number. This interface number (a,1,2, or
3) is determined by the way the interface is strapped. It is not a logical
number assigned by software.

Addressing Instruments on the IEEE 488 Bus

When communicating with instruments on the IEEE 488 bus, it is necessary
to address each listener and talker on the bus as well as specifying the
interface number.

Each instrument on the bus must have a unique primary address in the
range 0 - 3a. In addition, an instrument may respond to a secondary address,
also in the range 0 - 3@. Secondary addresses may be used to distinguish
an instrument mainframe from plug-in units, or may be used to specify
commands to the instrument.

Instruments are addressed to listen or talk by sending their listen
or talk addresses over the bus with the Attention (ATN) line asserted.
Talk addresses, listen addresses, and secondary addresses are distinguished
as follows: listen addresses consist of the instrument primary address
plus 32; talk addresses are the instrument primary address plus 64; and
secondary addresses are the instrument secondary address plus 96 (for
either talk or listen). For example, sending the sequence

33 34 96

over the bus with ATN asserted would address two devices as listeners, one
with primary address 1 and a second device having primary address 2 and
secondary address a.

It is important to remember that the proper base (32, 64, or 96) must
be added to the primary or secondary address when issuing a command.

6-12

TEK SPS BASIC V02 System Software

Driver Control of the Bus Signal Lines

The IEEE 488 interface standard defines a 16-line bus system. Eight
of the lines are used for data transfer, and eight are used for control
lines. Although any of the lines can be specifically set or cleared under
BASIC program control, the driver software usually controls these lines
automatically. The following is a brief discussion of the signal lines and
how they are controlled. The commands mentioned are discussed in detail
later.

Remote Enable. Once the Remote Enable line (REN) has been asserted,
REN remains asserted until the line is explicitly cleared by the SIFLIN
command. REN is not cleared when the driver is RELEASEd.

End or Identify. End or Identify (EDI) is normally asserted with the
last byte of data sent on the bus. The only exceptions are the WASCII and
WBYTE commands, which optionally assert EDI. An EDI received from the IEEE
488 bus always terminates a data transfer, even though the expected amount
of data has not been transferred or the expected termination character has
not been received.

Bus Handshake Lines. The bus handshake lines (DAV, NRFD, and NDAC)
are normally under control of the interface hardware and are transparent
to the programmer.

Service Request. Service Request (SRQ) is detected by the IEEE 488
interface hardware. TEK SPS BASIC can detect the occurrence of a service
request with the WHEN command.

Interface Clear. Interface Clear (IFC) is not normally asserted by
the driver software, except when specified by the SIFLIN command.

Attention. The Attention (ATN) line is asserted by the driver software
whenever addresses or universal commands are sent. ATN is unasserted
whenever the driver is preparing to send or receive messages on the bus.

All of the above bus signal lines (DAV, NRFD, NDAC, ATN, EDI, SRQ,
IFC, and REN) may be individually controlled with the SIFLIN command and
may be read with TIFL command. These commands are discussed later in this
section.

6-13

TEK SPS BASIC V02 System Software

Transferring Data with PUT or GET

Four basic types of variables can be used to accept data in a data
transfer by the low-level IEEE 488 Interface driver with a GET command:
string variables, integer arrays, floating-point variables, and floating-point
arrays. Three basic types of data can be sent by the low-level IEEE 488
Interface driver with a PUT command: numeric expressions, array expressions,
and string expressions.

The following conventions characterize data transfers initiated by
the Interface driver with the GET and PUT commands.

1. The direct memory access (DMA) data transfer to the controller
memory is accomplished by specifying an integer array as the target variable
in the GET command. The nonresident command IFDTM (Interface Data Transfer
Mode) allows the user to specify the types of DMA transfer desired. IFDTM
arguments affecting data transfers are HOG or UNHog, PAcK or UNPack, and
High Byte First or Low Byte First. (See IFDTM command description for
additional information.) The default data transfer modes of the interface
driver are UNP, UNH, and HBF.

2. Data transfers from the IEEE 488 Interface to string variables may
be terminated by receiving EOI with a data byte or by receiving the
termination character(s) specified by the STERMC command.

3. The default time-out value for the interface driver is five
milliseconds. This can be changed by executing the SIFTO (Set InterFace
Time-Out) command. Time-out values are approximate and dependent upon
controller type.

The GET Command

The GET command is used to fetch data from a specified source (bus
connected instrument or device) and deliver that data to a specified target
(variable or array in the controller memory) for storage. The GET command
accesses an instrument by asserting ATN (attention) and sending UNT, UNL
(untalk, unlisten) to render the bus inactive. Then the controller interface
is enabled to listen without ATN asserted. This sequence is followed by a
talk address and an optional secondary address. With a communication channel
thus established, ATN is unasserted and data from the addressed instrument
is read into the specified target until the target argument is satisfied,

6-14 @

TEK SPS BASIC V~2 System Software

an EOI occurs, or a preset delay for a transfer has elapsed (time-out).
This transaction is followed by another ATN and the UNT, UNL messages.
Then NRFD is released and the interface is disabled to listen without ATN
asserted. Finally, ATN is unasserted.

The low-level IEEE 488 Interface driver uses this portion of the GET
command syntax:

Syntax Form:

[line no.] GET

variable [variable]
floating-po int array , floating-po int array •••
integer array integer array
string variable string variable
FROM @ex press ion, ex press ion[, ex press ion]

Descriptive Form:

[line no.] GET

target variable [target variable]

t
targett floating-po int array , ttargett floating-po int array .••
arge integer array arge integer array

target string variable target string variable
FROM @IEEE 4R8 interface number,

primary talk address [,secondary address]

The target for the data may be one or more variables, string variables,
floating-point arrays, or integer arrays. For an integer array, the data
transfer is performed using direct memory access (DMA). The exact amount
and format of the data as stored in the target is discussed below.

The expression following the at sign (@) is the interface number of
the bus on which the device is connected.

The second expression specifies the primary talk address of the device
sending the data. It must be between 64 and 94, inclusive. The optional
third expression may be used to specify the secondary address of the device.
If used, it must be between 96 and 126, inclusive.

How the data is read and stored depends on the variable specified in
the GET command and the current data transfer mode as set by IFDTM. Data
is read from the bus and stored in the specified target according to the
following table:

6-15

Type

variable:

floating-point
array:

integer array:

TEK SPS BASIC V02 System Software

Mode

UNP:

PAK HBF:

PAK LBF:

Description

One byte is read from the bus and stored
in the variable.

Two bytes are read and stored in the
variable. The value stored is the
floating-point representation of the
first byte times 256, plus the second.

Two bytes are read and stored in the
variable. The value stored is the
floating-point representation of the
second byte times 256, plus the first
byte.

HOG or UNH: No effect.

UNP:

PAK HBF:

PAK LBF:

One byte is read from the bus and its
floating-point representation is stored
for each element of the array.

Two bytes are read from the bus and stored
for each element of the array. The value
stored is the floating-point representatio
of the first byte times 256, plus the
second byte .

Two bytes are read from the bus and stored
for each element of the array. The value
stored is the floating-point representatio
of the second byte times 256, plus the fir
byte.

HOG or UNH: No effect.

UNP:

PAK HBF:

One byte is read from the bus and
stored for each element of the array.

Two bytes are read from the bus and
stored for each element of the array.
The value stored is equal to the first
byte times 256, plus the second byte.

6-16 @

TEK SPS BASIC V~2 System Software

PAK LBF:

UNH:

HOG:

string variable:

Bus Traffic: GET example

Messages

ATN UNT
ATN UNL
ATN talk address
[ATN secondary address]

data from instrument

EOI
ATN UNT
ATN UNL

Two bytes are read from the bus and
stored for each element of the array.
The value stored is equal to the second
byte times 256, plus the first byte.

The transfer is via normal Direct
Memory Access (OMA) protocol.

The DMA transfer is accomplished with
the interface having exclusive access
to the controller bus. No intervention
is allowed. Note: For the CP4100/IEEE 488
interface, hog mode is really "burst"
mode to allow the processor to refresh
the volatile memory.

Data bytes are read from the bus and
stored in consecutive elements of the
string variable specified. Reading is
stopped when EOI is detected or the
termination character(s) are read.
(See STERMC command.) Data transfer
modes PAK, UNP, HOG, UNH, HBF, and
LBF, set by the IFDTM command, have no
effect on transfers into string variables.

Comments

Controller untalks and unlistens
all devices.
Talk address from expression.
Secondary address from expression.

From talker.

Data stream terminated by EOI.
Controller untalks and unlistens
all devices.

6-17

TEK SPS BASIC V02 System Software

The PUT command is used to send data or device-specific commands to
one or more instruments or peripheral devices. This command first asserts
REN (remote enable) and unasserts NRFD (not ready for data). It then asserts
ATN (attention) and sends UNT, UNL (untalk, unlisten) to assure that the
bus is not active (no devices are talking or listening). The PUT command
affects one or more instruments by sending a list of listen addresses with
ATN, then a list of data items. EOI (end or identify) is asserted with the
last data byte. This transaction is followed by ATN with the UNT, UNL
messages and NRFD is released. Then ATN is unasserted.

The PUT command syntax used by the low-level interface driver is:

Syntax Form:

[line no.] PUT I ::~;s:~;ession I [,, ::~;s:~;~essi~n I] ...
string expression string expression

{ expression [, expression]}
INTO @expression, . array expression

[·{expression[,expression]}] •••
' array expression

Descriptive Form:

[line no. J PUT !
source expression I [!source expression I]
source arr~y expression , source array expressi~n •••
source string expression source string expression
INTO @IEEE 488 interface number,

{ primary listen address [,secondary address]}
listen and secondary address pairs

[·{primary listen address[,secondary address]}]
' listen and secondary address pairs •••

The source arguments for a PUT may be numeric expressions, array
expressions, or string expressions. The number of bytes transferred and
the order in which they are transferred is determined by the type of
argument and the current data transfer mode. The specific effects are
discussed below.

6-18 @

Type

expression:

array expression:

string expression:

TEK SPS BASIC V~2 System Software

Mode

UNP:

PAK LBF:

PAK HBF:

HOG or UNH:

UNP:

PAK LBF:

PAK HBF:

HOG or UNH:

Description

The expression is evaluated and the
integer part of the value, modulo 256,
is transmitted.

The expression is evaluated and the
integer part of the value, modulo 256, is
transmitted, followed by the integer
part divided by 256, modulo 256.

The expression is evaluated and the integer
part of the value divided by 256, modulo
256, is transmitted, followed by the
integer part of the value, modulo 256.

No effect.

Similar to an expression in UNP mode,
except that one byte is transmitted
for each value in the array expression.

Similar to an expression in PAK LBF mode,
except that a pair of bytes is transmitted
for each value in the array expression.

Similar to an expression in PAK HBF mode,
except that a pair of bytes is transmitted
for each value in the array expression.

No effect.

One byte is transmitted on the data lines
for each character in the string. PAK,
UNP, HBF, LBF, HOG and UNH have no effect.

The expression following the at sign (@) is the interface number of
the bus over which the data transfer takes place.

The list of expressions following the interface number indicates the
addresses of the devices receiving the data. The elements of the list can
be a numeric expression, a pair of numeric expressions, or an array

6-19

TEK SPS BASIC V02 System Software

expression. If a numeric expression or a pair of numeric expressions is
used, the first expression is the primary listen address of a device. It
must be between 32 and 62, inclusive. The optional second expression is
the secondary address of the device. If used, it must be between 96 and
126, inclusive. Notice that the address pair is separated by a comma but
that list items are separated by semicolons.

If an array expression is used, it must contain an even number of
elements. Each pair must be a primary listen address and a secondary
address. If a negative number is specified for a primary address in the
address pair, the pair is skipped over when the addresses are sent. If a
negative number is specified for the secondary address in the pair, only
the primary address is sent. (These negative addresses are illegal except
in an array.) Unless it is negative, the primary listen address must be
between 32 and 62, while the secondary address must be between 96 and 126.

Bus Traffic: PUT example

Messages

ATN UNT
ATN UNL
ATN talk address

[ATN secondary address]

<data byte>

<data byte> EOI
ATN UNT
ATN UNL

An Example Using PUT and GET

Comments

Controller untalks and
unlistens all devices.
Talk address from expression.
Secondary address from expression.

Data bytes to instrument(s)
from source expressions.

Terminated by EOI.
Controller untalks and
unlistens all devices.

Here is a routine that uses PUT and GET to read the settings of a
TEKTRONIX 7912AD Programmable Digitizer mainframe and two plug-ins: a 7A16P
Programmable Amplifier and a 7B90P Programmable Time Base. The settings
are "remembered" by storing them in a file. They can then be changed as
necessary. When you want to return the devices to the stored settings,

6-20

TEK SPS BASIC V02 System Software

executing a second routine reads the file and restores the settings with
another PUT statement.

In this example, all three devices have a primary listen address of
33 and a primary talk address of 65. They are distinguished by their
sequential secondary addresses of 96 for the mainframe, 97 for the amplifier,
and 98 for the time-base.

100 LOAD "GPI.SPS"
110 FN$="SETFIL"
120 SIFTO @G,3000
130 STERMC @G,""
140 REM READ AND STORE THE SETTINGS
150 CANCEL FN$
16G OPEN #1 AS FN$ FOR WRITE
17G FOR I:G TO 2
180 PUT "SET?" INTO @!1,33,96+I
1911 GET S$ FROM @!1,65,96+I
200 WRITE #1,S$
210 NEXT I
220 CLOSE #1
230 REM SETTINGS CHANGED IN REST OF PROGRAM

500 REM RESTORE SETTINGS
510 OPEN #1 AS FN$ FOR READ
520 FOR I=!1 TO 2
530 READ /11 , S$
540 PUTS$ INTO @0,33,96+I
550 NEXT I
560 CLOSE /11
5711 RETURN

Line 100 LOADs the IEEE 488 Interface driver, while line 110 defines
the name of the storage file. Then line 120 sets the time-out value to
31100 milliseconds (three seconds) to give the mainframe time to respond
to changes in the settings and to pass on the handshake to the plug-ins
when the second routine is executed. Line 1311 makes sure that the termination
character string is null so that the data transfer of the settings information
from the devices will terminate only on an EOI.

@ 6-21

TEK SPS BASIC V02 System Software

The file is filled in lines 150 through 220. Line 150 CANCELs any
previous file with the same name before line 160 OPENs the storage file
for WRITE. Then from a loop, the settings for the mainframe, the amplifier,
and the time base are queried, read, and stored in a file. A PUT command
(line 180) queries each device by sending it the string "SET?". Then a GET
statement (line 190) reads the settings into a single string which is
simply written to the file. After the three strings are stored, line 220
CLOSEs the file.

The string that is sent and stored is in a format acceptable to the
device as a multiple set command. When queried by the "SET?", each device
returns the Header and argument for all of its settings. The individual
settings are separated by semicolons. Also, the programmable plug-ins
return a carriage return and linefeed after all but the last argument,
while the mainframe sends a semicolon after the last argument. Returning
this string to the device restores the settings.

In the restore routine, line 510 OPENs the file for READ. Then the
FOR loop (line 520 through 550) READs a stored string, and uses a PUT to
send it as a command string to the appropriate device until all three
strings have been read and sent. This restores the settings to what they
were when the first routine executed. Finally, line 560 CLOSEs the file.

NOTE

One of the commands sent to the mainframe by
line 540 of the second routine will be a
graticule command of either GRAT ON or GRAT
OFF. For release number 1 of the 7912AD firm
ware you must perform a digitize operation to
initialize the firmware before you execute the
second routine.

6-22

TEK SPS BASIC V~2 System Software

Transferring Program Control on Interrupt

The WHEN Command

The WHEN command is used to alter the normal sequence of program
execution on the occurrence of an interrupt or an anticipated event. This
command transfers program control to a specified user-written interrupt
subroutine when the event occurs and the system priority is less than the
priority given that subroutine by the WHEN command. The IEEE 488 Interface
Driver can use WHEN statements to respond to these kinds of events: an
instrument SRQ (service request), an ERR (error) condition, or an EOI (end
or identify) condition.

The WHEN command syntax used by the low-level interface driver is:

Synta:x: Form:

[line no.] WHEN@expression HAS string expression [AT expression]
[AS TASK expression] GOSUB line number

Descriptive Form:

[line no.] WHEN @IEEE 488 interface number HAS driver-dependent interrupt specification
[AT priority level] [AS TASK task number] GOSUB line number

The expression following the at sign (@) is the interface number of
the IEEE 488 interface being accessed.

The string expression followng the keyword HAS is the interrupt
specification. For the interface driver, it must evaluate to one of three
strings: "SRQ", "EOI", or "ERR".

The optional keyword AT and the expression following it specify the
execution priority of the interrupt routine that is scheduled when the
given interrupt occurs. The priority can be any number between a and 126,
inclusive. If no priority is specified, a default priority of 51 is used.
(TEK SPS BASIC operates at a default system priority of 5@.)

6-23

TEK SPS BASIC Va2 System Software

The expression following the keywords AS TASK is the task number for
the interrupt routine. It can be any value between a and 126, inclusive.
If the optional AS TASK and task number are omitted, the number of the
current task (the task number associated with the WHEN command as it
executes) is used.

The keyword GOSUB precedes the starting line number of the user-written
interrupt routine -- the subroutine to which control passes when the
interrupt occurs.

An SRQ interrupt is enabled for an IEEE 488 interface upon execution
of an SRQ WHEN statement. Once an SRQ interrupt has occurred for a given
instrument, the SRQ interrupt capability for that interface is disabled
until it is re-enabled by the execution of a POLL command or a GETSTA
command which reads the status byte of an instrument that is asserting
SRQ. (Both the POLL and GETSTA commands assume that if bit 7 of the status
byte is set, the device is asserting SRQ. When either command detects that
a device is asserting SRQ, the SRQ interrupt is re-enabled.)

To ensure that the SRQ interrupt is re-enabled, the SRQ interrupt
subroutine should use POLL or GETSTA to read the status bytes of the devices
on the bus until at least one device is found to be asserting SRQ. If any
device on the bus does not use bit 7 of the status byte to report an SRQ,
the subroutine will need to re-enable the SRQ interrupt explicitly. This
can be done by executing another SRQ WHEN statement.

An EOI interrupt is enabled for an IEEE 488 interface upon execution
of an EOI WHEN statement. The EOI condition is detected by the IEEE 488
Interface when the EOI and DAV lines on the IEEE 488 Interface bus are
asserted. The EOI interrupt is re-enabled when the interrupt occurs.

The ERR interrupt is enabled during initialization of BASIC when the
system software is loaded. An ERR WHEN statement allows a BASIC program
to transfer control to a specified interrupt routine when an error occurs
during a data transfer with an IEEE 488 interface.

The ERR WHEN statement should assign a different task number to the
interrupt routine than the task number associated with the data transfer
task. (By default, BASIC RUNs as task zero.) This should be done because
the BASIC error handler (explained in Section 8) aborts all parts of a
task in which a fatal error happens. If a fatal error occurs in a data
transfer and the error interrupt routine has the same task number as the
data transfer, the interrupt routine does not execute.

6-24 @

TEK SPS BASIC V~2 System Software

When a data transfer error occurs, an error message is issued and the
error status condition is saved. This happens whether or not an ERR WHEN
has been executed. The error status is accessible through the GIFES (Get
InterFace Error Status) command. After an error interrupt occurs, the ERR
interrupt is re-enabled.

The IGNORE Command

The IGNORE command cancels the actions of one or more WHEN commands.
After a WHEN is canceled, the occurrence of the interrupt condition specified
in the WHEN no longer causes the interrupt subroutine to be scheduled for
execution. However, IGNORE has no effect on the execution of user-written
interrupt routines already scheduled for execution.

The SRQ and the EOI interrupts are enabled by a WHEN statement so the
actual interrupt capability can be disabled by an IGNORE statement. The
ERR interrupt is enabled when BASIC is initialized and it cannot be disabled
by an IGNORE statement.

The IGNORE command syntax used by this IEEE 488 Interface driver is:

Syntax Form:

{
. [{string expression}] l

@expression ' TASK expression
[line no.] IGNORE TASK . expression

All

Descriptive Form:

[line no.] 1
[{driver-dependent interrupt

@IEEE 488 interface number , TASK task number
IGNORE

TASK task number
All interrupt conditions for all interfaces

s~cification }] l
The expression following the at sign (@) is the number of the IEEE

488 interface being accessed.

The expression following the keyword TASK is the task number associated
with the user-written interrupt routine specified in the WHEN statement.
The string expression specifies an interrupt condition which, for this
driver, must evaluate to one of three strings: "SRQ", "EOI", or "ERR".

@ 6-25

TEK SPS BASIC V92 System Software

If only the interface number is specified, the actions of all WHEN
statements specifying that interface number are canceled. If the interface
number is followed by the optional interrupt condition string, only the
WHEN that specifies that interface number and that interrupt condition is
canceled. If the interface number is followed by the optional keyword TASK
and the task number, all WHENs that specify both that interface number and
that task number are canceled.

IF only the keyword TASK and the task number are specified, all WHENs
specifying that task number are canceled.

If the keyword ALL is specified, the actions of all WHEN statements
are canceled.

6-26

TEK SPS BASIC V~2 System Software

IEEE 488 Interface Driver Commands

In the rest of this section, each of the low-level IEEE 488 Interface
driver commands is discussed in detail. To make them easier to find, the
command descriptions are presented in alphabetical order. Each description
includes statement examples, syntax information, and a general discussion
of what the command does. A simple table. showing typical IEEE 488 bus
traffic is provided with those commands that generate a series of bus
operations. Some of the discussions also contain example programs. The
notation used in the syntax and descriptive fonns is the same used for the
System Commands described in Section 4.

Requirements:

All the IEEE 488 Interface driver commands require that the interface
driver module "GPI.SPS" is LOADed and that the IEEE 488 capabilities are
retained when the system is loaded and initialized.

Expression Evaluation:

These commands allow you to enter expressions for the interface number
and the bus addresses. Any expression for an interface number is evaluated
and rounded to an integer. That integer must be between a and 3, inclusive.
Any expression used as a bus address is evaluated and the integer part
modulo 256 is used as the address. (Another way to say this is that the
number is truncated to a 16-bit integer of which the low-order eight bits
are used for the address.) For bus addresses, the result of the expression
must lie in one of the following ranges:

address
primary listen
primary talk
secondary

range
32-62
64-94
96-126

6-27

TEK SPS BASIC V02 System Software

Command Summaries:

Below is a summary of the fifteen IEEE 488 Interface driver commands:

GETS TA

GIFES

IFDTM

POLL

PPOLL

RASCII

RBYTE

READBINARY

SIFCOM

SI FLIN

SIFTO

STERMC

TIFL

WASCII

WBYTE

Gets the status byte of a bus-connected device.

Gets the error status of the specified interface.

Sets the data transfer mode of the specified interface.

Performs a serial poll of the bus-connected devices.

Performs a parallel poll of the bus-connected devices.

Reads ASCII data from a bus-connected device and stores
it in the specified variable(s).

Reads a single byte of data through an IEEE 488
interface into a numeric variable.

Acquires an array of data sent from a Tektronix instrument
in binary block format.

Sends IEEE 488 addressed and universal commands to
bus-connected devices.

Controls the IEEE 488 interface lines.

Sets the interface time-out value.

Designates the termination character string for ASCII
data read into a string variable by a GET or RASCII
statement.

Reads the current setting of the control lines of an
IEEE 488 bus.

Sends ASCII data to a bus-connected device. Converts
numeric data to an ASCII string before sending it.

Sends a byte of data through an IEEE 488 interface
to the bus.

6-28

TEK SPS BASIC V02 System Software

GETSTA (Nonresident)

Examples:

190 GETSTA @1,X,65
550 GETSTA @N,SB(N),TA(N),SA(N)

Syntax Form:

[line no.] GETSTA @expression,variable,expression[,expression]

Descriptive Form:

[line no.] GETSTA @IEEE 488 interface number, target variable for status byte,
talk address[,secondary address]

Purpose:

To get the status byte of a bus-connected instrument.

Discussion:

GETSTA (GET STAtus byte) returns the status byte of a bus-connected
device. Status data may be obtained from a device even when that device
is not asserting an SRQ (service request). If the device is asserting SRQ
when its status is taken by a GETSTA command, the SRQ is cleared. Clearing
SRQ allows subsequent SRQ interrupts to be recognized.

The default time-out value for a device not responding is 5 milliseconds.
The time-out value can be changed by the SIFTO command.

The GETSTA command assumes that an instrument reports an SRQ by setting
bit 7 of the status byte. When GETSTA detects that an instrument is asserting
SRQ, it re-enables the SRQ interrupt. (The SRQ interrupt for an interface
is enabled by executing an SRQ WHEN statement.)

6-29 GETSTA

TEK SPS BASIC V02 System Software

Using the Command Syntax:

The expression following the at sign (@) is the number of the IEEE
488 interface to which the device is connected.

The variable specifies where the status byte of the designated device
is to be stored.

The two expressions specify the address of the device. The first
expression is the device primary talk address. The optional second expression
may be used to send a secondary address if required. A primary talk address
must be between 64 and 94, inclusive. A secondary address must be between
96 and 126, inclusive.

Bus Traffic:

ATN UNT Controller untalks and unlistens
ATN UNL devices on the bus.
ATN SPE Then it enables a serial poll.
ATN ~k address Talk address and optional

[ATN secondary address] secondary address sent to drive.
<status byte> Status byte sent from device.

ATN UNT Controller untalks device
ATN SPD and disables serial poll.

Application Example:

This routine uses GETSTA to return the status byte of a TEKTRONIX
7912AD Programmable Digitizer. It then shows how you might decode the
status byte by making extensive use of VARTST to test which bits of the
status byte are set.

The table below shows the status byte codes for the 7912AD. (To be
consistent with the IEEE 488-1975 standard, the bits of the status byte
are numbered from 1, not from 0.) Bit 7 is tested for SRQ asserted, bit 6
for an error condition, and bit 5 for busy.

GETS TA 6-30

all

TEK SPS BASIC V02 System Software

7912AD Status Byte Codes

Meaning: Bits:

8 1 6 5 4 3 2 1
Remote Request 1 x 0 x 0 0 0 1
No Condition 0 0 0 x 0 0 0 0
Power Up 0 0 x 0 0 0 1
Operation Complete 0 x 0 x 0 0 1 0
Command Error 0 1 x 0 0 0 1
Execution Error 0 x 0 0 0
Internal Error 0 x 0 0 1 1
Power Fail Error 0 x 0 1 0 0

An X in the table means that the bit may be either a 1 or 0. For this
example,
have been
appear in

however, we assume that both Remote Request and Operation Complete
programmed to assert SRQ. So, for this routine, a zero should
bit 1 of the status byte only for the No Condition code.

100 DIM ER$(4)
110 ER$ (0) ="ILLEGAL CODE FOR 7912AD"
120 ER$(1)="COMMAND ERROR"
130 ER$(2)="EXECUTION ERROR"
140 ER$(3)="INTERNAL ERROR"
150 ER$(4)="POWER FAIL ERROR"
160 DELETE 100,150

500 GETSTA @N,SB,TA,SA
510 REM DECODE STATUS BYTE OF 7912AD
520 REM
530 REM TEST FOR BUSY
540 VARTST SB,"20",BZ\REM BINARY 10000
550 IF BZ=1 THEN PRINT "DEVICE BUSY"
560 REM TEST FOR SRQ
570 VARTST SB,"100",B\REM BINARY 1000000
580 IF B:0 THEN 960\REM NO SRQ
590 PRINT "SERVICE REQUEST"
600 REM TEST FOR NORMAL/ABNORMAL
610 VARTST SB, 11 40 11 ,B\REM BINARY 100000

6-31 GETS TA

TEK SPS BASIC V02 System Software

620 IF B=0 THEN 720\REM NORMAL
630 REM ABNORMAL
640 REM DECODE, PRINT MESSAGE
650 REM FIND MODULO 8 VALUE OF STATUS BYTE
660 M8:SB-ITP(SB/8)*8
670 IF M8>4 THEN M8:0\REM LEGAL CODES:1-4
680 PRINT ER$(M8)
690 GOTO 960\REM RETURN
7<10 REM NORMAL
710 REM TEST FOR REMOTE REQUEST
720 VARTST SB, "200" ,B\REM BINARY 10000000
730 IF B=0 THEN 780\REM NOT REMOTE REQUEST
740 PRINT "REMOTE REQUEST"
750 GOSUB 2000\REM READ FRONT PANEL
760 GOTO 960\REM RETURN
770 REM TEST FOR POWER UP
780 VARTST SB,"1 11 ,B
790 IF B=0 THEN 830\REM NOT POWER UP
800 PRINT "POWER UP"
810 GOTO 960\REM RETURN
820 REM TEST FOR OPERATION COMPLETE
830 VARTST SB,"2",B
840 IF B=0 THEN 950\REM NOT OPERATION COMPLETE,SO ERROR
850 PRINT "OPERATION COMPLETE"
860 GOSUB 3000\REM ACQUIRE DATA
870 GOTO 960\REM RETURN
880 REM NO SRQ
890 REM TEST FOR NO CONDITION
9<10 VARTST SB,"357",B\REM BINARY 11101111
910 IF B=1 THEN 950\REM ERROR
920 PRINT "NO CONDITION"
930 GOTO 960\REM RETURN
940 REM ERROR
950 PRINT ER$(0)
960 RETURN

Early in the program, lines 100 to 15<1 fill an error message array.
Then those lines are DELETEd to make room for data acquisition.

Line 500 returns the status byte (SB) of a 7912AD whose primary talk
and secondary addresses are TA and SA. First, the routine checks the status
byte for Busy by testing bit 5. The VARTST statement in line 540 sets a

GETS TA 6-32 @

TEK SPS BASIC V02 System Software

flag (BZ) to either 1 for Busy or 0 for not Busy. (This flag can be used
by later routines, such as one to acquire data.) Next it checks for SRQ
by testing bit 7. If bit 7 is set, the routine checks for normal or abnormal
conditions by testing bit 6. If the condition is abnormal (bit 6 is set),
the program looks at the last four bits by calculating the modulo 8 value
of SB (line 660). It then prints one of the error messages before exiting.

When the condition is normal, the routine checks first for a Remote
Request Code by testing bit 8 (line 720). (The 7912AD has only one remote
request code, so there is no need to check bit 1 also.) If bit 8 is set,
the routine transfers to a subroutine, such as one to read the front panel
settings. (The example using PUT and GET earlier in this section shows how
to read and store the front panel settings.) If bit 8 is not set, the
routine tests for Power Up (line 780), and if not Power Up, it checks for
Operation Complete (line 830). If the code is Operation Complete, the
routine transfers to a subroutine to acquire data. If the code is not
Operation Complete, since there are no more codes with SRQ asserted to
test, an error message is issued before the routine exits.

When SRQ is not asserted, the routine goes to line 900 to test for
No Condition. Here, since we expect all bits (except possibly bit 5) to
be zero, we use VARTST to compare SB with binary 11101111. If any of the
bits (except bit 5) are set, VARTST makes B equal 1 for true. Since B must
be 0 for a No Condition code, if Bis not 0, the routine prints an error
message before exiting.

@ 6-33 GETSTA

TEK SPS BASIC V02 System Software

Examples:

710 GIFES @N+1,A(J)
120 GIFES @2,ES

Syntax Form:

GIFES (Nonresident)

[line no.] GlfES @expression,variable

Descriptive Form:

[line no.] GlfES @IEEE 488 interface number,target variable

Purpose:

To get the error status of the specified interface.

Discussion:

GIFES (Get InterFace Error Status) acquires the error status for the
specified IEEE 488 interface and returns it in the target variable. This
error is for the interface itself and not for the bus-connected devices.
[GIFES reads bits 12, 13, and 14 of the Interface Status Register (ISR).]

After GIFES executes, the variable holds one of the following error
status codes:

U NO ERROR
1 DMA error (The Bus Address Register (BAR) used by the

interface for DMA operations has overflowed, or the interface
has attempted to reference nonexistent memory.)

2 WRITE error (No listener was enabled on the bus.)
3 DMA and WRITE errors
4 WRITE TIMING error (A hardware timing error has occurred.)
5 DMA and WRITE TIMING errors

GIFES 6-34

TEK SPS BASIC V02 System Software

6 WRITE and WRITE TIMING errors
1 DMA, WRITE, and WRITE TIMING errors

The three types of errors indicated by the code are the errors that
can cause execution of a user-written error-handling subroutine if an ERR
WHEN has been set up. If an ERR WHEN has not been executed, these errors
are handled as fatal errors.

When an error occurs, the error status is stored in the Interface
driver. The errors are not stacked since there is room for only one error
status value for each interface. The latest error overwrites any previous
error code. Executing the GIFES command clears the error status of the
specified interface. A subsequent GIFES statement specifying the same
interface number will return a zero or any new error that may have occurred.

Using the Command Syntax:

The expression following the at sign (@) is the number of the IEEE
488 interface being accessed.

The variable specifies where the error status of the interface is to
be stored.

Bus Traffic: None.

Application Example:

This example prints one or more error messages when an interface error
occurs for interface number N.

H10 WHEN @N HAS "ERR" AT 126 AS TASK 5 GOSUB 900

9(10 GIFES @N,E
910 GOTO E OF 920,930,920,930,920,930,920
920 PRINT "DMA ERROR"
930 GOTO E OF 950,940,940,950,950,940,940
940 PRINT "WRITE ERROR"

6-35 GIFES

TEK SPS BASIC V02 System Software

950 GOTO E OF 970,970,970,960,960,960,960
960 PRINT "WRITE TIMING ERROR"
970 RETURN

First, line 100 sets up a WHEN condition that allows an interrupt on
an interface error. (Remember that the error routine should have a different
task number than the data transfer routine.) If an error occurs, the program
jumps to the high priority task at line 900. There a GIFES statement returns
the error code in E. Then three computed GOTO statements decode E so that
the appropriate error messages are printed. Since line 900 should only be
executed if there is an error, E should never equal zero.

GIFES 6-36

TEK SPS BASIC V02 System Software

IFDTM (Nonresident)

Examples:

170 IFDTM @1, "UNP"
250 IFDTM @N,"PAK","HOG","LBF"

Syntax Form:

[line no. J IfDTM @expression,string expression[,string expression] •••

Descriptive Form:

[line no.] IfDTM @IEEE 488 interface number, specification of mode of data transfer
[,specification of mode of data transfer]

Purpose:

To set the data transfer mode of the specified interface.

Discussion:

IFDTM (InterFace Data Transfer Mode) specifies the mode of data
transfer to be used by the IEEE 488 interface during the execution of a
PUT, GET, or READBINARY command. This applies to numeric data only.

The legal strings are "PAK" or "UNP", "HOG" or "UNH", and "LBF" or
"HBF" where:

6-37 IFDTM

TEK SPS BASIC V02 System Software

String:

PAK

URP

HOG

Meaning:

Packed: Data is transferred as
16-bit, 2's complement numbers.
Two 8-bit bytes are transferred
for each value.

Unpacked: Data is transferred
as an unsigned 8-bit byte.

Monopolize: Processor is held
up while DMA "hogs" the bus to
complete data transfer (fastest
DMA).

URH Unhog: Data transfer is
completed during the inactive
periods between processor cycles
(cycle-stealing)

LBF

HBF

Low byte first: the least
significant 8 bits of a 16-bit
value are transferred first.

High byte first: the most
significant 8 bits of a 16-bit
value are transferred first.

Comments:

"HBF" or "LBF" determines which
byte is the most significant.

"HBF" or "LBF" has no effect.

For the CP4100/IEEE 488 inter
face, hog mode is really "burst"
mode to allow the processor to
refresh volatile memory.

Used only in Packed mode
data transfers. These specify
which of the two bytes
transferred is the most
significant.

Upon loading the driver, the default values are: UNP, UNB, HBF.

IFDTM 6-38

TEK SPS BASIC V02 System Software

Using the Colllllland Syntax:

The expression following the at sign (@) is the number of the IEEE
488 interface whose data transfer mode will be set.

The list of string expressions specify the data transfer mode. Since
the legal strings are mutually exclusive pairs, a IFDTM statement should
include, at most, only one of each pair.

Bus Traffic: None

6-39 IFDTM

TEK SPS BASIC V02 System Software

POLL (Nonresident)

Examples:

770 POLL @2,SB,PA,SA;64,96;64,97;64,98
530 POLL @N,X,Y,Z
48G POLL @3,SB,PA,SA;64;65;66
610 POLL @2

Syntax Form:

[l .] POLL@ · . bl . bl . bl [!array expression j] ine no._ expression,varia e,varia e,varia e ; . [.] •••
expression ,expression

Descriptive Form:

[line no.) POLL @IEEE 488 interface number, target variable for status byte,
target variable for primary address, target variable for secondary address

[i tel k and seconder y address pairs I J
;jtalk address[,secondary address] •••

Purpose:

To perform a serial poll of the bus-connected devices through the
specified interface.

Discussion:

POLL solicits information from bus-connected devices by performing a
serial poll on the bus. Polling stops with the first device to affirm a
service request (SRQ).

The POLL command assumes that an instrument reports an SRQ by setting
bit 7 or the status byte. When POLL detects that an instrument is asserting
SRQ, it re-enables the SRQ interrupt. (An SRQ interrupt for an interface
is enabled by executing an SRQ WHEN statement.)

POLL 6-40

TEK SPS BASIC V~2 System Software

If a list of primary or primary and secondary addresses is specified
in the command statement, only those addresses are sequentially polled.
If a list is not specified, the command sequentially polls all addresses
on the bus until a device responds with an affirmative request for service.
This is the simplest way to specify the command, but it is very inefficient.
If no device responds, the command could serially poll all 961 possible
addresses (31 possible primary talk addresses times 31 possible secondary
addresses). The default time-out value for addresses that do not respond
is 5 milliseconds. (The time-out value can be changed with the SIFTO
command.)

The status byte and the primary and secondary talk addresses of the
first device to respond to the poll with an affirmative request for service
(SRQ) are returned in the designated variables. When no instruments or
devices respond with an affirmative request for service, the values returned
for the status byte and the primary and secondary addresses are zero.

Using the Command Syntax:

The expression following the at sign (@) is the number of the IEEE
488 interface to be polled.

The status byte of the first device to respond to the poll with an
affirmative request for service (SRQ) is returned in the first variable.

The primary talk address of the responding bus-connected device is
returned in the second variable. The secondary address of the responding
bus-connected device is returned in the third variable.

The optional list of expressions represents a sequence of primary
talk addresses (and secondary addresses if required) for the devices to
be polled. The list elements, which may be either array expressions or
numeric expressions, are separated by semicolons(;). When a list is
supplied, only those addresses are POLLed. If the list is omitted, all
possible addresses on the bus may be POLLed.

If an array expression is specified, the resultant array must contain
an even number of elements. These elements must be pairs of addresses; a
primary talk address followed by a secondary address. If a negative number
is specified for a primary address in an array, the address pair is skipped
over and the next address pair is used in the poll. If a negative number
is specified for a secondary address, only the primary address is used.

6-41 POLL

TEK SPS BASIC V02 System Software

If numeric expressions are used, a comma separates the primary talk
address from the optional secondary address. When numeric expressions are
used, negative numbers are illegal.

Expressions for primary talk addresses must evaluate to numbers between
64 and 94, while secondary addresses must be between 96 and 126. An exception
to this is when the address is specified in an array expression and a
negative value is given to cause POLL to ignore (skip over) either the
address pair or the secondary address, as explained above.

Bus Traffic:

ATN
ATN
ATN
ATN

[ATN

ATN
[ATN

ATN
[ATN

ATN
ATN

UNT
UNL
SPE
talk address
secondary address]

talk address
secondary address]

talk address
secondary address]
<status byte>
UNT
SPD

Controller untalks and unlistens
all devices on the bus. Then it
enables a serial poll.
First address (pair) Time-out wait
if device does not respond.

Next address (pair).
If no response,
time-out wait and continue
until a device responds with
a status byte indicating SRQ.
Address (pair) of first
instrument that responds. Status
byte from responding instrument.
Controller untalks and then
disables serial poll.

Talk addresses (and secondary addresses) are sent from the list
specified in the command, or in sequential order if no list is given.
Addresses continue to be sent until a device responds with a status byte
that indicates it asserted SRQ or the list is exhausted.

POLL 6-42

TEK SPS BASIC V02 System Software

Application Example:

The best way to explain how to use the POLL command is to give a
specific example. Our example system contains four TEKTRONIX 7912AD
Programmable Digitizers, a programmable signal generator, and a programmable
power supply. Each 7912AD has two plug-ins: a TEKTRONIX 7A16P Programmable
Amplifier and a TEKTRONIX 7B90P Programmable Time Base. We have configured
the system so that the four 7912ADs have primary talk addresses of 64,65,66,
and 67. Each 7912AD mainframe has its plug-ins set to the mainframe primary
talk address. To distinguish the mainframe and plug-ins, the required
secondary addresses are set to 96 for the mainframes, 97 for the amplifiers,
and 98 for the time bases. The signal generator and the power supply have
primary talk addresses 68 and 69, respectively, and need no secondary
addresses. Given such a system, this routine shows how you might conduct
a serial poll, and use the information returned by POLL:

200 Q=3
210 DIM AD$(2),MF(Q,1),AM(Q,1),TB(Q,1)
220 REM FILL MESSAGE ARRAY
230 AD$(0)="MAINFRAME"
240 AD$(1)="AMPLIFIER"
250 AD$(2)="TIME BASE"
260 REM FILL ADDRESS ARRAYS
270 FOR I=C1 TO Q
280 MF(I,0)=I+64
290 AM(I,0)=I+64
3C10 TV(I,0)=I+64
310 NEXT I
320 MF(0:Q,1)=96
330 AM(0:Q,1)=97
340 TB(C1:Q,1)=98
350 DELETE 200,340
360 WHEN @N HAS "SRQ" AT 126 GOSUB 1C11CJ

1000 REM POLL ROUTINE
1010 POLL @N,SB,PA,SC;MF;AM;TB;68;69
1020 REM CHECK FOR SRQ
1030 IF SB<>C1 THEN 1060\REM SRQ TRUE
104@ PRINT "SRQ DETECTED BUT NO RESPONSE TO POLL"
1050 GOTO 1100\REM RETURN

6-43 POLL

TEK SPS BASIC V02 System Software

1060 PRINT "SRQ ON INTERFACE ";N;" FROM";
1070 REM DETERMINE DEVICE TYPE
1080 REM AND DECODE STATUS BYTE
1090 GOSUB PA-63 OF 2000,2000,2000,2000,3000,4000
1100 RETURN

2000 PRINT "7912AD #";PA-63,AD$(SC-96)
2010 REM DECODE STATUS BYTE FOR
2020 REM 7912AD MAINFRAME, AMPLIFIER, OR TIME BASE
2030 GOSUB SC-95 OF 2100,2400,2700
2040 RETURN

3000 PRINT "SIGNAL GENERATOR"
3010 REM DECODE STATUS BYTE

3500 RETURN

4000 PRINT "POWER SUPPLY"
4010 REM DECODE STATUS BYTE

4500 RETURN

Early in the program, lines 230 to 250 fill a message array (AD$).
Then, to allow us to use arrays in the list of addresses in the POLL
statement, lines 270 through 340 fill three arrays: one for the mainframe
address pairs (FM), one for amplifier address pairs (AM), and one for time
base address pairs (TB). You can picture the three arrays like this:

POLL 6-44

TEK SPS BASIC V02 System Software

Mainframe Amplitude Time Base
address array address array address array

primary secondary primary secondary primary secondary
64 96 64 97 64 98
65 96 65 97 65 98
66 96 66 97 66 98
67 96 67 97 67 98

Three separate arrays are set up for clarity. Also by changing the value
of Q, you could fill the arrays for a system with a different number of
7912ADs.

After these lines execute, they are deleted (but not the array they
fill) since the code is no longer needed. Then the "SRQ" WHEN is set up
on line 360 with a priority of 126. After line 360 executes, when a bus
connected device asserts SRQ, the program control transfers to the serial
poll subroutine.

The routine starts in line 1010 with a POLL statement. The POLL
specifies that only the addresses in the three arrays plus the addresses
of the two additional devices are to be polled. Line 1030 checks for a
possible error (such as noise on the bus). Then, because we configured our
system so simply, we can use a computed GOSUB (line 1090) to determine
which routine to use to process the status byte (SB) returned by POLL. If
POLL returns a primary address (PA) of 64 through 67, the program goes to
the 7912AD routine (line 2000). A primary address of 68 sends it to line
3000 which decodes the status byte of the signal generator, while a 69
passes control to line 4000 which decodes the status byte of the power
supply.

In the 7912AD routine, we use the secondary address returned by POLL
(SC) in a second computed GOSUB. Line 2030 transfers control to the
appropriate subroutine to decode the status byte of a mainframe, amplitude,
or time base. (An example of how you might decode the status byte of the
mainframe is shown with the GETSTA command.)

6-45 POLL

TEK SPS BASIC V02 System Software

PPOLL (Nonresident)

Examples:

910 PPOLL @J,X(J)
79<1 PPOLL @fJ,A

Syntax Form:

[line no.] PPOLL @expression,variable

Descriptive Form:

[line no.] PPOLL @IEEE 488 interface number, target variable

Purpose:

To perform a parallel poll on the specified interface bus.

Discussion:

PPOLL (Parallel POLL) performs a parallel poll on the bus and returns
in the designated variable a status-descriptive information code that is
read from the data lines.

PPOLL

NOTE

The devices on the IEEE 488 bus
must have been previously configured
to respond to the PPOLL command. This
can be done with the SIFCOM command.

6-46

TEK SPS BASIC V~2 System Software

Using the Command Syntax:

The expression following the at sign (@) is the number of the IEEE
488 interface through which to perform the parallel poll. The variable is
used to store the information returned from the parallel poll.

Bus Traffic:

ATN EOI ATN and EOI sent by controller to
solicit parallel poll.

<data byte> The data byte sent is a composite
of one bit of status from each device
with an SRQ that has been set-up to
respond to a parallel poll.

6-47 PPOLL

TEK SPS BASIC V~2 System Software

RASCII (Nonresident)

Examples:

150 RASCII A$ FROM @N,TA,SA
880 RASCII X,Y FROM @0,65
570 RASCII X,A$ FROM @1

Synta:x: Form:

[line no. J RASCH 1:::~~le I[' 1:::~;ble I] ...
string variable string variable)

FROM @expression[,expression[,expression]]

Descriptive Form:

[line no.] RASCII 1:::~:: :::~;ble I[,,:::~:: :;:~;ble IJ ...
target string variable target string variable

FROM @IEEE 488 interface number[,talk address[,secondary address]]

Purpose:

To read ASCII data from a bus-connected device and store it in the
specified variables.

Discussion:

RASCII (Read ASCII) reads ASCII data from a bus-connected device into
numeric variables, arrays, or string variables.

When a numeric variable is specified, RASCII ignores characters until
it receives a legal numeric string character. (Legal characters include
the plus sign(+), the minus sign(-), a decimal point(.), the letter E,
and the numbers~ through 9.) RASCII retains this numeric string character
and continues reading characters into the numeric string until a nonnumeric
character or an EOI is received. This la~t character is not retained. The

RA SC II 6-48 @

TEK SPS BASIC V02 System Software

numeric string is then converted to either a floating-point or an integer
number depending on the type of the variable in which it is stored. RASCII
uses the same routine as the INPUT command to convert a numeric string to
a number.

When a string variable is specified, RASCII reads characters into the
string variable until an EOI or the termination character string is received.
The termination character(s) are not stored in the string. (To set the
termination string use the STERMC command.)

The bus traffic depends on whether the RASCII statement specifies a
talker or not. If the talk address is specified, RASCII untalks and unlistens
all devices on the bus and enables the interface to listen without ATN
asserted. It then sends the primary talk address and the optional secondary
address with ATN asserted, making the specified device a talker. Then,
after receiving the last byte of data, RASCII untalks and unlistens all
devices on the bus and disables the interface to listen without ATN asserted.
Finally, NRFD is unasserted.

If no talk address is specified, no interface messages are sent before
or after the data transfer. The IEEE 488 bus is left in the same state
that it was in before the execution of RASCII with the exception that NRFD
is left asserted. This means that it is the user's responsibility to enable
the interface to listen, to set up a talker before RASCII executes, and
to leave the bus in an acceptable state. (See RBYTE for an example of how
this can be done using SIFLIN and SIFCOM statements.)

The default time-out value for a device that does not respond is 5

milliseconds. The time-out value can be changed by the SIFTO command.

Using the Command Syntax:

The list of arguments preceding the keyword FROM specifies how the
data is read and stored. If a numeric variable is specified, a numeric
string is read according to the algorithm discussed above. The reading of
the numeric string terminates with an EOI or a nonnumeric character. This
string is then converted to a number and stored in the specified variable.
If an array is specified, a numeric string is read, converted and stored
for each array element according to the algorithm for a variable. If a
string variable is specified, ASCII characters are read and stored in the
string variable until terminated by an EOI or the termination string.

@ 6-49 RA SC II

TEK SPS BASIC V~2 System Software

The expression following the at sign (@) is the number of the IEEE
488 interface through which the ASCII data is read.

The optional expressions following the interface number are the talk
addresses of the device sending the data. The first expression is the
primary talk address, which must evaluate to a number between 64 and 94.
The optional second expression is the secondary address, which must evaluate
to a number between 96 and 126.

Bus Traffic:

[
ATN UNT l
ATN UNL
ATN talk address
[ATN secondary address]

<first ASCII data byte>

<last ASCII data byte>

EOI or other terminator

[ATN UNTJ
ATN UNL

RA SC II 6-50

If optional talk address is specified,
the controller untalks and unlistens a:
devices on the bus and sends the talk
address and the optional secondary
address.

Data bytes sent from talker.

Data terminated by EOI or other termin<

If optional talk address is specified,
the controller untalks and unlistens
all devices on the bus.

TEK SPS BASIC V02 System Software

Examples:

440 RBYTE @1,X
710 RBYTE @N,A(3)

Syntax Form:

RBYTE

(line no.] RBYTE@expression,variable

Descriptive Form:

[line no.] RBYTE @IEEE 488 interface number, target variable

Purpose:

To read a single byte of data through an IEEE 488 Interface into a
variable.

Discussion:

RBYTE (Read BYTE) reads a single byte of data from the IEEE 488
interface and stores it in a numeric variable. If the talker does not send
a byte of data within the time allowed by the time-out value, an error
message is generated. (The driver has a default time-out of 5 milliseconds.
This time-out value can be changed with the SIFTO command.)

After RBYTE executes, NRFD is left asserted.

Note that before the RBYTE command can actually acquire data, a bus
connected instrument must be waiting to talk. In addition, the specified
IEEE 488 interface in the controller must be told to listen with the SIFLIN
command.

6-51 RBYTE

TEK SPS BASIC V02 System Software

Using the Command Syntax:

The expression following the at sign (@) is the number of the IEEE
488 interface through which the data is read. The byte of data is stored
in the specified variable.

Bus Traffic:

<data byte>

Application Example:

Data byte from device previously
addressed to talk.

This routine acquires ten bytes of data from a bus-connected instrument
through an IEEE 488 interface into an integer array. It uses RBYTE in a
FOR/NEXT loop to read and store the data one byte at a time.

100 INTEGER B(9)
110 SIFCOM @N, "UNT", "UNL"
120 SIFLIN @N,"LENB"
130 SIFCOM @N,TA,SA
140 FOR I:a TO 9
150 RBYTE @N,B(I)
160 NEXT I
170 SIFLIN @N, 11 ATNT 11 ,"NRFDF","LDIS 11

180 SIFCOM @N,"UNT"

Line 110 untalks and unlistens all the devices on the bus. Then line
120 enables interface number N to listen without ATN asserted. Next the
SIFCOM in line 130 makes the instrument a talker by sending it its primary
talk address (TA) and its secondary address (SA) with ATN asserted. When
line 130 is finished and ATN is unasserted, the instrument, as talker,
starts transferring data, a byte at a time. Lines 140 through 160 read the
ten bytes of data into the array elements. Then line 170 asserts ATN,
unasserts NRFD (since RBYTE leaves NRFD asserted), and disables the interface
for listen without ATN asserted. ATN is asserted first in line 170 to
prevent the talker from asserting DAV after NRFD is unasserted. Finally,
line 180 untalks the instrument.

RBYTE 6-52 @

TEK SPS BASIC V02 System Software

READBINARY (Nonresident)

Examples:

190 READBINARY X,Y FROM @0,66,96
740 READBI M FROM @I
565 READBINARY A FROM @N,TA(J)

Syntax Form:

[line no.] READBI {simple numeric variable} [,{simple numeric variable}] .••
array array
FROM @expression[,expression[,expression]]

Descriptive Form:

[line no.] READBINARY target for binary block [,target for binary block] ..•
FROM @! IEEE 488 interface number

[,talk address [,secondary address]]

Purpose:

To acquire an array of data sent in binary block format from a Tektronix
instrument.

Discussion:

READBINARY makes it very easy to read an array from a Tektronix
instrument which transmits array data as a binary block, such as a 7912AD
Programmable Digitizer. A binary block, as defined the Tektronix Codes and
Formats Standard, consists of:

1. A percent sign(%).

2. A byte count. This is a two-byte binary integer which specifies
the number of data bytes being transmitted including the checksum byte.
The byte count is sent most significant byte first.

@ 6-53 READBINARY

TEK SPS BASIC V02 System Software

3. Zero or more data bytes.

4. A checksum byte.

READBINARY reads the entire binary block and any following delimiter,
such as a comma or a semicolon, and stores just the binary block data in
the specified predimensioned array or auto-dimensioned array. If the target
array is contiguous, the data is stored using DMA (direct memory access).
(In TEK SPS BASIC, all one-dimensional arrays, including autodimensioned
arrays, are contiguous. A non-contiguous array can be formed only by
specifying an array zone of a two-dimensional array in which the first
subscript is zoned, e.g., A(a:511,2).)

The mode of the data transfer should be set by executing an IFDTM
statement prior to executing READBINARY. The data transfer mode determines
1) if the data will be read as two bytes per element (packed) or as one
byte per element (unpacked), 2) if packed data is interpreted as high byte
first or low byte first, and 3) if a DMA transfer monopolizes the processor
bus or not (hog or unhog).

The interaction between the data transfer mode set by the IFDTM command
and the type of variables specified in the READBINARY command is shown
below.

Type Mode

integer array: UNP:

PAK HBF:

PAK LBF:

UNH:

READBINARY

Action

One byte is read from the bus and stored
for each array element.

Two bytes are read from the bus and stored
for each array element. The value stored is
equal to the first byte times 256, plus the
second byte.

Two bytes are read from the bus and stored
for each array element. The value stored is
equal to the second byte times 256, plus
the first byte.

If the array is contiguous, transfer is
via normal Direct Memory Access (DMA) protoco:

6-54

simple numeric
variable:

floating-point
array:

TEK SPS BASIC V~2 System Software

HOG:

UNP

PAK HBF:
or
PAK LBF:

UNH:
or
HOG:

UNP:

PAK HBF:

PAK LBF:

UNH:

HOG:

If the array is contiguous, a DMA transfer
is accomplished with the interface having
exclusive access to the controller bus.
No intervention is allowed. (For the
CP4100/IEEE 488 interface, hog mode is really
"burst" mode to allow the processor to refresh
the volatile memory.)

Same as for an integer array except the variable
is first autodimensioned to an integer
array whose size equals the number of data
bytes in the binary block.

Same as for an integer array except the variable
is first autodimensioned to an array
whose size equals half the number of data
bytes in the binary block.

Same as for an integer array.

Same as for an integer array.

One byte is read from the bus and its
floating-point representation is stored for
each element of the array.

Two bytes are read from the bus and stored
for each array element. The value stored is
the floating-point representation of the
first byte times 256, plus the second byte.

Two bytes are read from the bus and stored
for each array element. The value stored is
the floating-point representation of the
second byte times 256, plus the first byte.

Same as for an integer array.

Same as for an integer array.

The bus traffic depends on whether the READBINARY statement specifies
a talker or not. If the talk address is specified, READBINARY untalks and

6-55 READBINARY

TEK SPS BASIC V~2 System Software

unlistens all devices on the bus and enables the interface to listen without
ATN asserted. It then sends the primary talk address and the optional
secondary address with ATN asserted, making the specified device a talker.
Then, after receiving the last byte of data, READBINARY untalks and unlistens
all devices on the bus and disables the interface to listen without ATN
asserted. Finally, NRFD is unasserted.

If no talk address is specified, no interface messages are sent before
or after the data transfer. The IEEE 488 bus is left in the same state
that it was in before the execution of READBINARY with the exception that
NRFD is left asserted. This means that it is the user's responsibility to
enable the interface to listen, to set up a talker before READBINARY
executes, and to leave the bus in an acceptable state. (See RBYTE for an
example of how this can be done using SIFLIN and SIFCOM statements.)

The default time-out value for a device that does not respond is 5
milliseconds. The time-out value can be changed by the SIFTO command.

Using the Command Syntax:

The list of arguments preceding the keyword FROM specifies the number
of binary blocks to be read and where the data is to be stored. One binary
block is read for each argument in the list. Each argument receives all
the array data in one binary block transmission, i.e., all the data between
the byte count and the checksum.

If an argument is a simple numeric variable, it is autodimensioned
to an integer array whose size is determined by the byte count and by the
data transfer mode (packed or unpacked). If the mode is packed, two bytes
are read for each array element, so the array size is half the byte count,
minus 1. (The byte count includes the checksum byte.) If the mode is
unpacked, one byte is read for each array element, so the array size is 1
less than the byte count.

If the argument is an array, the data is read directly into the array
until either the array is full or the last data value in the binary block
is sent. When the array size does not match the amount of the data sent,
a warning I19 error is issued. If the array is filled before the last value
is sent, the remaining data in the binary block is read and discarded.

For example, the sequence of statements:

DELETE X,Y
READBINARY X,Y FROM @N,TA,SA

READ BINARY 6-56

TEK SPS BASIC V02 System Software

reads one binary block into autodimensioned array X and another binary
block into autodimensioned array Y. However, if an attempt is made to read
the two binary blocks into three dimensioned arrays, A, B, and C, by a
statement like:

READBINARY A,B,C FROM @N,TA,SA

An I19 error would be issued and array C would not receive any new data.
Also, if the size of A is too small to hold all the data from the first
binary block, the data that does not fit into A is read and discarded. It
is not read into B. The data from the second binary block is read into B.
If the size of B does not match the amount of data sent, another I19 error
is issued.

When the binary block is empty, i.e., no data is sent between the
byte count and the checksum, a warning I21 error is issued. This can occur,
for instance, when the main intensity control of the 7912AD is set too low
to allow any values to be stored into the verticals array. If the target
is a simple numeric variable, it is not autodimensioned to an array; if
the target is an array, its data is not changed.

The expression following the at sign (@) is the number of the IEEE
488 interface through which the data is read.

The optional expressions following the interface number are the talk
addresses of the device sending the data. The first expression is the
primary talk address, which must evaluate to a number between 64 and 94.
The optional second expression is the secondary address, which must evaluate
to a number between 96 and 126.

Bus Traffic:

[llN~T]
ATN UNL
ATN talk address
[ATN secondary address]

<first data byte>

EOI<last data byte>

@

If optional talk address is specified,
the controller untalks and unlistens all
devices on the bus and sends the talk
address and the optional secondary
address.

Data bytes sent from talker, starting
with a% and the byte count.

Data terminated by EOI or other terminator.

6-57 READBINARY

TEK SPS BASIC V02 System Software

[ATN UNT J
ATN UNL

If optional talk address is specified,
the controller untalks and unlistens
all devices on the bus.

Application Example:

By using the READBINARY command, you can readily acquire the pointers
array and the verticals array from a TEKTRONIX 7912AD Programmable Digitizer.
For example, if the primary listen, primary talk, and secondary address
of a 7912AD are LA, TA, and SA and the interface number is N, this routine
reads that data into two autodimensioned arrays PT and VT.

11<1 PUT "DIG DAT;READ PTR,VER" INTO @N,LA,SA
12<1 IFDTM @N,"PAK","HBF"
13<1 DELETE PT,VT
14<1 READBINARY PT,VT FROM @N,TA,SA

Line 11<1 tells the 7912AD to digitize the input signal and to prepare
to send the pointers and verticals arrays. Then line 12<1 sets the data
transfer mode to packed and high byte first. Next, line 13<1 DELETEs the
targets PT and VT to make sure they are not already arrays. Finally, line
14<1 stores the pointers array in autodimensioned integer array PT and the
verticals array in autodimensioned integer array VT.

READBINARY 6-58

TEK SPS BASIC V02 System Software

Examples:

150 SIFCOM @1,"DCL"
740 SIFCOM @N,X

SIFCOH (Nonresident)

230 SIFCOM @0,PA,SA,C$

Syntax Form:

[line no.] SlfCOM @ex press ion,\ ::~~~s:~:essi~n I [,\ ::~~~s:~;~essi~n I] ...
I str Ing ex press Ion I str Ing ex press Ion j

Descriptive Form:

[line no.] SIFCOM@IEEE 488 interface number, source array expression l source ex press ion I
interface command specification

[l source ex press ion I]
, source array expression

interface command specification

Purpose:

To send IEEE 488 addressed and universal commands to bus-connected
devices.

Discussion:

SIFCOM (Send InterFace COMmand) can send universal commands, addressed
commands, and device addresses over the bus. The command or address is
sent over the data lines while ATN is asserted. ATN is unasserted at the
conclusion of SIFCOM.

The default time-out value for a device that does not respond is 5
milliseconds. This time-out value can be changed by the SIFTO command.

6-59 SIFCOM

TEK SPS BASIC V~2 System Software

The IEEE 488 commands that can be sent by SIFCOM are:

Co111Dand Meaning Comment

UNL ONListen Disables listen mode of
all previous listeners.

ONT ONTalk Disables talk mode of
previous talker.

Universal Commands

LLO Local Lockout
DCL
PPU
SPE
SPD

GTL
SDC
GET
PPC

TCT

Device CLear
Parallel Poll Unconfigure
Serial Poll Enable
Serial Poll Disable

Universal commands affect
all instruments on the
bus.

Addressed Commands

Go To Local
Selective Device Clear
Group Execute Trigger
Parallel Poll Configure

Take ConTrol

Sent to device(s) addressed
to listen.

(PPC requires secondary
command to Parallel Poll Enable.)

Sent to a device addressed to
talk to make that device the
controller-in-charge. (However,
most of the driver commands requir1
that the Interface driver remain ti
Controller-in-charge.)

ONL, ONT, and the universal commands do not require that an address
be sent with the command. For example, to untalk and unlisten all devices
on interface number N and set them to local lockout use:

SIFCOM @N,"ONT","ONL","LLO"

SIFCOM 6-60

TEK SPS BASIC V~2 System Software

The addressed commands require that the device(s) be specified by
address. For example, where LA is the primary listen address and SA is the
secondary address of a device, the statement:

SIFCOM @N,LA,SA,"GTL"

sends GTL to the addressed device.

Using the Command Syntax:

The expression following the at sign (@) is the number of the interface
being accessed.

The commands and addresses to be sent are specified by the list of
expressions following the interface number. If a string expression is used,
it must evaluate to one of the twelve IEEE 488 commands discussed earlier.
If a numeric expression is used, it is evaluated and its integer part
(modulo 256) is sent. If an array expression is used, the integer part
(modulo 256) of each element is sent. Since ATN is asserted by SIFCOM,
sending a talk address sets up an external talker, while sending a listen
address sets up an external listener.

Bus Trafric

ATN <data byte>

ATN <data byte>

Application Example:

Controller sends commands or
addresses as specified.

SIFCOM can be used to set up an external data transfer between two
devices. In this example TA is the primary talk address of one device while
LA is the primary listen address of another device. N is the interface
number. Assuming that the talker asserts EOI with the last byte of data
sent, this routine can be used.

@ 6-61 SIFCOM

TEK SPS BASIC V02 System Software

100 SIFCOM @N,"UNT","UNL"
110 FL:(1
120 WHEN @N HAS "EOI" GOSUB 200
130 SIFCOM @N,TA,LA
140 IF FL:(1 THEN 140
150 PRINT "TRANSFER COMPLETE"
160 RETURN
200 IGNORE @N,"EOI"
210 FL=1
220 RETURN

First, line 100 untalks and unlistens all devices on the bus. Then a
flag (FL) is set to 0 and line 120 sets up a transfer to a subroutine when
an EOI is sent. Next, the SIFCOM in line 130 sends the talk and listen
addresses to make one device a talker and one a listener. While the data
transfer takes place, the program waits in an infinite loop at line 140.
When EOI is sent, the program jumps to the subroutine at line 200 which
cancels the WHEN and sets FL to 1. On returning to line 140, since FL is
no longer 0, the message is printed and the routine terminates.

SIFCOM 6-62

TEK SPS BASIC V92 System Software

SIFLIN (Nonresident)

Examples:

55!1 SIFLIN @4,"IFC"
140 SIFLIN @N,A$,B$

Syntax Form:

[line no.] SIFLIN @expression,string expression[,string expression] •••

Descriptive Form:

[line no.) SIFLIN @IEEE 488 interface number,

Discussion:

specification of how interface line is to be set
[,specification of how interface line is to be set]

To control the IEEE 488 interface lines.

Discussion:

SIFLIN (Set InterFace LINes) lets the specified interface assert or
unassert a control line. It can also enable or disable the interface to
listen without ATN. [SIFLIN sets or clears the appropriate bit of the Bus
Control Register (BCR) in the IEEE 488 interface.]

SIFLIN allows you to control the interface at a very low level. Most
of the interface driver commands take care of the control lines for you.
An exception is the RBYTE command which does not listen enable the interface
or listen disable the interface when done. You must use SIFLIN with "LENB"
or "LDIS" to do either of these when using RBYTE. (See the RBYTE discussion
for an example.) The rest of the legal strings are included for those who
want to write their own driver in BASIC.

@ 6-63 SIFLIN

TEK SPS BASIC V02 System Software

Using the CoJDJDand Syntax:

The expression following the at sign (@) is the number of the IEEE
488 interface that is to be set.

The string expression specifies the action to be taken. It must
evaluate to one of the legal string mnemonics listed below. The string
that sets an IEEE 488 management or control line (except IFC) is the
mnemonic for the line plus a "T" for True (asserted) or an "F" for False
(unasserted) .

Mnemonic

IFC
RENT
EOIT
ATNT
SRQT
DAVT
NDACT
NRFDT
LENB
LDIS

Bus Traffic:

RENF
EOIF
ATNF
SRQF
DAVF
ND ACF
NRFDF

Meaning

Interface Clear
Remote Enable (True or False)
End Or Identify (True or False)
Attention (True or False)
Service Request (True or False)
Data Valid (True or False)
Not Data Accepted (True or False)
Not Ready for Data (True or False)
Listen without ATN Enable
Listen without ATN Disable

This depends on the results of the string expression(s):

IFC

RENT
EOIT
ATNT
SRQT
DAVT
ND ACT
NRFDT

LENB
LDIS

SIFLIN

RENF
EOIF
ATNF
SRQF
DAVF
NDACF
NRFDF

One-shot pulse which lasts approximately
150 microseconds

The selected IEEE 488 interface line is
set true (asserted) or false (unasserted).

No traffic

6-64

TEK SPS BASIC V~2 System Software

Application Example:

Fatal errors can leave the low-level IEEE 488 Interface driver (GPI.SPS)
in an unknown state in which it may or may not be able to accept subsequent
communication. As a result, more errors (usually I18 errors) can be generated
during later processing. To avoid this the SIFLIN command can be used to
clear the interface after a fatal error. Also, the device being communicated
with when the error occurred should be reset. For example:

SIFLIN @N , 11 IFC"
SIFCOM @N,LA,SA, 11 SDC"

clears interface number N and sends a Selective Device Clear to the specified
device, where LA and SA are the primary listen address and the secondary
address of the last device communicated with.

@ 6-65 SIFLIN

TEK SPS BASIC V~2 System Software

Examples:

88a SIFTO @N,TX
15a SIFTO @1,-1

Syntax Form:

SIFTO

[line no.] SIFTD@expression,expression

Descriptive Form:

[line no.] SIFTD @IEEE 488 interface number, time-out value in milliseconds

Purpose:

To set the interface time-out value.

Discussion:

SIFTO (Set InterFace Time-Out) specifies the amount of time in
milliseconds that the driver should wait for a response before "timing
out". The interface may time out if no listener responds with the handshake
when the interface is attempting to write to the bus, or if no device is
attempting to talk on the bus when the controller is a listener. The
time-out value (default of 5 milliseconds) is used by GET, PUT, READBINARY,
RBYTE, WBYTE, RASCII, WASCII, GETSTA, POLL, and SIFCOM.

SIFTO 6-66

TEK SPS BASIC V02 System Software

NOTE

The interface driver was not designed
to provide precise timing with the
time-out value. It does, however, take
into account the timing characteristics
of a Digital Equipment Corp. 11/05,
11/20, 11/34, 11/35, or 11/45 processor
with core memeory and a CP4165 (or
other DEC LSI-11 based controller) with
semiconductor memory.

Using the Command Syntax:

The expression following the at sign (@) is the number of the IEEE
488 interface which is assigned the time-out value. The second expression
specifies the time-out value in milliseconds. The driver default time is
5 milliseconds. Specifying -1 indicates that the driver should wait
indefinitely.

Bus Traffic: NONE

@ 6-67 SIFTO

TEK SPS BASIC V02 System Software

STERMC (Nonresident)

Examples:

700 STERMC @N,".J"
190 STERMC @1,CHR(13)&CHR(10)
340 STERMC @0,A$

Syntax Form:

[line no.] STERMC @expression,string expression

Descriptive Form:

[line no.] STERMC @IEEE 488 interface number, specification of termination character(s)

Purpose:

To designate the termination character(s) for ASCII data which is
read into a string variable by GET or RASCII from the IEEE 488 interface.

Discussion:

STERMC (Set TERMination Characters) specifies the character(s) to be
recognized as the termination string for ASCII data received if the
termination string appears prior to an EOI. It only applies to data input
from the IEEE 488 interface by a GET or RASCII command and stored in a
string variable. This allows the user to break ASCII data into logical
segments. For example, a carriage return and/or line feed may be specified
to assign one "sentence" to each string variable.

The terminating character(s) are not stored in the string variable
by the GET or RASCII commands. Also, the STERMC command does not affect
data transfers into numeric variables or arrays.

STERMC 6-68

TEK SPS BASIC V~2 System Software

Using the Command Syntax:

The expression following the at sign (@) is the number of the IEEE
488 interface through which the data transfer is made.

The string expression designates a termination string of zero, one,
or two ASCII characters. When it evaluates to one character, inputs into
a string variable will terminate on EOI or the first occurrence of the
specific character. When two characters are specified, the input terminates
on EOI or when the two characters are received consecutively in the specified
order. If the string expression evaluates to more than two characters,
only the first two are used. When the string expression evaluates to zero
characters (the null string), further inputs from the IEEE 488 bus into a
string variable ter•inate only on EOI.

Bus Traffic: NONE

@ 6-69 STERMC

TEK SPS BASIC V02 System Software

TIFL (Nonresident)

Examples:

99f1 TIFL @3,X
1 rn TIFL @N ,X(N)

Syntax Form:

[line no.] TIFL @expression,variable

Descriptive Form:

[line no.] TIFL @IEEE 488 interface number, target variable

Purpose:

To read the current settings of the control lines of an IEEE 488 bus.

Discussion:

TIFL (Test InterFace Lines) reads the current value of the IEEE 488
control lines and returns their settings in the variable specified.

TIFL reads this information from the eight low-order bits of the Bus
Status Register (BSR) of the IEEE 488 interface to which the bus is
connected. The data is stored in the register in the following order:

not read

bit= I 15 I 14 I 13 I 12 i 11 I 1 {1 9 8 7 6 5 4 3 2 0

• • • • • • • • NRFD NDAC DAV SRQ ATN EOI REN IFC

TIFL 6-70

TEK SPS BASIC V02 System Software

A 1 in the corresponding bit means the line is true (asserted) while
a zero means false (unasserted). TIFL converts the binary number represented
by this byte to a decimal number and returns it in the specified variable.
This information can be decoded with the VARTST command.

For example, to test the DAV line for true on the bus connected to
interface number N you could use:

TIFL @N,L
VARTST L,"40",C

Here the decimal value for the current settings of the control lines
are returned in L. Then the VARTST statement tests if bit five is one
(true) by comparing L to octal 40 (100000 binary). If DAV is asserted
(true), C will equal 1; if DAC is unasserted (false), C will equal zero.

Bus Traffic: NONE

6-71 TIFL

TEK SPS BASIC V~2 System Software

WASCII (Nonresident)

Examples:

150 WASCII X;A$ INTO @0,LA,SA
440 WASCII B$;INTO @N,X;LA,SA
370 WASCII X,Y;A$ INTO @1
990 WASCII S$;A INTO @N,B(0,J)

Syntax Form:

[line no.] WASCII i:~~s:::essi~n ![!:11::~~s:::essi~n !]··· [;] I string expression ' string expression

INTO @ . [I array expression I] ex press ion ,
expression[, ex press ion]

[I array expression I]
; expression[,expression] • • •

Descriptive Form:

[line no.] WASCII 1:~~: :;~~s:!:essi~n I [1:11::~: :;~;s:!:essi~n I] ... [;]
source string expression ' source string expression

Purpose:

INTO @IEEE 488 interface number[' 1 l~sten and secondary address pairs I]
listen address[,secondary address]

[! listen and secondary address pairs I J
; listen address[,secondary address] •••

To send ASCII data to bus-connected devices. Numeric data is converted
to ASCII before it is sent.

WASCII 6-72

TEK SPS BASIC V02 System Software

Comments:

WASCII (Write ASCII) sends both strings and numbers to bus-connected
devices as ASCII characters. WASCII converts a number to a string of ASCII
characters which represent the decimal value of the number and then sends
that string. This string is called a numeric string. WASCII uses the same
routine to convert a number to a numeric string that the LIST command uses
when it outputs a numeric constant in a program listing. This gives you
up to seven decimal digits of accuracy.

The default time-out value for addresses that do not respond is five
milliseconds. This time-out value can be changed by the SIFTO command.

The bus traffic with WASCII depends on the options selected. If the
optional list of addresses is specified, before the data is sent, WASCII
unasserts NRFD, asserts REN, and untalks and unlistens all devices on the
bus. It then sends the list of addresses with ATN asserted making the
specified devices listeners. Finally, after sending the last data byte,
WASCII again untalks and unlistens all devices on the bus.

If the address list is omitted, WASCII unasserts NRFD before the data
is sent but no interface messages are sent after the data is sent. The
IEEE 488 bus is left in the same state that it was in before the execution
of WASCII except that NRFD is unasserted. This means that it is the user's
responsibility to be sure that there is no other talker and to set up the
desired listener(s). (See WBYTE for an example of how to do this using
SIFCOM statements.)

An EOI is automatically sent concurrently with the last data byte
unless a semicolon is specified following the list of data arguments.

Using the Command Syntax:

The list of arguments preceding the keyword INTO specifies the data
to be sent. If a numeric expression is specified, the decimal value is
converted to an ASCII numeric string before it is sent. If an array is
specified, each element is converted to an ASCII numeric string before it
is sent. For an array, a comma is sent between each converted element to
delimit the numeric strings. If a string expression is specified, the
resulting string is sent.

6-73 WASCII

TEK SPS BASIC V~2 System Software

The arguments in the data list may be separated by either a comma or
a semicolon. If a comma is used, the ASCII code for a comma is sent. If a
semicolon is used, no delimiter is sent.

If the optional semicolon is specified at the end of the list of data
arguments, EOI is not sent with the last data byte. If the ending semicolon
is omitted, EOI is sent concurrently with the last byte of data.

The expression following the at sign (@) is the number of the IEEE
488 interface through which the data is sent.

The optional list of addresses follows the interface number. The list
elements, which may be array expressions or numeric expressions, are
separated by semicolons.

If an array expression is specified, the resultant array must contain
an even number of elements. The elements must be pairs of addresses: a
primary listen address followed by a secondary address. If the primary
address is negative, the address pair is not sent. If the secondary address
is negative, only the primary address of the pair is sent.

If a numeric expression is use.d, a comma separates the primary listen
address from the optional secondary address. When the address is a numeric
expression, specifying negative numbers is illegal.

Expressions for primary listen addresses must evaluate to numbers
between 32 and 62 while secondary addresses must be between 96 and 126.
An exception to this is if the address is specified in an array expression
and a negative value is given to cause WASCII to ignore (skip over) either
the address pair or the secondary address, as explained earlier.

Bus Traffic:

[
ATN UNT l
ATN UNL
ATN listen address
[ATN secondary address]

WASCII 6-74

If optional list of addresses are
specified, the controller untalks
and unlistens all devices on the bus
and sends the listen address and secon
addresses from the list.

TEK SPS BASIC V~2 System Software

<first ASCII data byte>

[EOI] <last ASCII data byte>

[ATN UNT]
ATN UNL

Application Example:

Data byte sent to listener(s) from
source expression(s)

EOI optionally sent with last data
byte

If optional list of addresses are
specified; the controller untalks
and unlistens all devices on the bus.

WASCII gives you a simple way to send numeric data to devices that
only accept ASCII code. For example, you could use WASCII instead of PUT
to set the Time/Division of a TEKTRONIX 7B90P Programmable Time Base
plug-in. Here the interface number is N and the primary listen and secondary
addresses of the plug-in are LA and SA, respectively. So the statements:

T$="T/D II

T=5E-'13
WASCII T$;T INTO @N,LA,SA

would send the ASCII code for the string "T/D 5E-'13" to the 7B90P, setting
the Time/Division to 5 milliseconds. Notice that since a semicolon separates
T$ and T, no comma is sent between T$ and the numeric string representing T.

6-75 WASCII

TEK SPS BASIC V02 System Software

Examples:

220 WBYTE @3, 1
840 WBYTE @N, Y ,z

Syntax Form:

WBYTE (Nonresident)

[line no.] WHYTE @ex press ion' l ex press ion . I ['lex press ion . I J . •. [']
array expression array expression

Descriptive Form:

[line no.] WHYTE @IEEE 488 interface number,

'

source expression I
source array expression

[,!source expression IJ [,]
source array expression • • •

Purpose:

To send a byte of data through an IEEE 488 interface to the bus.

Discussion:

WBYTE (Write BYTE) is used to write one or more bytes of data to the
bus, one byte at a time. If the listener does not accept a byte of data
within the time allotted by the time-out value, an error message is issued.
(The driver has a default time-out value of 5 milliseconds. This time-out
value can be changed by the SIFTO command.)

Note that before the WBYTE command is executed, the instruments to
receive the data must be told to listen via the SIFCOM command. Before the
data is sent, WBYTE unasserts NRFD.

WBYTE 6-76

TEK SPS BASIC V02 System Software

Using the Command Syntax:

The expression following the at sign (@) is the number of the IEEE
488 interface through which the data is sent.

The data to be sent is specified by the list of expressions following
the interface number. A list element may be either a numeric expression
or an array expression. For each numeric expression or array element, the
modulo 256 value of the integer part of the number is transmitted to the
interface.

If the optional comma following the list of expressions is specified,
EOI is not sent with the last data byte. Otherwise EOI is automatically
sent concurrently with the last byte.

Bus Traffic:

<data byte>

[EOI] <data byte>

Application Example:

Data byte sent from source
expression(s) .

EOI optionally sent with last
data byte

This routine sends the ASCII codes for a string of characters to a
bus-connected device through IEEE 488 interface number N. It uses WBYTE
in a FOR/NEXT loop to send the data one byte at a time. The routine then
sends a carriage return, line feed following the ASCII code for the last
character.

1!10 SIFLIN @N,"RENT"
11'J SIFCOM @N,"UNT","UNL",LA,SA
120 FOR I:1 TO LEN(B$)
130 WBYTE @N,ASC(SEG(B$,I,I)),
140 NEXT I
150 WBYTE @N,13,10
160 SIFCOM @N,"UNL"

6-77 WBYTE

TEK SPS BASIC V02 System Software

First, line 100 asserts REN in case it has not already been asserted
by a PUT or WASCII statement. Next, line 110 untalks and unlistens all the
devices on the bus and makes the selected device a listener by sending its
primary listen address (LA) and its secondary address (SA) with ATN asserted.
Then lines 120 through 140 send the ASCII code for each character in B$.
The comma at the end of line 130 prevents the WBYTE from sending an EOI.
Next, line 150 sends the ASCII code for a carriage return and a line feed.
Since the comma is omitted from the end of line 150, an EOI is asserted
with the last byte of data, the ASCII code for a line feed. Finally, line
160 unlistens the device.

WBYTE 6-78

TEK SPS BASIC V~2 System Software

SECTION 7

GLOSSARY

Algorithm. A fixed, step by step, procedure for accomplishing a given
result; usually a simplified procedure for solving a complex problem.

Argument. The user-specified information sent to a function or command.

Array. A series of data storage elements referenced by 1 or 2 indices and
a common name.

Array Expression. Any legal combination of constants, variables, waveforms,
arrays, arithmetic operators, functions, and parentheses that evaluate to
an array.

Array Zone. A contiguous portion of an array.

ASCII. (American Standard Code for Information Interchange) A standard
code used to represent letters (A-Zand a-z), digits (~-9) and a set of
special characters. Most canputers support software that recognizes ASCII
code.

Assembler. A program that converts symbolic assembly language into machine
language. An assembler generally translates assembly language instructions
into machine language instructions on a one-for-one basis.

Assembly Language. A machine oriented language whose symbolic statements
correspond one-to-one with machine language instructions. TEK SPS BASIC
is written in PDP-11 assembly language.

Attached Instrument. An instrument associated with an instrument logical
unit number (ILUN) by the ATTACH command.

Auto-Dimension. To dimension a simple numeric variable, without using the
DIM command, by setting it equal to an array expression. The resultant
array is a one-dimensional array with the same number of elements as the
array to which the expression evaluates.

Auto-Load. To bring a nonresident command from the system storage device
into resident BASIC by invoking the command itself without using the LOAD
command.

7-1

TEK SPS BASIC V02 System Software

Bad Block. A physically damaged or physically unsatisfactory block of
memory on a storage device. The ".BAD" extension is used to signal the
location of damaged blocks.

Bit. A binary digit, the smallest element of binary machine language. Also
the smallest possible unit of information. A bit of information can be a
1 or a 0. See Byte, Word.

Block. A group of consecutive words which are handled as a single unit
especially during I/O operations. In TEK SPS BASIC one block is typically
256 words.

Bootable Device. A peripheral device from which an operating system can
be loaded. In TEK SPS BASIC, an absolute loader for the system software
must be installed on the medium in the device in order for the system
software to be loaded. (An absolute loader can be installed by either HOOK
or HOOKQ.) Examples of bootable devices are disk drives such as DK and DX.

Byte. A group of binary digits (bits) usually operated upon as a unit. In
dvTEK SPS BASIC a byte is 8 bits long. See Bit, Word.

Compiler. A program that converts a symbolic, machine independent, high-level
language such as FORTRAN, COBOL, or PL-1 into computer dependent machine
language. A compiler is machine dependent.

Concatenate. To connect or chain together.

Controllers. A term for computers that control instruments or processes.

Data Sampling Interval. The time increment between the data points of a
waveform.

Delimiter. A character used to mark the beginning and/or end of a unit of
data.

Destination. The place to which data is transferred. The recipient of data.

Device Name. A two or three letter mnemonic that is used when referencing
peripheral or instrument devices.

Directory-Structured Device. A peripheral using a file name directory to
locate its data files.

7-2

TEK SPS BASIC V02 System Software

Drive Number. A hardware number in the range 0 to 77777 (octal) determined
by the hardware strapping configuration.

Driver. A software module that communicates with a peripheral device or
an instrument.

DSI. An abbreviation for data sampling interval.

Enable. To make an interrupt possible.

Expression. Any constant, variable, or legal combination of constants,
variables, waveforms, arrays, arithmetic operators, functions, and parentheses
that evaluates to a single value.

Extended Memory. Up to 96K words of additional memory beyond the standard
28K words of controller memory. In standard memory systems, this memory
can be used only as a peripheral storage device accessed by the Virtual
Memory driver (VM.SPS). In extended memory (XM) systems, this memory is
used for program data (numeric arrays only) and/or as a peripheral device,
depending on how the system software is initialized at load time. (See the
SYSBLD command.)

Fatal Error. An error so serious that it halts execution of the task in
which it occurs.

Field. A specific part of a data record.

File. A collection of related records treated as a unit. TEK SPS BASIC
also uses the term to refer to the named (Filnam.Ext) physical area on a
mass storage device. By convention, the extension to the file name describes
the type of content. For example .BAS is an extension for a basic program
and .BIN, for a collection of binary numbers.

File-Structured Device. A peripheral on which data is accessed by a file
name.

Firmware. A program or programs that have been committed to read-only
memory. The program becomes a permanent part of the computer until the
memory is physically removed.

Hardware. The mechanical, magnetic, electrical and electronic devices or
components of a system.

7-3

TEK SPS BASIC V02 System Software

Hash Function. A procedure that maps a key (e.g., a name or an identificatio1
number) to an address for storing and later retrieving the information
associated with the key. The HASH command performs a hash function.

HUB. An acronymn used in TEK SPS BASIC to stand for the Hardware Unit
Number, which is the physical address strapped into an instrument.

Idle Mode. The state of a computer when it is available for use and waiting
for instruction.

ILUB. A TEK SPS BASIC acronymn that stands for Instrument Logical Unit
Number. For ease and flexibility of programming, the ILUN is associated
with a specific instrument and then is used when communicating with that
instrument.

Immediate Mode. The state of a computer in which a command that is not
preceded by a line number is executed as soon as it is entered from the
terminal and the Return key is pressed.

Interpreter. A program that translates the intent of a program written in
a high level language such as BASIC or APL directly into computer actions,
on a line-at-a-time basis.

Interrupt. In TEK SPS BASIC, an external signal that can be used to initiate
transfer of execution control to a specified line in the BASIC program.
It is an external demand for service that is recognized by the computer
hardware and software.

I/O. The acronymn for Input/Output. It is loosely applied to any movement
of data into or out of the computer from a peripheral or instrument.

Keyword. A word recognized by TEK SPS BASIC, For example: LET, GOTO, IF,
FOR, NEXT, etc.

Machine Language. A coding scheme that can be read and executed by the
computer without further processing, When printed, machine language usually
appears as a sequence of fixed length numbers.

Module. A unit of special purpose software such as a driver or nonresident
command.

7-4 @

TEK SPS BASIC V02 System Software

Nonresident. As used in TEK SPS BASIC, it refers to drivers and commands
which which can be individually loaded from a mass storage device. Examples
include the GRAPH command, the line printer driver, and the DPO driver.

Null String. A string with no length, that is, "".

Numeric Variable. A symbol, representing a numeric value, whose content

may change during the execution of a program or from one execution to the
next.

Overflow. A condition in which an arithmetic operation results in a number
too large to express.

Overlaying. The technique of using one small piece of computer memory to
execute many commands. When a command is needed, it is read from a mass
storage device into the designated memory area. The command that previously
occupied the memory is overwritten.

Packet. A group of data words treated as a unit. A three-word packet is
entered in the Scheduler for each subroutine scheduled. This packet contains
the line number (internal address), priority, and task number associated
with the subroutine.

Patch File. A file that holds a routine to correct an error or make updates
in software.

Pending Routine. A routine that has been entered in the Scheduler queue
but has not started to execute.

Peripheral. A device for storage and/or retrieval of data.

PLUN. A TEK SPS BASIC acronymn that stands for Peripheral Logical Unit
Number. For ease of programming, the PLUN is associated with a specific
device or file and is used when doing I/O with that peripheral.

Priority. The measure of importance attached to a program. When two or
more program segments attempt to execute at the same time (this can happen
if interrupts are allowed), TEK SPS BASIC executes the program with the
highest priority first. Priority is an actual number that can be associated
with programs by the programmer using special commands or keywords.

@ 7-5

TEK SPS BASIC V~2 System Software

Program. A sequence of steps that can be readily translated to machine
language and executed by a computer.

Program Mode. The state of a computer in which commands preceded by line
numbers are executed.

RAM (Random Access Memory). An acronymn used to refer to standard read/write
memory.

Random Access Storage. A characteristic of a storage device that allows a
storage "element" to be read or written without reference to the location
of other storage elements. Memory is random access. Disks are usually
thought of as randan access. For contrast see Sequential Access Storage.

Record. A collection of related and consecutive items of data that is
treated as a single unit.

Record I/O File. A file in TEK SPS BASIC that can be accessed randomly,
any record at a time. The size of a record is determined by the user.

Resident. As used in TEK SPS BASIC, code that is loaded at initialization
time. This code cannot be removed from memory. Examples of resident code
are the LET command, the SPS Scheduler, and the system device driver.

ROH (Read Only Memory). Memory that cannot be changed (written) by a
program. A program that is committed to ROM is called firmware.

Scheduler. The Resident BASIC software which controls the execution of all
routines, based on their priority.

Sequential Access Storage. A characteristic of a storage device that
requires storage "elements" to be read or written in "one after the other"
sequence. Magnetic tape and paper tape are examples of sequential access
storage devices. For contrast, see Random Access Storage.

Serial Tape. A data storage medium that is accessed sequentially.

Simple Variable. A nonsubscripted variable, not an array element.

Software. The loadable program or programs used to direct a computer in
its operations.

7-6

TEK SPS BASIC V~2 System Software

Solicited Input. Program data that is entered from the keyboard in response
to a pranpting question mark printed on the terminal by a command such as
INPUT.

Source. The place from which data originates.

String. In TEK SPS BASIC, a series of ASCII coded characters that are
treated as a logical unit. Strings are stored in string variables, which
are designated by a trailing$ (i.e., A$, B$). Strings are manipulated by
the string operator (&) and string functions supplied in TEK SPS BASIC.

String Array. An array whose elements are strings.

String Variable. A symbol, representing a string and ending in a$, whose
content may change during the execution of a program or from one execution
to the next.

Subprogram. A subset of a program.

Subroutine. A subset of a program that can be called repeatedly and/or
fran different parts of the program. A subroutine is terminated by a RETURN
statement.

Subroutine Library. A set of standard subroutines which is kept on file
for general use.

Syntax. The rules governing acceptable statement formats in a programming
language.

System Device. The peripheral device from which TEK SPS BASIC is loaded.
It is (usually) used by the I/O commands and by the operating system when
peripheral device is specified. The default peripheral device.

System Driver. A module that communicates with the system device.

System Reset. The set of actions that clears the Scheduler and the Clock
queue, cancels the actions of all WHEN statements, and disables any INPREQ
(input request) and ONERR conditions. These are the same actions caused
by a Control-P.

Target. Another word for destination, the recipient of data.

@ 7-7

TEK SPS BASIC V02 System Software

Task. A task is a subprogram that is distinguished from other subprograms
by the task number associated with it.

Task Number. The numeric name assigned either explicitly or by default to
a subprogram at the time it is entered in the Scheduler queue.

Text. A collection of ASCII characters that may consist of as few as one
character or as many as an entire program.

Time-Out. The failure of a device to respond within the allotted time.

Underflow. A condition in which an arithmetic operation results in a number
too small to express.

Unsolicited Input. Program data entered from the keyboard before the data
has been requested by a command such as INPUT. Unsolicited input is allowed
after an input request has been enabled by an INPREQ statement.

Variable. A symbol whose value may change during the execution of a program
or from one execution to the next.

Warning Error. An error that interrupts execution to display a warning
error message but does not halt execution. Results of the execution may
be unpredictable.

Waveform. An array, data sampling interval variable, horizontal units
string variable, and vertical units string variable which have been
associated with a variable name (any legal numeric variable name) for
manipulation as a single entity.

Waveform Expression. Any legal combination of constants, variables,
waveforms, arrays, arithmetic operators, functions, and parentheses that
evaluates to a waveform.

Wildcard Specification. An asterisk (*) that is used in place of a specific
file name or file name extension. It represents all possible names or all
possible extensions.

Word. A group of binary digits (bits) that is treated as a unit by the
computer. The word is usually the fundamental element of machine language.
Word length is computer dependent. A PDP-11 word= 16 bits= 2 bytes. See
Bit, Byte.

Zone. A contiguous portion of an array; a subarray.

7-8 @

TEK SPS BASIC V02 System Software

SECTION 8

UNDERSTANDING ERRORS

Types of Errors

There are two types of errors possible in TEK SPS BASIC, fatal errors
and warning errors. Fatal errors cause a task to halt, while warning errors
do not. Since a warning error does not stop execution, it is possible to
have both a warning error and a fatal error issued at the same time.

Fatal Errors

A fatal error is one so serious that the command cannot execute and
the task associated with that command halts. When such an error is
encountered, an error message is issued and all places in the system that
hold information about that task are cleared. Specifically, the following
actions are taken:

1. The error code (category letter and number) is printed on the
terminal. If the command is in program mode, its line number and task
number are also printed.

2. Any packets with the same task number as the statement committing
the error are removed from both the Scheduler stack and queue. (The functions
and parts of the Scheduler are explained in Section 1.)

3. The actions of any WHEN statements with the same task number as
the statement committing the error are canceled.

4. Any packets with the same task number as the statement committing
the error are removed from the Clock queue.

If the fatal error occurs during the execution of an I/O command, the
input or output finishes before control is returned to the Scheduler to
determine the next task.

Exceptions. Two errors, however, are fatal to all tasks in the system
if either one occurs in any current task. These are 1) an overflow of the

8-1

TEK SPS BASIC V~2 System Software

Scheduler stack or 2) an overflow of the Scheduler queue. Either of these
errors causes a total reset of the system. That is, regardless of task
numbers, the Scheduler stack and queue are cleared, all interrupts enabled
by WHEN statements are disabled, and the Clock queue is cleared.

Warning Errors

With a warning error, execution is interrupted to print the error
code (category letter and number) on the terminal. If the command is in
program mode, its line number and task number are also printed. Execution
then continues, but the results may not be reliable.

Printout of error messages can be suppressed by execution of one form
of the ONERR command prior to the statement containing the error. ONERR
can also be used to replace the system's response to errors with your own
error-handling routines. See ONERR documentation in Section 4 for complete
details.

Error Categories

There are eight categories of errors. Each category is indicated by
a letter. The categories are:

Program Control -- Code C. Any error involving the flow of program
execution is included in this category. Examples: nonexistent line number
in a GOTO or GOSUB statement, invalid line number, or invalid priority
value.

Data -- Code D. Data errors cover problems with illegal types of data.
Examples: attempting to change the dimensions of a previously dimensioned
array, referencing a nonexistent array, or using a numeric argument as a
string.

Evaluation -- Code E. These errors concern illegal arithmetic operations.
Also included in this category are errors concerning accuracy limitations
of the system. Examples: division by zero, an illegal function argument,
or arithmetic overflow or underflow.

8-2

TEK SPS BASIC V02 System Software

Hardware/System -- Code H. Computer hardware errors or general system
errors are covered by the H category. Examples: controller time-out error
or floating-point hardware malfunction.

Instrument -- Code I. Any error concerning the transfer of data or
status between the controller and an instrument falls into this category.
Examples: attempting to use an instrument that is not on line, referencing
an instrument driver not in memory, or using an illegal hardware unit
number.

Operating System -- Code 0. Errors in this category include problems
encountered by the actual operating system. Examples: Scheduler overflow,
insufficient free memory, or an attempt to use graphics or string functions
if they were deleted at system initialization time.

Peripheral -- Code P. Any error involving input or output with a
peripheral device is covered in this category. Examples: data transmission

errors, peripheral hardware errors, or an attempt to WRITE on a file OPEN
FOR READ.

Syntax -- Code S. This category covers all command syntax errors
encountered during statement entry or execution. Examples: keyword used
as a command name, incorrect subscript format, or unmatched FOR/NEXT
statement pair.

For each category, several errors are possible. The following is a
list of the error code messages generated by TEK SPS BASIC. A brief
explanation accompanies each error code.

@ 8-3

TEK SPS BASIC V~2 System Software

Program Control Errors

ca RUN command not in immediate mode. RUN is the only BASIC command
that cannot be preceded by a line number.

C1 Attempt to pass control to a nonexistent line number. This occurs
in GOTO and GOSUB commands when the specified line number does not exist.

C2 Attempt to overwrite program line being executed. Occurs when OVERLAY
reads in a line of text with the same line number as the OVERLAY command.

C3 Program line exceeds 8~ characters. Additional characters are
ignored.

C4 Priority value or task number is less than zero or greater than
126. If you are using an expression to indicate a priority value or task
number, the result might be outside the legal range of zero to 126,
inclusive.

C5 Concatenated statements are in an illegal order. For example, a
statement follows an OLD or immediate mode DELETE ALL statement; or a
statement precedes a CHANGE statement.

C6 A line of program text with no line number was read from program
file. The line is ignored, and loading continues.

C7 The line number of a subroutine scheduled with a SCHEDULE statement
is not in memory. Program execution continues as if the subroutine had not
been SCHEDULEd.

C8 Illegal ONERR condition when an error occurs. For example, this
error is issued if the array specified in the ONERR statement was deleted
before the error occurred.

C9 ONERR RETURN statement encountered when no error has occurred. A
user-written error-handling routine was entered but not because of an error
condition.

c1a An instrument or peripheral driver has been auto-loaded as if it
were a nonresident command.

Program Control Errors 8-4

TEK SPS BASIC V~2 System Software

C11 Illegal file contents. For example, this error is issued if the
OVLOAD command trys to load a file that was not created by the OVLSAV
command.

8-5 Program Control Errors

TEK SPS BASIC V02 System Software

Data Errors

ng Illegal data on input. For example, an INPUT command has encountered
an illegal character, such as a letter (other than E) where a numeric value
was expected.

D1 Number too large or too small. The largest possible number expressible
in TEK SPS BASIC is approximately 1.70141E+38; the smallest positive
fraction is approximately 2.93874E-39. Numbers too large are set equal to
the largest possible number, and values too small are set to zero.

D2 String too long. One of the input commands attempted to read in a
string longer than 388 characters. The remainder of the string was ignored.

D3 Source data types do not match destination specifications. This
error can occur if the data descriptor on the peripheral device has been
altered by a hardware error. The data descriptor describes the type of
data (numeric scalar, array, waveform, etc.) about to be read.

D4 Simple string or numeric variable appears with a subscript, or
string array is referenced without a subscript.

D5 Arrays or waveforms of different lengths. When two arrays are used
in an expression, they must be of the same size, or the zoned portions
must be of the same size.

D6 Subscript or zone boundary out of range. This occurs if the subscript
or one of the zone specifications is negative or greater than the array

D7 Illegal waveform component. This can occur if one of the strings
specified in a WAVEFORM statement has been dimensioned to a string array
or the data sampling interval variable has been dimensioned to an array.

D8 Source waveforms do not have identical data sampling intervals or
horizontal units. Correct evaluation of expressions containing waveforms
cannot be accomplished if either of these conditions is found.

D9 Source items are not all waveforms; or if they are all waveforms,
their data sampling interval and units are not identical.

Data Errors 8-6

TEK SPS BASIC V02 System Software

D1G Correction tables do not contain data required to perform geometry
correction. Correction tables are generated by the INSTALL and MAP commands.

011 Illegal destination type. For example, this error is issued if you
attempt to read in a waveform from a peripheral device with the READU
command.

012 Illegal source type. This is the opposite of the D11 error. One
example is an attempt to write out a waveform with the WRITEU command.

D13 Illegal address argument. PUTLOC issues this error if the address
specified is odd.

D14 Array or waveform previously dimensioned to a different size. You
should delete the array before redimensioning it.

D15 Source data sampling interval (DSI) is too small. The DSI of a
waveform is used as a divisor in several Signal Processing Package commands.
If this value is incorrect or too small, the result of the operation is
meaningless.

016 Calculated data-record length is too long (too many bytes per
record are specified) in a record I/O form of a READU or WRITEU statement.

@ 8-7 Data Errors

TEK SPS BASIC V02 System Software

Evaluation Errors

Ea Power operation performed on number less than or equal to zero. If
the value is zero, zero is returned. If the value is negative, the absolute
value of the argument is used.

E1 Addition overflow. The largest possible number (approximately
1.70141E+38) with the correct sign is returned.

E2 Multiplication overflow. The largest possible number (approximately
1.70141E+38) with the correct sign is returned.

E3 Division overflow. The largest possible number (approximately
1.70141E+38) with the correct sign is returned.

E4 Floating-point-to-integer conversion overflow. The largest possible
integer (32767) with the correct sign is returned.

E5 Double-to-single floating-point conversion overflow. The largest
possible number (approximately 1.70141E+38) with correct sign is returned.

E6 Addition underflow. Zero is returned.

E7 Multiplication underflow. Zero is returned.

E8 Division underflow. Zero is returned.

E9 Argument of EXP function is less than or equal to -88.5. Zero is
returned.

E1a Divide by zero. The largest possible number (approximately 1.70141E+38)
with the dividend's sign is returned.

E11 Argument of LOG function is less than or equal to zero. Zero is
returned.

E12 Argument of EXP function is greater than 88. Largest possible
number (approximately 1.70141E+38) is returned.

E13 Argument of SQR function is less than zero. The square root of the
absolute value of the argument is returned.

Evaluation Errors 8-8

TEK SPS BASIC V02 System Software

E14 Underflow in power operation. Zero is returned.

E15 Overflow in power operation. Largest positive number (approximately
1.7a141E+38) is returned.

E16 Arthmetic. overflow during RFFT inverse transform setup. The largest
possible number (approximately 1.7a141E+38) with the correct sign is used.

E17 Arithmetic underflow during RFFT inverse transform setup. Zero is
used.

E18 Divide by zero during RFFT inverse transform setup. The largest
possible number (approximately 1.7a141E+38) with the dividend's sign is
used.

E19 Arithmetic overflow during RFFT computation. The largest possible
number (approximately 1.7a141E+38) with the correct sign is used.

E2a Arithmetic underflow during RFFT computation. Zero is used.

E21 Divide by zero during RFFT computation. The largest possible number
(approximately 1.7a141E+38) with the dividend's sign is used.

E22 Arithmetic overflow in recovery computations of CONVL or CORR's
direct transform. The largest possible number (approximately 1.7a141E+38)
with the correct sign is used.

E23 Arithmetic underflow in recovery computations of CONVL or CORR's
direct transform. Zero is used.

E24 Divide by zero in recovery computations of CONVL or CORR's direct
transform. The largest possible number (approximately 1.7a141E+38) with
the dividend's sign is used.

E25 Arguments of ATAN2 command are both zero. Zero is returned.

E26 Arithmetic overflow during complex multiplication prior to inverse
transform in CONVL or CORR. Largest possible number (approximately 1.7a141E+38)
with the correct sign is used.

E27 Arithmetic underflow during complex multiplication prior to inverse
transform in CONVL or CORR. Zero is used.

8-9 Evaluation Errors

TEK SPS BASIC V02 System Software

E28 Divide by zero during complex multiplication prior to inverse
transform in CONVL or CORR. Largest possible number (approximately 1.7a141E+38
with the dividend's sign is used.

Evaluation Errors 8-10

TEK SPS BASIC V~2 System Software

Hardware/System Errors

H~ Controller bus time-out. This is a hardware error in the system
controller. It can also occur if you attempt to read or write to a peripheral
device not connected to the system.

H1 Illegal controller instruction encountered. This usually indicates
that the system software has been altered. A complete reload should be
performed if this error occurs.

H2 Floating-point hardware malfunction.

@ 8-11 Hardware/System Errors

TEK SPS BASIC V~2 System Software

Instrument Errors

Ia More than one type of device illegally sharing an interrupt vector.
Check strapping on the interface cards for correct vector addresses.

I1 Instrument driver is not in memory.

I2 Illegal device number. The hardware unit number (HUN) for an
instrument is determined by straps on interface cards in the controller
and instrument.

I3 Instrument logical unit number (ILUN) already attached to another
instrument. DETACH the ILUN before reATTACHing it.

I4 Instrument is not on line.

I5 Instrument logical unit number (ILUN) is not ATTACHed.

I6 Illegal instrument function. Check the instrument driver manual for
correct command strings and functions.

I7 Write or timing error on output to a device on the IEEE 488 interface
bus.

I8 Interrupt specified in WHEN command occurred, but the specified
line number is not in memory. Program execution continues as if the interrupt
did not occur.

I9 First horizontal address not found in data transfer from an R7912
Transient Digitizer.

I1a Device and device driver are of different types. Load the proper
instrument driver.

I11 Four DPOs already ATTACHed. Four is the maximum number of DPOs
that can be ATTACHed at any one time.

I12 DPO bus time-out. This is a malfunction in the DPO hardware.

I13 Device specified for R7912 Transient Digitizer fast data log is
not a peripheral that supports fast data logging (e.g., DK and DL).

Instrument Errors 8-12

TEK SPS BASIC V02 System Software

114 Instrument logical unit number (ILUN) out of range. An ILUN cannot
be negative, or larger than the maximum number set at system load time.
This system parameter (default value of eight) can be changed by first
executing the SYSBLD command and then rebooting.

I15 The specified instrument is already ATTACHed to a different
instrument logical unit number (ILUN).

I16 Reserved error code. It is not used in this version of BASIC.

I17 Interrupt occurred on IEEE 488 interface bus for "ERR", "EOI", or
"SRQ", but no interrupt condition exists.

118 Device on IEEE 488 interface bus did not accept or send data within
the time-out period. The time-out value can be changed with the SIFTO
command. Also, the device may not be functioning or the interface may need
to be cleared with the SIFLIN command.

119 Insufficient or excessive data available for the variables specified.
You may have too many items in the list of arguments, or an array may be
dimensioned to too many or too few elements. Also, a packed data transfer
mode requires half the array size of an unpacked mode.

12a Checksum error in an IEEE 488 interface bus data transmission.
This is probably a hardware error.

I21 Empty binary block transmission received. If the target is a simple
numeric variable, it is not autodimensioned to an array. If the target is
an array, there is no change to its data. This error may occur, for instance,
while trying to acquire the verticals array from a 7912AD when the main
intensity is too low.

8-13 Instrument Errors

TEK SPS BASIC V~2 System Software

Operating System Errors

og Scheduler stack overflow. Too many routines have been stacked to
allow for other, higher priority routines to execute. This error is fatal
to all tasks, not just the task associated with the statement that triggered
the error.

01 Scheduler queue overflow. Too many interrupts have occurred or too
many routines have been SCHEDULEd. This error is fatal to all tasks, not
just the task associated with the statement that triggered the error.

02 Insufficient free memory. Try releasing nonresident commands and
drivers and deleting REM statements. Also, you could break your program
into smaller segments and use program overlays. If this error occurs while
replacing a program file, be sure to free at least 512 words of memory
(try deleting an array) and execute the REPLACE or OVLSAV command again.
The old version of the program file may have been canceled, but the updated
version was not saved.

03 Maximum number of nonresident commands, peripheral drivers, or
instrument drivers has already been loaded. The maximum number of these
modules that can be in memory at any one time is defined at system load
time. (The default values are six nonresident commands and four each
peripheral and instrument drivers.) These system parameters can be changed
by first executing the SYSBLD command and then rebooting.

04 String functions deleted at load
will have to first execute the SYSBLD
defined initialization parameters and

time. To use these functions, you
command to alter the file of user
then reboot.

05 Graphics option deleted at load time. To use the graphics command,
you will have to execute the SYSBLD command to alter the file of user
defined initialization parameters and then reboot.

06 Auto-load feature not possible from system drive.

07 Temporary strings have been deleted while still in use. This can
happen during execution of a user-written command module if certain
precautions are not taken when calling for a downpack of the string area.

Operating System Errors 8-14

TEK SPS BASIC V~2 System Software

08 Nonresident command or driver has attempted to move upper memory
in order to obtain more room by releasing a buffer or deleting an array.
This error would usually occur when a user-written module attempts to move
itself in memory. The command is not executed, and the program stops.
Deleting arrays in immediate mode and restarting the program at the line
where the error occurred should solve the problem.

09 Clock queue overflow. More subroutines have been SCHEDULEd than can
be stored in the clock driver. Maximum number of subroutines that can be
SCHEDULEd at one time is 24.

01g IEEE 488 (GPIB) capabilities deleted at system software load time.
If you want to use the IEEE 488 capabilities, you will have to execute the
SYSBLD command to change the user-defined parameter in "SYSBLD.DEF" and
then reboot.

011 Peripheral or instrument driver name is too long. No more than
three characters are allowed before the .SPS extension.

012 Nonresident module is incompatible with version of monitor.

8-15 Operating System Errors

TEK SPS BASIC V02 System Software

Peripheral Errors

Pa Illegal use of keyboard. The system terminal keyboard may not be
explicitly OPENed FOR READ or WRITE; it is always defined as peripheral
logical unit number (PLUN) zero.

P1 Peripheral logical unit number (PLUN) not OPEN FOR READ.

P2 Peripheral logical unit number (PLUN) not OPEN FOR WRITE.

P3 Logical end-of-file reached but no transfer of control provided via
EOF command.

P4 Command cannot execute because all available peripheral logical
unit numbers (PLUNs) are in use. Close a file before executing the command
Qa~.

P5 Referenced file already exists on medium. You cannot OPEN a file
for WRITE if that file already exists on the same device you are trying
to write to.

P6 Illegal use of the system device driver.

P7 Peripheral driver referenced is not in memory.

PB Specified file is already OPEN.

P9 Specified file does not exist.

P1a Driver specified for RELEASE is still in use.

P11 Physical end-of-file reached. There is no more room in the file.

P12 COPY command's source and destination files are the same, or one
or both of the specified files are OPEN.

P13 Illegal function for specified driver.

P14 Illegal function with OPEN file, such as ZEROing the media, or
canceling an OPEN file.

Peripheral Errors 8-16 @

TEK SPS BASIC V~2 System Software

P15 Peripheral device not ready. Be sure the device is turned on and
ready.

P16 Device is full.

P17 Device directory is full. You can specify how many blocks you want
to reserve for a directory when you ZERO a device.

P18 Hardware input/output error.

P19 Illegal device number. The drive number for a peripheral device
is determined by straps on the interface card or in the device itself.

P2a Peripheral logical unit number (PLUN) is out of range. A PLUN
cannot be negative or larger than the maximum number set at system load
time. This system parameter (default value of six) can be changed by first
executing the SYSBLD command and then rebooting.

P21 Physical bounds of flexible disk exceeded. ZERO the disk before
reusing it if error occurred with SQUISH command.

P22 Unrecognized input/output media format.

P23 Device not currently addressable.

P24 Peripheral logical unit number (PLUN) specified in the record I/O
form of a READU or WRITEU command is not OPEN FOR UPDATE.

8-17 Peripheral Errors

TEK SPS BASIC V02 System Software

Syntax Errors

sa Illegal command name. A keyword was used in place of a command name,

S1 Illegal character in source statement.

S2 Illegal item within parentheses or parentheses unmatched. Be sure
you have the same number of closing parentheses as opening parentheses.

S3 Operator or argument omitted in statement.

S4 Illegal array zone use or illegal colon. Only one subscript of a
two-dimensional array may be zoned.

S5 Illegal function argument. Check the type of data the function
expects to see.

S6 Illegal driver specification.

S7 No space after keyword. This is the only place where a space is
required in BASIC.

SB Line number incorrectly used, omitted, or out of range. The largest
possible line number is 32767.

S9 Illegal numeric argument. The command does not allow the specified
argument, such as a numeric or string variable where an array is required.

s1a Illegal or missing delimiter. Might be a comma out of place, or a
backslash (end of command) in the wrong location. This error is also issued
if a required argument is not present in the statement.

S11 Variable, array, subarray, waveform, or string variable not found
where expected.

S12 Missing keyword or keyword not found where expected.

S13 Unmatched FOR/NEXT statements. Each FOR statement needs a matching
NEXT statement. FOR/NEXT loops may not partially overlap.

S14 Illegal subscript or zone specification. Check to see that the
subscript value specified is in the range of zero to the maximum index of
the array.

Syntax Errors 8-18

TEK SPS BASIC V~2 System Software

S15 Illegal file name. File names must not contain any character other
than letters or digits.

S16 No equal sign where expected.

S17 LET source type does not match destination type. This might be
caused by assigning a numeric value to a string, or by an improper use of
an array or waveform.

S18 Illegal item in expression.

S19 Illegal or missing relational operator in IF statement.

s2a Argument type does not match operator, such as concatenating two
variables, or adding two strings.

S21 Illegal string function argument. Make sure that the argument
specified matches the type expected by the function. Some string functions
require numeric values, others require strings.

S22 Illegal or missing command argument.

S23 Too many parentheses in expression. The maximum number of parentheses
allowed depends on the complexity of the statement.

8-19 Syntax Errors

TEK SPS BASIC V02 System Software

APPENDIX A

ASCII & IEEE 488 (GPIB) CODE CHART

87 86
85

00
0

00
1

0 1
0

0 1
1

1 0
0

1 0
1

1 1
0

1 1
1

BITS NUMBERS

84 83 82 Bl CONTROL SYMBOLS UPPER CASE LOWER

0 20 40 60 100@ 120 140 \ 160

0 0 0 0 NUL OLE SP 0 p p
0 IOI 10 (16) 20 (32) 30 148) 40 (64) 50 1801 60 (96) 70 1112)
1 GTL 21 LLD 41 I 61 101 121 141 161

0 0 0 1 SOH DCl 1 A Q a q
1 (1) 11 117) 21 133) 31 149) 41 16Sl S1 181) 61 197) 71 1113)
2

(U DC2 42 62 102 122 142 162

0 0 1 0 STX " 2 B R b r
2 121 12 118) 22 1341 32 1501 42 (66) S2 (82) 62 1981 72 1114)
3 23 43

63 103 123 143 163

0 0 1 1 ETX DC3 3 c s c s
3 131 13 119) 23 (3S) 33 IS11 43 1671 53 183) 63 1991 73 (11Sl

4 SDC 124 DC4DCL 44

$
64 104 124 144 164

0 1 0 0 EOT 4 D T d t
4 14) 14 (20) 24 (36) 34 IS2) 44 (68) 54 1841 64 (100) 74 1116)
5 PPC (Zl> PPU 14l> % 65 105 125 145 165

0 1 0 1 ENO NAK 5 E u e u
5 ISi 15 121) 25 137) 35 IS31 4S (69) 55 1851 65 1101) 7S 1117)

6 ACK 126 SYN 46 & 66 106 126 146 166

0 1 1 0 6 F v f v
6 (6) 16 122) 26 1381 36 1541 46 1701 56 1861 66 1102) 76 1118)
7

f27 ETB 41 I 67 107 127 147 167

0 1 1 1 BEL 7 G w g w
7 (7) 17 123) 27 1391 37 1551 47 1711 S7 1871 67 11031 77 1119)

10 GET (30 SPE 50
(70 110 130 150 170

1 0 0 0 BS CAN 8 H x h x
8 (8) 18 1241 28 140) 38 1561 48 1721 58 1881 68 11041 78 1120)
11 TCT p-1 SPD 51) 71 111 131 151 171

1 0 0 1 HT EM 9 I y i y
9 191 19 1251 29 141) 39 IS7) 49 1731 59 1891 69 1105) 79 1121)
12 32 S2 72 112 132 152 172

1 0 1 0 LF SUB * .
J z i z .

A 110) 1A 126) 2A 142) 3A IS8) 4A 174) SA 1901 6A 1106) 7A 11221
13 33 S3 73 113 133 [1S3 173 {

1 0 1 1 VT ESC + . K k ' 8 111) 18 1271 2B 1431 3B IS91 48 17Sl 5B 1911 6B (1071 78 11231
14 34 54

74 < 114 134\ 154 174 I
1 1 0 0 FF FS ' L I I

c 1121 1C 1281 2C 1441 3C 1601 4C 1761 5C 1921 6C 11081 7C 11241
1S 35 SS 7S 115 135

]
155 175 }

1 1 0 1 CR GS - - M m -
D 1131 1D 1291 2D l4Sl 3D 1611 4D 1771 SD 1931 6D 11091 7D 11251
16 36 S6 76> 116 136/\ 156 176

1 1 1 0 so RS . N n ""' E 1141 1E 1301 2E 1461 3E 1621 4E 1781 SE 1941 6E 1110) 7E 11261
17 37 57 I 77 ? UNL 117 137 UNT 157 ~RUBOUT

1 1 1 1 SI us 'O - 0 1 (DEL)
F l1SI 1F 1311 2F (471 3F 1631 4F 1791 SF 1951 6F 11111 7F 11271 ,--'-

ADDRESSED COMMANDS

_ v,,.,. __ ,,,_,'-...., ___ ""v _,'-____ '(,,.,. __ ,,,_,

I SECONDARY ADDRESSES

TALK ADDRESSES OR COMMANDS

UNIVERSAL COMMANDS LISTEN ADDRESSES

KEY TO CHART

octal- PPU- GPIB code

NAK--ASCll character

hex- 15 1211- - decimal

@ A-1

TEK SPS BASIC V~2 System Software

APPENDIX B

ARCHIVING YOUR SOFTWARE

We strongly urge you to create working copies of your software as
soon as possible and to keep your original copy as an archive. We also
recommend that you never write on your archive-copy medium and if possible,
that you always write-protect your archive software when making working
copies.

To assist you in archiving your software, some methods for creating
working copies are discussed here. The instructions are grouped under two
general headings: hard-disk based systems and floppy-disk based systems.
Under the heading for your system, find the example that best describes
your new software and follow the instructions on how to archive it. The
examples include:

Hard-Disk Based Systems

1. System software (without instrument checkout software) on hard
disk.

2. System software with instrument checkout software on hard disk.

3. Separate package or module on hard disk.

4. Separate package or module on floppy disk.

5. Instrument checkout software on floppy disk.

Floppy-Disk Based Systems

1. System software on a single floppy disk.

2. TEK SPS BASIC on minimum number of floppy disks.

3. Separate package or module on floppy disk.

4. Instrument checkout software on floppy disk.

B-1

TEK SPS BASIC V02 System Software

After you have made a copy of your software, check to see if it
requires patching. Do this by looking in the issue of the SPS Programming
Update shipped with your software. Included in this publication are all
the reported software errors and patches. Look through the list of patches
and the descriptions of the errors they fix. If any of the patches for
your version and release of the software are ones you want to implement,
carefully follow the patching directions in the SPS Programming Update.
Patch the working copy of the software you just made. Do not patch the

archive software. When you have finished copying and patching your software,
store the issue of the SPS Programming Update with your archive software.

NOTE

If you did not receive an issue of the
SPS Programming Update with your software,
in the U.S.A. request one by writing:

SPS Programming Update
Group 157 (94-384)
Tektronix, Inc.
P.O. Box 500
Beaverton, OR 97077

Outside the U.S.A., contact your local
Tektronix representative.

If you do any patching, you may want to save a copy of the patch files
created when PATCH.BLD was run. (Such a file has a numeric file name
extension, e.g. "PATCH.001".) Do not copy these files onto your archive
mediWD. Instead, copy these patch files onto a separate disk or tape and
store this separate medium with the archive software.

B-2

TEK SPS BASIC V02 System Software

Hard-Disk Based Systems

In the discussions that follow, the example device is the DK type of
hard disk (a DEC RK05 or similar device). To make working copies of the
software on another type of hard disk supported by TEK SPS BASIC, substitute
the proper device name for all occurrences of the DK device name, shown
in bold.

System Software (without Instrument Checkout Software) on Hard Disk

If you have purchased TEK SPS BASIC system software on hard disk, you
have two ways to make a working copy of your software.

I. SQUISH to a blank disk. This method is simple but transfers more
files to your working copy than you need for a hard-disk system.

1. Load the original disk into drive 0, bootstrap, and write
protect.

2. Load a blank, formatted disk into drive 1.

3. When the system is loaded and READY is printed on the terminal,
type:

SQUISH DK: TO DK1:
HOOK DK1:

4. When READY is printed on the terminal, remove the original
disk from drive 0. This should be stored as the archive copy.

5. The disk in drive 1 is now your working copy of TEK SPS BASIC.

II. COPY selected files. With this method, you transfer only the files
you need for a hard-disk system onto your working copy.

1. Follow steps 1 and 2 in I above.

B-3

type:

TEK SPS BASIC V02 System Software

2. When the system is loaded and READY is printed on the terminal,

ZERO DIC1:
COPY "* • SPS II TO DIC 1 : "* • SPS II
COPY "*.OVL" TO DIC1:"*.0VL"
COPY "PATCH.*" TO DK1 :"PATCH.*"
COPY "SPSDIC.LDA" TO DIC1: 11 SPSDIC.LDA"
HOOK DIC1:

3. Follow steps 4 and 5 in I above.

System Software with Instrument Checkout Software on Hard Disk

If you have purchased TEK SPS BASIC system software with instrument
checkout software on a single hard disk, use one of these procedures to
create working copies of this software. The type of the checkout software
determines which method you use.

I. BASIC checkout software. Use this procedure if the checkout software
is a BASIC program (e.g., CP56008 7912AD Checkout Software).

1. Load the original disk into drive 0, bootstrap, and write
protect.

2. Load a blank, formatted disk into drive 1.

3. When the system is loaded and READY is printed on the terminal,
type:

SQUISH DIC: TO DK1:
HOOK DIC1:

4. When READY is printed on the terminal, remove the original
disk from drive ~. This should be stored as the archive copy.

5. The disk in drive 1 is now your working copy of TEK SPS BASIC
with the instrument checkout software.

II. Stand-alone checkout software. Use this procedure if the checkout
software is a stand-alone software with its own .LDA file (e.g., CP56001
P7001/R7912 Checkout Software).

B-4

TEK SPS BASIC V~2 System Software

1. Follow steps 1 and 2 in I above.

2. When the system is loaded and READY is printed on the terminal,
type:

SQUISH DK: TO DK1:
HOOKQ DK1:

3. Follow steps 4 and 5 in I above.

When the working disk is bootstrapped, a prompt (•) will appear on
the terminal. Any file with the .LDA extension can then be loaded by
entering the file name without the file name extension.

To load and execute TEK SPS BASIC, type:

SPSDK

To load and execute the instrument checkout software, type the name
of the .LDA file, but without the .LDA extension.

Separate Package or Module on Hard Disk

If you have purchased a separate software package or supplemental
module to add to your system, you have two options when making a working
copy.

I. SQUISH to a blank disk. Maintain a separate disk as a working copy
of the package or module.

1. Boot TEK SPS BASIC from drive@. When the system is loaded and
READY is printed on the terminal, type:

LOAD "SQUISH"

2. Remove the disk with TEK SPS BASIC from drive @.

3. Load the original disk with the package or module into drive
~ and write-protect.

4. Load a blank, formatted disk into drive 1.

B-5

TEK SPS BASIC V02 System Software

5. Type:

SQUISH DK: TO DK1:

6. When READY is printed on the terminal, remove the original
disk from drive 0. This should be stored as the archive copy.

7, Use the disk in drive 1 as the working copy of the package or
module.

II. COPY to working disk. Add the package or module to your working
copy of TEK SPS BASIC on hard disk.

1. Load your working copy of TEK SPS BASIC into drive 0, bootstrap,
but do not write-protect.

2. Load the original disk with the package or module into drive
and write-protect.

3. When the system is loaded and READY is printed on the terminal,
type:

COPY DK1:"*.SPS" TO "*.SPS"

4. When READY is printed on the terminal, remove the original
disk from drive 1. This should be stored as the archive copy.

5. Your working copy in drive 0 now includes the new package or
module.

Separate Package or Module on Floppy Disk

If you have purchased a separate software package or supplemental
module on floppy disk to add to your hard-disk system, you must have a
floppy-disk device. We assume here that you want to add the package or
module to your working copy of TEK SPS BASIC on hard disk.

1. Load your working copy of TEK SPS BASIC into hard-disk drive
0, bootstrap, but do not write-protect.

B-6

TEK SPS BASIC V02 System Software

2. Load the original disk with the package or module into floppy-disk
drive 0 and write-protect (if possible).

3. When the system is loaded and READY is printed on the terminal,
type:

LOAD "DX"
COPY DX:"*.SPS" TO DK:"*.SPS"

4. When READY is printed on the terminal, remove the original
disk from floppy-disk drive 0. This should be stored as the archive copy.

5. Your working copy in hard-disk drive 0 now includes the new
package or module.

Instrument Checkout Software on Floppy Disk

If you received instrument checkout software on a floppy disk, use
one of these procedures to add it to your hard-disk system. The type of
the checkout software determines which method you use. To transfer the
software to your working copy on hard disk, you must have a floppy disk
device.

I. BASIC checkout software. Follow this procedure to copy checkout
software that is a BASIC program (e.g., CP56008 7912AD Checkout Software).

1. Load your working copy of TEK SPS BASIC into hard-disk drive
0, bootstrap, but do not write-protect.

2. Load the original disk with the checkout software into floppy-disk
drive 0 and write-protect (if possible).

3. When the system is loaded and READY is printed on the terminal,
type:

LOAD "DX"
COPY DX:"*·*" TO DK:"*·*"

4. When READY is printed on the terminal, remove the original
disk from floppy-disk drive 0. This should be stored as the archive copy.

B-7

TEK SPS BASIC V02 System Software

5. Your working copy in hard-disk drive @ now includes the checkout
software.

II. Stand-alone checkout sortware. Follow this procedure to copy
checkout software that is stand-alone software with its own .LDA file
(e.g., CP56001 P7001/R7912 Checkout Software).

1. Follow steps 1 through 3 in I above.

2. Then enter:

HOOKQ DK:

3. Follow steps 4 and 5 in I above.

Now when the working disk is bootstrapped, a prompt (*) will appear
on the terminal. Any file with an .LDA extension can then be loaded by
entering the file name, without the file name extension.

To load and execute TEK SPS BASIC, type:

SPSDK

To load and execute the instrument checkout software, type the name
of the .LDA file, but without the .LDA extension.

B-8 @

TEK SPS BASIC V02 System Software

Floppy-Disk Based Systems

In the discussions that follow, the example device is the DX type of
floppy disk (a preformatted, IBM-compatible, single-density flexible
diskette). To make working copies of the software on another type of floppy
disk supported by TEK SPS BASIC, substitute the proper device name, shown
in bold.

System Software on a Single FLoppy Disk

If you have purchased TEK SPS BASIC system software on floppy disk,
you have two ways to make a working copy of your software.

I. SQUISH to a blank disk. This method is simpler but transfers more
files to your working copy than you need for a floppy-disk system.

1. Load the original disk into drive 0, bootstrap, and write
protect (if possible).

2. Load a blank, formatted floppy disk into drive 1.

3. When the system is loaded and READY is printed on the terminal,
type:

SQUISH DX: TO DX1:
HOOK DX1:

4. When READY is printed on the terminal, remove the original
disk from drive 0. This should be stored as the archive copy.

5. The disk in drive 1 is now your working copy of TEK SPS BASIC.

II. Copy selected files. With this method, you transfer only the files
you need for a floppy-disk system onto your working copy.

1. Follow steps 1 and 2 in I above.

B-9

TEK SPS BASIC vm2 System Software

2. When the system is loaded and READY is printed on the terminal,
type:

ZERO DX1: 6
COPY "* .SPS" TO DX1: "* .SPS"
COPY "*.OVL" TO DX1:"*.0VL"
COPY "PATCH.*" TO DX1: 11PATCH.*"
COPY "SPSDX.LDA" TO DX1: 11 SPSDX.LDA" INTO 95
HOOK DX1:

3. Follow steps 4 and 5 in I above.

TEK SPS BASIC on Mini•um. Number of Floppy Disks

1. Load the original disk with the proper monitor file (SPSDX.LDA)
into drive 0, bootstrap, and write protect (if possible.)

2. Load a blank, formatted disk into drive 1.

3. When the system is loaded and READY is printed on the terminal,
type:

LOAD "SQUISH"
SQUISH DX: TO DX1:
HOOK DX1:

4. When READY is printed on the terminal, remove the original
disk from drive 0. This should be stored as the archive copy.

5. Remove the disk from drive 1. It is now your working copy of
TEK SPS BASIC System software.

6. Load another of the original disks to be archived into drive
m and write-protect (if possible).

7. Load another blank, formatted disk into drive 1.

8. Type:

SQUISH DX: TO DX1:

9. When READY is printed on the terminal, remove the original
disk from drive 0. This should be stored as the archive copy.

B-10 @

TEK SPS BASIC V~2 System Software

10. Remove the disk from drive 1. It is now your working copy of
additional SPS software.

11. Repeat steps 6 through 10 until all the original disks are
archived.

Separate Package or Module on Floppy Disk

If you have purchased a separate software package or supplemental
module to add to your system, your have two options when making a working
copy.

I. SQUISH to a blank disk. Maintain a separate disk as a working copy
of the package or module.

1. Boot TEK SPS BASIC from drive 1. When the system is loaded and
READY is printed on the terminal, type:

LOAD "SQUISH"

2. Remove the disk with TEK SPS BASIC from drive a.

3. Load the original disk with the package or module into drive
a and write-protect {if possible).

4. Load a blank, formatted disk into drive 1.

5. Type:

SQUISH DX: TO DXl:

6. When READY is printed on the terminal, remove the original
disk from drive 0. This should be stored as the archive copy.

7. Use the disk in drive 1 as the working copy of the package or
module.

II. Copy to working disk. Add the package or module to your working
copy of TEK SPS BASIC on floppy disk. Depending on the number of free
blocks on your working disk, you may not be able to do this.

1. Load your working copy of TEK SPS BASIC into drive 0, bootstrap,
but do not write-protect.

B-11

TEK SPS BASIC V02 System Software

2. Load the original disk with the package or module into drive
and write-protect (if possible).

3. When the system is loaded and READY is printed on the terminal,
type:

COPY DX1: "* .SPS" TO "* .SPS"

4. When READY is printed on the terminal, remove the original
disk from drive 1. This should be stored as the archive copy.

5. Your working copy in drive 0 now includes the new package or
module.

Instrument Checkout Software on Floppy Disk

Use one of these procedures to archive instrument checkout software.
The type of the checkout software determines which method you use.

I. BASIC checkout software. Follow this procedure if the instrument
checkout software is a BASIC program (e.g., CP56008 7912AD Checkout
Software).

1. Load a blank, formatted disk into drive 1.

2. Boot TEK SPS BASIC from drive 0. When the system is loaded and
READY is printed on the terminal, type:

LOAD "SQUISH"

3. Remove the disk with TEK SPS BASIC from drive 0.

4. Load the original disk with the checkout software into drive
0 and write-protect (if possible).

5. Type:

SQUISH DX: TO DX1:

6. When READY is printed on the terminal, remove the original
disk from drive 0. This should be stored as the archive copy.

B-12

TEK SPS BASIC V~2 System Software

7. Use the disk in drive 1 as the working copy of the instrument
checkout software.

II. Stand-alone checkout software. Follow this procedure if the
instrument checkout software is a stand-alone software with its own .LDA
file (e.g., CP56001 P7001/R7912 Checkout Software).

1. Follow steps 1 and 2 in I above.

2. Enter:

HOOKQ Dl1:

3. Follow steps 3 through 7 in I above.

When the working disk is bootstrapped, a prompt (*) will appear on
the terminal. Any file with an .LDA extension can then be loaded by entering
the file name, without the file name extension.

To load and execute TEK SPS BASIC, type:

SPSDI

To load and execute the instrument checkout software, type the name
of the .LDA file, but without the .LDA extension.

@ B-13

TEK SPS BASIC V02 System Software

APPENDIX C

POWER FAIL RECOVERY

TEK SPS BASIC provides protection of data in the event of a power
failure. In most cases, pressing the CONTINUE switch on the controller
after power is restored is all that is necessary to resume program execution.
In some cases, however, the controller may have been in the process of
transferring data to or from an instrument or peripheral storage device.
In this case, the integrity of the data cannot be assured.

When a power failure is detected by the controller, information about
the current state of the system is saved and the processor halts. When
power is restored, the following steps are taken:

1. The software performs a timing loop, waiting long enough for
the terminal to warm up. (This loop is performed regardless of the type
of terminal you have.)

2. The page is erased (a Control-Shift-K, Control-L sequence is
sent to the terminal).

3. The message PF @nnnnn is printed at the terminal, and the
terminal bell is rung. The line number of the command being executed when
the power fail occurred is represented by nnnnn. This value is zero if no
program was running when the power failed.

4. The system halts.

At this point you have a choice of options. Pressing CONTINUE on the
controller's front panel causes program execution to resume at the point
where the failure occurred.

Loading address zero into the front panel switches (all switches down)
and pressing LOAD ADDRESS and START causes a complete software reset to
be performed. This could cause a system crash if certain non-interruptable
processes were occurring when power failed (such as a nonresident command
being moved in memory). In this case, a complete software reload is
necessary.

C-1

IE

TEK SPS BASIC V02 System Software

It is possible to dump the contents of memory to a peripheral device
(such as a disk) after a power failure. After the power fail message is
printed and the system halts, the top of the controller's stack contains
the address of the first free memory location. A short dump program can
be toggled into memory starting at this location to dump memory onto the
peripheral.

After a power fail, the address of the top of the stack is contained
in memory location 428· The stack itself (starting at the address in 428)
contains the following information:

LOFREE
HIFREE
R5
R4
R3
R2
R1
R0
TPS
TKS
PC
PS

Dump Program

Address of the lowest free memory location.
Address of the highest free memory location.
Register 5
Register 4
Register 3
Register 2
Register 1
Register 0
Terminal printer status word.
Terminal keyboard status word.
Program Counter
Processor Status word

The following program can be entered starting at the location specified
in LOFREE. This sample program dumps all of memory to hard disk drive zero.
Any other peripheral could be used, however. The dump starts at block
2000(8) on the disk. Storage space required for a 28K memory is about
112(10) blocks. With this program blocks 2000(8) to 2157 are used.

C-2

Address

0CJfJCJfJfJ
0CJfJCJfJ2
0fJfJCJfJ 4
0CJCJCJfJ6
0fJCJCJ 1 0
0fJfJCJ12
0fJCJCJ1 4
0CJCJfJ1 6
0fJfJCJ20
0CJCJCJ22
0CJCJCJ24
0CJCJfJ26
0fJfJCJ30
0fJfJCJ32
0fJCJCJ34

TEK SPS BASIC V02 System Software

Code Instruction

MOV l/177412,R1

MOV l/2524,@R1

CLR -(R1)

012701
177412
012711
0fJ2524
0fJ5041
012741
010fJfJfJ
CJCJ5741

MOV #-16CJCJCJ0/2,-(R1)

TST -(R1)
105711 X: TSTB @R1
10CJ376 BPL X
012711
0CJCJfJCJ3

MOV 113, @R1

105711 Y: TSTB @R1
10CJ376 BPL Y
000000 HALT

C-3

Comments

;pick up address of
;disk address status word
;put in the disk address

;start dump at address zero
;dump all of memory

;point to the status word
;wait for disk to be ready
;loop until ready
;set write and go bits

;is it done?
; no , wait it out
;and quit when done

TEK SPS BASIC V02 System Software

APPENDIX D

SOFTWARE PATCHING

TEK SPS BASIC gives you the ability to make changes to Resident BASIC,
nonresident commands, and drivers. These changes are made when modifications
to the software are released by Tektronix via an issue of the SPS Programming
Update.

Included in this publication are all the reported software errors and
patches. Look through the list of patches and the descriptions of the
errors they fix. If any of the patches for your version and release of the
software are ones you want to implement, carefully follow the patching
directions in the SPS Programming Update. Patch your working copy of the
software. Do not patch the archive software.

NOTE
If you did not receive an issue of the
SPS Programming Update with your software,
in the U.S.A. request one by writing:

SPS Programming Update
Group 157 (94-384)
Tektronix, Inc.
P.O. Box 500
Beaverton, OR 97077

Outside the U.S.A., contact your local
Tektronix representative.

To help with the modifications, three BASIC programs are included
with your software. These programs are:

PATCH.BLD

PATCH.FIX

Creates a data file on the system device which is
used by the following programs. Input to this
program is supplied by Tektronix in an SPS
Programming Update.

Performs the actual patch when Resident BASIC
is being modified. This program is automatically
executed at system generation time (when you boot

D-1

E

PATCH.NHS

TEK SPS BASIC V02 System Software

the system) if you create a user-defined parameter
file (11 SYSBLD. DEF") by executing SYSBLD and
supplying a nonzero value in response to the
SYSBLD question "How many words do you want as
a patch area?"

Performs the actual patch when a nonresident
command or driver is being modified.

If you do any patching, you may want to save a copy of the patch files
created when PATCH.BLD was run. (Such a file has a numeric file name
extension, e.g., "PATCH.001".) Do not copy these files onto your archive
medium. Instead, copy these patch files onto a separate disk or tape and
store this separate medium with the archive software.

Resident BASIC Patches

Detailed instructions for creating patch files are supplied along
with the patch data from Tektronix, The patch file itself is created by
running the BASIC program PATCH.BLD. Input to this program consists of the
file name, file length, and the actual file data. As an aid to entering
the file contents, PATCH.BLD prompts you with item numbers that match item
numbers supplied with the patch data.

The last item entered to the program is a checksum. This value is
compared with a checksum computed by PATCH.BLD. If these values do not
match, the program stops and you must reenter the data. If the checksums
are the same, the newly created patch file is written out to the system
storage device, and you are instructed how to edit PATCH.FIX which actually
implements the patch.

Once PATCH.FIX has been edited and replaced on the system storage
device, the patch is ready to implement. Execute the SYSBLD command to
create the user-defined system parameter file "SYSBLD.DEF". When SYSBLD
asks the patch size question, enter the value supplied in the SPS Programming
Update. If more than one resident patch is to be implemented, add up the
number of words required for each and enter this total. After SYSBLD
finishes, reboot the system. Since the patch area size is nonzero, the
initialization routine will automatically load and run PATCH.FIX which
implements the correction.

D-2 @

TEK SPS BASIC V02 System Software

Patches to Resident BASIC do not change any data stored on the system
storage device. Instead, the code in controller memory (after Resident
BASIC has been loaded) is altered. This happens each time you boot the
system.

Patches to Nonresident Commands or Drivers

When a patch is required in a nonresident command or driver, create
the patch file by running PATCH.BLD the same as you would for a resident
patch. Then execute PATCH.NHS instead of PATCH.FIX. PATCH.NHS reads the
name of the command or driver to be patched, makes the changes, and writes
the edited file on the storage device. The original file is saved, with
the file name extension changed from .SPS to .BAK. Do not destroy the .BAK
file.

Since PATCH.NHS actually changes the code in the nonresident file,
it is not necessary to reserve a patch area in memory. Therefore, for a
nonresident patch you do not need to create or modify the user-defined
parameter file 11 SYSBLD. DEF" •

@ D-3

TEK SPS BASIC V02 System Software

APPENDIX E

DATA DESCRIPTORS

When you output data to a file with the WRITE command, TEK SPS BASIC
inserts data descriptors along with your data. These descriptors are used
by the READ command to interpret what kind of data is to be read in. (When
data logging, the GET command also inserts data descriptors into the
destination file.)

Normally, these descriptors are transparent to you. That is, you can
WRITE and READ files without having any knowledge of what the descriptors
actually are. However, if you need to read information output by a TEK SPS
BASIC WRITE command with software other than TEK SPS BASIC, you need the
following information.

Descriptor Format

Data descriptors are one or three bytes in length, and immediately
precede the data elements they describe. The descriptors and their meaning
can be found in Table E-1.

To better understand how these descriptors are used, let's look at
an example of a WRITE command in action. Consider the statement

WRITE #1,A,A$,B

where A is a three-element floating-point array, A$ contains the string
"HI", and Bis a floating-point number. Figure E-1 illustrates how this
information is written to the file.

E-1

Type

Floating-Point
Number

Floating-Point
Array

String

Integer Array
(data-logging
only)

Array Terminator

End of Buffer
(data-logging
only)

No-op (Data
logging only)

TEK SPS BASIC V~2 System Software

TABLE E-1

TYPES OF DATA DESCRIPTORS

Descriptor

Length: 1 byte
Byte 1: 373

Length: 3 bytes
Byte 1: 374
Bytes 2-3: Number
of elements in array.

Length: 3 bytes
Byte 1: 371
Byte 2-3: Number of
characters in string.

Length: 3 bytes
Byte 1: 375
Byte 2-3: Number of
elements in array.

Length: 1 byte
Byte 1: 372

Length: 1 byte
Byte 1: 376

Length: 1 byte
Byte 1: 370

E-2

Data E1ement

32-bit floating
point binary
number.

32-bit floating
point binary
number.

8-bit ASCII
character.

16-bit binary
integer.

none

none

none

NO.OF

TEK SPS BASIC V02 System Software

VALUE OF FIRST
ELEMENT

ELEMENTS HI ORDER LO ORDER
IN ARRAY VALUE VALUE VALUE OF VALUE OF

FLT.PT.~~~ SECOND THIRD
ARRAY LO HI LO HI LO HI ELEMENT ELEMENT

DATA DESC. BYTE BYTE BYTE BYTE BYTE BYTE~~

373 I I I I I I I I I • • •

ARRAY
TERMINATION

372

LENGTH OF
STRING

STRING ,_.__
DATA LO HI STRING
DESC. BYTE BYTE~

371

FLT. PT.
SCALAR

DATA DESC.

373

VALUE OF
SCALAR

HI ORDER LO ORDER
VALUE VALUE
~,_.__

LO HI LO HI
BYTE BYTE BYTE BYTE

2194-06

Fig. E-1. Data descriptors as output by WRITE coJDJDand.

The other way data descriptors are output is by data-logging from an
instrument directly to a peripheral file. The following statement shows
how this is done.

GET 111 FROM 112

In this example, peripheral logical unit number one is the destination
file on a disk and instrument logical unit number two is the source
instrument. Assume ILUN 112 produces an integer array of 1050 elements. The
output file would look like that described in Fig. E-2.

The NO-OP data descriptor is used in data-logging to put the integer
array elements on word boundaries (array output in data-logging is always
integer arrays). This allows the data to be placed in the output buffer a
word at a time, speeding execution.

The length information refers to the number of elements in this buffer.
Since some instruments put out varied length arrays, the GET command has
no way of knowing how many elements are to be written until the last element
is read. Therefore, the length information is either 254 (the length of
an output buffer minus the header information) , or the number of elements
in the last buffer.

E-3

TEK SPS BASIC V02 System Software

NO-OP

370

INTEGER
ARRAY

DATA DESC.

375

NO. ELEMENTS FIRST
IN THIS BUFFER ELEMENT
~~

LO HI LO HI
BYTE BYTE BYTE BYTE

Three additional buffers of similar format.

•
•

NO-OP

370

INTEGER
ARRAY

DATA DESC.

.375

•
NO. ELEMENTS FIRST
IN THIS BUFFER ELEMENT
~~

LO HI LO HI
BYTE BYTE BYTE BYTE

34 0

253 ADDITIONAL
ELEMENTS

34TH
ELEMENT

• • •

~
LO HI

BYTE BYTE

•••

ARRAY
TERM.

372

2194-07

Fig. E-2. Data descriptors as output by GET command when data logging.

In our example of a 1050 word array, there are four 254-word buffers
and one 34-word buffer. The last element in the last buffer is followed
by the array terminator data descriptor.

It is possible, as in the case of 1016-word array, that the last
element of the array exactly fills the last buffer. In this case, another
buffer with length zero is written to the peripheral file, and the only
information in the buffer is the array terminator data descriptor.

The size of the output buffer is dependent on the output device. The
above examples assumed a disk file with 256-word buffers. Other peripherals
may use different sizes for their buffers.

E-4

TEK SPS BASIC V02 System Software

APPENDIX F

STANDARD HARDWARE BOOTING PROCEDURES FOR TEK SPS BASIC va2

M9301 Bootstrap ROM Card

A. Perform either 1 or 2 below.

1. On a controller without switch registers:

Press CNTRL-BOOT.

2. On a controller with switch registers:

a. Press HALT.
b. Enter the bootstrap address

(usually either 173000 or 173010) on the switch registers.
c. Press LOAD ADDRESS.
d. Press ENABLE.
e. Press START.

B. In response to the prompt character ($) printed on the terminal,
type the device name and drive number, followed by a carriage return.
The devices supported by the M9301 and TEK SPS BASIC V02 are:

DXn where n is a 0 or 1

DKn where n is an integer between a and 7, inclusive.

M9312 Bootstrap ROM Card

A. Perform either 1 .2!'.: 2 below.

1. On a controller without switch registers:

Press CNTRL-BOOT.

@ F-1

TEK SPS BASIC V02 System Software

2. On a controller with switch registers:

a. Press HALT.
b. Enter the bootstrap address

(usually either 173000 or 173010) on the switch registers.
c. Press LOAD ADDRESS.
d. Press ENABLE.
e. Press START.

B. In response to the prompt character ($) printed on the terminal,
type the device name and drive number, followed by a carriage
return. The devices supported by the M9312 (with the required ROM)
and TEK SPS BASIC V02 are:

DXn where n is a 0 or

DKn where n is an integer between 0 and 7, inclusive.

DLn where n is an integer between 0 and 3,inclusive
(not supported by TEK SPS BASIC V02-01)

DYn where n is a 0 or
(not supported by TEK SPS BASIC V02-01)

Standard ROM Bootstrap on SBT Module in CP4165

A. Press RESTART.

B. In response to the prompt (DEV=) printed on the terminal, type:

DXn where n is a 0 or 1

Do not enter a carriage return.

F-2

TEK SPS BASIC V02 System Software

APPENDIX G

A METHOD FOR MORE ACCURATE TIMING WITH WAIT AND SIFTO

Due to the different types of memory available (including cache), the
timing in the WAIT and SIFTO commands is not always as accurate as some
applications demand. Here are some simple methods to calculate a calibration
ratio specific to your system by using a stopwatch. The ratio can be used
to adjust the WAIT and SIFTO commands for more accurate timing.

To calculate a ratio for the WAIT command, use the following program:

10 LOAD 'WAIT','PRINT'
20 PRINT 'WHEN YOU ARE READY, SIMULTANEOUSLY HIT A KEY'
30 PRINT 'AND TURN ON THE STOPWATCH'
40 PRINT 'WHEN THE TERMINAL BELL RINGS, TURN OFF THE STOPWATCH'
50 WAIT
60 WAIT 30000
70 PRINT ,~G'

80 PRINT 'INPUT TIME FROM THE STOPWATCH'
90 INPUT T
100 PRINT 'THE WAIT-ADJUSTMENT RATIO: ';30/T

The timing portion of the program takes 20-40 seconds to complete;
exact time depends upon the computer type. Now, whenever you use the WAIT
command with this system, multiply the time you want to wait by the WAIT
Adjustment Ratio.

To calculate a ratio for the SIFTO command, use the following program.
A GPIB instrument should be connected to the interface and turned on. Lines
20 and 80 should use the interface number your hardware is strapped for.

10 LOAD 1 GPI 1 , 1 RASCII','SIFTO','PRINT 1 , 1 0NERR 1 , 1 WAIT'
20 SIFTO @0,30000
30 ONERR Z GOTO 100
40 PRINT 'WHEN YOU ARE READY, SIMULTANEOUSLY HIT A KEY'
50 PRINT 'AND TURN ON THE STOPWATCH'
60 PRINT 'WHEN THE TERMINAL BELL RINGS, TURN OFF THE STOPWATCH'
70 WAIT
80 RASCII A$ FROM @0
90 RETURN

G-1

TEK SPS BASIC V02 System Software

1~0 PRINT 'AG'
11~ PRINT 'INPUT TIME FROM THE STOPWATCH'
12~ INPUT T
13~ PRINT 'THE SIFTO ADJUSTMENT RATIO: ';30/T

The timing portion of the program takes 20-40 seconds to complete;
exact time depends upon the computer type. Now, whenever you use the SIFTO
command, multiply the timeout value you want to specify by the SIFTO
Adjustment Ratio.

A convenient way to implement this in a program is to set a variable
to the value of the calculated adjustment ratio. Then each time the SIFTO
command is used in the program, specify the time-out value with the desired
time-out period multiplied by that variable. If the program is run on
another computer, only the single line defining the variable needs to be
changed.

G-2

TEK SPS BASIC V~2 System Software

APPENDIX H

SIZES OF TEK SPS BASIC va21vaxM
NONRESIDENT COMMANDS AND DRIVERS

The memory size listed for each nonresident command and driver refers
to the approximate number of words of controller memory required to load
that particular module. This size may change with a new release of the
module. The amount of memory needed to execute the command or driver may
be considerably more.

Approxi•ate Size of TEK SPS BASIC va2 Modules

Va2 Module Size in Words Va2 Module Size in Words

ABORT.SPS 28 DK.SPS 1551
ADLOG.SPS 657 DL.SPS 1714
ADPLOT.SPS 1809 DLOG.SPS 984
ATAN2.SPS 371 DPO.SPS 3911
BITCLR.SPS 126 DRAW.SPS 67
BITSET.SPS 126 DRAWON.SPS 14
BITTST.SPS 146 DX.SPS 1545
BOOT.SPS 244 DY.SPS 1620
CANCEL.SPS 221 EDGE.SPS 484
CHAIN.SPS 144 EDGEAD.SPS 378
CHANGE.SPS 908 ENVDPO.SPS 317
CLEAR.SPS 126 EOF.SPS 37
CLK.SPS 392 FORMAT.SPS 275
CONVL.SPS 1579 GET.SPS 99
COPY.SPS 584 GETBLK.SPS 142
CORR.SPS 1667 GETFRE.SPS 48
CT.SPS 1091 GETLIN.SPS 25
DATE.SPS 199 GETLOC.SPS 206
DAVG.SPS 957 GETPRI.SPS 26
DEFECT.SPS 177 GETR5.SPS 37
DEFINE.SPS 185 GETSTA.SPS 243
DEVCLE.SPS 170 GIFES.SPS 62
DIFF.SPS 439 GIN.SPS 155
DIR.SPS 653 GPI.SPS 1051
DISPLA.SPS 355 GRAPH.SPS 2209

H-1

IEI

TEK SPS BASIC V02 System Software

V(12 Module Size in Words V(12 Module Size in Words

HASH.SPS 126 ONERR.SPS 165
HINPUT.SPS 279 OPRINT.SPS 399
HOOK.SPS 1070 OSET.SPS 123
HOOKQ.SPS 1103 OVERLA.SPS 111
HPRINT.SPS 407 OVLOAD.SPS 499
HSET.SPS 133 OVLSAV.SPS 415
IFDTM.SPS 121 PAGE.SPS 26
IGNORE.SPS 97 POLAR.SPS 587
INITG.SPS 28 POLL.SPS 334
INPREQ.SPS 114 PP.SPS 459
INPUT.SPS 313 PPOLL.SPS 64
INS.SPS 3008 PR.SPS 205
INSTAD.SPS 663 PRINT.SP$ 307
INSTAL.SPS 663 PRIORI.SPS 14
INT.SPS 234 PUT.SPS 72
IV.SPS 313 PUTBLK.SPS 151
KBE.SPS 1146 PUTLOC.SPS 126
KBG.SPS 1099 RANDOM.SPS 71
KBN.SPS 855 RASCII.SPS 340
KBT.SPS 852 RBYTE.SPS 71
LASTST.SPS 103 RDRAW.SPS 67
LIST.SPS 609 READBI.SPS 448
LISTVA.SPS 573 READU.SPS 347
LOCAL.SPS 170 REJECT.SPS 115
LOCKKB.SPS 19 RENAME.SPS 239
LOCKOU.SPS 56 RENUM.SPS 284
LOCKSR.SPS 23 REPLAC.SPS 158
LP.SPS 340 RESCHE.SPS 94
LST.SPS 828 RESET.SPS 46
MAP.SPS 1396 RESETG.SPS 28
MAPAD.SPS 1396 REWIND.SPS 22
MATCH.SPS 173 RFFT.SPS 1643
MODE.SPS 119 RFFT1 .SPS 1392
MOVE.SPS 65 RMOVE.SPS 65
MT.SPS 1206 RSDRAW.SPS 67
NORMAD.SPS 610 RSMOVE.SPS 65
NORMAL.SPS 535 RSTBUS.SPS 65
ODT.SPS 1738 SAVE.SPS 146
OINPUT.SPS 269 SCHEDU.SPS 361

H-2

TEK SPS BASIC V02 System Software

Va2 Module Size in Words Va2 Module Size in Words

SDRAW.SPS 67 TIME.SPS 241
SEEVIE.SPS 95 TRIGGE.SPS 170
SEEWIN.SPS 95 UNLOG.SPS 645
SETDAT.SPS 185 UNSCHE.SPS 71
SETGR.SPS 433 VARADR.SPS 53
SETTIM.SPS 217 VARCLR.SPS 188
SGIN.SPS 143 VARSET.SPS 188
SIFCOM.SPS 184 VARTST.SPS 147
SIFLIN.SPS 192 VERSIO.SPS 268
SIFTO.SPS 39 VIEWPO.SPS 89
SMOVE.SPS 65 VM.SPS 1333
SQUISH.SPS 1800 WAIT.SPS 81
SRQDIS.SPS 64 WASCII.SPS 333
SRQENA.SPS 71 WBYTE.SPS 106
STAT.SPS 798 WHEN.SPS 101
STATUS.SPS 745 WINDOW.SPS 78
STERMC.SPS 68 WRITE.SPS 143
SYSBLD.SPS 867 WRITEU.SPS 394
TD.SPS 2353 XYPLOT.SPS 2094
TDPLOT.SPS 1817 ZERO.SPS 55
TIFL.SPS 59 ZREF.SPS 207

@ H-3

TEK SPS BASIC V~2 System Software

Approximate Size of TEK SPS BASIC VU2XM Modules

VU2XM Module Size in Words VU2XH Module Size in Words

ABORT.SPS 28 GET.SPS 99
ADLOG.SPS 657 GETBLK.SPS 152
ADPLOT.SPS 1825 GETFRE.SPS 76
ATAN2.SPS 411 GETLIN.SPS 30
BITCLR.SPS 145 GETLOC.SPS 230
BITSET.SPS 145 GETPRI.SPS 31
BITTST.SPS 169 GETR5.SPS 38
BOOT.SPS 244 GETSTA.SPS 257
CANCEL.SPS 221 GIFES.SPS 73
CHAIN.SPS 144 GIN.SPS 161
CHANGE.SPS 908 GPI.SPS 1053
CLEAR.SPS 126 GRAPH.SPS 2209
CLK.SPS 392 HASH.SPS 126
CONVL.SPS 1996 HINPUT.SPS 288
COPY.SPS 584 HOOK.SPS 1070
CORR.SPS 2154 HOOKQ.SPS 1103
CT.SPS 1091 HPRINT.SPS 407
DATE.SPS 212 HSET.SPS 140
DAVG.SPS 1040 IFDTM.SPS 121
DEFECT.SPS 180 IGNORE.SPS 97
DEFINE.SPS 185 INITG.SPS 28
DEVCLE.SPS 170 INPREQ.SPS 114
DIFF.SPS 515 INPUT.SPS 329
DIR.SPS 653 INS.SPS 3165
DISPLA.SPS 355 INSTAD.SPS 725
DK.SPS 1551 INSTAL.SPS 725
DL.SPS 1714 INT.SPS 283
DLOG.SPS 984 IV.SPS 313
DPO.SPS 3990 KBE.SPS 1146
DRAW.SPS 67 KBG.SPS 1099
DRAWON.SPS 14 KBN.SPS 855
DX.SPS 1545 KBT.SPS 852
DY.SPS 1620 LASTST.SPS 116
EDGE.SPS 602 LIST.SPS 609
EDGEAD.SPS 489 LISTVA.SPS 573
ENVDPO.SPS 317 LOCAL.SPS 170
EOF.SPS 37 LOCKKB.SPS 19
FORMAT.SPS 275 LOCKOU.SPS 56

H-4

TEK SPS BASIC V~2 System Software

V(12XM Module Size in Words V(12XM Module Size in Words

LOCKSR.SPS 23 RENUM.SPS 284
LP.SPS 340 REPLAC.SPS 158
LST.SPS 828 RESCHE.SPS 94
MAP.SPS 1549 RESET.SPS 46
MAPAD.SPS 1549 RESETG.SPS 28
MATCH.SPS 178 REWIND.SPS 22
MODE.SPS 119 RFFT.SPS 2014
MOVE.SPS 65 RFFT1. SPS 1677
MT.SPS 1206 RMOVE.SPS 65
NORMAD.SPS 665 RSDRAW.SPS 67
NORMAL.SPS 571 RSMOVE.SPS 65
ODT.SPS 2231 RSTBUS.SPS 65
OINPUT.SPS 278 SAVE.SPS 146
ONERR.SPS 165 SCHEDU.SPS 361
OPRINT.SPS 399 SDRAW.SPS 67
OSET.SPS 130 SEEVIE.SPS 108
OVERLA.SPS 111 SEEWIN.SPS 108
OVLOAD.SPS 500 SETDAT.SPS 185
OVLSAV.SPS 415 SETGR.SPS 433
PAGE.SPS 26 SETTIM.SPS 217
POLAR.SPS 670 SGIN.SPS 149
POLL.SPS 338 SIFCOM.SPS 184
PP.SPS 459 SIFLIN.SPS 192
PPOLL.SPS 71 SIFTO.SPS 39
PR.SPS 205 SMOVE.SPS 65
PRINT.SPS 307 SQUISH.SPS 1800
PRIORI.SPS 14 SRQDIS.SPS 64
PUT.SPS 72 SRQENA.SPS 71
PUTBLK.SPS 151 STAT.SPS 858
PUTLOC.SPS 140 STATUS.SPS 806
RANDOM.SPS 76 STERMC.SPS 68
RASCII.SPS 345 SYSBLD.SPS 960
RBYTE.SPS 76 TD.SPS 2415
RDRAW.SPS 67 TDPLOT.SPS 1827
READBI.SPS 554 TIFL.SPS 66
READU.SPS 362 TIME.SPS 254
REJECT.SPS 153 TRIGGE.SPS 170
RENAME.SPS 239 UNLOG.SPS 707

H-5

TEK SPS BASIC V~2 System Software

Va2XM Module Size in Words Va2XM Module Size in Words

UNSCHE.SPS 71 WASCII.SPS 333
VARADR.SPS 79 WBYTE.SPS 106
VARCLR.SPS 202 WHEN.SPS 101
VARSET.SPS 202 WINDOW.SPS 78
VARTST.SPS 158 WRITE.SPS 143
VERSIO.SPS 268 WRITEU.SPS 394
VIEWPO.SPS 89 XYPLOT.SPS 2112
VM.SPS 1260 ZERO.SPS 55
WAIT.SPS 81 ZREF.SPS 153

H-6 @

TEK SPS BASIC V02N02XM
070-2501-00

YOUR COMMENTS COUNT

The Manual Writers at Tektronix, Inc. are interested in what you think about this manual, how you use it, and
changes you might like to see in future manuals. Any queries regarding this manual will be answered personally.

What did you find that was:

interesting? ---------------------------------

frustrating? ---------------------------------

helpful?----------------------------------

confusing?----------------------------------

Is there anything you would like to see added to or deleted from this manual?------------

What is your major application area for this product? --------------------

Have you found any interesting applications, operating hints, or software routines which you would like to share with

us? --------------------------------------

* * * * *
Name: _________________ Position: _______________ _

Company: ________________ Department: ---------------

Street:-------------------------------------

City: _________________ State: _________ Zip:

Fold on dotted lines and tape.
Postage will be paid by Tektronix, Inc. if mailed in U.S.A.

BUSINESS REPLY MAIL
No postage necessary if mailed in the United States

Postage will be paid by

TEKTRONIX, INC.

P.O. Box 500

Beaverton, Oregon 97005

ATTN: SPS Documentation Group 157 - 94-384

FIRST CLASS

PERMIT NO. 61
BEAVERTON. OREGON

MANUAL CHANGE INFORMATION
6-10-80

COMMTTEDmEXCELLENCE Date: ---·
Cl/680 Change Reference: _______ _

Product: -·~·~J<-~]_'S l~~SlC '!_~2_{_v!}~XM ~~57~g-~LCP5 7 50~ _. 070-2501-00 Manual Part No.: ____________ _

DESCRIPTION
'=====·=-====-=--.... -. -.-.. ---·~--~·-~c~-~-=-····--==-==····=--=··=-=======================t

MANUAL CHANGE INFORMATION

REV A, JUNE 1980

p. vii

p. 1-8

Page number corrections in SECTION 6:

Change "A typical System 'i-1" to read 6-2

Change "Data Lines 6-4" to read 6-5

New paragraph--insert above 1st paragraph beginning
"Fi 12;ure 1 -2 shows a ... "

[NOTE: This addition moves text and necessitates new page masters
for p. 1-1 0, 1-11 , CJ.nd 1 -12.]

The system software includes peripheral overlay files which also have

the .OVL file-name extension. These .OVL files are used by certain peripheral

commands, such as HOOK and HOOKQ, to supplement the device-driver modules.

Unless the specified device is DX or DK, in order for such commands to

execute properly, the correspondin~ .OVL file (e.g., OL.OVL and DY.OVL)
must be on the system device or the target device. If you make your working

copy of the system software oy following the archiving procedures outlined
in Appendix B, the proper files wlll be stored on your working disk.

p. 3-2 New oa.rnrI;r·aph--jnsert ;c1bove "NOTE"

In order for LOADER to load .LOA fjles other than SPSDX.LDA and SPSDK.LDA,
the appropriate peripheral overlay file for the device (e.g., DL.OVL and

DY.OVL) must be on either the current system device or the target device.

p. 4-47 New paragraph--inser't above "Using the Syntax Options:"

[NOTE: This addition m0ves text and necessitates new page master
for p. 4-118]

If the first line of a scheduled routine is DELETEd, the entry in the
Scheduler is updated to point to the line following the DELETEd line(s).
(The function and parts of the Scheduler are explained in Section 1.)

Page l of 3

TEK SPS BASIC V02/V(/J2XM 6-10-80 Cl/680 Product: _______________ Date: _______ Change Reference: ______ _

DESCRIPTION

p. 4-242 Text addition changes paragraph following
"Using the Syntax Option:" to read:

The optional expression specifies the approximate number of milliseconds
(1/1000 of a second) that program execution WAITs. The expression, when
evaluated, is rounded to an integer. The largest acceptable result is
32767. If the expression is omitted, the resulting untimed pause must be
terminated by a keyboard interrupt.

p. 4-254 Text correction replaces 2nd paragraph beginning "[WRITEU does not ... "

[WRITEU does not output the TEK SPS BASIC data descriptors as the

WRITE command does. Nor does WRITEU output any delimiters between data
i terns, such as a carriaise return, the way the PRINT command does. For this
reason, the files output by WRITEU are sometimes called unformatted binary
files.]

p. 6-1

p. 6-67

Text addition--insert above the title
"Introduction to the IEEE 488 Bus":

[NOTE: This addition moves text and necessitates new page masters
for p. 6-1 through 6-5.]

NOTE

Before attempting to control an instrument via this
driver and its commands, consult the GPIB program
ming information in the manual for the instrument.

Text addition changes paragraph following

"Using the Command Syntax:" to read:

The expression foJlowing the at sign (@) is the number of the IEEE
488 interface which is assigned the time-out value. The second expression
specifies the time-out value in milliseconds. The driver default time is
5 milliseconds. The largest acceptable time-out value is 32767 milliseconds.
Specifying -1 indicates that the driver should wait indefinitely.

Page 2 of 3

TEK SPS BASIC V02/V02XM. 6-10-80 Cl/680 Product: ______________ Date: _______ Change Reference: _____ _

p. G-1

DESCRIPTION

Text addition to end of 3rd paragraph beginning
"The timing portion ... "

(The longest time you can specify in a WAIT command is 32767 milliseconds.
If the product of the WAIT Adjustment Ratio times the desired waiting time
is greater than 32767 milliseconds, use more than one WAIT statement.)

p. G-2 Text addition to end of 1st paragraph beginning
"The timing portion ... "

(The longest time-out you can specify in a SIFTO command is 32767 milliseconds.
If the product of the SIFTO Adjustment Ratio times the desired time-out
value is greater than 32767, use more than one SIFTO statement.)

Page 3 of 3

ATTENTION:

TIK SPS BASIC Vf 1 Users

ConTerting to Vf2

& BASIC Conversion Progra•

There are some differences between TEK SPS BASIC V01 and TEK SPS BASIC
V02. These differences should not affect most of your programs, but in
case they do, we have included a BASIC program on your disk or diskette
to aid you in converting your V01 programs to V02. You should find the
conversion program, V01V02.CNV, easy to use. Just OLD in and RUN V01V02.CNV
under va2 TEK SPS BASIC. Then, when the appropriate message(s) appears on
the terminal, type the name of the program to be converted and the device
on which it resides.

NOTE: Before running V01V02.CNV for the first time, make this simple
change to it. Bring the conversion program into controller memory by typing:

OLD "V01Vl12. CNV""

Then add the line

161135 IF LEN(IL$) = 0 THEN GOTO 1611711

and save the updated version:

If this change is not made and the program being converted does not use
the IEEE 488 Interface driver (GPI.SPS), the conversion program will change
all DETACH statements to REM statements.

As V01V02.CNV changes your program, it will log all the changes to
the terminal and/or line printer. If V01V02.CNV cannot change a line of
the program, a warning message is printed to identify the line.

When the changes are completed, you may request that a new program
file be created, with all changes included. The file may be written to any
file-structured device supported by SPS.

1

If your program uses the IEEE 488 Interface driver {GPI.SPS) and
commands, the va1 syntax can be converted to va2 syntax after you supply
the IEEE 488 Interface number and the ILUN used in va1 to attach the
interface.

What the Conversion Progra• Can Bandle

The following is a list of exceptions to compatibility between va1
and va2 user BASIC programs that the conversion program can detect. The
way the conversion program handles these exceptions is detailed within
square brackets.

1. For va2, the cassette is no longer supported as a system device. SPSCT.LDA
is not sold with the main package. The BOOT co11111and will not work with a
cassette. [If a program being converted has a BOOT CT: statement, a message
is printed and the statement is changed to a remark (REM statement).]

2. The V@2 ONERR command has been improved to take usage into account, so
an ONERR statement may not function exactly as it would under va1. [The
conversion program flags all ONERR statements by printing the statement
on the logging device with a message to check the usage.]

3. The syntax of the va2 SCHEDULE and UNSCHEDULE commands have been changed
to allow the proper renumbering of the referenced line numbers with the
RENUM command. [In all cases but one, the conversion program correctly
changes the syntax. If a line number is specified by an expression, however,
the syntax is changed, but a message is printed so that you can change the
expression to an actual line number.]

-· For va2, the optional commas in the OLD, LIST, and SAVE commands were
made mandatory. [The conversion program is able to change the syntax in
some cases, and prints a message in all others.]

5. The scale factor is processed differently by the Va2 TDPLOT than by the
va1 TDPLOT. This change was necessary for consistency with ADPLOT [The
conversion program handles the difference.]

6. The V02 IEEE 488 Interface driver (GPI.SPS) is different. There are two
major changes in GPI.SPS:

2

a) The driver is not ATTACHed or DETACHed in vg2. [The conversion
program can delete all such occurrences from vg1 programs.]

b) The GET, PUT, WHEN and IGNORE commands and the nonresident
commands which call GPI.SPS do not use the pound sign (f)

to talk to the driver. [The conversion program changes the
pound sign to an at sign (@) and inserts the correct interface
number.]

Vbat the Conversion Prograa Can't Bandle

There are two general areas where programs written for V91 may not
run correctly under vg2. These cannot be corrected by the conversion
program:

1. Timing.

2. Avoidance of error messages or known bugs by "programming around" them.
Some common problem areas are:

a) The computed GOSUB and computed GOTO commands have been changed
so that if the line number selector is less than 1 or greater
than the number of line numbers in the list of line numbers,
the GOSUB or GOTO is ignored. No warning is issued. (V91
software issued a fatal error if the line number selector was
out of range •)

b) The waveform units processing is simpler in vg2 than in V91.
The main difference is in error handling. In the following cases,
assume that W1, W2 are waveforms, A is an array, and V is a scalar:

1) In the case of A/W1, vg1 produced vertical units the
same as W1's. vg2 produces vertical tmits the inverse
of W1's. There is no impact to your program Wlless the
vertical Wlits produced by vg1 bothered you and you
implemented changes in your programs. In this case,
running the programs Wlder vg2 will produce errors in
vertical Wlits.

2) In any of the following cases, yg1 output a delta (~)

to indicate potential incompatibilities between Wlits,

3

while va2 does not. There is no impact to your program
unless you deliberately changed the units to accommodate
the delta:

W1'A A+W1 W1+A W1/V

A'W1 W1-A A+W1 W1+V
W1/A A-W1 V+W1 W1-V

A/W1 W1tV w1•v V+W1

W1+A W1+W2 v•w1 V-W1

4

