September 15, 1977 Vol. 4, No. 10 Staff: Burgess Laughlin (Editor) and Scott Sakamroio‘ (Artﬂbirector).
Ext. 5674 Delivery Station 50-462

llsmg High Level
languages

4»,5%?ﬁ_‘

INITIALTIZE

Using High Level Languages
For Firmware Development

Larry E. Lewis and J. Lynn Saunders

This article is a later version of a
paper the authors submitted to
COMPCON. The paper and ac-
companying slide show will be
presented September 6, 1977 in
Washington, D.C.

High level languages (HLL) can
be powerful tools in firmware
development for microprocessor-
based products. HLL’s are not the
perfect solution for all program-
ming problems, but if you're
aware of the languages’ strengths
and weaknesses you can cut ex-
pensive firmware development
time.

First we will look at the pros and
cons of HLL’s, then examine
techniques you can use to enhance
their natural power. And, last, if a
HLL is right for your project, we
will lay out the features you
should look for.

Benefits of HLL's

Low Development Time

“Statements written per unit time”
measures programmer productivity
without regard to the level of the
statements. (Level is the number
of machine instructions produced
from a statement where the lowest
level is one and the highest level
might be twelve).! In general, the
higher the level of the statement,
the greater portion of the task the
statement implements, hence fewer
statements are required. Since the
statement rate is constant, coding
time is lower with a HLL.

Mind-sized Tasks

When thinking in a HLL rather
than an assembly language, the
mind is free of mundane, tedious,
and detailed tasks such as keeping
track of what each accumulator
holds. The programmer can focus
on the problem rather than on the
idiosyncracies of the machine.

Most of the examples in the
article use TESLA code.

TESLA was conceived by the
Software Engineering group (in
the Scientific Computer Center)
during the summer of 1975. The
language is an ALGOL derivative
similar to PASCAL. Some of the
features of PASCAL have been
enhanced and made more friendly.
A successful implementation was
available in the summer of 1976
and was used by the authors to
develop one of the firmware

packages described in this article.

The authors wish to congratulate
the language designers and imple-
menters for their farsightedness in
undertaking such a worthwhile
project, and for being receptive to
comments and suggestions from
users. Tektronix has a distinct
advantage in having such a useful
tool for the rapid development of
firmware.

—Larry Lewis
—Lynn Saunders

Friendly Keywords

Modern HLL'’s use friendly key-
words that closely parallel the
English words used to describe the
problem. Phrases like IF, THEN,
ELSE; DO, WHILE; REPEAT,
UNTIL; and CASE, OF are ob-
vious to the programmer. The task
of translating thought into a lan-
guage that the computer under-
stands is easier with a HLL.

Self Documenting

Friendly keywords also make pro-
grams easier to understand
because HLL source statements
are easier to read than an as-
sembly language source listing.
And that means a greatly reduced
need for comments and possibly
elimination of the flow chart
phase of the development process.

One method we have used to
evaluate performance is to let the
programmer’s peers read his code.
The HLL code can be understood
with few or no comments. Fig-
ure 1 is an example of HLL code.

Easy to Debug

Errors are proportional to the
lines of code produced.? Since
HLL’s produce more code from
the same number of instructions,
there will be fewer errors to de-
bug. In our experience, more than
one-half of the errors associated
with hand-coded assembly
language can be eliminated using
the compiler of the HLL. For ex-
ample, keeping track of what is in
each index register is an activity
that may produce errors in
assembly language coding, but is
performed automatically by a
HLL compiler.

Encourages Good Pro-
gramming Techniques

Block structured HLL's with rich
control structures allow and en-
courage the designer to use block-
structured programming tech-
niques in solving his problems.
Such modular design produces
more reliable code for a variety of
reasons.33

Similarity to Programming
Design Languages

Some HLL's available for micro-
processor firmware development
are similar to programming design
languages (PDL’s) reported in the
literature.4 Some programmers at
Tektronix are successfully imple-
menting the flow chart phase of
the firmware design process using
PDL’s. The PDL’s being used are
essentially the same, in keywords
and structure, as the HLL used in
the coding phase. The translation
is a trivial one. The programmer
feels he has a machine which can
execute his flowcharts.

Using a high level language to
develop firmware means the pro-
duct designer can check (through
execution) his design sooner.
There are a lot of products on the
market now that are micro-
processor-based, but they have
unproven user interfaces. It is very
important to check out these inter-
faces early in the design phase.
HLL’s make this possible.

Supports Structured Pro-
gramming Techniques

Many HLL’s available for micro-
processor firmware development
were designed to be easily used
with structured programs. Struc-
tured programming techniques are
much discussed in the literature,
and are increasingly accepted in
practice.’ It has been our experi-
ence that using structured pro-
gramming techniques and a HLL
reduces development costs and
improves program reliability.

PROCEDURE /PROGRAM.ENTRY/

VAR

ENDV
CON

ENDC
EXT

ENDE
REPEAT

v
v
\%
\Y
C
C
C
E
E
E
E
R
R
R
R

ENDI

BINARY*8:KEYCODE
LOGICAL*8:STEPMODE,QEMPTY

BINARY*8:STEPKEY/13H/

PROCESS.COMMAND,DISPLAY.INSTRUCTION
GET.KEYPUSH,DISGARD.KEYPUSH,QTEST

IF NOT STEPMODE THEN
PROCESS.COMMAND(STEPMODE)

IF STEPMODE THEN
DISPLAY.INSTRUCTION
GET.KEYPUSH(KEYCODE)

IF KEYCODE=STEPKEY THEN
DISGARD.KEYPUSH

ELSE

STEPMODE=FALSE

ENDI
ENDI

QTEST(QEMPTY)
UNTIL QEMPTY OR STEPMODE

ENDR

RETURN
END.

Figure 1. Even without the use of comments, high level language code
is much easier to read than assembly language code.

Portability

HLL'’s are more machine indepen-
dent than assembly languages.
Hence, more code written with a
HLL will be portable than it

would be using assembly language.

Utility routines such as stack and
queue manipulators, floating point
math packages, and number con-
version packages, are common to
many projects, so portability is
desirable.

Easy to Maintain and
Modify

The idea that “once the ROM’s
are burned, the maintenance is
over,” is false. Figure 2 shows a
ROM package that has undergone
seven releases in two years of pro-
duction. One must not assume
that once the product is in pro-
duction the software task is
complete. Life cycle costs for firm-
ware products are similar to those
for software products. Our con-
clusion is that maintenance is as
important in firmware as it is in
software, and that maintenance is
simplified when the programming
medium is a HLL. 3

Objections

This section examines the argu-
ments made against using HLL's
for firmware development. Many
studies have reached the conclu-
sion that the use of a HLL is
warranted only when the number
of systems to be reproduced is
relatively small.6

Small Examples

The examples used by many eval-
uators of HLLs are too simple to
accurately measure how well the
HLL will do when applied to a
task where modularity and struc-
ture are forced on the program-
mer. The structure of a firmware
module longer than 1000 state-
ments is impossible to fully
comprehend as a whole. Yet, to
make global optimizations, such
understanding is critical. Thus the
assembly language programmer
reaches a point of diminishing
returns optimizing his code.

Assumption of User
Ignorance

Most benchmarks assume the pro-
grammer uses the full power of
the language without knowledge
of the type of code it produces.

In reality, much more efficient
code can be produced by intelli-
gent use of the HLL (by keeping
in mind the things it does well and
the things it does poorly). Our ex-
perience shows that two weeks
spent learning these kinds of
things improves efficiency by an
average of 30%.

Failure to Consider
Memory Quantum Size

Since the quantum size of physical
ROM is doubling every eighteen
months, the size of a load module
in which the space efficiency be-
comes important increases at the

same rate. So, with today’s tech-
nology, if you have a load module
which contains 12 kilobytes of
code and you have 8 kilobyte
ROM’s, you stand to gain little
by reducing the size of the load
module unless you can do so by
at least 33%.

R R - e R R N e e NG bt g R e R e] -]
Firmware Development

Technigues

The techniques we will discuss
have proved successful in the im-
plementation of two 20 kilobyte
ROM images to be reproduced in
quantities of about 1000 per year.

Learn the Things the
Compiler Does Well

The designer needs to learn the
type of code the HLL produces in
order to use those constructs that
produce efficient code, and to
avoid those that do not. (With our
HLL, this was important in pass-
ing parameters to procedures.)

If the compiler produces assembly
language as object and can pro-
duce a listing with the correspond-
ing assembly embedded in the
source code, this task of “learning”
the compiler is simplified. (The
compiler can be thought of as a
sophisticated assembler with an
extensive, predefined macro cap-
ability.) An example is shown in
figure 3. Statements 13 and 14
(line numbers 42 and 51) in the
figure produce poorly optimized
code since this version of the
compiler does not recognize con-
stant subscripts. The figure shows
statements 13 and 14 replaced
with optimized assembly code.

Code Critical Paths in
Assembly Language

The ability to execute the com-
piler’s output and measure its
performance lends itself well to
selective optimization, especially
speed optimization. If a loop con-
tains 20% of the code, but
consumes 80% of execution time,
it probably would be wise to
encode parts of that loop in
“hand-rubbed” assembly code.

Our experience shows, and it is
corroborated in the literature, that
programs typically spend more
than 909% of their time in less than
109% of their code.

An Example

Figure 4 summarizes attributes of
five firmware development pro-
jects with which the authors are
familiar.

Number of Functions is a measure
of the overall complexity of the
task implemented and correlates
with the ROM image size.

Stored Program indicates whether
or not the task supports programs
definable by the user. Some kind
of memory management is
implied.

VDOVZSrXCITOTMOOD >

Ex KN ENEN KA KN KR

Version

Figure 2. Easy maintenance is a key feature of HLL programs because
firmware may have to be changed as often as software.

Editing 1 is an indication of
whether or not simple editing (like
deleting from and adding to the
end of the program) of the user
program is allowed.

Editing 2 indicates whether or not
insertions and deletions within the
program are allowed.

Algebraic Calculations indicates
whether or not algebraic expres-
sions are processed.

Language Used indicates the pro-
gramming medium for the firm-
ware development.

RAM Space indicates the size of
RAM, in bytes, needed to support
the task, excluding user program
store.

ROM Space is the size of the
executable machine language code
masked into ROM.

Development Time is the total
time required to design the soft-
ware /firmware architecture.

Coding Time is the time required
to code the task.

Debug Time is the time required
to make the resulting code
releasable.

The complexity (Number of Func-
tions) of projects 3, 4, and 5 are
similar. However, the development
time of the HLL programs was
one-fourth to one-fifth that of the
assembly programs. The space
efficiencies are comparable. It is
difficult to compare time efficien-
cies, because all tasks operate in
real time environments and all
meet the design constraints im-
posed at product conception.

HLL Features
to Look For

Allow Linkage to Physical
Address Space

If you are using a HLL for firm-
ware development, you will need a
handle on the physical address
space. Certain physical addresses
such as interface ports and com-
mon areas with assembly language
routines need to be easily
accessible.

The programmer needs embedded
assembly statements to make the
809%-209% optimizations we discus-
sed before. Also, if the designer
needs a compiler construct which
might produce inefficient code, he
can embed a small assembly block
to perform the same action. An
effective way to do this is to en-
close the inefficient code in
comment delimiters. That enclosed
code becomes the comment des-
cribing what the assembly
language statements do, as shown
in Figure 3.

Assembler Compatible
Relocatable Blocks

It is our belief that HLL’s can
successfully be used in firmware
development only in the assembler
environment. Ideally, procedures
should be able to access global
variables across procedure boun-
daries, whether or not the pro-
cedure was written in assembly
language or HLL. If the compiler
produces assembly code as object
code, many of these criteria are
met. You should be able to easily
link the resulting modules into one
firmware module.

77/08/19. 11.29.08.

TESLA 00.01
VAR

ADDRESS*16:COPYFROM,COPYTO
CHAR*8:DISPLAY(10)
BINARY*8:COPYLEN

ENDV

PAGE 1

1 PROCEDURE /TEST2/

CON
CHAR*8:READYMSG(10)/'READY
ENDC

LDX #READYMSG+4
STX COPYFROM

EXT
COPY
ENDE

mEm Q000 <<<<<

LDX #DISPLAY+9
STX COPYTO

COPYLEN-=10
COPY(COPYFROM,COPYTO,COPYLEN)
RETURN

END.

Part of the new source code with an optimized
embedded assembly language block for state-
Original source program with statements 13 and 14 ments 13 and 14 in the original source code.
highlighted.

9

*
3 34 e o e e o ke ok ok ok ok 13
%*

TEST2 B #5
A
B 1+LI$.0004
A LI$.0004
B 1+COPYFROM
A COPYFROM

*

3 3k ok ok ok ok ok ok 3k ok 3k ok 14
%

B #10

A

B 1+LI$.0002
A LIS$.0002
B 1+COPYTO
A COPYTO

Part of the object code produced from the source code in A. It is apparent to the programmer that the
code for statements 13 and 14 could be much more efficient.

Figure 3. One technique for using HLL’s in firmware development is to learn the type of code the com-
piler produces and, where appropriate, hand optimize to produce more efficient code. This example
shows a sequence optimizing a section of source code.

3% s ok skok skok kok ok k ok
*

*
sk ok ok ok ok sk ok sk sk sk ok ok
*

TEST2

*
34 3fe ok ok ok o ok ok ok ok ok ok
3k 3k e ke ok ok ok 3k ok ke ok ok
*

*
ok ok ok sk ok ok ok sk ok ok sk ok
*

13

ENTRY TEST2
SECTION CODES$

14 ASM

*

#READYMSG+4
COPYFROM

#DISPLAY+9
COPYTO

23 COPYLEN=10

LDA B #10
STA B COPYLEN

Part of new object code showing optimized code for statements 13 and 14 in the original source

program (A).

Language Used

Number of Functions
Stored Program?

Editing 1 (1)

Editing 2 (2)

Algebraic Calculations?
RAM Space (Bytes)

ROM Space (Bytes)
Development Time (Man Months)
Design Time (Man Months)
Coding Time (Man Months)
Debug Time (Man Months)

JOB 6 (3)

NOTES

(1) Editing 1 adds these capabilities: display program, add to program, and delete last step.
(2) Editing 2 adds these capabilities: adds line numbers, arbitrary insert, and delete steps.
(3) Project 5 is similar to project 4 and uses some of the same design and code time.

Figure 4. Comparing five firmware projects, development time using HLL'’s was
about one-fourth as much time as for assembly language projects. Complexity of the
programs and space efficiencies were about the same.

Larry Lewis, software design
engineer, TM500 Engineering.

Lynn Saunders, software design
engineer, TM500 Engineering.

HLL Features Cont.

Rich Control Structures

There are several types of control
structures appropriate to top-
down, structured design. They
should be a part of the HLL used
in the firmware development pro-
cess. A minimum might be IF,
THEN, ELSEIF, ELSE, and DO,
WHILE.

Provide Good Listings

The form of listing produced by
the compiler is important. There
is a need for assembler type
mnemonics that depict the code
produced from a particular con-
struct (as in figure 3) immediately
after the construct, with clear indi-
cations of the associated physical
addresses and their contents.

A block nesting indicator for each
executable source statement is also
useful.

For More Information

If you need more information
about using HLLs to develop
firmware, call Lynn or Larry on
ext. 6640.

FOOTNOTES

1 F.P. Brooks, Jr., The Mythical Man-Month.
(Reading, Mass.: Addison-Wesley Publishing
Company, 1975).

2 "Update”, Computer, IEEE Computer
Society, Oct. 1974, p. 7.

3 Ed Yourdon and Larry L. Constantine,
Structured Design. (New York: Yourdon, Inc.,
1975), pp. 391-392.

4 Stephen H. Cain et al, "PDL—A tool for
software design,” Tutorial on Software Design
Techniques. (IEEE Computer Society, 1975),
pp. 172-177.

5 Victor R. Basili et al, Structured Program-

ming Tutorial. IEEE Computer Society, 1975).

6 Paul Rosenfeld, "Is there a high-level lan-
guage in your microcomputer’s future?,” EDN,
20 May 1976, pp. 62-67.

BACKGROUND READING

Donald J. Reifer, “Automated Aids for Reli-
able Software”, Proceedings of the 1975
Conference on Reliable Software, (IEEE 1975),
pp. 160, 171.

F.T. Baker, "Organizing For Structured Pro-
gramming”, Lecture Notes in Computer
Science, Programming Methodology, (New
York: Springer-Verlas, 1975), pp. 38-86.

B S B R e SR) PRt |
Timing
Readout

For 7D01
Logic
Analyzer

When using a logic analyzer in the
timing mode, it is often useful to
know the exact time between
events occurring at the probe. A
timing readout feature can be add-
ed to the DF1-7D01 to automatic-
ally measure and display time
differences. This feature is espe-
cially useful when many time
measurements must be made.

Other Methods

Other time measurement methods
can be used with logic analyzers,
but they require some calculating
and/or data recording (mentally
or on paper). With the LA 501,
for example, the user can count
the tick marks between events and
multiply by the sample interval
switch setting. Or, with the 7D01,
the cursor can be set at the be-

ginning and end of the interval
being investigated and the number
of samples past the trigger record-
ed for both cursor settings (T1
and T2). The time difference is

then calculated by subtracting the
first reading from the second (T2-
T1), and multiplying the result by

the sample interval switch setting.

With the timing readout feature
added to the DF1-7D01, time can
be measured between the trigger
word and cursor or between two
cursor settings. The added hard-
ware reads the position of the
7D01 Sample Interval switch and
routes that information to the
MC6800 microprocessor in the
DF1. The time measurement (in
msec, M Sec, Or nsec as appro-
priate) is read out in the upper
right corner of the crt.

Example

In the top waveform of figure 1,
the time between the trigger word
and the cursor is measured and
displayed on the crt (4500 nsec).
What about a pulse that is not re-
lated to the trigger word, (one that
occurs before or after the trigger
word)? First, the cursor is set to
the beginning edge of the pulse
(figure 2). This first cursor setting
is referenced, or set, to zero (fig-
ure 3) with a redefined DF1 push-
button called “reference time.” As
the cursor is moved from the zero-
reference point, the micro-
processor updates the displayed
time difference. In figure 4, the
difference between the first and
second cursor settings is read out
as 4.6 u sec.

Who to Call

Bruce Ableidinger, project
engineer for the DF-2.

The timing readout mod does not
alter any of the instrument’s other
operating modes. The mod does
require some wiring and the addi-
tion of one IC to the 7D01 and
one EPROM board to the DF1.
For more information, contact
Bruce Ableidinger at 39-135 or

JEu S R e e R ST S S e e S S e SRR, g S U ext. 6995.

TRIGGER
WORD

TIMING
READOUT

CURSOR

—— ———— e —— —

—_— ———,—— —— e — — —

CURSOR SET TO ZERO
~ 7BOLTRIE +168 ’

TIMING

CURSOR READOUT

Figure 1. Time measurement be-
tween (intensified) trigger word
and (intensified) cursor. Timing
readout is displayed in upper right
corner.

Figure 2. First cursor setting for

pulse width measurement.

Figure 3. First cursor setting is
referenced or set to zero for pulse

width measurement.

Figure 4. Cursor is moved to end
of pulse (second position). Timing
readout displays the time dif-
ference between the two cursor
settings.

Call for Papers

Components Conference

Five-hundred word abstracts and
extended outlines are invited for
review for the 28th FElectronic
Components Conference (April
24-26, 1978 in Anaheim, Cali-
fornia). The conference is jointly
sponsored by the Components,
Hybrids, and Manufacturing
Technology Group of the IEEE
and the Electronic Industries
Association. Abstracts and out-
lines are due October 28, 1977 and
the final papers are due February
13, 1978. Papers are invited in
these categories:

discrete components
interconnection and packaging
hybrid microcircuits

reliability, evaluation and
failure analysis

materials
manufacturing technology

Intermag Conference

Here’s your chance to visit Italy.
The IEEE Magnetics Society and
the Associazione Electrotecnica
Italiana are sponsoring the Inter-
national Magnetics Conference
which will be held in Florence
May 9-12, 1978.

The sponsors are inviting two-
page digests (not abstracts) in all
areas of applied magnetics, related
magnetic phenomena, and infor-
mation storage technologies. The
digests are due December 15, 1977
and the final papers (about six
pages long) are due March 15,
1977.

The Technical Information De-
partment (50-462, ext. 5674) is
available to help you to contact
the conference people, and to pre-

pare your abstract, outline paper,
and slide show. We provide edit-
ing, typing, illustrating, and
coaching (for your talk).

Circuits and Systems
Conference

One week before next year’s
ELECTRO conference, the IEEE
Circuits and Systems Society will
sponsor the 1978 International
Symposium on Circuits and Sys-
tems in New York City on

May 17-19.

Papers are invited in these broad
areas:

—new concepts and novel ap-
proaches to the analysis and
design of circuits and
systems.

—computer-aided techniques
for analysis and design.

—new devices and circuits in-
cluding modeling, analysis,
design and applications in
signal processing, communi-
cations, instrumentation, and
control.

There will be two kinds of papers.
Regular papers will be up to five
pages long and short papers will
be one page long. Papers are due
October 1, 1977.

A Mailing List for Software People

As a first step in assessing software resources at Tektronix, the
Scientific Computer Center is inviting all software people to sign up
on the software people’s mailing list. The mailing list will provide a
communications network for the software community at Tektronix.
Those who have signed up on the mailing list will receive the planned
software newsletter and announcements (of upcoming seminars, for
example) of interest to Tektronix software people.

Name:

e |

Delivery Station:

If you are a software person and
would like to sign up on the mail-
ing list, call Roy Carlson on ext.
7668 or fill out and mail the
coupon on this page to Roy
Carlson at delivery station 50-454.

Feedback

We are always interested in receiving feedback from our readers. Feel free at any time to call (ext. 5674)
or drop by (50-462) to let us know what you would like to see in Engineering News. We have provided
a questionnaire here to make the job easier if you would prefer writing out your comments.

1. Do you keep back issues (in whole or in part)? yes‘___l noD

2. What article in the last year has been most interesting to you? (Title or subject).

3. Which cover has been the most pleasing to you? (Subject or issue number).

4. Would you rather see Engineering News go into greater depth than it does now? Or cover more
topics? Or both? deeper coverageD wider coverage[| both[™]

5. Do you like the Engineering News format (readability and overall appearance). Rate us on a scale of
1 (bottom) to 10 (top rating):

6. Overall, have we met your need for engineering news? Rate us on a scale of 1 (bottom) to 10 (top
rating):

7. Which of these regular features are valuable to you? very valuable m

Calls for papers

In-prints (notice of Tektronix authors who have been published),

Metric conversion at Tektronix.

New technical standards.

Reprints of papers by Tektronix engineers.

New technology at Tektronix.

Special design file (a running catalogue of designs, to avoid
reinventing the wheel).

Announcements of classes and seminars.

IEEE legal and educational program news.

New Tektronix products.

News about GPIB technology.

Product safety engineering requirements and services.

Organization charts of engineering and support groups.

A letters-to-the-editor column for engineering topics
(professional or technical).

8. Additional comments?

Please mail the questionnaire to delivery station 50-462.

RETURN MAIL TO
50-462
TECHNICAL INFORMATION

€466 09
LOSG *31x9 TTeO oseoaTd ‘psaou
saAeYy nofk JT Loy useunep

