
miHaaRaRt He eEeeHeHHH Hee HF Ee HE HE SS aa Tektronix, Inc.

P.O. Box 500

Beaverton, Oregon 97077

062-3398-00

S-3030, S-3260

AUTOMATED TEST SYSTEM

GENERAL-PURPOSE

PROCESSING DATA

SUBPROGRAMS

MEASUREMENT SYSTEMS DIVISION

FIRST PRINTING JUNE 1976

SOFTWARE LICENSE

Software supplied by Tektronix, Inc., as a component of a

system or as a separate item is furnished under a license for

use on a single system and can be copied (with the inclusion

of copyright notice) only for use on that single system.

Copyright © 1976 by Tektronix, Inc., Beaverton, Oregon.

Printed in the United States of America. All rights reserved.

Contents of this publication may not be reproduced in any

form without permission of Tektronix, Inc.

U.S.A. and foreign TEKTRONIX products covered by U.S.

and foreign patents and/or patents pending.

TEKTRONIX is a registered trademark of Tektronix, Inc.

First Printing, First Edition — June 1976

Second Printing, First Edition — March 1977

Third Printing, First Edition (Revised) — December 1977

Fourth Printing, First Edition — June 1978

came amen: -_ ai7 F a Be ih § S

PREFACE

This manual describes the general-purpose processing data subprograms. You may use these subpro-

grams in device tests run in the foreground on an S-3260 or an S-3030. Also, these subprograms

may be used in background programs (that is, programs run under control of the REDUCE program)

on an S-3260, S-3030, and S-3455. The system displays the error codes (e.g., AC) mentioned in this

manual on the test station control unit PROGRAM ERROR readout display.

This manual is divided into five sections and three appendices. Section One describes the subprograms

in the TIME file that read the system date and time. Section Two documents the bit array subpro-

grams in the BARRAY file. Section Three deals with the graphics subprograms in the files GRAPH1

and GRAPHV. Section Four describes the string handling subprograms in the files STRING and

ADSTNG. Section Five describes the extended function set in the file ARITH3.

Appendix A is a summary of how to declare subprograms. Appendix B shows the decimal, octal, and

Radix-50 equivalents of the ASCII character set. Appendix C gives a summary of all subprograms

described in this manual.

This manual assumes the reader is familiar with the data reduction language.

Processing Data Subprograms

CONTENTS

NOMENCLATURE CONVENTIONS v

LOGICAL UNIT NUMBERS vii

SECTION ONE: READING THE SYSTEM AND LOGGED DATES AND TIMES

System Date and Time 1-1

Logged Date and Time 1-1

The Real-Time Clock Option 1-1

Summary of the Date and Time Subprograms 1-2

CURDAY 1-3

CURSEC 1-3

FILDAY 1-3

FILSEC 1-3

CRDATE 1-4

CRTIME 1-4

FLDATE 15

FLTIME 15

MOVDAT 1-6

MOVFDA 1-6

SECTION TWO: STORING BINARY INFORMATION IN INTEGER ARRAYS

Summary of BARRAY Subroutines 2-1

BARRAY 2-2

SETBIT 2-3

GETBIT 2-3

SETCEL 2-4

GETCEL 2-4

SETROW 25

GETROW 25

SETCOL 2-6

GETCOL 2-6

Processing Data Subprograms @

SECTION THREE: GRAPHICS

SECTION FOUR:

The Terminal Screen

Summary of the Graphics Subroutines

Direct Graphics

VECTRF

POINT

CURSOR

DRAW

CRSHR

ALFPOS

LOCATE

Proportional Graphics

DCOORD

SCOORD

MAPOUT

POINTV

VECTRV

DRAWV

CRSHRV

ALFPSV

LOCATV

Examples

STRING HANDLING SUBPROGRAMS

Storage of ASCII Character Strings

Inputting Strings from the Keyboard

Summary of Subprograms

STRNGF

STRNGS

STRNGO

STRNGI

CHARO

CHARI

SMOV

SCON

SCMP

CMPCON

CLRKB

KBSTAT

JUSTFY

FMTNUM

SPFMT

NUMOUT

PAKSYM

RADPAK

REV A DEC 1977

3-1

3-2

3-4

3-5

3-5

3-6

3-7

3-7

3-8

3-8

3-9

3-15

3-15

3-16

3-17

3-17

3-18

3-18

3-19

3-19

3-20

4-1

4-1

4-2

4-4

44

45

4-6

47

47

4-8

49

4-10

4-11

4-12

4-12

4-13

4-15

4-17

4-18

421

4-22

Processing Data Subprograms

PAKFIL

DFLTYP

DFLUID

UNPSYM

RADUP

UNPFIL

Examples

SECTION FIVE: EXTENDED FUNCTION SET

APPENDIX A:

APPENDIX B:

APPENDIX C:

INDEX

Processing Data Subprograms

Summary of ARITH3 Functions

AMAX

AMIN

IMAX

IMIN

RMAX

RMIN

SIGN

ENT

ROUND

AMOD

MOD

POS

RAN

SUMMARY OF HOW TO DECLARE SUBPROGRAMS

NUMERIC CHARACTER VALUES

FOR ASCII CHARACTERS

SUMMARY OF SUBPROGRAMS IN THIS MANUAL

4-23

4-25

4-26

4-27

4-27

4-28

4-29

5-1

5-2

5-2

5-3

5-3

5-4

5-4

5-5

5-5

5-6

5-7

5-8

5-10

5-11

A-1

B-1

C-1

NOMENCLATURE CONVENTIONS

This manual uses a standard nomenclature to show the general form of each command and its

parameters. The nomenclature conventions are:

Processing Data Subprograms

Parameters shown in upper case letters, special characters, and punctuation marks

(including blanks) are /itera/ parameters. When you use them with the command

you must type them exactly as shown in the general form.

,

Parameters shown in lower case letters are variable parameters. When you use

them with the command, you must supply a valid name or value in place of the

variable name appearing in the general form. For example, the variable name

pinnum indicates that you must specify a pin number.

Parameters enclosed in square brackets ([]) are optiona/ parameters. You may

supply these parameters or not, depending on the way you wish to use the com-

mand. (Since the brackets are a nomenclature convention only, you must not type

them when you use the command.)

A vertical list of parameters enclosed in braces ({ }) indicates that you must choose

one line from the list when you use the command. Which parameter you choose de-

pends on the function you wish the command to perform. (Since the braces are a

nomenclature convention only, you must not type them when you use the command.)

A vertical list of parameters enclosed in square brackets indicates that the parameter

is optional. If you decide to use the parameter, you must select one line from the

vertical list shown. Which parameter you choose depends on the function you wish

the command to perform.

Parameters not enclosed in square brackets or braces are mandatory parameters —

you must supply the parameter when you use the command.

When the general form shows the same parameter twice, separated by an ellipsis

(i.e., parameter,..., parameter), you may enter the parameter once or repeat it as

many times as desired.

e When parameters are nested within square brackets and braces, you interpret the

brackets and braces by working from the outermost pair of brackets or braces to

the innermost pair. For example,

a parameter1 a
5 parameter2

AND parameter3

parameter4

Y

In the above example, the outermost square brackets indicate that any parameters

which are enclosed within the brackets are optional parameters. The inner braces

indicate that if you decide to specify the optional parameters, you must select one

line from each vertical list shown.

Throughout this manual the examples show user-typed information in boldface. Information the

system prints at your terminal is shown in lightface.

In addition, this manual assumes that you type a carriage return after each line you type at your

terminal. Whenever there is any doubt about the necessity of the carriage return, it is indicated

by the symbol D>: For example,

~~

In the above example, the > symbol indicates that the user must type a carriage return after the

system prints the asterisk at the terminal.

The symbol () indicates a blank.

@ Processing Data Subprograms

LOGICAL UNIT NUMBERS

Some of the subprograms described in this manual are based on logical unit numbers (luns).

That is, you call these subprograms without specifying specific input and output devices.

The system associates the luns with peripheral devices.

The system assigns all foreground luns to the terminal at system bootup. When entering the

REDUCE program, the system assigns all luns for that background to the terminal. To

assign or change the device with which a lun is associated, use the LOG program or REDUCE

program ASSIGN command.

For more information on logical unit numbers and the ASSIGN command, see the Processing

Data manual.

Processing Data Subprograms @ vi

SECTION ONE:

READING THE SYSTEM AND LOGGED DATES

AND TIMES

This section describes the subprograms that read the system date and time, and the date and time recorded

in a log file. The TIME subprograms perform the computation and code conversion to put the date-time

value in a readable format.

The TIME file provides subprograms that:

1. Read the current date and time,

Read the date and time stored in a log file,

Return the date and time as a floating-point number,

Return the date and time as ASCII characters to a lun, and

Store the ASCII value of the date and time in a string array.aR WN
The chart below shows the relationships between the subprograms.

: : Subprograms for Subprograms for
Time? :

ew CRE ee Current System Data Log File Data

Returned as a Date CURDAY FILDAY

Floating-Point

Value Time CURSEC FILSEC

Printed in Date CRDATE FLDATE

ASCII Charac-

ters Time CRTIME FLTIME

Stores ina Deis and MOVDAT MOVEDA

String Time

In the following discussion, midnight is the start of a new day. That is, 0.0 seconds into the current day.

Printing is the process of transferring ASCII characters to an output device or file assigned to a lun.

The form hh:mm:ss, used for time, indicates two hour digits (hh), two minute digits (mm), and two

second digits (ss). For example, 13:00:53. The form ddOmmmDyyy, used for dates, indicates two day

digits (dd), the first three letters of the name of a month (mmm), and two year digits (yy) for the year

19yy. For example, 04 JUL 76.

Processing Data Subprograms

System Date and Time

The system maintains the date-time as the number of seconds from 1 January 1900 to the date-time last

entered into the system. The system requests the date and time when the system is booted. You may

change the currently specified date and time with the Executive commands DATE and TIME (see the

Command Language Reference Guide).

Logged Date and Time

A test program that logs data usually includes LOGMARKER statements to flag devices and groups of

devices. The date-time resides in the marker records. When a LOGMARKER statement executes, the

system date-time is recorded. In addition, whenever you close a log file LOG records the test date-time

in the EOF record.

record is read, the log date-time is set to the value from that record. Therefore, when you read a log

file date-time, the result is 0.0 if a marker record has not been read. Otherwise, the result is the value

from the most recently read marker record.

The Real-Time Clock Option

With the real-time clock on the system, the system date-time contains the number of seconds from mid-

night 1 January 1900 to the date and time last entered by the operator, plus the time in seconds since

that entry. Therefore, a marker record records the exact date and time the record was logged.

Processing Data Subprograms REV A NOV 1977

A “Ty When the ASSIGN command assigns a lun to a log file, it sets the log date-time to 0.0. When a marker

These subprograms are on the TIME file.

Summary of the Date and Time Subprograms

Function Declaration Purpose

CURDAY CURDAY (0) Returns the current date in

days since 1 January 1900.

CURSEC CURSEC(0) Returns the current time in

seconds since midnight.

FILDAY (e,ilun) FILDAY(N,V) Returns the date, logged in

the specified log file, in days

since 1 January 1900.

FILSEC(e,ilun) FILSEC(N,V) Returns the time, logged in

the specified log file, in sec-

onds since midnight.

Subroutine Declaration Purpose

CRDATE (olun) CRDATE(V) Prints the current date.

CRTIME(olun) CRTIME(V) Prints the current time.

FLDATE(e,ilun,olun)

FLTIME(e,ilun,olun)

MOVDAT (string,start,stop)

MOVFDA(e,ilun,string,

start, stop)

FLDATE(N,V,V)

FLTIME(N,V,V)

MOVDATI(I,V,V)

MOVFDAIN,V,I,V,V)

Prints the date logged in

the specified log file.

Prints the time logged in

the specified log file.

Stores the current date

and time in string.

Stores the date and time,

logged in the specified

file, in string.

Processing Data Subprograms

oi

o) Function Call: CURDAY
Declaration: FUNCTION CURDAY (0): TIME

Purpose: CURDAY returns the current date in days since 1 January 1900.

Function Call: CURSEC

Declaration: FUNCTION CURSEC(0);TIME

Purpose: CURSEC returns the current time in seconds since midnight of the current day.

1

N

N

i

Ml

1

M

Hl
Function Call: FILDAY (e,ilun)

A Declaration: FUNCTION FILDAY(N,V): TIME

Purpose: FILDAY returns the date, logged in the log file assigned to ilun, in days since

A -) 1 January 1900.

Arguments: ilun must be assigned to an input log file.

1

H

Ml

f

fl

A

f

e is an error indicator. If FILDAY successfully reads a date, e equals 0. If the lun

is not the correct type or is unassigned, e equals -2.

Function Call: FILSEC(e,ilun)

Declaration: FUNCTION FILSEC(N,V): TIME

Purpose: FILSEC returns the time, logged in the specified log file, in seconds since midnight

of the day the file was logged.

Arguments: ilun must be assigned to an input log file.

e is an error indicator. If FILSEC successfully reads a time, e equals 0. If the lun

is not of the correct type or is unassigned, then e equals -2.

Processing Data Subprograms @

Subroutine Call: CRDATE (olun)

Declaration: SUBROUTINE CRDATE(V): TIME

Purpose: CRDATE prints the current date in the form ddUmmmbDyy without any leading

or trailing spaces.

Argument: olun is the output lun receiving the nine ASCII characters. If the lun is unassigned

or not an output lun, then CRDATE acts as a no-op and does not print any output.

Subroutine Call: CRTIME(olun)

Declaration: SUBROUTINE CRTIME(V): TIME

Purpose: CRTIME prints the current time in the form hh:mm:ss without leading or

trailing spaces.

Argument: olun is the output lun receiving the eight ASCII characters. If the lun is

unassigned or not an output lun, then CRTIME acts as a no-op and does not

print any output.

1-4 @ Processing Data Subprograms

Declaration:

Purpose:

Arguments:

Subroutine Call:

Declaration:

Purpose:

Arguments:

Processing Data Subprograms

Subroutine Call: FLDATE(e,ilun, olun)

SUBROUTINE FLDATE(N,V,V):TIME

FLDATE prints the date logged in the selected log file in the form

dd mmm yy without leading or trailing spaces.

olun is the output lun receiving the nine ASCII characters. If olun is unassigned,

FLDATE acts as a no-op and does not print any output.

ilun is the input lun. It must be assigned to an input log file.

e is an error indicator. If FLDATE successfully reads a date, e equals 0. If the

input lun is not of the correct type or is unassigned, then e equals -2.

FLTIME (e, ilun, olun)

SUBROUTINE FLTIME(N,V,V):TIME

FLTIME prints the time, logged in the selected log file, in the form hh:mm:ss

without leading or trailing spaces.

olun is the output lun receiving the eight ASCII characters. If olun is unassigned,

FLTIME acts as a no-op and does not print any output.

ilun is an input lun which must be assigned to an input log file.

e is an error indicator. If FLTIME successfully reads the time, e equals 0. If

the input lun is not of the correct type or is unassigned, then e equals -2.

a 1-5

Subroutine Call:

Declaration:

Purpose:

Arguments:

Subroutine Call:

Declaration:

Purpose:

Arguments:

MOVDAT (string,start,stop)

SUBROUTINE MOVDAT(I,V,D): TIME

MOVDAT stores the current date-time in string. It transfers up to 19 characters

in the form hh:mm:ssJOddOmmmbDyy and pads unused string space with spaces.

string is the name of an integer array that receives the date-time characters.

start specifies the character element in string at which MOVDAT starts storing

characters. stop specifies the character element at which MOVDAT stops

storing characters.

For an explanation of strings, see Section Four of this manual. Note that if pro-

vision for only eight characters is made, MOVDAT only stores time in the string.

If start or stop is outside the integer array subscript range, then the system dis-

plays the AC error and the test program halts.

MOVFDA(c,ilun,string,start,stop)

SUBROUTINE MOVFDA\(N,V,I,V,V): TIME

MOVFDA stores the date-time, logged in the specified log file, in string in the

form hh:mm:ssJUOddOmmmbDyy. It transfers up to 19 characters and pads

unused trailing string space with spaces.

string is the name of an integer array that receives the ASCII date-time charac-

ters. start specifies the character element at which MOVFDA starts storing

characters. stop specifies the character element at which MOVFDA stops storing

characters.

ilun is an input lun which must be assigned to an input log file.

e is an error indicator. If MOVFDA successfully stores the date-time, e equals

0. If the input lun is not the correct type or is unassigned, then e equals -2.

@ Processing Data Subprograms

a
é: C| |

SECTION TWO:

STORING BINARY INFORMATION IN INTEGER

ARRAYS

The subprograms described in this section store and recover binary information (for example,

pattern data) using the integer arrays. After you define a binary array, use these subprograms

to modify and read individual bits, or groups of bits, in the binary array.

Processing Data Subprograms

The subprograms described in this section are on the file BARRAY.

Summary of BARRAY Subprograms

Subroutine Declaration Purpose

BAR RAY (iarray ,xmax,ymax,zmax)

SETBIT (state,barray ,x,y,z)

SETCEL(value,barray,x,y,z)

SETCOL(value,barray,x,y,z)

SETROW (value,barray,x,y,z)

BARRAY (1,V,V,V)

SETBIT(V,1,V,V,V)

SETCEL(V,I,V,V,V)

SETCOL(V,I,V,V,V)

SETROW(V,I,V,V,V)

Dimensions an existing integer

array into a binary array.

Modifies an individual bit of

the binary array.

Modifies a group of bits in

the X direction.

Modifies a group of bits in

the Z direction.

Modifies a group of bits in

the Y direction.

Function Declaration Purpose

GETBIT (barray,x,y,z)

GETCEL (barray,x,y,z)

GETCOL (barray,x,y,z)

GETROW(barray,x,y,z)

GETBIT(I,V,V,V)

GETCEL(I,V,V,V)

GETCOLI(I,V,V,V)

GETROWI(I,V,V,V)

Reads an individual bit of

the binary array.

Reads a groups of bits in

the X direction.

Reads a group of bits in

the Z direction.

Reads a group of bits in

the Y direction.

Processing Data Subprograms

Subroutine Call:

Declaration:

Purpose:

Arguments:

Comments:

Example:

BARRA VY (iarray xmax,ymax,zmax)

SUBROUTINE BARRAYI(I,V,V,V): BARRAY

You can store binary data in single bits within an integer array. Each array

element stores 16 binary bits. BARRAY dimensions the space in an existing

iarray into a three-dimensional bit array. BARRAY must dimension an

integer array before the other binary information subprograms can store or

recover binary data.

iarray specifies the name of the integer array in which the bit array is to be

dimensioned.

xmax, ymax, and zmax specify the dimensions in bits of the bit array. If

BARRAY attempts to exceed the space available in iarray, an AC error results.

BARRAY uses the first three iarray elements to store the dimensions of the

bit array. Therefore, the space available for the binary data is:

number of bits = (n - 3) * 16, where n is the number of iarray elements.

First, declare an integer array:

4.01 IARRAY IA(67)

Then, dimension this array into a bit array:

4.02 BARRAY(1A,8,8,16)

Therefore, IA is dimensioned to be 8 bits by 8 bits by 16 bits, for a total of

1024 bits. The total available space in IA is (67 - 3) * 16, or 1024 bits.

@ Processing Data Subprograms

Declaration:

Purpose:

Arguments:

Example:

Function Call:

Declaration:

Purpose:

Arguments:

Example:

Processing Data Subprograms

Subroutine Call: SETBIT (state, barray,x,y,z)

SUBROUTINE SETBIT(V,I,V,V,V): BARRAY

SETBIT modifies an individual bit within a bit array.

state determines if the selected bit position is set or cleared. If state equals zero,

the bit is cleared. Otherwise, it is set.

barray specifies the name of the array to be modified.

x, y, and z select the bit to be modified.

5.01 SETBIT(X,1A,5,5,10)

SETBIT sets the bit at (5,5,10) in the bit array IA if X is not zero, and clears

the bit if X is zero.

GETBIT (barray,x, y,z)

FUNCTION GETBIT(I,V,V,V):BARRAY

GETBIT reads an individual bit within a bit array.

barray specifies the name of the array which is to be read.

x, y, and z specify the bit whose value is converted to a floating-point number

and returned as the value of the function.

5.02 V = GETBIT(IA,5,5,10)

The result equals one if bit (5,5,10) is set. Otherwise, the result equals zero.

2-3

Subroutine Call:

Declaration:

Purpose:

Arguments:

Example:

Function Call:

Declaration:

Purpose:

Arguments:

Result:

Example:

2-4

SETCEL (value, barray, x,y,z)

SUBROUTINE SETCEL(V,I,V,V,V):BARRAY

SETCEL modifies up to 16 bits within a bit array.

SETCEL converts value to a 16-bit integer. Then, SETCEL uses the integer, one bit

at a time, to modify up to 16 bits in the bit array.

barray specifies the bit array to be modified.

SETCEL modifies barray by storing the least significant bit of value in (x,y,z).

SETCEL increments x and modifies the next bit with the next bit of value, until it

accesses 16 bits or reaches the maximum x value of the array.

5.03 SETCEL(V,IA,1,5,5)

SETCEL converts the value of V into an integer and uses V to modify the bits at

(1,5,5), (2,5,5), (3,5,5),... until SETCEL accesses 16 bits or reaches the maximum

X value of the array.

GETCEL (barray,x,y,z)

FUNCTION GETCELI(I,V,V,V):BARRAY

GETCEL reads up to 16 bits in a bit array.

barray specifies the bit array to be read.

Starting at bit address (x,y,z), GETCEL reads barray, one bit at a time, incrementing

x after each read. GETCEL continues until it reads 16 bits or reads the maximum

x limit.

The result of GETCEL determines, on a bit-by-bit basis, each bit of a 16-bit integer.

GETCEL converts this integer to a floating-point value and returns it as the value of

the function.

5.04 F = GETCEL(IA,1,5,5)

The least significant bit of the variable F equals one if the bit at (1,5,5) is set.

Likewise, GETCEL reads the bits at (2,5,5), (3,5,5),... to determine the value of

the corresponding bits of the variable F. As the coordinate increases, GETCEL

modifies a more significant bit.

Processing Data Subprograms

Subroutine Call:

Declaration:

Purpose:

Arguments:

Example:

Function Call:

Declaration:

Purpose:

Arguments:

Result:

Example:

Processing Data Subprograms

SETROW (value, barray, x,y,z)

SUBROUTINE SETROW(V,I,V,V,V):BARRAY

SETROW modifies up to 16 bits of a bit array.

SETROW converts value to a 16-bit integer. Then, SETROW uses the integer, one

bit at a time, to modify up to 16 bits in the bit array.

barray specifies the bit array to be modified.

SETROW modifies barray by storing the least significant bit of value in (x,y,z).

SETROW increments y and modifies the next bit with the next bit of value, until

it accesses 16 bits or reaches the maximum y value.

5.10 SETROW(V,IA,1,5,5)

SETROW converts the value of V into an integer and uses it to modify the bits

(1,5,5), (1,6,5), (1,7,5),... until SETCOL accesses 16 bits or reaches the maximum

Y value.

GETROW(barray,x,y, z)

FUNCTION GETROW(I,V,V,V):BARRAY

GETROW reads up to 16 bits in a bit array.

barray specifies the bit array to be read.

Starting at bit address (x,y,z), GETROW reads barray, one bit at a time, incrementing

y after each read. GETROW continues until it reads 16 bits or reads the maximum

y limit.

The result of GETROW determines, on a bit by bit basis, each bit of a 16-bit integer.

GETROW converts this integer to a floating-point value and returns it as the value of

the function.

5.06 H = GETROW(IA,1,5,5,)

The least significant bit of the variable H equals one if the bit at (1,5,5) is set.

Likewise, GETROW reads the bits at (1,6,5), (1,7,5),... to determine the value of

the corresponding bits of the variable H. As the coordinate increases, GETROW

modifies a more significant bit.

Subroutine Call:

Declaration:

Purpose:

Arguments:

Example:

Function Call:

Declaration:

Purpose:

Arguments:

Result:

Example:

2-6

SETCOL (value,barray, x,y,z)

SUBROUTINE SETCOL(V,I,V,V,V):BARRAY

SETCOL modifies up to 16 bits of a bit array.

SETCOL converts value to a 16-bit integer. Then, SETCOL uses the integer, one

bit at a time, to modify up to 16 bits in the bit array.

barray specifies the bit array to be modified.

SETCOL modifies barray by storing the least significant bit of value in (x,y,z).

SETCOL increments z and modifies the next bit with the next bit of value, until

it accesses 16 bits or reaches the maximum z value.

5.03 SETCOL(V,IA,1,5,5)

SETCOL converts the value of V into an integer and uses V to modify the bits

(1,5,5), (1,5,6), (1,5,7),... until SETCOL accesses 16 bits or reaches the maximum

Z value.

GETCOL(barray, x,y,z)

FUNCTION GETCOLI(I,V,V,V):BARRAY

GETCOL reads up to 16 bits in a bit array.

barray specifies the bit array to be read.

Starting at bit address (x,y,z), GETCOL reads barray, one bit at a time, incrementing

z after each read. GETCOL continues until it reads 16 bits or reads the maximum

z limit.

The result of GETCOL determines, on a bit-by-bit basis, each bit of a 16-bit

integer. GETCOL converts this integer to a floating-point value and returns it as

the value of the function.

5.80 F = GETCOL(IA,1,5,5)

The least significant bit of the variable F equals one if the bit at (1,5,5) is set.

Likewise, GETCOL reads the bits at (1,5,6), (1,5,7),... to determine the value of

the corresponding bits of the variable F. As the coordinate increases, GETCOL

modifies a more significant bit.

@ Processing Data Subprograms

SECTION THREE:

GRAPHICS

Graphics software consists of two system files: GRAPH1 and GRAPHV. GRAPH1 contains the sub-

routines needed to produce direct graphic displays on the terminal screen. The subroutines in GRAPHV

contain the subroutines needed to produce direct graphic displays and have the added capability of pro-

ducing proportional graphic displays from data with a range equal to the range of a single-precision

floating-point number.

Direct graphics work directly with the 781 x 1024 addressable points on the terminal screen. Propor-

tional graphics allows you to define the range of the data; the subroutines translate the data to fit

within a specified area on the terminal screen.

Graphics output from these subroutines always goes to logical unit number 12. The user can assign the

logical unit number to a file or to any output device. Graphics input, such as that from the cross-hair

positioning subroutines CRSHR and CRSHRY, is independent of the logical unit number and is always

from the terminal.

If you desire the capability of direct graphics only, use the GRAPH1 file. This is because the GRAPH1

file requies less memory space than GRAPHV. Therefore, more space is available for test programs.

To include the proportional graphics subroutines, only call the GRAPHV file.

Processing Data Subprograms

The Terminal Screen

The terminal screen is a two-dimensional surface consisting of a discrete 1024 x 1024 matrix of address-

able points; 1024 x 781 of these points lie in the viewable area* of the terminal screen (Figure 3-1). The

origin of the screen lies at the extreme lower left corner.

- (1023, 1023)

| UNVIEWABLE |
| AREA ral (1023, 780)

—@

VIEWABLE

AREA

NY 0)
23398-01

Figure 3-1. TERMINAL SCREEN

Bounded by 0 and 1023 on the X-Axis

and by 0 and 1023 on the Y-Axis, but

only 0 through 780 on the Y-Axis is in

the viewable area.

*Vectors just above 780 on the Y-axis may be visible but marginal in quality. For the

purpose of this manual, such vectors are considered part of the unviewable area.

Processing Data Subprograms @

Summary of the Graphic Subroutines

The subroutines listed below are in both the GRAPH1 and GRAPHY files.

Subroutine Declaration Purpose

ALFPOS (tstat,x,y)

CRSHR(char,x,y)

CURSOR (x,y)

DRAW(x,y,mode)

LOCATE (x,y)

POINT (x,y,type)

VECTRF (x1,y1,x2,y2)

ALFPOS(N,N,N)

CRSHR(N,N,N)

CURSOR (V,V)

DRAW(V,V,V)

LOCATE(N,N)

POINT(V,V,V)

VECTRF(V,V,V,V)

Returns the coordinates of the bottom

left corner of the alpha cursor and the

terminal status.”

Turns on the terminal screen cross hairs,

waits for you to press a key, then

returns the cross-hair coordinates and

the value of the character pressed. *

Moves the bottom left corner of the

alpha cursor to the screen coordinates

(x,y).

Draws a vector from the current beam

position to the screen coordinates (x,y).

Returns the cross-hair coordinates in

(x,y) without user intervention. *

Plots a period (.), minus (-), or plus (+)

at screen cordinates (x,y).

Draws a vector on the terminal screen

between (x1,y1) and (x2,y2).

*For proper operation of these subroutines, the 4010 terminal graphic input terminators

must be strapped for No CR, No EOT. See the 4010 display terminal manual (070-1225).

Processing Data Subprograms

oO The following subroutines are only on the GRAPHV file.

Subroutine Declaration Purpose

ALFPSV (tstat,xv,yv) ALFPSV (N,N,N) Returns the user data-space coordinates

at the bottom left corner of the alpha

cursor and the terminal status.*

CRSHRV (char,xv,yv) CRSHRV(N,N,N) Turns on the terminal screen cross hairs,

waits for you to press a key, then re-

turns the cross-hair coordinates and the

value of the character pressed.*

DCOORD (xvmin,xvmax,yvmin,yvmax) DCOORD(V,V,V,V) Defines the coordinates of the user data-

space window.

DRAWV (xv,yv,mode) DRAWV(V,V,V) Draws a vector from the current imagi-

nary beam position to (xv,yv) on the

user data-space.

LOCATV (xv,yv) LOCATV(N,N) Returns the user data-space cross-hair

coordinates in (xv,yv) without operator

intervention.”

MAPOUT (xs,ys,map,xv,yv) MAPOUT(N,N,N,V,V) Returns the screen coordinates scaled

and translated from user data-space

coordinates.

POINTV(xv,yv,type) POINTV(V,V,V) Plots a period (.), minus (-) or plus (+)

on the user data-space.

SCOORD (xsmin,xsmax,ysmin,ysmax) SCOORD(V,V,V,V) Defines the boundaries of the screen

window.

VECTRV (xv1,yv1,xv2,yv2) VECTRV(V,V,V,V) Draws a vector from (xv1,yv1) to

(xv2,yv2) on the user data-space.

*For proper operation of these subroutines, the 4010 terminal graphic input terminators must

be strapped for No CR, No EOT. See the 4010 display terminal manual (070-1225).

Processing Data Subprograms @ 3-3

3-4

Direct Graphics

Direct graphics relate directly with the terminal screen. Therefore, you work at a basic graphic level and

avoid the overhead of the proportional graphics transformation routines. With direct graphics, you have

the responsibility of keeping data points on the screen. That is, the ranges are: O < X < 1023 and

0<Y<780.

Mode entry and appropriate output handling is automatic. Direct graphics are primarily used with numeric

output and for display layout. You may freely alternate between direct and proportional graphics.

@ Processing Data Subprograms

Subroutine Call:

Declaration:

Purpose:

Arguments:

Subroutine Call:

Declaration:

Purpose:

Arguments:

Processing Data Subprograms

VECTRF(x1,y1,x2,y2)

GRAPH1
SUBROUTINE VECTRF(V,V,V,V): GRAPHV

VECTRF draws vectors on the terminal screen between (x1,y1) and (x2,y2).

x1 is the x coordinate of the first point.

y1 is the y coordinate of the first point.

x2 is the x coordinate of the second point.

y2 is the y coordinate of the second point.

POINT (x,y,type)

GRAPH1
SUBROUTINE POINT (V,V,V): GRAPHV

POINT draws a point graph.

x specifies the X coordinate of the point. y specifies the Y coordinate of the point.

You specify what is drawn at (x,y) with type.

If type = 1, draw a point* (.),

2, draw a minus (-),

3, draw a plus (+).

Any other value of type causes a point”.

*The + and - are alphanumeric characters. The point is created by intensifying the spot

at the current beam position (i.e., the point is not an alphanumeric period). The point

is brighter (more intense) than the period.

REV A NOV 1977 3-5

Subroutine Call: CURSOR (x,y)

Declaration: SUBROUTINE CURSOR(V,V): ee

Purpose: CURSOR moves the bottom left corner of the alpha cursor to the position on

the screen specified by x and y.

Arguments: x and y are the screen coordinates of the desired position.

Comments: The axis of the graph can be drawn with the VECTRF subroutine and the graph

labeled with the CURSOR subroutine and the PRINT statement.”

CURSOR spaces characters horizontally at 14 point-intervals and vertically at

22 point-intervals. This 14-point x 22-point area includes the blank space

necessary for separating the characters one from another, and the blank space

between lines of characters. The actual character size is 10 points x 16 points

(on a TEKTRONIX 4010 terminal — the 4014/4015 terminals support other

character sizes). The 10-point x 16-point character is justified in the lower

left corner of the 14-point x 22-point area.

*See the Data Reduction Language manual for a discussion of the PRINT statement.

3-6 REV A NOV 1977 Processing Data Subprograms

Subroutine Call:

Declaration:

Purpose:

Arguments:

Subroutine Call:

Declaration:

Purpose:

Arguments:

Comments:

Processing Data SubprogramsnemheEenmemmHm@HeehemHHEekh Ee HS 8 | | | | |

DRAW(x,y,mode)

GRAPH1
SUBROUTINE DRAW(V,V,V): GRAPHV

This subroutine draws a vector from the current beam position to coordinates (x,y)

on the terminal screen.

x and y are the screen coordinates to which the vector is drawn.

mode defines the operation. If mode is:

<0, DRAW moves the current beam position to (x,y) without drawing a visible

vector and returns the terminal to alphanumeric mode.

= 0, DRAW puts the terminal in the graphics mode and moves the current beam

position to (x,y) without drawing a visible vector.

>0, DRAW draws a visible vector.

A call must be made to DRAW with mode equal to 0 before visible vectors can be

drawn with mode greater than 0.

A call to DRAW with mode <0, or a call to CURSOR, causes DRAW to forget the

current beam position.

NOTE

DRAW produces the fastest graphics.

CRSHR (char, x,y)

GRAPH1
SUBROUTINE CRSHR(N,N,N): GRAPHV

CRSHR turns on the cross-hair cursor, allows you to adjust its position with the

thumbwheels, and waits for you to press a key. CRSHR then returns the cross-

hair coordinates in (x,y) and the value of the character you pressed in char.

x and y receive the screen coordinates of the cross-hair cursor.

char receives the floating-point value of the ASCII representation of the charac-

ter you pressed.

The characters CTRL/C, CTRL/S, CTRL/T, CTRL/V, and ALTMODE retain

their normal system functions when typed in response to CRSHR. For example,

pressing CTRL/C aborts the program.

3-8

Subroutine Call: ALFPOS(tstat, x,y) Y

; _ }GRAPH1
Declaration: SUBROUTINE ALFPOS(N,N,N): GRAPHV

Purpose: ALFPOS returns the screen coordinates of the bottom left corner of the alpha cursor

in (x,y) and the terminal status in tstat.

Arguments: x and y are the screen coordinates of a character position extending 14 points to the

right of x and 22 points above y.

tstat receives code specifying the terminal status.” Bit assignments for this word are:

Bit Octal Value Function if the Bit Is Set

0 1 Auxiliary device is not enabled or is nonexistent.

1 2 The cursor is at margin one.

2 The terminal is not in the graphics mode.

3 10 Linear interpolation is off.

4 20 The hard copy unit is not ready.

5 40 This bit is always set.

tstat normally equals 45, during alphanumeric i/o

Subroutine Call: LOCATE (x,y)

a _)GRAPH1
Declaration: SUBROUTINE LOCATE(N,N): GRAPHV

Purpose: LOCATE returns the current cross-hair coordinates without operator intervention.

Arguments: x and y are the screen coordinates of the cursor.

Comments: LOCATE is similar to CRSHR, but does not wait for you to press a key.

Therefore, it does not return the value of a character.

*Refer to the display terminal manual (070-1255) for more information.

Tt Alphanumeric 1/O displays characters. Graphics I/O displays lines.

| |]]]]] | | | | | | | | | | | | | | | | | |] |] | | |

© Cc eimHe Ft ae HEH HF He HE we HE GE FE TE 8 FS@ Processing Data Subprograms

Proportional Graphics

User Data-Space

The user data-space is an imaginary two-dimensional surface with a range in both the X and Y directions

equal to the range of a single precision floating-point number (Figure 3-2). Using the data-space, the user

may construct drawings, pictures, and graphs of extreme complexity and detail.

+Y

me +X

KN (0., 0.)

-Y

23398-02

Figure 3-2. USER DATA-SPACE Bounded only by the

floating-point range.

Since the unit of measurement of the user data-space is arbitrary, it may be assumed to be representative

of any measurement unit from microns to light-years, with all measurements translated to the assumed unit

for the given drawing. For example, the user decides that the basic unit of the data-space will represent

inches. Then the coordinate (2., 0.5) represents a point two inches to the right of the origin on the X-axis

and one-half inch up on the Y-axis. To indicate the point one mile (63,360 inches) to the left of the origin

along the Y-axis, the coordinate (-63360.0, 0.0) would be used.

The user data-space is similar to normal displays and plotting devices in that there is a movable point which

may be thought of as the writing cursor on the data-space. This point is called the imaginary beam.

Processing Data Subprograms @

3-10

USER

L—— DATA-SPACE

F~
 WINDOW

Windowing

Any portion or all of the user data-space may be viewed through the technique of windowing. The portion

of the data-space to be displayed is defined by a rectangular boundary. This rectangle is called the user

data-space window, and only those vectors within the window are displayed.

It is not necessary to use the whole terminal screen for display of the user data-space. You may define

a rectangular section of any size and location on the screen as the window area. This rectangle is called

the screen window and, together with the user data-space window, defines the transformation between the

data-space and the screen (Figure 3-3).

|. SCREEN

WINDOW

NOTE

Lines outlining the screen window

Position are not automatically

drawn. They are used here for

illustrative purposes only.

TERMINAL

USER DATA-SPACE SCREEN

23398-03

Figure 3-3.

@ Processing Data Subprograms

a

}

The graphics routines automatically eliminate vectors and portions of vectors which lie outside the user

data-space window, as well as scale and convert the vectors that are contained in or pass through the user

data-space window.

The initial window definition is set so that the portion of the user data-space with coordinates equivalent

to the screen are displayed.

User Data-Space Window Initial Values:

X minimum — 0., Xmaximum — 1023

Y minimum — 0., Ymaximum — 780

Screen Window Initial Values:

X minimum — 0, X maximum — 1023

Y minimum — 0, Ymaximum — 780

The data-space is used by first defining the window, then constructing a graph with the use of the graphic

routines. The user may display several portions of the data-space at one time by redefining the window

and reprocessing the data-space for each (Figure 3-4) or may superimpose data from several data-spaces by

using a common screen window (Figure 3-5). All transformations between the data-space and the screen are

based upon the latest window definitions.

TERMINAL

SCREEN

USER

DATA-SPACE 93398-04

oN Figure 3-4. Use of Several Windows.

Processing Data Subprograms @ 3-11

ae |

<<]
USER

DATA-

SPACE

#1

~
~

—

ant

fTM

\
= —_—

\ TERMINAL
USER y, SCREEN

DATA- \ ~~
SPACE

#2

ss ann

Figure 3-5. Screen window common to several data-spaces.

Since only the portions of vectors and the points which lie within the current window are displayed, the

imaginary beam position does not always represent the actual storage beam position. The actual beam is

represented on the user data-space by the real beam, which is updated to reflect the actual output to the

terminal. Figure 3-6 illustrates the differences between the imaginary beam arid the real beam.

3-12 @ Processing Data Subprograms

> is)
INVISIBLE PORTION \

OF VECTORS ay

|
WINDOW

BOUNDARY

|A | VISIBLE PORTION |
OF VECTORS

| A E—E |

i | |
| |

|

i | |
Loe LL |

ACTION IMAGINARY BEAM REAL BEAM

1) Vector drawn from A to C. Moved from vector Moved from vector

start point, A, to start point, A, to

vector end point, C. vector intercept with

window boundary, B.

i 2) Vector drawn from C to E. Moved from vector Moved from B to
start point, C, to vector intercept,

vector end point, E. D, then move with

drawing of vector to

end point, E.

23398-06

i Figure 3-6. Imaginary and Real Beams.

i NOTE

When using a proportional graphic routine after use of direct graphics or

alphanumeric output, the imaginary beam is positioned at the user data-

i space coordinate that is equivalent to the screen coordinate of the beam
position under the current window transformation.

i Processing Data Subprograms @ 3-13

Cursor

It is often useful to be able to indicate a point on the user data-space with the graphic cursor. The routine

CRSHRV allows you to do this by enabling the graphic cursor. After you position the graphic cursor with

the thumbwheels, the screen coordinates are transmitted by pressing a keyboard character. CRSHRV con-

structs the data-space cursor by transforming the graphic cursor into data-space coordinates according to the

current window definition (Figure 3-7). The data-space cursor does not affect the imaginary or real beam

position.

a ;——_]

DATA-SPACE

CURSOR \
GRAPHIC

TERMINAL CURSOR

*Window definition provides the SCREEN

Parameters with which the

graphic cursor is transformed

into the data-space cursor.

| ase 23398-07
DATA-SPACE

Figure 3-7. The User Data-Space Cursor.

The transformation assumes that the screen area outside the window is a continuation of the user data-

space with the scale implied by the current window. This allows the user to receive valid data-space

coordinate data even if the graphic cursor is positioned outside the current window.

The keyboard character which triggers input of the graphic cursor’s position, is also returned as an

argument. This character may be used for command purposes or data identification.

3-14 @ Processing Data Subprograms

Subroutine Call:

Declaration:

Purpose:

Arguments:

Subroutine Call:

Declaration:

Purpose:

Arguments:

Processing Data Subprograms

DCOORD (xvmin, xvmax,yvmin,yvmax)

SUBROUTINE DCOORD(V,V,V,V):GRAPHV

DCOORD defines the boundaries of the user data-space window. It confines

the data plotted. The horizontal space begins at xvmin and extends to xvmax.

The vertical space begins at yymin and extends to yvmax.

xvmin and yvmin are the coordinates of the origin.

xvmax and yvmax are the coordinates of the maximum point.

The coordinates (and the data plotted) must be in the range from -1.7*10°8

to 1.7*10°8. Either coordinate pair can be the larger pair. For example,

xvmin can be greater than xvmax, with the result that the display is a mirror

image of the data.

SCOORD (xsmin, xsmax,ysmin,ysmax)

SUBROUTINE SCOORD(V,V,V,V):GRAPHV

SCOORD defines the screen window boundaries. Data in the user data-space

window are projected into this area.

xsmin defines the left side of the screen window.

xsmax defines the right side of the screen window.

ysmin defines the bottom of the window.

ysmax defines the top of the window.

The coordinates of the screen window must be kept in the ranges:

0 < xsmin < xsmax < 1023

0 <ysmin < ysmax < 780

If the coordinates are outside these ranges, the system displays an integer

overflow error (AE).

3-16

Subroutine Call:

Declaration:

Purpose:

Arguments:

Comments:

Example:

MAPOUT (xs,ys,map, xv,yv)

SUBROUTINE MAPOUT(N,N,N,V,V):GRAPHV

Given user data-space coordinates xv and yv (defined with DCOORD), MAPOUT

returns screen coordinates xs and ys and indicates if the point (xs,ys) is within the

screen window (defined with SCOORD).

xv and yv are the user data-space coordinates to be scaled and translated. xs and

ys are the screen coordinates derived from xv and yv.

map indicates the screen-coordinates position relative to the screen window. The

bit assignments for map are:

Bit Octal Value Position if Bit Is Set

0 1 Above screen window.

1 Below screen window.

2 4 Right of the screen window.

3 10 Left of the screen window.

If map is 0, then the coordinate is within the screen window.

For example, the value 5 indicates that the coordinate is above and to the right

of the screen window.

MAPOUT attempts to convert any user data-space coordinate between -1.7*1038

and 1.7*10%8 to a screen coordinate. Screen coordinates outside the range -32768

to 32767 are given default values of -32768 or 32767.

The coordinate position relative to the screen window can be determined with the

MAP variable and the AND function.

13.01 SUBROUTINE MAPOUT(N,N,N,V,V):GRAPHV

13.05 MAPOUT(XS,YS,MAP,XV,YV)

13.11 IF(MAP) 13.13

13.12 PRINT “WITHIN”

13.13. IF(AND(MAP,#1)) 13.14, 13.16

13.14 PRINT “ABOVE”

13.16 IF(AND(MAP,#2)) 13.17, 13.18

13.17. PRINT “BELOW”

13.18 IF(AND(MAP,#4)) 13.19, 13.20

13.19 PRINT “ RIGHT”

13.20. IF(AND(MAP,#10)) 13.21, 13.22

13.21 PRINT “ LEFT”

13.22 PRINT CR

REV A NOV 1977 Processing Data Subprograms

Subroutine Call:

Declaration:

Purpose:

Arguments:

Subroutine Call:

Declaration:

Purpose:

Arguments:

Processing Data Subprograms

POINTV (xv,yv,type)

SUBROUTINE POINTV(V,V,V):GRAPHV

POINTV plots the point (xv,yv) on the user data-space. If the data is outside the

user data-space window, no point is plotted.

xv and yv specify the coordinates of the point and must be in the range -1.7* 1038

to 1.7*1098,

type specifies the display at (xv,yv). If type equals 1, draw a point” (.),

2, draw a minus (-),

3, draw a plus (+).

Any other value of type causes a point.*

*The + and - are alphanumeric characters. The point is created by intensifying the spot

at the current beam position (i.e., the point is not an alphanumeric period). The point

is brighter (more intense) than the period.

VECTRV (xv1,yv1,xv2,yv2)

SUBROUTINE VECTRVI(V,V,V,V):GRAPHV

VECTRV draws a vector from (xv1,yv1) to (xv2,yv2) on the user data-space.

xv1 and yv1 are the coordinates of the initial point of the vector.

xv2 and yv2 are the coordinates of the second point of the vector.

The coordinates must be in the range from -1.7*1038 to 1.7*1038.

REV A NOV 1977 3-17

Subroutine Call: DRAWV(xv,yv,mode) YU

Declaration: SUBROUTINE DRAWV(V,V,V):GRAPHV

Purpose: This subroutine draws a vector from the current imaginary beam position to

(xv,yv) on the user data-space.

Arguments: xv and yv are the coordinates of the point.

mode defines the operation. If mode is:

<0, DRAWV moves the imaginary beam position to (xv,yv) without

drawing a visible vector and returns the terminal to the alpha-

numeric mode.

=0, DRAWV puts the terminal in the graphics mode and moves the

imaginary beam position to (xv,yv) without drawing a visible

vector.

>0, DRAWV produces a visible vector.

Before a visible vector can be drawn, an initial call to DRAWV with mode equal

to O must be made to switch the terminal to its graphic mode.

Comments: Since DRAWV internally maintains the screen coordinates of the current beam

position to optimize the plot to the next point, a call to DRAWV with mode

less than O or a call to CURSOR is essential when resetting the terminal to the

alphanumeric mode. This tells DRAWV that it no longer knows the beam position.

Subroutine Call: CRSHR V(char, xv,yv)

Declaration: SUBROUTINE CRSHRV(N,N,N):GRAPHV

Purpose: CRSHRV turns on the cross hairs, allows you to position them with the thumb-

wheels, and waits for you to press a key. CRSHRV then returns the user data-

space cross-hair coordinates in (xv,yv) and the value of the character you pressed

in char.

Arguments: xv and yv receive the user data-space coordinates of the cross-hair cursor.

char receives the floating-point representation of the ASCII code for the charac-

ter you pressed.

The characters CTRL/C, CTRL/S, CTRL/T, CTRL/V, and ALTMODE retain their °

normal system functions when typed in response to CRSHRV. For example,

pressing CTRL/C causes the program to abort.

3-18 @ Processing Data Subprograms

Subroutine Call: ALFPSV (tstat, xv,yv)

‘2 Declaration: SUBROUTINE ALFPSV(N,N,N):GRAPHV
Purpose: ALFPSV returns the user data-space coordinates of the bottom left corner of the

alpha cursor in (xv,yv) and the terminal status in tstat.

Arguments: xv and yv receive the coordinates of the cursor.

tstat indicates the terminal status.* Bit assignments for tstat are:

Bit Octal Value Function if Bit Is Set

0 1 Auxiliary device is not enabled or is nonexistent.

1 The cursor is at margin one.

2 The terminal is not in the graphics mode.

3 10 Linear interpolation is off.

4 20 The hard copy unit is not ready.

5 40 This bit is always set.

tstat is normally 45, during alphanumeric 1/0.

Example: 10.12 ALFPSV(TSTAT,XV,YV)

10.13. IF(AND(TSTAT,#20)) 21.14

The program branches to statement 21.14 if the hard copy unit is not ready or

if it is busy.

Subroutine Call: LOCATV(xv,yv)

Declaration: SUBROUTINE LOCATV(N,N):GRAPHV

Purpose: This subroutine returns the user data-space cross-hair coordinates in (xv,yv)

without operator intervention.

Arguments: xv and yv are the cross-hair coordinates.

*Refer to the display terminal manual (070-1225) for more information.

Processing Data Subprograms @ 3-19

Examples

To draw an ellipse on the terminal screen, first write the program in EDIT.

. 8380

. 1888
. 2008
. 3008

. 4808

. 9688

. 6008

. 7088AHDAADLAAAALHL —Hwerwpwe

3-20

.8808 x CURVE IS A PLOTTING ROUTINE TO DRAW EITHER

.8@108 * CIRCLES OR ELIPSES OR PART CURVES ON SCREEN

.@206 * ALL DIMENSION REFERENCES ARE IN SCREEN POINTS

SUBROUTINE VECTRFCU,V,U.,U):GRAPHI

ACCEPT “WHERE IS THE PLOT CENTER IN X7".X,CR
ACCEPT “WHERE IS THE PLOT CENTER IN Y?".¥.CR
ACCEPT “X RADIUS = ",DX.CR
ACCEPT “Y RADIUS (SAME AS X FOR CIRCLES> = “,DY.CR

ACCEPT "WHAT IS THE PLOT START ANGLE IN DEGREES?".DEG,CR

ACCEPT “WHAT IS THE PLOT STOP ANGLE IN DEGREES?".REE.CR

ACCEPT “WHAT IS THE PLOT RESOLUTION IN DEGREES?”.NUM.CR
ACCEPT "WHAT DIRECTION TO ROTATE? 1=CCW. @=CW " .ROTATE.CR

PRINT ERASE

228
LOOP 18.5 ANGLE = DEG, REE.NUM
ANGL = ANGLE * 3.1415926 ~ 188
IFCROTATE EQ 1> 10.18
%2 = DX * SINCANGL) + X
Y2 = DY * COSCANGL) + Y
GOTO 18.2
Y2 = OY * SINCANGL) + X
x2 = OX * COSCANGL) + ¥
IFCZ NE @> 180.25
221

x1 = XZ
Y1 = ¥2
VECTRFCX1,71,X2. 72)
41 = K2
Y1 = 2
CONTINUE Ee ee ee eee e EE

C

Processing Data Subprograms

)

After translating the program and saving it under the name CURVE in TRAN, then run it from REDUCE.

$TRAN
PROGRAM NAME CEDT>: CURVE
PIN ASSIGNMENT TABLE (PIN):
TEST PROGRAM NAME <TST>: CURVE
TEST PROGRAM SIZE 945. WORDS

$REDUCE
#CURVE

WHERE IS THE PLOT CENTER IN X?7500

WHERE IS THE PLOT CENTER IN Y7300

X% RADIUS = 400

Y RADIUS (SAME AS X FOR CIRCLES) = 308

WHAT IS THE PLOT START ANGLE IN DEGREES?S

WHAT IS THE PLOT STOP ANGLE IN DEGREES7355

WHAT IS THE PLOT RESOLUTION IN DEGREES710

WHAT DIRECTION TO ROTATE? 1=CCW. O=CW O

The display is:

#

Processing Data Subprograms @ 3-21

Run the program again. C

RUN CURVE
WHERE IS THE PLOT CENTER IN X7480

WHERE IS THE PLOT CENTER IN Y?7600

X RADIUS = 300

Y RADIUS (SAME AS X FOR CIRCLES> = 300

WHAT IS THE PLOT START ANGLE IN DEGREES?7@

WHAT IS THE PLOT STOP ANGLE IN DEGREES?73690

WHAT IS THE PLOT RESOLUTION IN DEGREES?S

WHAT DIRECTION TO ROTATE? 12CCW. 6=CW 1

The display is:

€

3-22 @ Processing Data Subprograms

0

. 0188

. 8338

.8348
. 8358

. 8368

. 8480

. 8500

. 8880

. 8988

. 8208

$REDUCE

18

y

Processing Data Subprograms

PPRBRDDBH WONG PR) me ee ee pe ee he pe *

2. To draw a grid on the terminal screen, first write the program in EDIT.

.@@08 * LINPLT ALLOWS THE USER TO DRAW A GRID ON SCREEN

.@016 * DEFINED AS NEEDED IN SIZE AND NUMBER OF DIVISIONS
SUBROUTINE VECTRFCU,V,VU,U):GRAPHI
ACCEPT "WHAT IS THE X ORIGIN ON THE SCREEN?7",XORG.CR

ACCEPT "WHAT IS THE Y ORIGIN ON THE SCREEN7”.YORG,CR
ACCEPT “WHAT IS THE MAX X DIMENSION?" XFIN.CR
ACCEPT “WHAT IS THE MAX Y DIMENSION?". YFIN.CR
ACCEPT “ENTER NUMBER OF HORIZONTAL DIVISIONS®,CR,NUM

ACCEPT “ENTER NUMBER OF VERTICAL DIVISIONS",CR, YNUM
XINC=C XF IN-XORG >/NUM
YINC=¢ YF IN-YORG >/YNUM

PRINT ERASE

VERTICAL LINES
LOOP 3.9 A=XORG, XFIN, XINC
VECTRF(A. YORG, A. YFIN>
CONT INUE

HORIZONTAL LINES
LOOP 4.9 B=YORG, YFIN. YINC
VECTRF(XORG, B. XFIN. BD
CONT INUE

After translating the program and saving it under the name LINPLT in TRAN, run it from REDUCE.

#RUN LINPLT
WHAT IS THE X ORIGIN ON THE SCREEN71

WHAT IS THE Y ORIGIN ON THE SCREEN?1

WHAT IS THE MAX X DIMENSION?71001

WHAT IS THE MAX Y OIMENSION?77@0

ENTER NUMBER OF HORIZONTAL DIVISIONS

ENTER NUMBER OF VERTICAL DIVISIONS

3-23

The display is:

mim HH HE GZ FE
C

3-24 Processing Data Subprograms

>

. 0188

. 8268

.9108

.9126 *

. 8130
8208 *
. 8388

0808 x

. 0100

. 8208
- 8308
. 8466

8808 x

. 8108

. 8206

. 8388

.8400

-8188

. 0208

. 8388AAA ALRDAA WAWWW NNN He
D

Processing Data SubprogramsBH HH HE HE EE FF ® poem |

3. To draw a parabola, first write the program in EDIT. (This example uses the proportional graphic

routines.)

SUBROUTINE VECTRFCU,U,U,U),DRAWUCU,U,U>, CURSORCU, U >: GRAPHU
SUBROUTINE SCOORDC V.U,U,U),0COORDCU,U,U,U)

N=13E-13

SETTHE SCREEN WINDOW BOUNDARIES
SCOORD< 208, 847. 200,680 >
SET THE DATA-SPACE WINDOW FOR PART OF THE N&%2 PARABOLA

DRAW A FRAME AROUND THE SCREEN WINDOW
VECTRF(208, 208. 847,208)
VECTRF(847, 280.847, 600>
VECTRF¢ 847, 680, 200, 680 >
VECTRF¢ 200, 600, 208, 200>

ATTEMPT TO DRAW THE ENTIRE PARABOLA
DRAWUC -N, -N&X2, 6 >
LOOP 4.04 X=-N.N. .@1XN
Y=XXX2
DRAW X,Y, 1>

CURSOR 380. 167
PRINT "GRAPH OF Y=xxk2"
CURSOR¢ @, 767 >

After translating the program and saving it under the name EXPYX in TRAN, run the program from REDUCE.

RUN EXPYX

La

GRAPH OF Y=Xxxk2

3-25

SECTION FOUR:

STRING HANDLING SUBPROGRAMS

The string handling subprograms enable your program to perform these operations:

Ae Move characters between and within arrays.

zs Send characters to output devices.

oe Receive characters from input devices.

4. Test for relationships between strings.

The string subprograms are in two files: STRING and ADSTNG.

The ADSTNG file contains the same subprograms as the STRING file. In addition, ADSTNG has code

conversion subprograms (not available in STRING) which allow you to perform these operations:

(ke Convert ASCII strings to Radix-50 code and floating-point numbers.

2: Convert Radix-50 code and floating-point numbers to ASCII strings.

The STRING file uses about half the memory required by the ADSTNG file. If you desire the capa-

bility to manipulate ASCII character strings, but do not need the code conversion facilities, use the

STRING file. To include the code conversion subprograms, call the string handling subprograms from

the ADSTNG file, excluding the STRING file. The subprograms are assembled in this manner because

they use common internal subroutines which cannot be linked externally by the Translator.

Processing Data Subprograms

Storage of ASCII Character Strings

ASCII character strings can reside in integer arrays. Each array element contains two characters. For

example, the first array element contains the first and second string characters. To individually address

the characters stored in an array, the string handling subprogram arguments are based on character num-

bers rather than array element numbers. Arguments such as start, stop, and position refer to a character

number, not an array element. For example, character number 13 is in array element 7. Incrementing

a character-number-based variable causes it to reference the next character in the string.

An array element range of M, to Mz has a character number (n) range of 2M, - 1 <n < 2M,, where

M2 > M, > 0. (Zero is an illegal character number.) Declare integer arrays with a size of one-half the

number of characters in the largest string expected. (Round up to the next integer, if necessary.)

The number of characters in a string range from start to stop is calculated as (stop - start + 1). For

example, if start is 5 and stop is 15, then the number of characters is 11. If start and stop have the

same value, then one character is in the range.

The string handling subprograms return a subscript error message (AC) for any of the following reasons.

1. A character number is less than one.

2. A character number exceeds twice the array size.

3. The ending character number in a range is less than the starting character number

of that range.

Inputting Strings from the Keyboard

Special control characters used by the system (CTRL/C) by the REDUCE program (CTRL/S, CTRL/T,

CTRL/V), and by Terminal Control Mode (S-3260/S-3030) (CTRL/N, CTRL/O, CTRL/P, CTRL/Q,

CTRL/R, CTRL/S, CTRL/T) are not placed in the terminal input queue. Therefore, these control charac-

ters are not input by STRNGI and CHARI, nor can KBSTAT sense their presence.

Processing Data Subprograms @ 4-1

Summary of Subprograms

These subprograms are in both the STRING and ADSTNG files.

JUSTFY (side,tally string,

start,stop)

SCON (dststr,start,stop,

“stringconstant’’)

SMOV (dststr,start1,stop1,

srestr,start2,stop2)

STRNGI(ilun,count,iarray,

start,stop)

STRNGO(olun,iarray,start,

JUSTFY(V,N,1,V,V)

SCON(I,V,V,C)

SMOV(I,V,V,I,V,V)

STRNGI(V,N,I,V,V)

STRNGO(V,I,V,V)

Subroutine Declaration Purpose

CHARO(olun,char) CHARO(V,V) Sends the specified character to the output device.

CLRKB CLRKB(0) Clears the keyboard input queue.

Removes imbedded spaces and justifies the string.

Stores a string constant into the destination string.

Moves the source string into the destination string.

Inputs a string from the input device into iarray.

Sends the specified characters to the output device.

stop)

STRNGS(char,iarray ,position) STRNGS(V,I,V) Stores the ASCII value of the character char.

Function Declaration Purpose

CHARI (ilun) CHARI(V) Returns the floating-point value of the input

CMPCON(string,start,stop,

"’stringconstant’’)

KBSTAT

SCMP(string1,start1,stop1,

string2,start2,stop2)

STRNGF (iarray position)

CMPCON(I,V,V,C)

KBSTAT (0)

SCMP(I,V,V,I,V,V)

STRNGF(I,V)

ASCII character.

Compares a string with a string constant.

Returns the input queue status.

Compares two strings.

Returns the floating-point value of an ASCII

character.

Processing Data Subprograms

Ec

1C C

These subprograms are in the ADSTNG file only.

NUMOUT (value,code,tally,

string,start,stop)

PAKFIL(file,delim,string,

start,stop)

PAKSYM(symbol,delim,

string start,stop)

RADPAK (value,delim,string,

start,stop)

RADUP(value,string,start,stop)

UNPFIL (file,string,start,stop)

UNPSYM(symbol,string,

start,stop)

NUMOUT(VV,N,1VV)

PAKFIL(F,N,I,N,V)

PAKSYM(S,N,I,N,V)

RADPAK(N,N,I,N,V)

RADUP(V,I,V,V)

UNPFIL(F,I,V,V)

UNPSYM(S,I,V,V)

Subroutines Declaration Purpose

DFLTYP(‘‘typ’’) DFLTYP(C) Sets the default file type for the file descriptor

in PAKFIL calls.

DFLUID(‘‘uid’’) DFLUID(C) Sets the default user identification code for the

file descriptor in PAKFIL calls.

In accordance with the selected format, con-

verts a floating-point value into ASCII charac-

ters.

Packs a string into a Radix-50 four-word file-

descriptor.

Packs a string into a two-word Radix-50 symbol.

Packs a string into a two-word Radix-50

variable.

Unpacks two Radix-50 words into a six-

character ASCII string.

Unpacks a four-word Radix-50 file-descriptor

into a 14-character ASCII string.

Unpacks a two-word Radix-50 symbol into a

six-character ASCII string.

Function Declaration Purpose

FMTNUM(delim,string,

start,stop)

SPFMT(delim,string,start,

stop,dtabl)

FMTNUM(N,I,N,V)

SPFMT(N,I,N,V,I)

Converts an ASCII string into a floating-point

number.

Converts an ASCII string into a floating-point

number using the supplied delimiter table.

Processing Data Subprograms

Function Call:

Declaration:

Purpose:

Arguments:

Result:

Example:

Subroutine Call:

Declaration:

Purpose:

Arguments:

44

STRNGF (iarray,position)

STRING
FUNCTION STRNGF(I,V): ADSTNG

This is the string fetch function. STRNGF returns the floating-point value of

the character at position in iarray.

iarray is an integer array name. position is a character number within the

array range.

The result is a value (n) in the range O<n< 255. This value represents an

ASCII character.

E=STRNGF (IAS) A

-=-|) 1A(1)

-=-| \ 1A(2)

) IA(3)

E would equal 69, which is the ASCII value of E.

1

m|m
|

STRNGS(char, iarray ,position)

STRINGSUBROUTINE STRNGS(V,I,V): cone

This is the string storing subroutine. STRNGS stores the ASCII value of char at

position in iarray.

The value of char is the floating-point value of an ASCII character. It must be

in the range 0 < char < 255.

iarray is an integer array name. position is a character number within the array

range.

REV A NOV 1977 Processing Data Subprograms

Subroutine Call:

Declaration:

Purpose:

Arguments:

Example:

Processing Data Subprograms

STRNGO(olun,iarray,start,stop)

SUBROUTINE STRNGO(V,1I,V,V):
STRING

ADSTNG

This is the string output subroutine. STRNGO sends to the selected output

device the characters from iarray starting at start and ending at stop.

olun must be assigned to an output device or file.

iarray is an integer array name. start is the character number of the first character

to transfer. stop is the character number of the last character to transfer.

1.0100

1.0200

2.0200

2.0300

2.0400

2.0500

2.0600

3.0000

3.0100

4.0100

4.0200

4.0300

4.0400

4.0500

5.0500

5.0600

IARRAY OUT(10)

SUBROUTINE STRNGO(V,I,V,V):STRING

OUT (1)=72

OUT (2)=69

OUT (3)=76

OUT (4)=76

OUT (5)=79

PRINT ERASE

STRNGO(0,OUT,1,10)

OUT (1)=17736

OUT (2)=19532

OUT (3)=00079

OUT(4)=0

OUT(5)=0

PRINT CR,CR,CR

STRNGO(0,OUT,1,10)

If you run this program under the control of the REDUCE program with lun 0

assigned to the terminal, the display produced is:

HELLO

HELLO

The terminal ignores all nulls.

45

Subroutine Call:

Declaration:

Purpose:

Arguments:

Comments:

STRNGI(ilun,count,iarray,start,stop)

STRING
SUBROUTINE STRNGI(V.NIV,V): (pn crig

This is the string input subroutine. STRNGI reads a string, terminated with CR

and LF, from the selected input device and stores it in iarray from start to stop.

The number of characters in the string is returned in count.

ilun must be assigned to an input device or file.

STRNGI stores the number of characters stored in iarray as a result of this call

in count.

iarray is an integer array name. start selects the character number in iarray

where the first character in the input string is stored. stop is the character

number at which the transfer stops.

A string that is shorter than the allotted space terminates with a CR and LF, and

the remaining space is null filled. STRNGI truncates at stop a string that is longer

than the allotted space and does not store CR and LF.

@ Processing Data Subprograms

Declaration:

Purpose:

Arguments:

Function Call:

Declaration:

Purpose:

Arguments:

Result:

Comments:

Processing Data Subprograms

Subroutine Call: CHARO(olun,char)

STRINGSUBROUTINE CHARO(V,V): come]

This is the character output subroutine. CHARO sends the character char to the

selected output device.

olun must be assigned to an output device or file.

The value of char is the floating-point value of an ASCII character. It must be

in the range 0 < char < 255.

char can have a value of 0 and parity ASCII only if the output device is the paper

tape punch.

CHARO does not store parity ASCII and nulls on mass storage devices (disk and

magnetic tape). As a result, char is a seven-bit value (1< char <127) on mass

storage devices.

CHAR (ilun)

STRING
FUNCTION CHARI(V): ADSTNG

This is the character input function. CHARI returns the floating-point value of

the ASCII character received from the input device.

ilun must be assigned to an input device or file.

The result is a floating-point number (n) in the range 1<n<127. It is the code

for an ASCII character. CHARI trims parity bits; it does not check parity.

With mass storage devices, CHARI interprets the first null character encounted as

the end-of-file. If the input device is the paper tape reader, you may input nulls,

However, CHARI ignores them. This allows you to start a paper tape on the

leader preceding the ASCII code.

4-8

Subroutine Call:

Declaration:

Purpose:

Arguments:

Comments:

SMOV (dststr,start2,stop2,srcstr,start1 ,stop1)

STRINGSUBROUTINE SMOVI(I,V,V,I,V,V): some)

This is the move-string subroutine. SMOV transfers characters from the source

string array srestr into locations in the destination string dststr.

dststr is an integer array name. start2 specifies the starting character number in

dststr. stop2 specifies the ending character number in dststr.

srestr is an integer array name. start1 specifies the starting character number in

srestr. stop1 specifies the ending character number in srestr.

If the destination string-space is shorter than the source string-length, SMOV

truncates the source string. If the destination string-space is longer than the

source string-length, SMOV fills the trailing character locations in the destina-

tion string-space with ASCII spaces.

@ Processing Data Subprograms

Subroutine Call:

Declaration:

Purpose:

Arguments:

Comments:

Examples:

Processing Data Subprograms

SCON (dststr, start, stop, “stringconstant”’)

STRING
SUBROUTINE SCONI(I,V,V,C): ADSTNG

SCON moves the string stringconstant into locations in the destination string dststr.

dststr is an integer array name. start specifies the starting character number in

dststr. stop specifies the ending character number in dststr.

stringconstant is an ASCII character string enclosed in paired delimiters. “ is an

arbitrarily chosen delimiter. Any character may be used as the delimiter, as long

as it does not appear in stringconstant.

If the destination string-space is shorter than the string constant, SCON truncates

the string. If the destination string-space is longer than the string constant, SCON

fills the trailing character locations in the destination string space with ASCII

spaces.

SCON(ZIP,1,10,“ASCII TEST”)

-=- zie)

=|) zip

} zie

—— zip)

7) a
_,

49

4-10

Function Call:

Declaration:

Purpose:

Arguments:

SCMP(string1, start1, stop1, string2, start2, stop2)

STRINGFUNCTION SCMPI(I,V,V,I,V,V): Hi

This is the string comparison function. SCMP compares string1 with string2 one

character at a time by their ASCII representations. The first character difference

determines the value returned. The value returned is:

-1 if the value of the string1 character is less than the

string2 character value.

0 if string1 is identical to string2.

+1 if the value of the string1 character is greater than

the string2 character value.

If one string ends before a difference is found, SCMP considers the shorter string

to be the one of less value.

string1 is the name of an integer array that contains an ASCII string. start1 speci-

fies the starting character number in string1. stop1 specifies the ending character

number in string1.

string2 is the name of an integer array that contains an ASCII string. start2 speci-

fies the starting character number in string2. stop2 specifies the ending character

number in string2.

@ Processing Data Subprograms

Function Call:

Declaration:

Purpose:

Arguments:

Processing Data Subprograms

CMPCON (string, start, stop, “stringconstant’”’)

STRINGFUNCTION CMPCONII,V,V,C): soon)

CMPCON compares string with stringconstant one character at a time by their

ASCII representations. The first character difference determines the value

returned. The value returned is:

-1 if the value of the string character is less than the

stringconstant character value.

0 if string is identical to the stringconstant.

+1 if the value of the string character is greater than

the stringconstant character value.

If one string ends before a difference is found, CMPCON considers the shorter

string to be the one of less value.

string is the name of an integer array that contains an ASCII string. start

specifies the beginning character number in string. stop specifies the ending

character number in string.

stringconstant is an ASCII character string enclosed in paired delimiters. “ is

an arbitrarily chosen delimiter. Any character may be used as a delimiter, as

long as it does not appear in the character string.

4-11

Subroutine Call: CLRKB

. STRING
Declaration: SUBROUTINE CLRKB(O): ADSTNG

Purpose: This is the keyboard clear subroutine. CLRKB deletes characters which have

been typed at the terminal but not yet requested by a program.

Function Call: KBSTAT

— _) STRING
Declaration: FUNCTION KBSTAT(0): ADSTNG

Purpose: This is the keyboard status function. The result of KBSTAT is:

1 if the queue is empty and the terminal is local.

2 if the queue is not empty and the terminal is local.

-1 if the queue is empty and the terminal is remote.

-2 if the queue is not empty and the terminal is remote.

4-12 @ Processing Data Subprograms

Declaration:

Purpose:

Arguments:

Comments:

Subroutine Call: JUSTF Y (side,tally, string, start, stop)

STRING
SUBROUTINE JUSTFY(V,N,I,V,V): ADSTNG

This is the string-justify subroutine. JUSTFY packs the text between start

and stop in string. It removes any imbedded spaces and returns in tally the

count of all the non-space characters. When JUSTFY finishes, all non-space

characters are packed at one end of string. JUSTFY fills the remainder of

string with spaces.

The value of side tells JUSTFY to pack in a specific direction: pack string

starting at start if side equals 0, or pack string toward stop if side is not

equal to 0.

tally is the variable name that receives the count of non-space characters

in the selected range of string.

string is an integer array name. start specifies the starting character number.

stop specifies the ending character number.

Since JUSTFY removes all spaces, use the comma rather than the space to

set apart command parameters if the command string will be saved and

packed.

4-13

Example: If the integer array STR contains:

~~"

QOlZ}—-iD/AinjOipjO in |—'10 Jni-—jria
Then a call to JUSTFY(0,TALLY,STR,1,16) results in TALLY equal to 13

and STR containing:

4-14

WH WHY WH WY WHY Ww we

WHY HY WHY WY WHY we we

STR (1)

STR (2)

STR (3)

STR (4)

STR (5)

STR (6)

STR (7)

STR (8)

STR(1)

STR (2)

STR (3)

STR (4)

STR (5)

STR (6)

STR(7)

STR(8)

Processing Data Subprograms

F] Function Call:

i Declaration:

f Purpose:

Arguments:

Comments:

j] Processing Data Subprograms

FMTNUM(delim, string, start, stop)

FUNCTION FMTNUM(N,I,N,V):ADSTNG

FMTNUM converts an ASCII string to a line number, Radix-50 value or a

floating-point number, depending on the string format. FMTNUM scans string

from start until it encounters a delimiter or until it reads the character at stop.

FMTNUM returns the value of the delimiter ending the scan in delim and

returns the string character number of the position following the last character

read in start.

delim receives the floating-point value of the ASCII code for the delimiting

character. If FMTNUM ends at stop, it returns 255 in delim. The delimiters

recognized by FMTNUM are: space, carriage return, semicolon, and comma.

string is an integer array name. The ASCII strings stored in string must be in

the format:

number,

L“‘linenumber’’,

$linenumber,

‘asciicharacter,

C’asciicharacter’’, or

S“rad50symbol’”’.

start is a variable name that contains the starting character number. It also

receives the character number of the position following the last character read.

start is now ready for another scan of string.

stop contains the ending character number.

If the ASCII string read does not have the correct format, FMTNUM returns

a negative zero and stores a -1 in delim.

4-15

4-16

Example: If PLOT contains:

I WHY Ye WY we
and, START equals 12. Then, the statement:

VAL = FMTNUM(DELIM,PLOT,START,100)

returns with VAL equal to 20, DELIM equal to 44 (the ASCII value

of ,), and START equal to 15.

PLOT (4)

PLOT (5)

PLOT (6)

PLOT (7)

PLOT (8)

PLOT (9)

Processing Data Subprograms

| Function Call:

q Declaration:

Purpose:

Arguments:

i Comments:

i Processing Data Subprograms

SPFMT (delim, string, start, stop, dtabl)

FUNCTION SPFMT(N,I,N,V,1): ADSTNG

SPFMT converts an ASCII string to a line number, Radix-50 value, or a floating-

point number, depending on the string format. SPFMT scans string from start

until it encounters a delimiter or until it reads the character at stop.

SPFMT returns the value of the delimiter ending the scan in delim and returns

the string character number of the position following the last character read in

start.

delim receives the floating-point value of the ASCII code for the delimiting char-

acter. If SPFMT ends at stop, it returns 255 in delim. The delimiters recognized

are defined in dtabl.

string is an integer array name. The ASCII strings stored in string must be of the

following formats:

number,

L“‘linenumber”’,

$linenumber,

‘asciicharacter,

C’asciicharacter’’, or

S“rad50symbol’’.

start is a variable name that contains the starting character number. It also

receives the character number of the position following the last character read.

start is now ready for another scan of string.

stop contains the ending character number.

dtabl is the name of an integer array that contains a list of delimiters. The

last entry in the array must be a null character (0). The following characters

cannot be used as delimiters:

“#$'+-.0123456789ACEFHKLMNPSUV

If the ASCII string read does not have the correct format, SPFMT returns a

-O and stores a -1 in delim.

4-17

>

Subroutine Call: NUMOUT (value, code,tally, string, start, stop)

Declaration: SUBROUTINE NUMOUT(V,V,N,I,V,V): ADSTNG

Purpose: NUMOUT converts the floating-point number in value into ASCII characters

and stores them in string. code specifies the conversion mode. After conversion,

tally contains the count of the characters deposited in string.

Arguments: value contains the number to be converted.

code specifies the format code of the conversion mode. The format code can

be represented as a three-digit octal number. Each digit controls one aspect of

the conversion. Denoting the digits as dod1do, the digits have the following

meanings:

do specifies the output format.

d, is the digit count.

do is the compact flag. Oil oe
The digit count (d,) specifies the number of significant digits for floating-point,

exponential, integer, and octal notation. For real notation, it specifies the num-

ber of digits to the right of the decimal point in a constant nine-character field.

In line-number format, the digit count must be zero. For the special output, VU
d, selects the character output type.

Output Format do Digit Count (d,) Example of Format

Floating point 0 3<d,<7 7.025M

Exponential 1 2<d,<7 4.957E+13

Real 2 O<d,<7 .003

Integer 3 O<d, <7 9425

Octal 4 1<d, <7 001042

Line number 5 d, =0 12.0500

Special 6 d, = 1 for expanded Radix-50 symbol

d, = 5 for ASCII character

4-18 @ Processing Data Subprograms

Processing Data Subprograms

If the compact digit (dz) is 0, then NUMOUT stores one leading and one trailing

space with the output. If the compact digit is 1, NUMOUT omits these spaces.

NUMOUT fills unused character positions in the string range with spaces.

Format codes not defined above cause an error condition, and NUMOUT stores

a -1 in tally. The system does not give an error message.

tally is a variable name that receives the number of characters NUMOUT stored

in string.

string is an integer array name. start selects the starting character number. stop

specifies the ending character number.

4-19

PRINT Statement NUMOUT Format Codes

Format NUMOUT code Value

Code Octal Decimal Remarks

F 040 32 Floating point notation. Default to four digits

F3 030 24 if the digit field is blank. Print suffixes P,N,U,

F4 040 32 M,K where appropriate. Use E format if

F5 050 40 X<1E-15 or X21E+6.

F6 060 48

F7 070 56

E 051 41 Exponential notation (e.g., 7.23E+09). De-

E2 021 17 fault to five digits if the digit field is blank.

E3 031 25

E4 041 33

E5 051 41

E6 061 49

E7 071 57

RO 002 2 Real number notation (e.g., R2> -76543.21).

R1 012 10

R2 022 18

R3 032 26

R4 042 34

R5 052 42

R6 062 50

R7 072 58

| 053 43 Integer notation. Default to five digits if the

10 003 3 digit field is blank.

11 013 11

12 023 19

13 033 27

14 043 35

15 053 43

16 063 51

17 073 59

O 064 52 Octal notation (0076). Print leading zeroes.

O01 014 12 Default to six digits if the digit field is blank.

O02 024 20

03 034 28

04 044 36

05 054 44

O6 064 52

O7 074 60

L 005 5 Line number notation.

Ss 016 14 Radix-50 symbol output.

Cc 056 46 Character output.

4-20 @ Processing Data Subprograms

oe NZ

=m eS 2

©

Declaration:

Purpose:

Arguments:

Comments:

Example:

Processing Data Subprograms

Pos

Subroutine Call: PAKSYM (symbol, delim, string, start, stop)

SUBROUTINE PAKSYM(S,N,1,N,V): ADSTNG

PAKSYM packs ASCII chracters into the two-word symbol. The characters are

from the integer array string starting at start and ending at stop, the sixth charac-

ter, or the first non-Radix character. PAKSYM stores the first non-Radix charac-

ter in delim and the character number of the position following the last character

read in start.

symbol is a Radix-50 symbol that receives the result.

delim is a variable name that receives the ASCII value of the delimiter. If

PAKSYM ends at stop, it returns the value 255 in delim.

string is the name of an integer array that contains ASCII characters. start is the

name of a variable that contains the starting character number. It receives the

character number of the position following the last delimiter read. stop specifies

the ending character number.

PAKSYM ignores leading spaces and tabs, then packs up to six characters in symbol.

If less than six characters are found before the next space, period, or any non-Radix-

50 character, the routine pads symbol on the right with spaces.

If the range of string is longer than six alphanumeric characters, PAKSYM packs

the first six, then scans for the delimiter at the end of the alphanumeric characters.

If only spaces follow the alphanumeric characters, then the delimiter is a space,

unless stop was encountered, and start indexes to the next alphanumeric character.

If a delimiter imbedded in spaces follows the alphanumeric characters, then the

delimiter goes into delim and start indexes to the following space.

If the first character in string, after leading spaces, is not a valid Radix-50 charac-

ter, PAKSYM stores a 0 in symbol and a -1 in delim as an error indicator. The

system does not give an error message.

After execution of PAKSYM, all references to symbol reflect its new value. Thus,

if SM2 is called by SM2(SCOPEA,MAT1) and PAKSYM(MAT1,D,A,SR,10) is

executed, SM2 connects SCOPEA to the specified range in string A.

NOTE

PAKSYM changes only the names of symbols.

4-21

4-22

Subroutine Call:

Declaration:

Purpose:

Arguments:

Comments:

RADPAK (value, delim, string, start, stop)

SUBROUTINE RADPAK(N,N,I,N,V): ADSTNG

RADPAK packs the variable value with the Radix-50 equivalent of ASCII charac-

ters. The characters are from the integer array string starting at start and ending

at stop, the sixth character, or a non-alphanumeric character. RADPAK then

stores the first non-alphanumeric character in delim and the character number of

the position following the last character read in start.

value receives the result.

delim receives the ASCII value of the delimiter. If RADPAK ends at stop, it

returns the value 255 in delim.

string is the name of an integer array that contains the ASCII characters. start

is a variable name that contains the starting character number. It receives the

character number of the position following the last character read. stop speci-

fies the ending character number.

See the comments for PAKSYM for more information.

@ Processing Data Subprograms

Subroutine Call:

. Declaration:

|\ Purpose:
x

Arguments:

Comments:

Processing Data Subprograms

PAKFIL/(file, delim, string, start, stop)

SUBROUTINE PAKFIL(F,N,I,N,V): ADSTNG

PAKFIL packs ASCII characters into the four-word Radix-50 file descriptor file.

The characters are from the integer array string, starting at start and ending at

stop, the 14th character, or a delimiter. PAKFIL then stores the delimiter in

delim and the character number of the position following the last character read

in start.

file is a four-word file descriptor receiving the result.

delim is a variable name that receives the delimiter. If PAKFIL ends at stop,

255 is stored in delim.

string is an integer array name that contains ASCII characters.

start is a variable name that contains the starting character number. It receives

the character number of the position following the last delimiter read.

stop specifies the ending character number.

PAKFIL packs up to 12 characters from string, in standard file descriptor format

(filnam.typ:uid), into four Radix-50 words. PAKFIL packs the first one to six

alphanumeric characters into the first two words of the file descriptor. If a

period is the next delimiter, it packs the next zero to three characters into the

third word. If a colon is the next delimiter, it packs the next zero to three

characters in the fourth word.

In every case, PAKFIL ignores leading spaces and tabs, converts from zero to

three (or six) characters, then scans for the next delimiter, ignoring trailing spaces

and tabs. If only spaces or tabs precede the next alphanumeric character, then

the space or tab ahead of that alphanumeric character is the delimiter for that file

name. If less than three Radix-50 characters exist in a word, PAKFIL pads with

spaces on the right.

Several file descriptors can be stored in string and each processed with a call to

PAKFIL. start contains the character number for scanning the next file descriptor

in the string.

If the first character after the leading spaces is not a valid Radix-50 character, the

subroutine stores a zero in the first word of the file descriptor and a -1 in delim

as an error indicator. The system does not issue any error messages.

@ 4-23

Example: All references to file reflect the new name packed by PAKFIL. For example,

after the sequence:

SR=1

SCON(A,SR,8,“ZAPO:SYS")

PAKFIL(ZORCH:MIN,DEL,A,SR,8)

ASTORE(DATARY,ZORCH:MIN,1,11.02)

the data from DATARY is stored in the file ZAPO.ARY:SYS rather than the

file ZORCH.ARY:MIN as originally specified.

This is because the PAKFIL subroutine has altered the value of the file

descriptor constant ZORCH.ARY:MIN to ZAPO.ARY:SYS.

NOTE

PAKFIL cannot change the name of a program executed by the

RUN statement. (See the Data Reduction Language manual.)

4-24 @ Processing Data Subprograms

Subroutine Call:

Declaration:

Purpose:

Argument:

Processing Data Subprograms

DFLTYP(‘‘typ”)

SUBROUTINE DFLTYP(C): ADSTNG

DFLTYP sets the default file type for the file descriptor in PAKFIL calls.

DFLTYP converts up to three characters into Radix-50 code. Subsequent calls to

PAKFIL with no file type specified causes the default file type to be stored in the

third word of the file descriptor.

typ is an ASCII character string enclosed in paired delimiters. “ is an arbitrarily

chosen delimiter. Any character may be used as a delimiter as long as it does

not appear in the character string.

If only the delimiters are present with no typ (for example, DFLTYP(’’’’)), then

a call to PAKFIL with no file type specified causes 0 to be stored in the third

word of the file descriptor.

The default file type in a program is initially 0.

4-25

Subroutine Call:

Declaration:

Purpose:

Argument:

Comments:

4-26

DFLUID(“uid”)

SUBROUTINE DFLUID(C): ADSTNG

DFLUID sets the default user identification code for the file descriptor in PAKFIL

calls. DFLUID converts up to three characters to Radix-50 code. Subsequent calls

to PAKFIL with no uid specified causes the default code to be stored in the fourth

word of the file descriptor.

uid is an ASCII character string enclosed in paired delimiters. “ is an arbitrarily

chosen delimiter. Any character may be used as a delimiter as long as it does not

appear in the character string.

If only the delimiters are present with no uid (for example, DFLUID("“’)), then a

call to PAKFIL without a uid specified stores the currently specified user identifica-

tion code in the fourth word of the file descriptor.

The default user identification code in a program is initially 0.

Three conditions exist for a call to PAKFIL with no user identification code

specified.

1. You do not use DFLUID. Therefore, PAKFIL stores a zero in the user

identification code word.

2. You use DFLUID with the desired default user identification code.

PAKFIL uses the default code.

3. You use DFLUID without specifying a uid. PAKFIL uses the currently

specified user identification code.

@ Processing Data Subprograms

‘e) Subroutine Call: UNPSYM(symbol, string, start, stop)

Declaration: SUBROUTINE UNPSYM(S,I,V,V):ADSTNG

Purpose: This is the symbol unpacking subroutine. UNPSYM converts the two Radix-50

words in symbol into six ASCII characters. It stores the characters in the integer

array string starting at start. UNPSYM truncates excess characters or fills any

unused locations between start and stop with ASCII spaces.

Arguments: symbol contains the two-word Radix-50 code to be converted.

string is an integer array name. start specifies the starting character number.

stop specifies the ending character number.

Comments: If symbol contains zero (two cleared words), UNPSYM deposits all spaces in

string from start to stop.

Subroutine Call: RADUP(value, string, start, stop)

Declaration: SUBROUTINE RADUP(V,I,V,V): ADSTNG

Purpose: This subroutine unpacks Radix-50 symbols from a variable. RADUP converts the

Radix-50 data in value into six ASCII characters. RADUP stores the characters

in the integer array string starting at start. RADUP truncates excess characters or

fills any unused string positions between start and stop with ASCII spaces.

Arguments: value specifies the data to be converted.

string is an integer array name. start selects the starting character number.

stop selects the ending character number.

Comments: If value contains zero (two cleared words), RADUP deposits spaces in string from

start to stop. This is useful as an initialization method.

@ 4-27Processing Data Subprograms

Subroutine Call:

Declaration:

Purpose:

Arguments:

Comments:

4-28

UNPFIL (file, string, start, stop)

SUBROUTINE UNPFIL(F,I,V,V): ADSTNG

UNPFIL is the file descriptor unpacking subroutine. UNPFIL converts the four-

word file-descriptor file into 14 ASCII characters. UNPFIL stores the characters

in the integer array string starting at start. It then fills any unused string

positions in the specified range with ASCII spaces or it truncates any excess

characters if less than 14 positions are reserved.

file is a four-word Radix-50 file descriptor (filnam[.typ] [:uid]).

string is an integer array name. start specifies the starting character number.

stop specifies the ending character number.

UNPFIL formats the string with:

a six-character file name,

followed by a period and a three-character file type,

followed by a colon and a three-character user identification code.

Fewer than the allotted number of characters in a given word of the file descrip-

tor causes the corresponding field in string to be right-filled with spaces. A file

type or user identification code containing zero causes UNPFIL to replace the

associated delimiter (period or colon) with a space and to fill the rest of the field

with spaces.

@ Processing Data Subprograms

r ‘|

3

Examples:

1. This routine allows you to decide from the terminal whether or not to continue the program. Use

this routine as part of a larger program.

Write the program in EDIT.

1.0100 * THIS ROUTINE ALLOWS YOU TO DECIDE FROM THE TERMINAL

1.0200 * KEYBOARD WHETHER OR NOT TO CONTINUE

1.0300 * RESPONSE MUST BE YES OR NO

1.1000 * LUN 0 IS ASSIGNED AS KB AT RUN TIME

1.2000 SUBROUTINE STRNGI(V,N,1,V,V):STRING

1.3000 FUNCTION CMPCONI(I,V,V,C)

1.4000 IARRAY GOT(2)

2.6000 PRINT <0>“DO YOU WISH TO CONTINUE?”

2.6050 * PROGRAM WAITS FOR KEYBOARD RESPONSE

2.6100 STRNGI(0,COUNT,GOT,1,3)

2.6200 RESULT = CMPCON (GOT,1,3,“YES”)

2.6300 IF (RESULT EO 0) 2.64,2.7

2.6400 PRINT <0> “THIS LINE WOULD BE A GOTO WHERE EVER YOUR YES”,

CR

2.6500 PRINT <0> RESPONSE SHOULD TAKE YOU”,CR

2.6600 GOTO 2.75

2.7000 RESULT = CMPCON (GOT,1,2,“NO”)

2.7100 IF (RESULT EQ 0) 2.74,2.72

2.7200 PRINT <O> “YOUR ANSWER HAS TO BE YES OR NO”,CR

2.7300 GOTO 2.6

2.7400 PRINT <0> “BAIL OUT SINCE RESPONSE WAS NO”,CR

2.7500 STOP

After translating the program and saving it under the name EXPDUM in TRAN, run it from REDUCE.

REDUCE

#RUN EXPDUM

DO YOU WISH TO CONTINUE? YES

THIS LINE WOULD BE A GOTO WHERE EVER YOUR YES

RESPONSE SHOULD TAKE YOU

#RUN EXPDUM

DO YOU WISH TO CONTINUE? NO

BAIL OUT SINCE RESPONSE WAS NO

#RUN EXPDUM

DO YOU WISH TO CONTINUE? YUP

YOUR ANSWER HAS TO BE YES OR NO

DO YOU WISH TO CONTINUE? YES

THIS LINE WOULD BE A GOTO WHERE EVER YOUR YES

RESPONSE SHOULD TAKE YOU

#

Processing Data Subprograms @ 4-29

4-30

This is a sample program that processes commands. The four commands are:

ONE, TWO, THR, and EXI.

The command prompter is =. After you give a command in response to the prompter, a message occurs.

.@50@ * SUBROUTINE AND FUNCTION DECLARATIONS
1@0@@ SUBROUTINE SCONCI.U,V,.C).STRNGICVU,N,1,V,VU): STRING
.200@ FUNCTION SCMPCI,U.U,1,U,U),CMPCONCI,U,U,C>:STRING

e5ee@ x INTEGER ARRAYS FOR COMMAND AND INPUT STRINGS
1908 IARRAY LIST 6), COMANDXC 37 >
.1306 x PUT THE COMMAND LIST IN A STRING ARRAY
2000 SCONLIST,1.12. "ONETWOTHREXI"TM >
3888 ILUN = 14

6032 * COMMAND INTERPRETER
6046 x

6658 x PRINT A PROMPTER
.@166 PRINT "“24H_"
6150 x ACCEPT THE COMMAND INPUT

. 8288 STRNGI¢C ILUN, TALLY. COMAND, 1,74 >

.9256 * IGNORE LEADING SPACES
6396 LOOP 18.035 START = 1, TALLY
6480 IF (CMPCON COMAND, START. START." “>> 18.06
6506 CONTINUE
@558 x IF JUST CR,LF IN STRING, LOOP BACK
0690 IF (TALLY LE START+1> 10.61
@656 x COMPARE THE queens! WITH THE LIST
6706 LOOP 16.09 JMP = @,
6808 IF ¢SCMPC COMAND. START. START+2,LIST. JMPX3+1,. IMPXS+3

>> 10.09,18.12
6966 CONTINUE
B95G x IF COMMAND NOT IN LIST. COMPLAIN
18686 PRINT "INVALID COMMAND-G".CR
1106 GOTO 10.01
1156 x ACKNOWLEDGE THE COMMAND REQUEST
1206 8 8GOTOC JMP+1)> 20.1, 30.1. 40.1. 5@.1

19@@ PRINT "ONE FOR THE MONEY".CR
2080 8 86GOTO 18.61

1600 PRINT “TWO FOR THE SHON".CR
.2ceee@ GOTO 16.01

1@@@ PRINT “THREE TO GET READY".CR
2688 GOTO 18.61

1688 PRINT “GOODBY!".CR
2688 STOP

@ Processing Data Subprograms

C C
> di

After translating the program and saving it under the name COMMAND in TRAN, run it from REDUCE.

= THREE

THREE TO GET READY
=EXIT
GOODBY !

Processing Data Subprograms @ 4-31

SECTION FIVE:

EXTENDED FUNCTION SET

This section describes an extension to the standard functions discussed in the Data Reduction

Language manual. These extended functions include:

Computing numbers to a specified modulus,

Generating pseudo-random numbers, and

Finding the minimum and maximum of a group of numeric values.

Refer to Fundamental Algorithms: The Art of Computer Programming, Vol. 1, by Donald E.

Knuth, for further information about the functions described in this section.

Remember, an ordinary array is an array declared with an ARRAY statement in your program.

An integer array is an array declared with an [ARRAY statement.

Processing Data Subprograms

Summary of ARITH3 Functions

The extended function set functions are in the ARITH3 file.

Function Declaration Purpose

AMAX(a) AMAX(A) Returns the maximum value from an ordinary array.

AMIN (a) AMIN(A) Returns the minimum value from an ordinary array.

AMOD (x,y) AMOD(V,V) Computes real x modulo y.

ENT (x) ENT(V) Returns the greatest integer less than or equal to x.

IMAX (ia) IMAX (I) Returns the maximum value stored in an integer array.

IMIN (ia) IMIN (I) Returns the minimum value stored in an integer array.

MOD (x,y) MOD(V,V) Computes integer x modulo y.

POS(x) POS(V) Returns unsigned twos complement integer from a

signed integer argument.

RAN(s) RAN(N) Generates pseudo-random numbers.

RMAX(x,y) RMAX(V,V) Returns the maximum of two values.

RMIN(x,y) RMIN(V,V) Returns the minimum of two values.

ROUND (x) ROUND (V) Rounds the argument.

SIGN(x,y) SIGN(V,V) Returns the absolute value of x with the sign of y.

Processing Data Subprograms
5-1

Function Call: AMA X(array)

Declaration: FUNCTION AMAX(A):ARITH3

Purpose: AMAX returns the maximum value stored in the ordinary array.

Argument: array is an ordinary array name.

Function Call: AMIN(array)

Declaration: FUNCTION AMIN(A):ARITH3

Purpose: AMIN returns the minimum value stored in the ordinary array.

Argument: array is the name of an ordinary array.

Example: AMIN and AMAX can perform column searches on two-dimensional arrays.

1.01 ARRAY MAT(4,4),A(4),B(4),C(4),D (4)

1.02 EQUIVALENCE MAT WITH A,B,C,D

2.01 C1 = AMAX(A)

2.02 C2 = AMAX(B)

2.03 C3 = AMIN(C)

2.04 C4 = AMIN(D)

C1 and C2 contain the maximum values stored in two of the columns of

MAT. C3 and C4 contain the minimum values of the other two columns

of MAT.

5-2 @ Processing Data Subprograms

Function Call:

Declaration:

Purpose:

Argument:

Function Call:

Declaration:

i ‘e) Purpose:

Argument:

Example:

Processing Data Subprograms

IMA X(iarray)

FUNCTION IMAX(I):ARITH3

IMAX returns the maximum value stored in the integer array. The value is

returned as a floating-point number.

iarray is an integer array name. IMAX assumes that signed one-word integer array

elements in the range from -32768 to 32767 are stored in iarray.

IMIN (iarray)

FUNCTION IMIN(I):ARITH3

IMIN returns the minimum value stored in the integer array. The value is returned

as a floating-point number.

iarray is an integer array name. IMIN assumes that signed one-word integer array

elements in the range from -32768 to 32767 are stored in iarray.

1.00 FUNCTION IMAX(I),IMIN(I): ARITH3

1.01 IARRAY FIND(8)

2.01 FIND(1) = 1.1

2.02 FIND(2) = 2.2

e

2.08 FIND(8) =8.8

3.01 FMAX = IMAX(FIND)

3.02 FMIN = IMIN(FIND)

3.03 PRINT “FMAX = ",FMAX,”FMIN = ”,FMIN,CR

The terminal screen display is:

FMAX = 9.000 FMIN = 1.000

Function Call:

Declaration:

Purpose:

Arguments:

Result:

Function Call:

Declaration:

Purpose:

Arguments:

Result:

5-4

RMAX(x,y)

FUNCTION RMAX(V,V):ARITH3

RMAX returns the maximum of two values.

x and y are any legal expressions.

RMAX returns the value of x if x is greater than y. Otherwise, it returns the

value of y.

RMIN(x,y)

FUNCTION RMIN(V,V):ARITH3

RMIN returns the minimum of two values.

x and y are any legal expressions.

RMIN returns the value of x if x is less than y. Otherwise, it returns the

value of y.

@ Processing Data Subprograms

a Function Call: SIGN(x,y)

Declaration: FUNCTION SIGN(V,V):ARITH3

Purpose: SIGN returns the absolute of x with the sign of y. That is, the result is:

|x| vi ify #0
y

|x] if y=0

Arguments: x is any expression. The value of x determines the absolute of the result.

y is any expression. y determines the sign of the result.

Example: S = SIGN(-25.0,Y)

For a positive (or zero) Y, S equals 25.0. For a negative Y, S equals -25.0.

Function Call: ENT (x)

Declaration: FUNCTION ENT(V):ARITH3

Purpose: ENT returns the greatest integer less than or equal to x.

Arguments: x is any legal expression. The table below shows the results of ENT.

Value of x Result

-1.67(10”)<x<1.67(107) L.x_] That is, the greatest integer
a6 7 less than or equal to x (the

-1.7(10°°)<x<-1.67(10°) x floor of x).

1.67(107)<x<1.7(1038) x

Examples: 1. If O<x<1, the result is 0.

If -1<x<O, the result is -1.

Note that ENT(-1.5) equals -2 but INT(-1.5) equals -1.

Comments: To obtain the ceiling of x ([x]) program:

-ENT (-x)

The ceiling of x is the least integer greater than or equal to x.

Pr ing Data Subprog REV A DEC 1979

Function Call:

Declaration:

Purpose:

Argument:

Result:

Examples:

Ln] specifies the greatest integer less than or equal to n.

ROUND(x)

FUNCTION ROUND(V):ARITH3

ROUND rounds the value of the argument and returns an integer result.

x is any legal expression whose value is in the range -1.7(1098)<x<1.7(10°8),

The result is:

Lixi+ 5] ifx #0

0 ifx =0

The result, in terms of the standard functions, is:

INT(ABS(x) + .5) * ABS(x) / x

The result, in terms of the extended functions, is:

SIGN(ENT(ABS(x) + .5),x)

x Result

1.3 1

1.6 2

-1.2 -1

-1.7 -2

0.49 0

0.50 1

@ Processing Data Subprograms

Function Call:

Declaration:

Purpose:

Arguments:

Examples:

Processing Data Subprograms

AMOD(x,y)

FUNCTION AMOD(V,V):ARITH3

This is a real modulo function. It returns the real remainder of x/y adjusted

between O and y. AMOD performs the modulo operation defined by:

x mod y = x - y[x/y] if y #0

x mod 0=x

[n] specifies the greatest integer less than or equal to n.

If y >0, then O<xmody<y.

If y <0, thenO0 > x mod y> y.

x is any legal expression.

y is the modulus. It is any legal expression.

AMOD produces valid results for all argument values in the range from -1.67(107)

to 1.67(107). It also produces valid results for argument values greater than

1.67(107) if x and y are near the same magnitude. For example: x equals 1.7(101°)
and y equals 2.9(10'7).

1. 10.00 PI = 3.141593

10.01 R = AMOD(X,2+P1)

R is a value between O and 2+PI.

2. 11.03 F = AMOD(X,1)

For a positive X, this statement returns the fractional part of X. Fora

negative X, it returns the fractional part added to 1. If X equals 14.732,

then F equals 0.732. If X equals -14.732, then F equals 0.268.

3. The following example corrects round-off errors for quantities near integer

values.

13.01 IF (.0001<AMOD(X,1) <.9999) 13.03

13.02 X = ROUND(X)

13.03 N = ENT(X)

5-8

Function Call:

Declaration:

Purpose:

Arguments:

Examples:

MOD (x,y)

FUNCTION MOD(V,V)ARITH3

This is an integer modulo function. It returns the signed integer remainder of x/y

adjusted between 0 and y. MOD performs the operation defined by:

x mod y = x - y|x/y] if y #0

x mod 0 =x

where Ln] equals the greatest integer less than or equal to n.

If y is greater than 0, then O<x mod y <y.

If y is less than 0, then O>x mod y>y.

x must be in the range -32767 <x <32767.

y is the modulus. y must be in the range -32767 Sy <32767.

1. The table below gives the results of the MOD function for selected x

and y arguments.

x y Result

13 4 1

15 4 3

-13 4 3

-15 4 1

13 -4 -3

15 -4 -1

14.7 4 3

15 3.7 3

-14.7 0 -15

2. The illustration below shows how MOD works.

If V=MOD(A,5)

A: -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -8 2 -10123456
i i it i i] | | } a | i | | (ee es ee

oT i t U ! q LU LU |] U J q TT T TT tT rt

Vv: 0 1 2 3 4 012 3 4012 3401234041
l JL J\ JL J

If V=MOD(A,-5)

A: -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -10123456
J j j | j fr i] | {! it i i [ee ee ee ee ee ee
v LJ LJ T q To TOT qT TOT q J q TT TT Tt tt UJ

VV: 0 4 -3 2-4 0 -4 3-10 4-3 1 00 -4-3-2-1 0-4
L JL JD JN J

@ Processing Data Subprograms

>

. 1688

. 3868

. 3508 x

. 4888

. 5888

. 9658 x

. 8188
. 8158

-@155

. 8268

. 8258

. 8388

0258
. 8400

. 8588

. 6780

. 8889

. 8986

. 18808
. 1166

. 1268

86188N CHACHA CnUNG) WIGIGIGI fy + «uM HM OM

In this example, line 5.03 determines the ceiling of a value. Line 5.04 uses the MOD function to

produce a number between 1 and 5.

FUNCTION ENTCU). MODCU,U>: ARITHS

ARRAY AC15@>
FILL THE ARRAY WITH A NUMERICAL SEQUENCE

LOOP ae le

LIST DATA ORDERED BY COLUMNS
ACCEPT<14> "COUNT: ",N
IF cl < N< 15@) 5.02, 5.@1
rik = & SET UP FOR FIVE COLUMNS OF LISTING

COMPUTE GREATEST NUMBER OF ROWS
R = -ENTC-N/’COL >

COMPUTE NUMBER OF COLUMNS IN LAST ROW
C = MODCN.-COL) + COL

LIST THE DATA
LOOP 5.12 K = 1, R

LOOP 5.1 J = @, (COL-1>-<K EQ R>x¢CCOL-C>
PRINT<13> ACK+JER-CJ GT CokCI-C 99:13

CONTINUE
PRINT<13> CR

CONT INUE

GOTO 5.91

After writing the program in EDIT, translate it and save it under the name LISTER with TRAN,

then run it under control of the REDUCE program.

$REDUCE
#RUN LISTER
COUNT: 21

1 6 18 14 18
2 7 11 15 19
3 8 12 16 2
4 9 13 17 at

COUNT: 22
1 6 if 15 19

2 7 12 16 2
3 8 13 17 21
4 9 14 18 22
5 18

COUNT: 23

1 6 it 16 2
2 7 12 1? at
3 8 13 18 2
4 9 14 19 2

‘e) 5 18 15

Processing Data Subprograms 59

Function Call:

Declaration:

Purpose:

Arguments:

Result:

Comments:

Example:

5-10

POS(x)

FUNCTION POS(V):ARITH3

POS adjusts the number range -32768 <x <32767 to the range 0O<n <65535.

x is any legal expression whose value is an integer in the range from -32768

to 32767.

The result is an integer in the range from 0 to 65535. POS returns (x + 65536)

if x is less than 0, and returns x if x is greater than or equal to 0.

Integer arrays normally store signed numbers between -32768 and 32767. POS

allows integer array elements to be used as twos complement integers in bit

comparisons and logical operations. Use POS whenever dealing with octal num-

bers stored in integer arrays.

P = POS(-1)

POS returns the value 65535 (1777773) in P.

@ Processing Data Subprograms

Declaration:

Purpose:

Argument:

Result:

Comments:

Processing Data Subprograms

Function Call: RAN(s)

FUNCTION RAN(N):ARITH3

This function is a pseudo-random number-generator. RAN generates numbers

uniformly distributed over the range O<n<1, with a period of 65536. That is,

after 65536 executions, RAN repeats its results.

s is a variable whose value provides two integers: s1 and s2. The sign of s is

always positive when RAN is generating a number.

s1 equals the high order word of s, modulo 2'°. 52 equals the low order word

of s, modulo 278,

The pseudo-random number is produced with the algorithm:

n = [(a1*s1 + c1) mod 2'® + (a2*s2 + c2) mod 2'°] mod 216

al = 5'? mod 2'© = 29589 = (8 « 3698) + 5

a2 = 5'© mod 2'6 = 18829 = (8 * 2353) +5

cl = (1/2-1/6 3) 2"®

o2 = (1/2- 1/6 V3) 216 = 13849

6925

The value (a1*s1 + .c1) mod 2'® is stored in $1. The value (a2*s2 + c2) mod 21°

is stored in s2. These new values of s1 and s2 specify the value of s for the next

call to RAN.

To initialize the random number sequence:

1. Store a positive number (or zero) in s, or

2. Store a negative number in s, which causes the generator to

initialize itself with the current date - time.

If your program is to run several times and you desire a different random sequence

each time, then keep s in COMMON.

To obtain random integers between O and k, take the integer part of the product

of (k+1) and the random number:

X = INT((k + 1) * RAN(s))

The lesser significant digits are less random.

5-11

APPENDIX A:

SUMMARY OF HOW TO DECLARE SUBPROGRAMS

Summary of Function and Subroutine Declarations and Calls*

A subprogram must be declared in a program before it is called. The general form of the subprogram

declaration is:

FUNCTION name (0) [: fil] name (0) [:filnam]SUBROUTINE (| TM@TM® \ (fist) (“TNDAM mame Gi? EF

where

name is the name of a subprogram.

0 specifies that the subprogram does not have any arguments. list specifies the number, type, and

sequence of arguments. The list letter codes are given below.

Letter Code Description of Legal Arguments

A Only the name of an ordinary array is a legal argument.

Cc A string constant consisting of an ASCII string enclosed in paired delimiters must

be specified.

D A file descriptor, filnam.typ[:uid] , must be specified. If uid is not specified, the

current identification code is used. The file must already exist. The Translator

searches the directory for the file and includes the contents of it in the Test Pro-

gram File.

F A disk file descriptor, filnam[.typ] [:uid] , must be specified.

| Only the name of an integer array is a legal argument.

L Any statement line number from the program is a legal argument.

N Only simple variables or ordinary array elements are legal arguments.

P Only the name of a pinlist is a legal argument.

S Any symbol which starts with an alphabetic character and contains six or less

alphanumeric characters is a legal argument.

T A pinlist name, a singly or doubly indexed pinlist, or a pin name is a legal argument.

T1 A pin name or a singly indexed pinlist is a legal argument.

Vv Any expression that gives a numeric result is a legal argument.

e filnam is a file name with the file type FCN that contains the load module of the subprogram. First the

system searches the currently specified user identification code for filnam. If any specified file is not

found, then the system searches SYS for filnam.

*For more information, see the Data Reduction Language manual.

Processing Data Subprograms @

-«

APPENDIX B:

NUMERIC CHARACTER VALUES FOR ASCII

CHARACTERS

Decimal and Octal Values

Decimal Value Octal Value Character Name and Remarks

e) 000 NUL Null, tape feed, CONTROL/SHIFT/P.

1 001 SOH Start of heading; also SOM, start of

message, CONTROL/A.

2 002 STX Start of text; also EOA, end of address,

CONTROL/B.

3 003 ETX End of text; also EOM, end of message,

CONTROL/C.

4 004 EOT End of transmission (END); shuts off

TWX machines, CONTROL/D.

5 005 ENO Enquiry (ENORY); also WRU,

CONTROL/E.

6 006 ACK Acknowledge; also RU, CONTROL/F.

007 BEL Rings the bell. CONTROL/G.

8 010 BS Backspace, also FEO, format effector.

Backspaces some machines, CONTROL/H.

011 HT Horizontal tab, CONTROL/I.

10 012 LF Line feed or line space (new line); ad-

vances paper to next line, duplicated by

CONTROL/J.

11 013 VT Vertical tab (VTAB), CONTROL/K.

12 014 FF Form Feed to top of next page (PAGE),

CONTROL/L.

13 015 CR Carriage return to beginning of line, dup-

licated by CONTROL/M.

14 016 SO Shift out; changes ribbon color to red.

CONTROL/N.

15 017 Sl Shift in; changes ribbon color to black.

CONTROL/O.

16 020 DLE Data link escape, CONTROL/P (DCO).

17 021 DC1 Device control 1, turns transmitter

(READER) on, CONTROL/O (X ON).

18 022 DC2 Device control 2, turns punch or auxiliary

on, CONTROL/R (TAPE, AUX ON).

19 023 DC3 Device control 3, turns transmitter

Processing Data Subprograms

(READER) off, CONTROL/S (X OFF).

B-1

Decimal Value Octal Value Character Name and Remarks

20 024 DC4 Device control 4, turns punch or auxiliary

off, CONTROL/T (AUX OFF)

21 025 NAK Negative acknowledge; also ERR, ERROR,

CONTROL/U.

22 026 SYN Synchronous file (SYNC), CONTROL/V.

23 027 ETB End of transmission block; also LEM, logi-

cal end of medium, CONTROL/W.

24 030 CAN Cancel (CANCL), CONTROL/X.

25 031 EM End of medium, CONTROLY/Y.

26 032 SUB Substitute, CONTROL/Z.

27 033 ESC Escape, CONTROL/SHIFT/K.

28 034 FS File separator, CONTROL/SHIFT/L.

29 035 GS Group separator, CONTROL/SHIFT/M.

30 036 RS Record separator, CONTROL/SHIFT/N.

31 037 US Unit separator, CONTROL/SHIFT/O.

32 040 SP Space. Blank.

33 041 !

34 042 “

35 043 #

36 044 $

37 045 %

38 046 &

39 047 Apostrophe.

40 050 (

41 051)

42 052 *

43 053 +

44 054 , Comma.

45 055 — Dash.

46 056

47 057 /

48 060 0

49 061 1

50 062 2

51 063 3

52 064 4

53 065 5

Processing Data Subprograms

Decimal Value Octal Value Character Name and Remarks

54 066 6

55 067 7

56 070 8

57 071 9

58 072

59 073 ;

60 074 <

61 075 =

62 076 >

63 077 ?

64 100 @

65 101 A

66 102 B

67 103 Cc

68 104 D

69 105 E

70 106 F

71 107 G

72 110 H

73 111 |

74 112 J

75 113 K

76 114 L

77 115 M

78 116 N

79 117 O

80 120 P

81 121 Q

82 122 R

83 123 S)

84 124 T

85 125 U

86 126 Vv

87 127 Ww

88 130 Xx

89 131 Y

Processing Data Subprograms

B-4

Not available on the 4010. Only available on the 4014.

Decimal Value Octal Value Character Name and Remarks

90 132 Z

91 133 [SHIFT/K.

92 134 \ SHIFT/L.

93 135] SHIFT/M.

94 136 A A appears as + on some terminals.

95 137 _ Underscore. This appears as « on some

terminals.

6 140 ‘
97 141 a

98 142 b

99 143 c

100 144 d

101 145 e

102 146 f

103 147 g

104 150 h

105 151 i

106 152 j

107 153 k

108 154 |

109 155 m

110 156 n

111 157 fe)

112 160 p

113 161 q

114 162 r

115 163 s

116 164 t

117 165 u

118 166 Vv

119 167 w

120 170 x

121 171 y

122 172 z

123 173 {

124 174 |

125 175 } This code generated by ALTMODE.

126 176 oS This code generated by PREFIX key

\ ge (if present).

127 177 DEL Delete, Rubout.

Processing Data Subprograms

Radix-50 Values

Character ASCII Octal Equivalent Radix-50 Octal Equivalent

space 40 0

A-Z 101-132 1-32

$ 44 33

56 34

(35 is not used)

0-9 60-71 36-47

The system computes a Radix-50 value for the three characters stored in a word. The Radix-50 octal value

is:

a * (50,)? +b * 50, +c

where a is the Radix-50 octal value of the first character,

b is the Radix-50 octal value of the second character, and

c is the Radix-50 octal value of the third character.

For example, assume the three characters are X2B.

Character Radix-50 Octal Value

Xx 30

2 40

B 2

Using the above formula, the Radix-50 value of X2B is:

30 « 507 + 40 * 50 + 2 = 115402

Processing Data Subprograms REV A NOV 1977

B-6

The table below provides a convenient means of translating the ASCII character set into its Radix-50 equiv-

alents. Using the table, the Radix-50 value of X2B is:

X = 113000 (First character)

2 = 002400 (Second character)

+ B = 000002 (Third character)

X2B = 115402

Single Character

or Second Third

First Character Character Character

A 003100 A 000050 A 000001

B 006200 B 000120 B 000002

C 011300 C 000170 Gc 000003

D 014400 D 000240 D 000004

E 017500 E 000310 E 000005

F 022600 F 000360 F 000006

G 025700 G 000430 G 000007

H 031000 H 000500 H 000010

I 034100 | 000550 | 000011

J 037200 J 000620 J 000012

K 042300 K 000670 K 000013

L 045400 L 000740 Ls 000014

M 050500 M 001010 M 000015

N 053600 N 001060 N 000016

O 056700 O 001130 oO 000017

P 062000 P 001200 P 000020

Q 065100 Q 001250 Qa 000021

R 070200 R 001320 R 000022

S 073300 S 001370 S 000023

T 076400 T 001440 T 000024

U 101500 U 001510 U 000025

V 104600 V 001560 V 000026

WwW 107700 W 001630 WwW 000027

x 113000 x 001700 x 000030

Y 116100 Y 001750 Y 000031

Z 121200 Z 002020 Zz 000032

$ 124300 $ 002070 $ 000033

127400 002140 . 000034

unused 132500 unused 002210 unused 000035

0 135600 0 002260 0 000036

1 140700 1 002330 1 000037

2 144000 2 002400 2 000040

3 147100 3 002450 3 000041

4 152200 4 002520 4 000042

5 155300 5 002570 5 000043

6 160400 6 002640 6 000044

7 163500 7 002710 7 000045

8 166600 8 002760 8 000046

9 171700 9 003030 9 000047

@ Processing Data Subprograms

Presetting Integer Arrays with

String Constants

The TEKTEST statement PRESET cannot be used to preset integer arrays with string constants. How-

ever, you can preset the arrays by storing the octal values of the individual characters in the string

constants.

Recall that each word of an integer array stores two characters — one character in the even byte (bits

0-7) and one character in the odd byte (bits 8-15). The table below shows the octal values you should

store in the odd and even bytes in order to preset arrays. When setting both bytes of a word, use octal

addition to add the two values. An example follows the table.

Presetting the integer arrays can make the execution of your program more efficient and, because you

can omit from your program the statements necessary to initialize the arrays during program execution,

your program uses less core.

Processing Data Subprograms @ B-7

Character Odd Byte Even Byte Character Odd Byte Even Byte

SP (Space, Blank) 040 20000 @ 100 40000

| 041 20400 A 101 40400

" 042 21000 B 102 41000

043 21400 C 103 41400

$ 044 22000 D 104 42000

% 045 22400 E 105 42400

& 046 23000 F 106 43000

" (Apostrophe) 047 23400 G 107 43400

(050 24000 H 110 44000

) 051 24400 | 111 44400

* 052 25000 J 112 45000

+ 053 25400 K 113 45400

, (Comma) 054 26000 L 114 46000

— (Dash) 055 26400 M 115 46400

056 27000 N 116 47000

/ 057 27400 O 117 47400

0 060 30000 P 120 50000

1 061 30400 Q 121 50400

2 062 31000 R 122 51000

3 063 31400 S 123 51400

4 064 32000 T 124 52000

5 065 32400 U 125 52400

6 066 33000 Vv 126 53000

7 067 33400 Ww 127 53400

8 070 34000 Xx 130 54000

9 071 34400 Y 131 54400

072 35000 Z 132 55000

; 073 35400 [(SHIFT/K) 133 55400

< 074 36000 \ (SHIFT/L) 134 56000

= 075 36400] (SHIFT/M) 135 56400

> 076 37000 A (or +) 136 57000

? 077 37400 (Underscore 137 57400

or <)

Processing Data Subprograms

Example: .

4.4000 IARRAY LIST(6), WKDAY (11)

4.4500 *

4.5000 *

4.5500 SUN MON TUE WED THU FRI SAT

4.6000 PRESET WKDAY=#52523,#46516,#47117,#52524,#53505,#42105,#44124,#43125

,#44522,#40523,4#124

4.6500 * COMMANDSADEGILOPRSU

4.7000 PRESET LIST = #42101, #43505, #46111, #50117, #51522, #00125

*

In the above example, the user first declared the integer arrays LIST and WKDAY. He then used PRESET

and octal character values to preset the arrays. For example, #52523 sets the first word of WKDAY to

SU (#123 + #52400), #46516 sets the second word to NM (#116 + #46400), and so on. LIST was pre-

set in the same manner.

Processing Data Subprograms @ B-9

APPENDIX C:

SUMMARY OF GENERAL-PURPOSE PROCESSING

DATA SUBPROGRAMS

Processing Data Subprograms

AWIL (A)SALVGYD Xx “aVeP JUAIIND BY} S}ULId (unjo)51VaH9dONLSGV (,,}Ue}suOdBulJ}s,,pue ONIYLS (O‘A‘A‘I)DNOOdWD x "yue}suod Bulsjs e YIM Buliys e saredwog ‘doys‘14e3s’ Bul431s) NOOdINDONLSGVpue SNIYLS (0)€4y19 xX ‘ananb Indu! paeoghay ay siea|D @y¥19ONLSAV “adIAeppue ONIYLS (A‘A)OYVHO Xx iNdjNO ay} 0} Ja}9eVeYo palsioads ay} spuasg (4eyo'un|o)OYWHOONLSGV “saqoeseYd ||OSVpue ONIYLS (A) IYWHO Xx indu! ay} JO anjen jujod-bulyeo|} ayi suinjay (UNI!) 1YWHO“Aesie AseuiqAVYYHVE (AN A‘ DAVYYVE x e oju! Aese safeju! Bulsixea ue suoisuawiq (xeuuz’xewA’xewx’Aeuel) AVYYUVWCHLIYV (A‘A)GOWV Xx "A ojnpow x jea1 saindwog (A°x)GOWVEHLIYV (V)NINW x “Abie jes & WO, aNjeA WNWIUILU ay} SUINJaY (e)NINYEHLIYV (V)XVANY x “Abie je81 & WO} anjen WiNWIxeW ay} suuNjey (e)XVNV“snyejys jeulwe}ay} pue JOsund eydyje ay} JO 4ausOd jJa] WO}0qAHdVHD (N‘N‘'N) ASd41V 4 dy} JO Sa}eulps009 adeds-elep Jasn ay} SUINIaY (AA‘Ax‘121S1) ASd4 1V“snjeqsAHdV¥D JPulwiia} 84} pue 4sOsind eydje ay} 4o Jaus09pue LHdVuYD (N'N’N)SOd41V Xx 348] W0}10G AY} JO Sa}eBU!p41009 ay} SUINIaY (A°x'32181) SOdd1Vaweny ai! uoljesejoa oun med asodun w4O4 |e1aua N alls ! [99q -noagng -oun4 d 4d | S)maRH HEHE HE HE EE EH HE HE EH HE Ee HE oe

E

“Aewe 41q FIAVYYVE (A‘A‘' AI) 109.149 X @ 4O UO!DaIIP Z AY} U! S}Iq Jo dnoJb e speay (2'A’x'Aewegq) T]OOLAD FE“Aewsie 19g 3AVUYVE (A‘A'A‘1)139.L49 Xx & $O UO!}DaIIP X AY} U! S}Iq Jo dnoJb e speey (2'A’x’ Aeweq) 490.149 °AVYYVE (VA) LISLAS Xx “Aewe 3q e& 40 31q JeNplAlpul ue spesy (2'A’x' Abed) 1 1G L45“yequunuONLSAV (A‘N'UN)NNANLWS Xx jujod-Burjeojy e@ OU! Bulsis ||OSY Ue sl4eAU0D (doys’y1e}s‘Bul43s'wijap) NANLWSAWIL (A‘A‘N)SWIL14 x “ally Palpioeds ayi ul pabbo) awl ay2 siUlig (unjo‘un|!’a)FWIL14AWIL (A‘A‘N)SLV014 Xx “ally Palpioads ayi ul pabho| ajep ayi syUlig (unjo‘un}!’a)31vatd*jyuBiupiw aouls spuodas ul ‘aly ©AWIL (A‘N)94S114 x Bo] payloads ayi u! pabBbo| ‘awuiy ayi suinjey (un|!’8)D4S 114‘O06 Ayenuer | aouls sAep Ul ‘alltSWIL (A'N)AVG1I4 Xx Bo] palyioads ay} u! pabBbo| ‘eyep ayy suinjey (uni’a)AVa114*X O}

EHLIYV (A)LN3 x jenba 10 uey} ssa] JabezuU! yse}ee16 ay} suunjay (X) LN“aoeds-ejep sasn ay} uOAHdV¥D (A‘A‘A)AMVYG Xx (AA‘Ax) 03 JUJOd yse] BY} WO} JO}DaA B SMeIG (BPO ‘AA‘AX) AMV UGAHdVYH9 *(A‘X) Sa}BUIPsIOOD UBaIDS 0}pue LHdVH9 (A‘A‘A)MVYC x UOI}ISOd WWeag JUAIIND By} WO} J0}0AA Be sMeIG (apow’A‘’x) MVWHGawey 2! uolze1e/99) oun ven dN !4 1ze1e/9Eq snougng oun asoding W404 |e1auasy
C-2

SIIED TW4Wd Ul JOId!Osap afl ayi 10}ONLSGV (9)q1InN14aG Xx apoo UOlzedI}1]Uap! Jasn 3jNejap 9yi S1ag (.,P!N,,)G1IN 14d“s|J29 TI4 Wd U! 403d !49sap
ONLSGV (9)dAL14¢0 Xx ally 843 40} adA} ail} 1]NeJap ayi slag (,,4A1,,)dAL140. “MOPUIM a0eds (xewndAHdVY9 (A‘A‘A‘A)GYOO9G X ~eJLP 19SN a4} 4O SaJeUuIPsOO0I ay} Sauljaq “UIWAA’XRWAX'ULWAX)G YOOIAAHdVHD *(A’x) SajeUuIpsOOD Ua—atDS 0} 41OSINDpue LHdVY¥9 (A‘'A)H¥OSHND Xx eydje ay} JO 1ausOd 149] WWO}}0q ay} Sano|| (A°x) ¥OSUND“iyBiupiw

AWIL (0)O4syund X QUIS SPUODAS Ul SUI} JUBIIND BY} SUINIEY O4ASYND“O06 Asenuer 1

AWIL (0)AVGYND X aouls sAep U! alep jUasiNd ay} SUINIaY AVGYNDAWIL (A)AWILYD X OWI} JUBIIND BY} SLU! (unjo)SWILYD“passaid 19}-OBIEYD 94} JO aNjeA ay} Pue SajeUuIPsOOD Jey-SSOJD a4} SUINJa1 UBYi ‘Aay eB ssaid 0} NOA JO}AHdVY9D (N’'N‘N)AYHSHD xX S}IEM ‘S4IeY SSOJD UBAIDS JBUIWWA9} BY} UO SUIN] (AA‘Ax‘4eYyd) AYHSHO“passaid 19}-9eJeYyd ay} JO anjeA ay} Pue Sa}eUIPJOOD 4IeY

AHdVY¥D -SSO1JD 94} SUIN}a1 UA} ‘Aa e Ssaid 0} NOA JO}pue LHdVH9 (N’N‘'N)HYHSHO x SIEM ‘Si1eY SSO1D UBEIOS |PUILUIA} 84} UO SUN] (A‘x‘4eyd) YHSHOawe aj! uoljese/9a) aid Hon asodun WJO4 |e1aueN lls 13248/99Q -noiqns -oun4 id 4! 19)
C-3Processing Data Subprograms.

“Buijs ul ‘ajiy palpioadsAWIL (A‘A‘I'A‘'N)VGSAOWN X ay u! pabbo| ‘awi} pue ajep ay} s2s0jsg (dojs‘y1e}s‘bul4ys'un|!’8) ¥Q4AOWNFWIL (A‘A‘)LVGAOW 4 “Bul4js Ul awit} pue ajep jUasIND ay} $as01S (doys‘j1e3s'Buls3s) | YQAOWCHLINV (A‘A)GOW x ‘A ojnpow x sabajUI sayndwog (A‘x)GOW“sa}eulps009 aoeds-e}ep jasn WwoOd} paze|
AHdVH9 (A‘A‘’N‘'N'N)LONOdVIN xX -SUBJ} PUR Pajeos Sa}eUIPIOOD UaaJOS SUINIaY (AA‘ax’deu’sA’sx) |NOdVIN“UO!LUAaAJE}U! 4asN }NOYWUM (AA‘AX) Ul Sa}eUIPsOAHdVHD (N'N)ALV901 x -O9 JIEY-SsO1D aoeds-e}ep Jasn ay} suINIeY (AA‘AX) ALVOOTAHdVHD “uOlUaAJa}U! Jasn yNOYyUMpue LHdVH9D (N‘'N)SLV9071 x (A‘X) Ul Sa}eUIPJOOD 4IeY-ssOsD ay] SUINJaY (A’x)4LVOOT1ONLSAVpue ONIYLS (0) LVLsa> Xx “snjeys ananb yndu! ayy suinjay LVLSd>ONLSAV *Bulsyspue ONIYLS (A‘A‘I'N'A) AS LSA x au? saijiisn{ pue saseds pappequi! sanoway (doys'j12}s'Buls3s’Ajjey’apis) A 41S*Aesie Ja6ajul

CHLIYV (1)NIWWI Xx ue Ul Pa1O}s aNjeA WNWIUIW a4} SUINIaY (E!)NIWI*Aesse Ja6e}ulCHLIYV (I)XVINI Xx UB Ul palO}s aNjeA WNWIXeW 94} SUINIaY (e!)XVWI“Aesse 11q

AVYeVa (A‘A‘A'1I)MOYLAD x B JO UO!IDAIIP A ay} U! Siig Jo dnoJb e speay (z'A’x‘Aeseq) MOULADawe 2]! uolze1e 99) on hd asodin oy |e
N alls !7e412)99Q -noaqns -oun4 d W404 |e1aUuad

Processing Data Subprogramsc-4

CHLIYV (A‘A)NIWY Xx “SONJEA OM} BY} JO LINWIUILW 84} SUINIaY (A°X) NIWHYCHLIYV (A‘A)XVINY x “sanjeA OM} ayi JO WUNWIXeW 84} SUINIaY (A’X) XVINYSHLIYV (N)NWY x “ssaquinu Wwopuel-opnasd sajeiauas) (S)NWH“‘Bulys |JOSW JajoereYyoONLSAV (A‘A‘'VA)dNGVY Xx -XIS B OJU! SPIOM QG-xXIpey OM} syDedur) (doys’y1e3s’Buliqs‘anjen)dNaGVvy“ajqeiien (doqs’jeqsONLSaV (A‘N‘I'N'N) ¥WddV¥ Xx OS-X!pey PsOM-om} e OjU! Huls}s e sy9eq ‘Bul4is’wijap’anjer) Vdd“juawnbie Jsabaju! paubis e wo JabEHLIYV (A)SOd xX -9]U! JUsWa}dWOd som} pauBbisun ue suINiay (x)SOd“aoeds-ejep sasnAHdV¥9 (A‘A‘A)ALNIOd Xx ay} UO (+) snjd Jo *(-) snulw ‘(") polsad e s1Oj\q (ad Ay’ AA‘AX) ALNIOdAHdVH9D *(A’x) sazeulpsooopue LHdVuD (A‘A‘A)LNIOd Xx uaeos 3e (+) snjd 40 *(-) snujw ‘(") poliad e sjojq (@dAy'A’X) LNIOd(dojs’jelsONLSAV (A‘N'I'N’S)INAS Wd Xx *JOQWIAS QG-X!PEY PJOM-OM} B OJU! HulI}s e syDeq ‘Bul sys‘ w!jap’ |OquiAs) WASH Vd“Od OSap (dojs’jeysONLSGV (A‘N‘I'N’4) 114 1d Xx al} PAOM-INOJ QG-xIpey e& OJU! Bulsys e syoeq “Bulsys’ wap’ a}it) 114 Vd“ssaJORIeYO ||OSV OU! anjea juIOd-Hulzeo}) e& (dojs‘qeys’ BuysONLSAV (A'A'I'N'A‘A) LNOWNN xX S}19AUOD ‘JEWIOJ pajdajas ay} YIM aduUepsoze U| “Ajjey'apoo‘an|en) LNOWNNawe 9]! uoljesej9a: oun von odiN ls e1e}99q -noigng -oun4 asoding W404 |e4aUacymoh He HEH HE HE HE HH HEH HE HE HE ES SH SS we C-5Processing Data Subprograms

é

*9/qe1

Jajwjap paljddns ay} Buisn saquinu julod (|qeip‘dojsONLSaV (I'A‘N‘I'N) LINAS x -Bureoly @ Olu! Bulsis ||OSW ue sueAUuOD “}4e}s'Bul ss‘ wap) LINAdSONLSAGV “‘Bulsys uoly (Zdojs’Z}41e}s'11s0Jspue ONIYLS (AV A‘A'IAOWS Xx -BUIJSAP AY} O}U! Bulsjs adINOs ay} SAaAoj//| “| dojs' | 14e1s'43s1sp) AOS*A 40 ubisCHLIYV (A‘A)NDIS x a4 YIM X JO ANIA aINjOsqe ay} SUINIEY (A°X)NDIS“UO!DaIIP A

AVYYVE (AV'A‘'A'VA)MOYLAS x aul ul Aesieg Ul siiq 4o dnoub e salj!po (2'A’x' Aewueq’anjer) MOY LAS“UO!WOOIIP Z .AVYYV” (A‘A‘'A‘VA)TOOLAS x ay ul Aeseq U! siiq yo dnoJb e saljipoy (2'A’x’Aesseg’an|e@a) TOOLAS“uollIaIIP X

AVUYYVE (A‘A'A'V'A) 1S 9.L4AS x ayy ul Aeweg U! siiq yo dnoub e salyipoy (2'A’x‘ Aesseg’an|ea) TADL3ASAVYYV” (VA‘A'VA)LISLAS x “Aewue Yq AY} JO 1G |eNpIAIpu! Ue saljIPol| (2'A’x‘Aesseq‘aye3s) 1 1G 14S(xeuusAAHdV¥5 (A‘A‘A‘A)GYOO9S Xx “MOPUIM UGasIIS a4} JO SalJepUNOG ay} Souljaq “ulWSA’xeUsx'UIWUSX) GY OOOSONLSAV “Bulsys (,,}UeJsUODBHulJ}s,,pue ONIHLS (O‘A‘A‘1I)NOOS x uOl}JeUI}Sap 9Y} OJU! JUeJSUOD Hulj}s e Sa101S ‘dojs’q4e1s'41S1Sp) NOOSONLSAV (zdojs‘zjse1spue ONIYLS (A'A'V AAI) dWOS x ‘sBul4s OM} sasedwiog ‘@Bulsys’ | doys' | 14e3s'| buls3s) IOSCHLIYV (A)GNNOY xX “quawinBue ay spunoy (x)ONNOWawey aj! uoljesejoa ae il14 ! eq “nosgng oun asoding W404 jesaUuay
Processing Data SubprogramsC-6

“aoeds-elep jasn ay} uoAHdVYD (A‘A‘A'A)AYLOAA x (ZAA’ZAX) OF (LAA LAX) WO4s} 1OJDAA eB smeIG (ZAA‘ZAX' [AA LAX) AU LOAAAHdVeD “(ZA‘ZX) pue (LA‘Lx) uaamiaqpue LHdVY9D (V'A‘A‘A)AYLOSZA x U9aJDS |BUILUIG} BY} UO 10}99A e sMeIG (ZA‘ZX’ LA’ LX) SHLOSZA“Builds || OSV 4Ja}0e4eYO-xIsONLSAV (A‘A'‘1'S)WASdNN x & OU! joquiAS QG-xIpey PJOM-om} eB syoeduy (dojs‘34e3s'Butays joquAs) | ASdNN“Buiis |]}OSVW Jejoe1eYyo-pL e Olu!ONLSAV (A‘A‘I'4)T14dNN Xx JOJISap aj} QG-xIPeYy P41OM-sNoy eB syoeduy (dojs‘}123s’But43s’3]}) 1) 4dNNONLSAVpue ONIYLS (A‘V'A)SDONYLS x “AeYS JBJOBICYD BY} JO ANJEA ||OSY ey} Sa401S (uollIsod’ Aewel’ 4242) SONYLSONLSAV “ad1nappue ONIYLS (A‘A‘'A)ODNYLS Xx INdjNO ay} 0} siajoeJeYyo paljioads ay} spuas (doqs’j1e3s‘Aewel’UN|O|OONYLSONLSGV “Aese1 (dojs’je3spue ONIYIS (A‘A‘I'N’A)ISNYLS Xx OJU! BdIAapP Indu! ay} Woy Bulsys e syndu] “Keds 1'}UNOI‘UN|!) |ONYLSONLSAV

pue ONIYLS (A‘I)4ONYLS x “dayoeseyo e YO anjen julod-Buljeo}s ay} suunjay (UOl}IsOd’ Aewel) 4ONYLSawey aj! uoljesejoa oun ii d N 94 1 9eq snosgns -oung asoding W404 |e1auas
C-7

Processing Data Subprograms

ADSTNG File, 4-2

ALFPOS, 3-8

ALFPSV, 3-19

Alpha Cursor

ALFPOS, 3-8

ALFPSV, 3-19

CURSOR, 3-6

AMAX, 5-2

AMIN, 5-2

AMOD, 5-7

ARITHS File, 5-1

ASCII Characters

CHARI, 4-7

FMTNUM, 4-15

General Description, 4-1, B-1

NUMOUT, 4-18

SPFMT, 4-17

STRNGF, 4-4

STRNGS, 4-4

BARRAY, 2-2

BARRAY File, 2-1

Binary Information, 2-2

Bit Arrays, 2-2

CHARI, 4-7

CHARO, 4-7

CLRKB, 4-12

CMPCON, 4-11

Comparing Strings

CMPCON, 4-11

SCMP, 4-10

CRDATE, 1-4

Cross Hairs

CRSHR, 3-3

CRSHRV, 3-18

LOCATE, 3-8

LOCATV, 3-19

CRSHR, 3-7

CRSHRV, 3-18

CRTIME, 1-4

CURDAY, 1-3

CURSEC, 1-3

CURSOR, 3-6

Processing Data Subprograms

Date-Time, 1-1

DCOORD, 3-15

DFLTYP, 4-25

DFLUID, 4-26

Direct Graphics, 3-4

DRAW, 3-7

DRAWV, 3-18

ENT, 5-5

Entier Function, 5-5

Extended Function Set, 5-1

FILDAY, 1-3

FILSEC, 1-3

FLDATE, 15

FLTIME, 1-5

FMTNUM, 4-15

GETBIT, 2-3

GETCEL, 2-4

GETCOL, 2-6

GETROW, 2-5

Graphic Cursor, 3-14

Graphics, 3-1

GRAPH1 File, 3-2

GRAPHV File, 3-2

IMAX, 5-3

IMIN, 5-3

Input Queue

CLRKB, 4-12

KBSTAT, 4-12

Inputting Strings

General Description, 4-1

STRNGI, 4-6

JUSTFY, 4-13

KBSTAT, 4-12

LOCATE, 3-7

LOCATV, 3-19

Logged Date-Time

FILDAY, 1-3

FILSEC, 1-3

FLDATE, 1-5

FLTIME, 1-5

General Description, 1-1

MOVFDA, 1-6

Logical Unit Numbers, vi

MAPOUT, 3-16

Maximum Values

AMAX, 5-2

IMAX, 5-3

RMAX, 5-4

Minimum Values

AMIN, 5-2

IMIN, 5-3

RMIN, 5-4

MOD, 5-8

Modulo Functions

AMOD, 5-7

MOD, 5-8

MOVDAT, 1-6

MOVFDA, 1-6

Nomenclature Conventions, v

NUMOUT, 4-18

PAKFIL, 4-23

PAKSYM, 4-21

POINT, 3-5

Point Graph

POINT, 3-5

POINTV, 3-17

POINTV, 3-17

POS, 5-10

Proportional Graphics, 3-9

Radix-50 Code

PAKFIL, 4-23

PAKSYM, 4-21

Radix-50 Values, B-5

RADPAK, 4-22

RADUP, 4-27

UNPFIL, 4-28

UNPSYM, 4-27

RADPAK, 4-22

RADUP, 4-27

RAN, 5-11

Random Numbers, 5-11

Real-Time Clock Options, 1-1

RMAX, 5-4

RMIN, 5-4

ROUND, 5-6

SCMP, 4-10

SCON, 4-9

SCOORD, 3-15

Screen Coordinates

MAPOUT, 3-16

SCOORD, 3-15

Sending Characters

CHARO, 4-7

STRNGO, 45

SETBIT, 2-3

SETCEL, 2-4

SETCOL, 2-6

SETROW, 2-5

SIGN, 5-5

SMOV, 4-8

SPFMT, 4-17

Storing Strings

SCON, 49

SMOV, 4-8

STRING File, 4-12

String Justification

JUSTFY, 4-13

Strings, 4-1

STRNGF, 4-4

STRNGI, 4-6

STRNGO, 45

STRNGS, 4-4

Subprogram Declarations, A-1

System Date-Time

CURDAY, 1-3

CURSEC, 1-3

CRDATE, 1-4

CRTIME, 1-4

General Description, 1-1

MOVDAT, 1-6

Terminal Screen, 3-1

TIME File, 1-1

az Ee | | 4 | = | nares = EE
|)

Processing Data Subprograms

UNPFIL, 4-28

UNPSYM, 4-17

User Data-Space, 3-9

Vectors

DRAW, 3-7

DRAWV, 3-18

VECTRF, 3-5

VECTRV, 3-16

VECTRF, 3-5

VECTRV, 3-17

Windowing

DCOORD, 3-15

General Description, 3-9

SCOORD, 3-15

Processing Data Subprograms

