

TYPE 517

CATHODE-RAY OSCILLOSCOPE

INSTRUCTION MANUAL

Manufacturers of Cathode-Ray and Video Test Instruments

SECTION I

General Description

The TEKTRONIX Type 517 Oscilloscope is a wide-band high-voltage cathode-ray oscilloscope designed primarily for observing and for photographically recording waveforms having extremely short rise times.

The use of a $24-\mathrm{kv}$ accelerating potential on a metallized cathode-ray tube permits photographic recording of single sweeps at the maximum writing-rate permitted by the vertical amplifier and sweep circuits. Distributed vertical amplifiers provide a rise-time of 7 millimicroseconds and a sensitivity of $.1 \mathrm{v} / \mathrm{cm}$. Both amplitude and time calibrations are provided. Sufficient time delay is incorporated in the vertical amplifier to permit viewing the leading edge of the waveform which triggers the sweep.

The Type 517 consists of two units, indicator and power supply, mounted on a Scope-Mobile, thus making a convenient mobile unit. If desired, the units may be lifted off the Scope-Mobile for bench use.

Characteristics

Vertical Amplifier System

Type
Five stages of distributed amplification; 4th and 5th stages are push-pull.

Transient Response

Rise time between 10 per cent and 90 per cent amplitude points is 7 millimicroseconds (.007 microseconds). Response is free of ringing and overshoot.

Sensitivity

The maximum vertical amplifier sensitivity with a 5XP cathode-ray tube* operated at $24-\mathrm{kv}$ accelerating potential is $.1 \mathrm{v} / \mathrm{cm}$ without a probe. With a cathode follower probe, the maximum sensitivity is $.2 \mathrm{v} / \mathrm{cm}$.

Attenuator

A continuous control with a range of attenuation from 1X to 2 X is provided in the vertical amplifier.
*With a nominal tube vertical deflection sensitivity of $38 \mathrm{v} / \mathrm{cm}$.

Three screw-on attenuators are provided for use in conjunction with the cathode follower probe. A step attenuator with a characteristic impedance of 170 ohms is also provided.

Input Impedance

Input impedance direct is 170 ohms resistive. Impedance looking into probe is a 12 -megohm resistor paralleled by a $5 \mu \mu \mathrm{fd}$ capacitance. Higher impedance values can be had depending upon capacitive attenuator used ahead of probe.

Signal Delay

Delay line of RG63U coaxial cable contributes $65 \mathrm{~m} \mu \mathrm{sec}$ delay. This, plus the inherent delay of the distributed vertical amplifier stages, makes an approximate total signal delay of $120 \mathrm{~m} \mu \mathrm{sec}$. This signal delay permits the sweep to be triggered and under way before the signal is applied to the vertical deflection plates.

Position Control

With 24-kv accelerating potential, the vertical positioning control moves the trace $\pm 2 \mathrm{~cm}$ from the center line.

Amplitude Calibrator

Pulse generator output of about 25 kc available on the front panel, with six ranges from .15 to 50 v peak full scale. Accuracy is within 4 per cent of full scale.

Sweep Circuit

Type

Triggered, hard-tube bootstrap sweep circuit with inverter to produce balanced deflection.

Rates

An eleven-position switch selects $10,20,50,100$, 200, or $500 \mathrm{MILLI} \mu \mathrm{SEC}$ PER CM, and 1, 2, 5, 10 , or 20 MICRO SEC PER CM, with a maximum displacement error of 2 per cent for $8-\mathrm{cm}$ sweep length.

Duty Cycle Limitation

The duty cycle of the sweep system should not be greater than about 20 per cent to avoid exceeding the dissipation limits of some of the sweep circuit components.

The following table shows the maximum permissible repetition rate for each of the available sweep times per centimeter.

$\frac{\text { Sweep Time }}{20 \mu \mathrm{sec} / \mathrm{cm}}$	Maximum Repetition Rate
$10 \mu \mathrm{sec} / \mathrm{cm}$	1.5 kc
$5 \mu \mathrm{sec} / \mathrm{cm}$	$3 . \mathrm{kc}$
$2 \mu \mathrm{sec} / \mathrm{cm}$	6. kc
$1 \mu \mathrm{sec} / \mathrm{cm}$	10. kc
$500 \mathrm{~m} \mu \mathrm{sec} / \mathrm{cm}$	20. kc
$200 \mathrm{~m} \mu \mathrm{sec} / \mathrm{cm}$	50. kc
$100 \mathrm{~m} \mu \mathrm{sec} / \mathrm{cm}$	50. kc
$50 \mathrm{~m} \mu \mathrm{sec} / \mathrm{cm}$	50. kc
$20 \mathrm{~m} \mu \mathrm{sec} / \mathrm{cm}$	50. kc
$10 \mathrm{~m} \mu \mathrm{sec} / \mathrm{cm}$	50. kc

Sweep Starting Time

Approximately $90 \mathrm{~m} \mu \mathrm{sec}$ for the average instrument. A total signal delay of approximately $120 \mathrm{~m} \mu \mathrm{sec}$ permits the sweep to be triggered and underway before the signal is applied to the vertical deflection plates.

Triggering

A trigger amplifier in conjunction with a selector switch permits the sweep circuit to be triggered from:
(a) an external source of either polarity
(b) internal trigger rate generator
(c) the observed signal

The trigger amplifier is connected ahead of a signal delay cable which permits complete observation of the signal at the highest sweep speed. Any signal giving 0.3 cm deflection, or an external 0.3 v peak signal, will trigger the sweep.

Horizontal Position Control

With $24-\mathrm{kv}$ accelerating potential, the horizontal position control moves the trace approximately 5 cm .

Horizontal Position Vernier

In addition to the normal horizontal positioning control, a vernier control calibrated in millimeters provides accurate measurements over a range of 1 cm for use in measuring rise time, etc.

Trigger Rate Generator

Trigger selector switch permits sweep to be triggered from rate generator which also provides external pulses with following characteristics:

Polarity . positive Length .. $0.4 \mu \mathrm{sec}$ Rise time . $0.15 \mu \mathrm{sec}$ Output level $\begin{aligned} & 60 \mathrm{v} \text { with } 200 \text { ohms internal impedance } \\ & 20 \mathrm{v} \text { with } 50 \text { ohms internal impedance }\end{aligned}$ Repetition rate. 15-15,000 cps variable in three ranges within 5 per cent of full scale.

Gate Out

Twenty-five volt positive pulse with duration approximately equal to time of the sweep, and rise time $0.03 \mu \mathrm{sec}$, from a cathode-follower source-impedance of 200 ohms.

Power Supplies

Cathode-Ray Tube Accelerating Voltage

An oil-sealed supply of the a-f oscillator type provides $24 \mathrm{kv}(+2) \mathrm{kv}$ and $-4 \mathrm{kv})$ for the normal accelerating potentials. A front-panel selector switch gives an alternate choice of $12 \mathrm{kv}(+10 \mathrm{kv}$ and $-2 \mathrm{kv})$ which doubles the CRT horizontal and vertical sensitivity. The -4 kv supply is regulated to compensate for load changes and line voltage changes.

Loz Voltage Supply

A separate power unit provides all dc voltages of 750 volts and less for the indicator unit. All heater voltages in the indicator unit are regulated by a saturable reactor to compensate for line voltage changes.

Power Requirements

1250 watts at 117 volts. Voltage range 105-125 or 210-250, 60 cycle single phase ac. Three primary circuit fuses are provided for protection against sustained over-load conditions.

Cathode-Ray Tube

A metallized type 5XP cathode-ray tube with P11 phosphor is furnished with the Type 517 unless a P1 or P2 phosphor is specified as the optional choice.

Construction

Contained in two separate units of convenient size, normally mounted on a TEKTRONIX Type 500 Scope-Mobile. Cabinets and chassis are made of elec-trically-welded aluminum alloy. Photo-etched panels are employed.

Dimensions

Indicator unit: $121 / 2^{\prime \prime}$ wide, $18 \mathrm{x} / 2^{\prime \prime}$ high, $25 \mathrm{I} / 2^{\prime \prime}$ deep. Power unit : $16^{\prime \prime}$ wide, $10^{\prime \prime}$ high, $18^{\prime \prime}$ deep.

Weight

Indicator unit 76 lbs .
Power unit 72 1bs.
Type 500 Scope-Mobile. 42 lbs.

SECTION II

Operating Instructions

The TEKTRONIX Type 517 Oscilloscope may be operated at any normal indoor location or in the open if it is protected from moisture. If the instrument has been exposed to dampness, it should be left in a warm room until it is thoroughly dry before it is placed in operation.

Ventilation

Both units require forced air cooling so that care must be exercised to avoid obstructing the air intakes to the circulating fans.

WARNING: The Type 517 should not be operated unless the fans are running. The interior will reach dangerous temperatures in five to ten minutes of such operation.

Placing the Type 517 in Operation for the First Time

To place the Type 517 in operation for the first time, the following procedure is suggested:

1. Set the panel controls as follows:

POWER SUPPLY AC.................... OFF
POWER SUPPLY DC....................... ON
VERT. POSITIONcenter HORIZONTAL POSITIONING,
FULL RANGEenter
FOCUS ...
INTENSITYfull counterclockwise
TRIGGER RATE GENERATOR 50
TRIGGER RATE GEN. MULT. 100 SWEEP TIME/CM.
.................. 500 MILLI μ SEC PER CM TRIGGER SELECTORRATE GEN. SWEEP STABILITY . .full counterclockwise TRIGGER AMPL.full counterclockwise
2. Install the interunit power cable and the linevoltage cable. The source of power must be capable of supplying 12 amperes 105 to 125 volts at 60 cycles.
3. The AC POWER switch may now be turned ON.
4. Allow about 30 seconds for the tube heaters to come up to operating temperature.
5. Advance the INTENSITY control almost full clockwise until a spot appears near left center of the screen, then return counterclockwise until the spot just disappears.

CAUTION : Do not allow this spot to be excessively bright or allow it to remain long in one position as the screen will be damaged in a few seconds.
6. Advance the SWEEP STABILITY control clockwise until a horizontal sweep appears across the screen, then return counterclockwise until the sweep just disappears.
(7.) Advance the TRIGGER AMPL. control until the sweep just reappears. The sweep is now being triggered by the TRIGGER RATE GENERATOR at a repetition rate of 5000 cycles.
8. Return the INTENSITY control counterclockwise to reduce the beam intensity.
9. Observe a sample signal. RATE GEN. OUTPUT A, after about 50 db of attenuation, will provide a satisfactory signal of the correct amplitude. Turn the TRIGGER SELECTOR switch to + SIG.
10. Adjust the INTENSITY, FOCUS, and ASTIGMATISM controls until a sharp trace with adequate intensity is obtained. These controls are somewhat interdependent and will require slight repeated readjustment to obtain the best trace.
11. Readjust the SWEEP STABILITY and TRIGGER AMPL. controls to obtain a stable trace.

CAUTION: Check whether the sweep is being triggered or is running self excited, by returning the TRIGGER AMPL. control counterclockwise. The trace should disappear. Because of limitations of duty cycle on some of the components, the sweep generator should not be allowed to run in a self excited condition for extended periods.
12. Adjust the signal amplitude by means of the VERT. AMP. ATTEN. control, or with external attenuators until the vertical deflection amplitude does not exceed 2 centimeters above or below center corresponding to an input of
about 0.2 volts, and adjust the VERT. POSITION and HORIZONTAL POSITION controls for a satisfactory position of the trace.
The instrument should now be ready for application of external signals.

170 OHM Attenuator

This attenuator can be used externally when it is desired to observed signal voltages higher than about 0.2 volts, peak to peak. Both input and output impedances are 170 ohms to match the scope input, and the attenuation calibration is accurate only at this impedance level. Attenuation values up to 64 db , in one-db steps, can be selected.

Cathode-Follower Probe

The probe power plug must be plugged into the PROBE POWER receptacle near the SIGNAL INPUT connector, and the male UHF coaxial fitting must be plugged into the SIGNAL INPUT panel coaxial connector. Three screw-on attenuators are provided.

The screw-on attenuators, used with the cathode follower probe, provide attenuation at high impedance.

Signal Ampifitude Calibration

Calibrating voltage is supplied by means of a $25-k i l o c y c l e ~ t e n-p e r-c e n t ~ d u t y-c y c l e ~ s q u a r e-w a v e ~ g e n-~$ erator to the CAL. OUTPUT panel connector. The generator impedance for each CAL. RANGE setting is shown on the front panel. The calibration is accurate on open circuit at the generator and will be affected by the external load to which it is connected. The frequency of the calibrator circuit is not intended to be synchronized with that of the observed wave. Instead, the sweep should be tripped by the TRIGGER RATE GENERATOR and the CAL. OUTPUT should be substituted for the source of the signal being measured. The indication is a pair of horizontal lines displayed across the face of the CRT. The output voltage is capacitor coupled to the deflection plates so that the positions of both the base and the top of the wave vary as the amplitude controls are adjusted. Calibrations are in peak-to-peak volts, and the calibrating wave must therefore be positioned properly when a measurement is made.

Time Calibration

Calibrations for the sweep circuit are in time per centimeter of horizontal deflection, which, with the one-centimeter horizontal graduations of the graticule and the calibrated 1-CENTIMETER HORIZONTAL POSITIONING control, permits measurement of the time dimensions of the displayed pulse to be made to a fraction of a centimeter by interpolation.

Trigger Rate Generator

Calibrations of the trigger rate generator are in cycles per second times a multiplier. To select a desired trigger rate, set the CYCLES/SEC dial to the significant figures, and the TRIGGER RATE GEN. MULT. dial to multiply by 1,10 , or 100 times. Any frequency between 15 cycles and 15 kilocycles can be selected accurately within about 5 per cent.

Use of Type 517 as a Synchroscope

Two output connectors from the trigger rate generator are available on the front panel. To use the Type 517 as a synchroscope output from one of these output connectors can trigger the function to be observed, and the other output can be delayed and applied to the TRIGGER INPUT connector through an external delay circuit to start the horizontal sweep. No variable delay is incorporated in the trigger circuit.

$$
+ \text { Gate }
$$

This output is approximately 40 volts at 270 ohms.

Direct Connection to Vertical Deflection Plates

An access hole on the left side of the indicator unit case near the top permits direct connection to the vertical deflection plates. First, remove the clip leads running from the vertical amplifier output stage and replace them with a pair of small wire leads. The leads can be held in place by grooves in the supporting plexiglass plate so as to have low capacitance to each other and to the case.

Scale Illumination

The intensity of the graticule illumination can be adjusted, by means of a variable resistor in series with the graticule light, to suit the conditions of room lighting and trace intensity, and to permit the graticule lines to be photographed.

Functions of Front-Panel Controls and Connectors

6.3V 1A	Phone-tip jack connection from main heater bus. Useful for check- ing heater-bus voltage regulation. (Do not measure heater voltage on a rectifier type of voltmeter.)
SCALE	Variable resistor controlling bright- ness of lamps illuminating plastic graticule over face of cathode-ray tube.
ILLUM.	Potentiometer varying grid bias on first and second vertical amplifier
Stages, permitting a two to one	
range of gain adjustment.	

HORIZONTAL Twin differentially-connected poPOSITIONING, tentiometer performing same func1 CENTI- tion as above, but limited to one METER

FOCUS

INTENSITY Potentiometer controlling dc grid voltage of the cathode-ray tube and thereby the brightness of the trace.

ASTIG-
MATISM

CAL.
VOLTAGE

+ GATE

SENSITIVITY, Two-position switch to select either $24-\mathrm{kv}$ or $12-\mathrm{kv}$ accelerating voltage, and to select appropriate corresponding cathode-ray tube bias and unblanking voltages.

TRIGGER Variable timing resistor for phan-
RATE GENtastron trigger-frequency generator.
ERATOR
(CYCLES/SEC.)
CAL.
RANGE

CAL. OUTPUT

RATE GEN. OUTPUT A

RATE GEN. OUTPUT B
SWEEP

TIME/GM \begin{tabular}{ll}
Gang switch controlling sweep

duration and sweep rate. Selects

appropriate multivibrator pulse

length, and sweep generator charg-

ing resistor and capacitor.

\quad GND \quad HEATERS \quad

Pilot light on indicator unit con-

nected to heater bus.
\end{tabular}

RETURNTO FHLE RROMPNLY
 RADAMION LACORATORI
 THE JOMNS SEGETON IDNVEATY
 BALTMORE MARYLAND

Circuit Description

TEKTRONIX Type 517 Oscilloscope

Sweep

A linear, triggered sweep is available with eleven fixed, accurately timed sweeps ranging from 0.01 microseconds per centimeter to 20 microseconds per centimeter when a 24 -kilovolt accelerating potential is used. When the 12 -kilovolt accelerating potential is used, each of these SWEEP TIME/CM figures is halved.

The basic waveform is generated by a pentode clamp with a cathode-follower bootstrap linearity corrector. Push-pull deflection is accomplished at output level by addition of a plate-output unity-gain phase-inverter stage. Figure 1 is a block diagram of the sweep system.

Trigger Phase Changer

A trigger selector switch selects the source of trigger signal and V101 reverses the phase, if necessary, to provide the trigger amplifier with the required negative signal.

Distributed Trigger Amplifier

A broad-band trigger amplifier, capable of passing a steep-wave-front pulse, is used in order to reduce to a minimum the delay between the start of the trigger pulse and the start of the sweep. This amplifier consists of two distributed stages of three 6AK5 pentodes each, V102 to V107. The grids of the second stage, V105 to V107, are driven in the positive direction and the negative-pulse output amplitude of this stage is adjustable by means of the TRIGGER AMPL. control which sets the grid bias level.

Trigger Limiter

The trigger limiter stage operates with zero bias. The negative pulse from the trigger amplifier drives this tube to plate-current cutoff. Choice of the proper value of quiescent plate-current and use of shuntcompensated plate-load resistance of low value results in a very steep positive pulse limited in amplitude to about 10 volts. Thus limited, this pulse does not drive the grid of V109 into the grid-current conducting region.

Trigger Switch Tube

The resulting negative pulse at the plate of V109, coupled through coupling diode V110 to the plate of minus multivibrator tube V111, triggers the sweep.

Trigger-Coupling Diode

The trigger-coupling diode serves to disconnect the plate of trigger-switch tube, V109, from the plate of negative multivibrator tube, V111, when the plate voltage of V111 drops below that of V109.

MUltivibrator

V111 and V119 operate as a plate-to-grid coupled monostable multivibrator for the purpose of converting a triggering pulse into a pulse of controllable duration, suitable for operating the sweep generator and unblank-circuits. The SWEEP STABILITY control, by varying the bias on the grid of V111, determines the optimum point of triggering. If there is insufficient bias, the multivibrator will begin to operate self excited at a duty cycle such that the allowable dissipation of the cathode followers may be exceeded. Care should be taken, therefore, not to leave this control at a setting which results in self-excited operation for extended periods.

Sweep Generator Clamp Circuit

In the quiescent state, the parallel clamp tubes, V112 and V113, conduct heavily. The negative pulse from the plate of V111 to their grids interrupts the flow of plate current very rapidly, and the plate voltage then begins to rise at a rate determined by the charging rate of the charging capacitor C129. The charging rate is determined by the values of capacitance and resistance in the charging circuits, both of which are selected by the SWEEP TIME/CM selector switch, S1气3, for the various sweep times. The series inductor in the grid circuit of the clamp tubes provides a 10 -millimicrosecond delay to enable the unblanking circuit to reach full voltage before the sweep voltage starts.

Bootstrap Cathode Follower

The voltage rise across the charging capacitor in the foregoing circuit would be exponential if no provision were made to keep the charging current from varying during the sweep. The charging current is kept more nearly constant by the bootstrap action of V115 and V116, and sweep cathode follower, V117, which tends to keep the voltage constant across the charging resistor for the duration of the sweep.

Decoupling Diode

A decoupling diode, V114, a 6X4 in series with the plus 475 -volt supply to the clamp tubes, offers low resistance to the passage of the quiescent-state current to the clamp tubes, but disconnects the positive end of the charging resistor from the 475 -volt supply when bootstrap action raises the cathode of V114 above 4.5 volts.

Plus-Sweep Cathode Follower

V117, a cathode follower, provides the positive sweep voltage to the cathode-ray tube, as well as to the grids of the bootstrap tubes and to the sweepinverter stage.

Sweep-Inverter

A unit-gain amplifier is used as a phase inverter to provide the negative portion of the sweep voltage. This stage consists of V118, a 6AG7, with gain maintained near unity by use of frequency-compensated feed-back.

Bias and Screen Adjust

V137, a 12AU7, provides a low-impedance bias voltage and screen voltage for the sweep inverter stage, V118.

DC Restorer

V133, a 6AL5 dual diode, removes the accumulated charge from the sweep-coupling capacitors, permitting the sweep to start at the same position on the cathoderay tube regardless of the repetition rate of the sweep.

Unblanking Amplifier

During the waiting periods between sweeps, the bias on the cathode-ray tube is such that the beam current is completely cut off. As soon as a trigger pulse appears and the sweep starts, a positive pulse of approximately 100 volts is required on the cathode-ray tube grid to turn the beam back on. This pulse must have a very fast rise time and a very flat top to insure fast unblanking and uniform image brightness. Both conditions are accomplished by means of the unblanking amplifier, V120 and V121, two 6AG7's in parallel, and associated output cathode follower, V123. For the 10 MILLI μ SEC PER CM setting, an inductance ringing circuit is inserted at the grid of the unblanking tube to provide a sufficiently sharp unblanking pulse. This circuit consists of a 300 -microhenry inductance from the grids of the unblanking amplifier tube to ground through a 100 -ohm resistor. The negative
pulse of the multivibrator starts the circuit ringing in the negative direction. One-half cycle of the oscillation is a satisfactory period of unblanking. Grid current damps out further oscillation during the positive half cycle since the unblanking amplifier tubes operate at zero bias.

Unblanking Cathode Follower Output

V123 provides low-impedance output for the unblanking amplifier.

Plus Gate Cathode Follower

V124 is a 6 J 6 cathode follower whose grid is coupled to the plate of the positive multivibrator tube V110. The output of the cathode follower connected to a front-panel binding post provides a positive 50 v gating pulse of the same duration as the sweep.

Unblanking Amplifier Screen Supply

V122 is a cathode follower supplying the screen voltage to the unblanking amplifiers. The use of this circuit permits the unblanking voltage to be reduced to half when the cathode-ray tube is operated at a $12-\mathrm{kv}$ accelerating potential. The grid voltage of V122 is controlled by the SENSITIVITY switch.

Trigger Rate Generator

An internal trigger generator provides positive pulses to two front-panel connectors labeled RATE GEN. OUTPUT A, and RATE GEN. OUTPUT B. OUTPUT A provides 20 volts at 50 ohms and OUTPUT B provides 60 volts at 200 ohms. The purpose of these circuits is to make available, externally, trigger pulses of accurate repetition rate to permit use of the Type 517 as a synchroscope.

The frequency of the trigger circuit is determined by a self-excited screen-coupled phantastron, V126, a 6BH6. A cathode follower, V127A, one-half of a 12AU7, provides a low-impedance path for recharging the phantastron charging capacitors. The other half of this tube, V127B, provides a coupling means from the phantastron to the blocking oscillator, V128, a 12AU7. One half of V125, a 12 AU 7 , is a cathode follower providing a low-impedance bias source for the other half which serves as a plate-catching diode for phantastron V126. The output pulse is formed by the blocking oscillator, V128, and is coupled to the RATE GEN. OUTPUT A and the TRIGGER SELECTOR switch via cathode follower V130, a 12AU7, and to RATE GEN. OUTPUT B via cathode follower V129, a 12 AU 7 .

Vertical Amplifier

The vertical deflection system consists of five stages of distributed amplification in cascade with a phase inverter preceding the fourth stage. The first three single-ended stages provide drive to a coaxial signaldelay cable and to the sweep trigger amplifier. Following the signal-delay cable, the phase inverter provides push-pull drive for the remaining two push-pull distributed stages. Figure 6 a simplified schematic of the vertical deflection system. The first two stages employ 6AK5 tubes with bias voltage adjustable to provide a gain control of two to one. The remaining stages employ type 6CB6 tubes. As shown on the simplified schematic of Figure 6, a parallel R-C network is inserted between the second-stage plate line and the third-stage grid line. This network deemphasizes the low frequencies to compensate for high-frequency losses in the amplifier system. An R-L network with a time constant of about 0.05 microseconds in the reverse termination of the first stage plate line and a similar correcting network of about 0.3 microseconds time constant in the reverse termination of the second stage plate line compensate for a time-constant effect resulting from a time variation of the electrolytic bypass capacitors in the amplifier system. The latter network may have either capacitive or inductive reactive elements depending upon the need.

Vertical Amplifier DC Supply Distribution

Figure 9 is a simplified diagram showing dc distribution to the plates and screens of the various stages of the vertical amplifier and current consumption and normal ripple voltage at each of the four voltage levels.

External Power Supply

All voltages of 750 and less are provided by an external power supply. Distribution of the voltages, and the nominal load current at each voltage are as follows:

Negative 250 volts, regulated (50 ma)
a. bias voltages
b. negative positioning voltage
c. voltage reference supply for other voltage regulators

Positive 150 Volts, regulated (550 ma)
a. plate voltage for distributed trigger amplifier
b. plate and screen voltage for all vertical amplifiers except plates of output stage
Positive 180 Volts, unregulated (250 ma) plate voltage only for vertical output amplifier

Positive 225 Volts, regulated (450 ma)
a. trigger phase changer
b. trigger limiter and switch tube
c. unblanking amplifier
d. positive multivibrator
e. negative multivibrator and clamp tube, screens only
f. calibrator circuit voltages
g. trigger rate generator voltage
h. filament oscillator tube for CRT high-voltage supply
i. positive vertical positioning voltage
j. probe voltage supply via a cathode follower
k. plate voltages for plus gate tube

Positive 365 Volts, unregulated (100 ma) plate and screen supply for CRT high-voltagesupply oscillator

Positive 475 Volts, regulated (150 ma)
a. plate voltage for minus multivibrator
b. plate voltage for clamp tubes via 6 x 4 decoupling diode
c. plate voltage for unblanking cathode follower
d. screen voltage for sweep inverter via cathode follower
e. positive vertical positioning voltage

Positive 750 Volts, regulated (50 ma)
a. plate voltage for positive sweep output cathode follower
b. plate voltage for bootstrap cathode follower
c. plate voltage for sweep inverter tube

Filament Voltage Regulator

Heater voltages of all tubes located in the indicator unit are regulated by automatically controlling the primary voltage of the filament transformer, T901, located in the indicator unit. The transformer primary voltage is controlled at a nominal 80 volts by a vari-able-reactance saturable reactor, located in the external power supply unit, connected in series with the linevoltage source and the transformer primary. Reactance of the saturable reactor is controlled by varying the direct current through an auxiliary winding in accordance with line-voltage variations. These variations of ac line voltage are converted into the required variations of direct current by means of an emissionsensitive diode whose filament is supplied from the regulated transformer, T901. In the schematic, Figure 13, V419, a Sorenson Type 2AS-15, is the emissionsensitive diode. The plate resistance of this tube varies rapidly with filament voltage, and in the opposite sense, so that the directly-connected grid of V420, a 6AU5, drops in voltage, when, for example, the fila-
ment voltage increases. This results in a reduction of current through the auxiliary winding of the saturable reactor, which is a part of the plate load of V420. The resulting increase in reactance of the saturable reactor reduces the ac voltage available to the transformer primary and tends to maintain the diode filament voltage at a constant level. Capacitor C417, between grid and plate of V420, is a feedback circuit which compensates for the 120 -cycle voltage at the plate of V419 resulting from 120 -cycle modulation of filament temperature of V419. It should be noted that filament-winding terminals 5 and 6 on T901 are at minus 250 volts dc. This is necessary because the dc coupled plate of V419 is at approximately ground potential and its directly-heated filament is therefore depressed to provide the required cathode-to-plate potential difference.

Negative 250-Volt Regulated Supply

This supply voltage is regulated by comparing the voltage of V418, a type 5651 gas diode, to that of a voltage divider connected across the regulated output, through comparator tube V417, a 6AU6. The difference voltage is amplified in V417, and applied to the grid of V416, a 6AU5 series regulator tube in the positive lead. V415 is a type 6X4 connected as a fullwave rectifier.

Positive 150-Volt Regulated Supply

This supply voltage is regulated by comparing to ground, the voltage of a point near ground potential on a voltage divider connected between the positive 150 -volt bus and regulated negative 250 volts, through comparator tube V422, a 12AX7. The difference voltage is further amplified in V414, a 6AU6, and applied to the grids of series regulator tubes, V412, V413, and V421, three 6AS7's in parallel. The additional gain provided by V422 is necessary to reduce the output ripple voltage to a satisfactorily low level. Four tenplate selenium rectifiers are used in a bridge circuit. A tap, taken off ahead of the series regulator tubes, supplies a nominal 180 volts at 250 ma , unregulated, from the same rectifier.

Positive 225-Volt Regulated Supply

This supply voltage is regulated by comparing to ground potential, a point near ground potential on a voltage divider connected between the positive 225 -volt bus and regulated negative 250 volts, through comparator tube V411, a 6AU6. The difference voltage is amplified in this tube, whose plate is directly connected to the grids of V409 and V410, two 6AS7 series regulator tubes in parallel. Four ten-plate se-
lenium rectifiers are used in a bridge circuit. An unregulated tap at plus 330 volts is taken off ahead of the regulator to supply dc saturation current for the saturable reactor in the filament voltage regulator.

Positive 365-Volt Unregulated Supply

This unregulated supply uses V407 and V408, two 6X4's in parallel, in a full-wave rectifier circuit with capacitor input. The ac voltage for this supply is obtained from taps on the transformer that supplies ac for the positive 475 -volt regulated supply.

Positive 475-Volt Regulated Supply

This supply is regulated by comparing to ground potential, a point near ground potential on a voltage divider connected between the 475 -volt bus and regulated negative 250 volts through comparator tube V406, a 6AU6. The difference voltage is amplified in V406 whose plate is directly connected to the grids of V405, two halves of a 6AS7 series regulator tube in parallel. V404, a 5 R4GY rectifier, is connected in a full-wave circuit. The ac voltage for this supply is obtained from the outside taps of the same transformer that supplies the 365 -volt unregulated supply. R476, 7.5 k shunting the regulator tube increases the available current.

Positive 750-Volt Regulated Supply

This supply is regulated by comparing to the pre-viously-described 475 -volt supply, the voltage near 475 volts of a voltage divider connected between the 750 -volt bus and ground, through comparator tube V403, a 6AU6. The difference voltage is amplified in V403, and applied to the grid of V402, a triode-connected 6AU5 series-regulator tube. V401, a 6X4 rectifier, is connected in a full-wave circuit. The unregulated output of this portion of the circuit is approximately 425 volts, which, added to the unregulated 580volt portion of the 475 -volt supply, results in a potential of approximately 900 volts to ground at the plate of V402.

NOTE: The capacitor between the regulated bus and the grid of the reference tube in each of these supplies is for the purpose of increasing the ac gain of the regulator circuit loop.

AC and DC Power Distribution

Figure 17 is a diagram showing the inter-chassis wiring and the test panel at which currents at the various voltage levels can be measured.

Cathode-Ray Tube Circuit

The schematic diagram of the cathode-ray tube intensity, astigmatism, and focus circuits is shown in Figure 16. The NE2 neon glow lamps across the INTENSITY control potentiometer and Max. Intensity Adj. variable resistor maintain the INTENSITY potentiometer terminal voltage constant regardless of cathode-ray tube cathode current, thereby stabilizing the intensity adjustment. Two of the four neon glow lamps are shorted out by the SENSITIVITY switch when it is turned to the $12-\mathrm{kv}$ position. This reduces the maximum cathode-ray tube bias available by a factor of two at the lower accelerating voltage. The purpose of the Max. Intensity Adj. variable resistor is to adjust the minimum grid bias setting available by the INTENSITY control to a safe value thus preventing damage to the cathode-ray tube screen in case the INTENSITY control is advanced too far. The ASTIGMATISM control potentiometer controls the grid bias of cathode follower V135B to provide an adjustable low-impedance source of voltage for anode No. 2 of the cathode-ray tube.

Type 420 High Voltage Power Supply

All the accelerating potentials for the cathode-ray tube are provided by a high-voltage supply employing an audio oscillator operating at a frequency of approximately 1.8 kilocycles. Four type 1X2 high-voltage rectifier tubes in a voltage quadrupling circuit provide positive 20 kilovolts. Voltage divider resistors provide 13.3 kilovolts and 6.6 kilovolts positive. A single 1X2 in a half-wave rectifier circuit provides negative 4 kilovolts. The high-voltage rectifiers, capacitors, resistors, and transformers are all oil-immersed. Figure 15 is a schematic of the supply.

High-Voltage Oscillator and Regulator

The high-voltage oscillator plate voltage is regulated to maintain a constant negative 4 kilovolts of rectified output so that deflection sensitivity of the cathode-ray tube will not be affected by line-voltage or load changes.

Figure 14 is a block diagram of the high-voltage oscillator and regulator system. A tap on the negative 4-kilovolt portion of the power supply is compared to a regulated negative 250 -volt source through V302A, one section of a 12AU7. The other section of this tube, V302B, amplifies the difference voltage and applies it to the grids of the series regulator tubes, V301 and V307 in parallel, which control the plate voltage of oscillator V303, a 6AU5.
V305, a 6C4, provided with an R-C network in its grid circuit, depresses the grids of the series regulator
tubes, V301 and V306 when power is first applied, and then slowly allows the grids to assume their normal regulating voltage depending on the time constant of the R-C network. This circuit delays application of full accelerating voltage to the cathode-ray tube, thus preventing "flare" when the instrument is turned on with the INTENSITY control at normal setting.

Filament-Voltage Oscillator

Filament voltage for the five 1 X 2 high-voltage rectifiers, is supplied by means of a separate oscillator circuit with V304, a 6AQ5.

Calibrator

The signal-amplitude calibrating unit consists of a self-excited unsymmetrical multivibrator operating at a frequency of about 25 kilocycles. The positive pulse, about 3 microseconds long, is clipped in diode V135A at a level determined by the setting of the grid voltage of cathode follower V135B on the Cal. Adjust potentiometer. The negative portion of the pulse is clamped at ground potential by a 1 N 34 crystal diode. A potentiometer labeled CAL. VOLTAGE in the cathode circuit of cathode follower V132 provides a continu-ously-variable pulse amplitude to cathode follower V131. A six-position step attenuator in the cathode circuit of V131, labeled CAL. RANGE provides six voltage range steps.

170-OHM Attenuator (Type B170-V)

This device consists of a series of resistor pi pads which can be selected by means of frequency-compensated toggle switches. The nominal impedance of the box is 170Ω to match the impedance of the scope input and of the probe cable.

The inductors between switches compensate for switch capacitance to approximately 150 mc . Additional rise time, contributed by use of the attenuator to the overall step response of the Type 517, is of the order of $0.3 \mathrm{~m} \mu \mathrm{sec}$.

Input and output connectors are chassis-mounted female UHF coaxial fittings.

Cathode-Follower Probe

The Type P-170-CF Probe provides high-impedance input to the Type 517. The circuit diagram is shown in Figure 19. The probe consists of a type 5718 miniature triode enclosed in a brass housing, connected to the Type 517 by means of a 40 -inch flexible cable. Cathode output from the cathode follower is fed through 170Ω coaxial cable to the 170Ω input of the Type 517. The cathode resistor for the cathode fol-
lower consists of the 170Ω grid-line termination of the distributed preamplifier. The cable is also provided with a four-prong power plug which plugs into a socket near the 170Ω coaxial input of the Type 517 to provide 120 volts dc at 9.5 milliamps and 6.3 volts ac at 150 milliamps, for plate and heater power for the type 5718 tube.

Three screw-on capacitive attenuators, I, II, and III, each adjustable over a ten-to-one range by means of a screwdriver adjustment in the nose of the attenuator, make available the following voltage sensitivities and attenuation ranges:

| | Voltage Sensitivity | Attenuation |
| :--- | ---: | ---: | ---: |
| 170Ω input | .1 to .2 volts $/ \mathrm{cm}$ | 0 |
| Probe alone | .2 to .4 volts $/ \mathrm{cm}$ | $2: 1$ |
| Attenuator I | .4 to 8.0 volts $/ \mathrm{cm}$ | $2: 1$ to $20: 1$ |
| Attenuator II | 4.0 to 80 volts $/ \mathrm{cm}$ | $20: 1$ to $200: 1$ |
| Attenuator III | 40.0 to 800 volts $/ \mathrm{cm}$ | $200: 1$ to $2000: 1$ |

The input admittance of the probe alone consists of a capacitance of $5 \mu \mu \mathrm{f}$ shunted by a 12 megohm, $1 / 2$ watt

Allen Bradley resistor. The minimum input capacitance of the attenuators is of the order of $1 \mu \mu \mathrm{f}$.

Input capacitance of the capacitive attenuators when attached to the probe are shown in the following table. The sensitivities listed are for a full-right setting of the VERT. AMPL. ATTEN. control of the Type 517. The capacitance values were measured using actual production attenuators, but capacitance of individual attenuators may depart somewhat from the values listed.

Attenuator Number	Attenuator Sensitivity Setting	I 	Input Capacitance
II	4.0	$5.0 \mu \mathrm{~cm}$	1.2
	40	5.0	
III	40	1.2	
	400	3.0	
	40	1.1	

Intermediate settings of attenuators between the settings listed will result in intermediate values of input capacitance.

SECTION IV

Maintenance and Adjustment

Maintenance

Care must be taken to assure free ventilation of both units inasmuch as some of the components are operated at dissipation levels such that excessive temperatures will result without adequate air circulation.

To assure free passage of air units should be placed so that the air intakes are not blocked by other apparatus or furniture, and the filters should be kept clean.

Washable Lumaloy Air Filters are used at the air intake ports of both units. The following filter cleaning instructions are given by the filter manufacturer:
"To Clean:
(I) If grease or dirt load is light, remove filter from installation and flush dirt or grease out of filter with a stream of hot water or steam.
(2) If load is too heavy for treatment in (I) above, prepare mild soap or detergent solution (see paragraph below on use of caustics) in pan or sink deep enough to cover filter when laid flat. Agitate filter up and down in this solution until grease or dirt is loosened and carried off filter.
(3) Rinse filter and let dry.
(4) Dip or spray filter with fresh Filter Coat, or other approved adhesive. Filter Coat is available from the local representative of $R E$ SEARCH PRODUCTS CORP. in the one-pint Handi-Koter with spray attachment or one-gallon and five-gallon containers.

In most cases hot water, steam, or hot water and mild soap solution (Ivory, Dreft, Vel, etc.) is all that is needed to restore the dirt or grease laden filter to its original sparkling lustre. However, where extreme conditions are encountered with higher-thanaverage dirt or grease loads or where maintenance of the filters has been neglected, allowing an accumulation of hard grease or caked dirt, more comprehensive cleaning steps may be taken.

> CAUTION: IN CASES OF THIS KIND, USE OF CAUSTICS WITHOUT RECOMMENDED INHIBITORS ADDED IS DAMAGING TO THE FILTER.
(For information on correct procedure, write the Research Products Corporation stating name of
cleaning agent and concentration.) Certain nationally known and nationally distributed cleaners are approved for use in dish-washers, cleaning tanks or filter service company equipment. Following is a partial alphabetical list of cleaners already tested and approved by Research Products Corporation:

\quad CLEANER	MAKER
Calgonite	Calgon, Inc.
KOL	DuBois Company
Oakite Composition	
No. 63	Oakite Products, Inc.
Pan Dandy	Economics Lab., Inc.
Super Soilax	Economics Lab., Inc.
Wyandotte Kecgo	Wyandotte Chem. Corp.
Non-inclusion of any other cleaners is not intended	
to indicate their being unacceptable. For specific in-	
formation on other products, zerite the Research	
Products Corporation, Madison IO, Wisconsin."	

Analyzing Trouble

Tube Replacement

A good percentage of the troubles that occur are likely to be found in the tubes and it is therefore advisable to check tubes before extensive tests are made on other components. Tube checks can be made by substitution in many cases. Tube failures may result in failure of other components or may be caused by failure of other components so that it is advisable to examine all components associated with an offending tube.

Selected tubes are used in several positions in the Type 517 as follows:

6AK5-V501 thru V512, distributed preamplifier -V102 thru V107, distributed preamplifier 6CB6-V501 thru V519, distributed preamplifier -V521 thru V523, distributed preamplifier -V520.

. trigger pick off

6BH6-V126, trigger rate generator phantastron
6J6 -V101trigger selector
NE-2 - Neon Glow Lamps, CRT bias
6AK5 : Selected for normal or better Gm and for low microphonics for all tube positions.

6CB6: Selected for low grid current, and for normal plate current. Above-normal grid current loads the grid lines of the distributed amplifier and disturbs the line impedance. Tubes which exhibit plate current above or below normal are potentially unstable.

6BH6: The trigger rate generator phantastron, V126, must have suppressor grid characteristics within close limits. A good percentage of these tubes are satisfactory however.

6J6: The trigger selector phase changer 6J6, V101, requires equal sections so that both positive and negative pulses will receive equal amplification within about 20 per cent.

NE-2: The type NE-2 neon glow lamps determine the bias on the CRT. The bias must be reduced to half when the SENSITIVITY switch is turned from NORMAL (24 KV) to X2 (12 KV) position. For NORMAL (24 KV) operation, four lamps are used and for X2 (12 KV) operation, two are used so that each should have similar voltage-current characteristic.

CAUTION: VOLTAGES HIGH ENOUGH TO BE DANGEROUS ARE PRESENT AT SEVERAL PLACES IN THIS INSTRUMENT, AND INASMUCH AS MAINTENANCE MUST BE PERFORMED WITH THE POWER CIRCUITS ENERGIZED, THE UTMOST CAUTION SHOULD BE OBSERVED. BOTH THE 750-VOLT AND 475-VOLT LEADS ARE POTENTIALLY MORE DANGEROUS THAN HIGHER-VOLTAGE 4-KV AND 20-KV LEADS. THE 750-VOLT AND 475-VOLT SUPPLIES HAVE MUCH LOWER INTERNAL IMPEDANCE. USE ONLY INSULATED TOOLS. STAND ON DRY FLOOR AND DO NOT LEAN WITH THE BARE ARMS ON THE METAL FRAMEWORK OF THE INSTRUMENT. IF POSSIBLE, KEEP ONE HAND IN YOUR POCKET.

Removal of the Case
To remove the case, place the oscilloscope face downward on a padded flat surface, remove the two screws in the bottom, and lift off the case. The power supply case may be removed in a similar manner.

Fuses

Three fuses, located on the front panel of the power supply, provide over-current protection. These are labeled as follows for protection as shown:

DC SUPPLIES, 6-amp, thermal lag, in primary of dc supply high voltage transformer, T401.

REGULATED HEATERS, 5-amp, thermal lag, in primary circuit of heater transformer, T901, supplying heaters of all tubes in indicator unit. Transformer is located on underside of indicator unit.

POWER SUPPLY HEATERS, 3 -amp, thermal lag, in primary of filament transformer, T402, supplying heater and filament voltage to all tubes located in power supply unit.

If the 6 -ampere fuse blows, the first step in locating the trouble should be to determine whether the trouble is in the power unit or the indicator unit. This can be determined by disconnecting the inter-unit power cable. If a new 6 -ampere fuse blows with the cable disconnected, the trouble is in the power unit, and the usual types of checks for capacitor failure and the tube shorts should be made until the trouble is isolated.

If the 6 -ampere fuse does not blow except when the inter-unit cable is connected, however, the trouble is likely to be found in the indicator units. In this case, first measure the resistance to ground at each dc voltage jack to determine if any are below 9000 ohms. If no low resistance circuits are found to exist, it is possible there is a type of tube short which occurs only when both heater and plate voltage are applied. Reconnect inter-unit cable and set the control as follows:

```
SENSITIVITY ...........Normal (24 KV)
SWEEP TIME/CM......10 or 20 Milli \muSec
VERT. AMPL. ATTEN.. .Full clockwise
TRIGGER AMPL. .........Full clockwise
SWEEP STABILITY.... Full counterclockwise
```

After these control settings have been made voltages and currents to the various units can be measured at a jack panel on the underside of the indicator unit. Adjacent to each of the jacks is shown the normal voltage and currents that should be found with the controls set as shown. The voltage at the negative 250 -volt jack and positive 225 -volt jack should be accurate within one per cent. Other regulated voltages should be within three per cent of those listed below. Unregulated voltages will follow line voltage, but should be within 10 per cent of those listed below at 117 -volts line voltage.
Currents at the test jacks should be within 10 per cent of the following, with the exception of the plus

350 -volt unregulated current which may be as low as 65 ma in some instruments.

Normal Test Jack Voltages and Currents

-250 V	Regulated	50 MA
+150 V	Regulated	550 MA
+180 V	Unregulated	250 MA
+225 V	Regulated	450 Ma
+350 V	Unregulated	100 MA
+475 V	Regulated	150 MA
+750 V	Regulated	50 MA

If currents at the test jacks are abnormal, determine what terminal boards are involved by reference to the Power Distribution Diagram, Figure 17. By lifting individual leads from the board, the offending circuit can be located.

Because of the delay in the thermal-lag fuses used, it is usually possible to make quick over-current readings by using a high ammeter range and momentarily flipping the DC POWER switch on and back off again. When an offending circuit is isolated, look for charred or discolored resistors in associated circuits, particularly the distributed amplifier line terminations.

In case of faulty operation not involving fuse failure, a similar but more leisurely procedure for locating over-current circuits can be followed.

If voltages at the test jacks are appreciably off in value, look for troubles in the power supply.

If all voltages are off in value, look for trouble in the negative 250 -volt supply, which all other regulated supplies are compared to. If all voltages are low, V415 may be low in emission, or V418 may not be conducting and the minus 250 -volt jack should indicate - 250 volts or less. If all voltages are high, V418 may be shorted and the minus 250 -volt jack should indicate about minus 350 volts.

If individual voltages are off, check the voltage at the plate of the series regulator tube involved for evidence of low cathode emission. Check resistance and voltage at grid of reference tube for evidence of failure in voltage divider.

CAUTION: TO MEASURE HEATER VOLTAGE, USE AN RMS VOLTMETER, NOT A RECTIFIER TYPE OF METER.

Heater voltage low to about 5 volts as measured at the 6.3 V 1 A pin jack on the indicator unit, indicates filament failure of $V 419$, loss of emission, open circuit at V420, or open circuit on plus 350 -volt lead to saturable reactor.

Heater voltage above 6.3 V indicates a possible short in V420.

Sweep

If a spot can be made to appear at left center by following the procedure shown in Section II, OPERATING INSTRUCTIONS, but no sweep occurs, advance the SWEEP STABILITY control full clockwise. If a sweep occurs with this control adjustment, the difficulty may be in the trigger circuit. Turn the TRIGGER SELECTOR switch to RATE GEN. and advance the TRIGGER AMPL. control full clockwise. If no sweep occurs, observe the output at one of the RATE GEN. OUTPUT connectors on another oscilloscope such as TEKTRONIX Type 511, 512, or 514. There should be approximately 20 volts peak to peak at RATE GEN. OUTPUT A or 60 volts at RATE GEN. OUTPUT B connectors. If adequate output is available, look for low gain in the trigger amplifier.

The gain may be checked by coupling the RATE GEN. OUTPUT A or B, through a voltage divider to give about 0.1 volt peak to peak, into the trigger amplifier circuit via the TRIGGER INPUT UHF connector. Place the trigger selector switch in the plus external position. Make sure the voltage at this point is approximately 0.1 volts, and turn the TRIGGER AMPL. control full clockwise. Then with a suitable oscilloscope, such as TEKTRONIX Type 511,513 , or 514 , check the gain in the various trigger amplifier stages, which should be as follows: V101, the trigger phase changer, should be approximately 0.7 ; between 4 and 6 for the first distributed trigger amplifier stage consisting of V102 or V104, inclusive; and between 4 and 6 for the second distributed trigger stage, V105 to V107. Output of this stage, which is negative and goes to the grid of V108, a 6AG7, which acts as a limiting amplifier. This tube should have a gain of approximately 4 , making a total gain of trigger input to plate output at V108 of 80 to 100 . Gain less than 80 times indicates low $G m$ tubes, especially 6AK5's. As an aid in checking trouble in the trigger amplifier circuit, the following point-to-point voltages are listed. These are typical voltages, made on a production model. Variations of 10% to 15% may be expected. Measurements were made with a $20,000-\Omega-$ per volt voltmeter and with the trigger ampitude control in the full clockwise position with no signal fed into the system. For a quick first test, check the screen voltages of the 6AK5's, V102, V103, and V104. High screen voltage is an indication of low output. Normal screen voltage is around 80 volts.

$$
\begin{array}{ll}
\text { V101, cathode voltage } & +1.6 \text { volts } \\
\text { V101, plate voltage } & +150 \text { volts each } \\
\text { V102, V103, and V104, } & \\
\quad \text { plate voltage } & +100 \text { volts } \\
\text { V102, V103, and V104, } & \\
\text { screen voltage } & \text { Approx. } 90 \text { volts }
\end{array}
$$

V105, V106, and V107,	
plate voltage	95 volts
V105, V106, and V107,	
screen voltage	145 volts
V108, plate voltage	Approx. 200 volts

(This depends on the positive 225 volt source. In any event, the drop across the plate load of V108, R126, should be approximately 8 volts at 30 milliamps.)
V108, screen voltage
V109, plate voltage
V109, cathode voltage
V109, screen voltage
Approx. 100 volts
+205 volts
+8.5 volts
Approx. 200 volts

Cathode-Ray-Tube Power Supply

In case of failure of the $20-\mathrm{kv}$ power supply, determine first whether the oscillators supplying ac input voltage to the high-voltage supply and filament supply transformers are functioning satisfactorily. This can be determined by measuring the dc grid voltages of the two tubes using a $20,000 \Omega$-per volt meter. The voltage at the grid, pin 1, of V303, a 6AU5, should be about 27 volts. The voltage at the grid, pin 7, of V304, a 6AQ5, should be about 19.5 volts. Or alternatively, the ac voltages may be observed on another oscilloscope such as TEKTRONIX Type 511, 512, or 514.

If by these means it is determined that failure has not occurred in the oscillator circuit, it is recommended that the Type 420 power supply unit be shipped to the factory for repair. The factory will ship a replacement power unit, shipping charges prepaid, by air if desired, immediately upon receipt of notification of failure. The factory will accept a collect telegram for this purpose, and no charge will be made for the replacement unit if the defective unit is returned to the factory within reasonable time.

Vertical Amplifier

The overall gain of the vertical amplifier can be checked by using a calibrated pulse from the CAL. OUTPUT terminal. With the VERT. AMPL. ATTEN. turned full clockwise and the SENSITIVITY switch set to NORMAL (24 KV), 0.1 volts input should give approximately one centimeter of vertical deflection.

If the gain is appreciably low, first check voltages and currents at the test jack board on the underside of the indicator unit and check the power supply if indicated. Low gain of one or more 6AK5 is possible cause of low gain and it is recommended that the twelve 6AK5's, V501 to V512, be checked or replaced with tubes known to be good.

Individual stage gains can be checked by means of a second oscilloscope such as TEKTRONIX 511, 512, or 514 to observe the pulse amplitude at the input and output of each stage. The proper gain for each stage is indicated on the simplified schematic diagram of the vertical amplifier system, Figure 6. Gain about twice normal may indicate an open line termination, either the direct termination or the reverse termination. Signal saturating at low signal levels may indicate leaky $.005-\mu \mathrm{f}$ grid-coupling capacitors or shorted $150-\mu \mathrm{f}$ cathode bypass capacitors. By biasing off individual tubes or by measuring voltages, the offending capacitor can be isolated.

If, after the preliminary tests have been made for amplifier gain and for satisfactory operation of components, aberration of the pulse shape is suspected, the recommended test procedure will require a pulse generator with a very short rise time, at the most, 3 millimicroseconds. The pulse duration should be 5 microseconds or more, and the repetition rate should be above 60 cycles. Both positive and negative pulses are needed for the procedure, and the pulse must be produced across 170Ω at a variable level up to about 0.3 volts peak to peak. If an attenuator is required to adjust the pulse level to the required amplitude, do not use the $170-\Omega$ step attenuator supplied with the oscilloscope.

Connect the pulser to the Type 517 SIGNAL INPUT connector and observe the displayed pulse at various levels of both polarities, and at various sweep times per centimeter. If the observed trace shows aberration of the pulse, or a difference in gain for positive and negative pulses, it is recommended that the following steps first be read and understood, and that the indicated tuning procedures then be followed:

Display on the screen a positive pulse with $1-\mathrm{cm}$ amplitude and repeat, using a negative pulse.

1. If aberration of the front corner of the pulse occurs within the first 50 millimicroseconds of the rise, consisting of either of rounding, or of overshoot or spiking, correction can probably be made by tuning the trimmer capacitors on the plate line of the output distributed amplifiers, C713A to L and C714A to L. An upward deflection of the trace results from positive grid drive on the half of the output amplifier nearest the front panel, V713 to V724. Tuning the trimmers of this half of the amplifier, C714A to L therefore compensates for aberration occurring during upward deflection of the trace.

A downward deflection of the trace is the result of positive grid drive on the half of the amplifier farthest from the panel, V701 to

V712. Tuning the trimmers of this half of the amplifier, C713A to L therefore compensates for aberration occurring during a downward deflection of the trace.
2. A much longer aberration having the shape of an RC charge or discharge curve of duration 100 to 500 millimicroseconds results from the variation with voltage and time of the impedance characteristics of the $150-\mu$ f cathode bypass capacitors throughout the amplifier, and the $8-\mu \mathrm{f}$ capacitors to ground at the plateline terminations. Compensation for these sources of aberration is produced by means of two RL networks in the reverse-termination networks of the first two stages of the preamplifier, R503, L509 and R515B, L510. Sense of the compensation contribution can be determined by shorting out the inductance. Amplitude of the compensation depends on the value of R and the duration, or time constant, depends on the value of L . In a few instruments, it has been found necessary to supplant one of the RL networks with a parallel RC network of 10 to 20Ω and 0.01 to $0.02 \mu \mathrm{f}$.
3. A small sharp notch or spike occuring 30 to $35 \mathrm{~m} \mu \mathrm{~seconds}$ following the rise may result from feedback between plate and grid line of the output stage near the reverse terminations, especially following retuning. These aberrations can be corrected by means of C735 and C736 located at the output-stage plate-line reverse terminations, Figure 8. With a positive pulse displayed, adjust C736 at the plate line nearest the front panel. With a negative pulse displayed, adjust C735 at the plate line farthest from the panel, and repeat the procedure once or twice for the best adjustment.
4. Under normal operating conditions, a small wrinkle of about $1 / 2 \mathrm{~mm}$ peak-to-peak amplitude occurs on the trace about 100 millimicroseconds after the start of the sweep. Except for this wrinkle, a properly tuned amplifier will have no ringing or overshoot greater than 0.3 or 0.4 mm , peak to peak.
5. The tuning capacitors of the vertical amplifier are preset at the factory to the following approximate adjustment, in terms of the depth the inner concentric cyclinder is engaged into the outer cylinder.

$$
\begin{array}{lr}
\text { First stage : } & 1 / 16 \text { inch } \\
\text { Second stage : } & 1 / 8 \text { inch } \\
\text { Third stage: } & 3 / 16 \text { inch }
\end{array}
$$

Inverter:	3/16 inch
Driver stage:	3/32 inch
Output stage:	Adjusted by observation for best response characteristics.

6. The following list of delay times may be useful in adjusting the amplifier and in determining the effects of unmatched terminations.

First and second	
preamplifier	
stages and driver,	
each $8 \mathrm{~m} \mu \mathrm{sec}$,	
total	$24 \mathrm{~m} \mu \mathrm{sec}$
Inverter stage	$4 \mathrm{~m} \mu \mathrm{sec}$
Third stage	$11 \mathrm{~m} \mu \mathrm{sec}$
Output stage	$16 \mathrm{~m} \mu \mathrm{sec}$
Delay line	$65 \mathrm{~m} \mu \mathrm{sec}$
Total overall amplifier delay	$120 \mathrm{~m} \mu \mathrm{sec}$
Sweep-starting time, internal	
triggering	$90 \mathrm{~m} \mu \mathrm{sec}$
Sweep-starting time external triggering	$60 \mathrm{~m} \mu \mathrm{sec}$

Noise and hum occurring elsewhere than in the vertical amplifier or in the sweep circuits can be observed by shorting the deflection plates and determining whether the noise voltage still persists on the trace.

Adjustment

1. Power Supply Unit
-250 VOLTS : Connect voltmeter to test jack panel on underside of indicator unit. Adjust R463B labeled ADJ. -250 as accurately as possible.
+150 VOLTS: No adjustment provided. Set at factory within 1 per cent. Appreciable departure from this value may degrade amplifier performance. Adjustment, if required, must be accomplished by replacing or bridging resistors.
+225 VOLTS: No adjuscment provided. If off more than 3 per cent, replace or bridge resistors.
+475 VOLTS: No adjustment. If off more than 3 per cent, replace or bridge resistors.

「750 VOLTS: No adjustment. If off more than 3 per cent, replace or bridge resistors.

NOTE: Many portable voltmeters are in error as much as three per cent.
2. Cathode-Ray Tube Voltage Supply:
-4 KV: Turn INTENSITY control full counterclockwise. Connect $20,000-\Omega$-per-volt voltmeter to junctions of the $.05-\mu \mathrm{fd}$ capacitor and INTENSITY control R839. Turn SENSITIVITY switch to NORMAL (24 KV). Adjust R310A labeled 4 KV ADJ. located on the high voltage oscillator chassis at upper right rear of the indicator unit.
-2 KV: Repeat above procedure with SENSITIVITY switch in X2 (12 KV) position and adjust R311A labeled 2KV ADJ. on high voltage oscillator chassis.
3. Cathode-Ray Tube Intensity:

Maximum intensity is adjusted by means of R838 labeled MAXIMUM INTENSITY ADJ accessible from the left rear center of the indicator unit. With SWEEP STABILITY and TRIGGER AMPL controls full counter clockwise and the INTENSITY control full clockwise, adjust R838 until a spot just appears on the screen.
4. Cathode-Ray Tube Unblanking:

Set SENSITIVITY switch in NORMAL (24 KV) position and SWEEP TIME/CM switch at the 10 MICRO SEC. PER CM. position. Connect a $20,000-\Omega$-per-volt voltmeter across R173, plate load resistor for V120A and V120B, located on the left bottom center of the indicator unit. Adjust R175A labeled UNBLANK, accessible from the left bottom center of the indicator unit, for 100 volts across R173. The UNBLANK adjustment controls the screen voltage of V120 and V121 to adjust their plate current.
5. Trigger Rate Generator:

Connect the RATE GEN. OUTPUT A or B on the front panel to the vertical input of a second oscilloscope such as TEKTRONIX Type 511, 512 , or 514 . Connect a calibrated oscillator to the horizontal input of the second oscilloscope so as to produce lissa jou patterns. Set TRIGGER RATE GEN. MULT. to X10 position and CYCLES PER SECOND dial to 150, and apply 1500 -cycle voltage to the horizontal sweep. Adjust R806B labeled H. F. TRIG. RATE, to obtain one-to-one lissajou patterns. Turn CYCLES/SEC. dial to 15 . Set oscillator at 150 cycles, and adjust R801B, accessible from left bottom of indicator unit labeled TRIG. RATE L. F. for one-to-one lissajou patterns. Return to 1500 cycles and recheck H. F. TRIG. RATE adjustment because there is some inter-
action. Set TRIGGER RATE GEN. MULT. to X100 position and check against 15 -kc audio oscillator frequency. Adjust C801B mounted on the RATE GEN. MULT. switch, accessible from the front bottom of indicator for one-to-one pattern. There is no adjustment provided for the X1 TRIGGER RATE GEN. MULT. range.
6. Sweep Timing :

Before attempting to retime the sweep circuits, be sure the accelerating potentials are correct by the procedure suggested under paragraph 2, Cathode-Ray Tube Voltage Supply. Heaters should be on for a half hour and plate voltage should be on for five minutes before any adjustments are made.

A suitable timing wave can be obtained from a TEKTRONIX Type 180 Time Marker Generator. This generator provides both crystal controlled pip and sine-wave output and synchronized trigger pulses at submultiples of the output frequency so that stationary timing-wave patterns can be displayed on the Type 517.

To use the Type 180 Time Marker Generator for this purpose, connect the SIGNAL INPUT of the Type 517 to the 50 MC output of the Type 180. Connect the TRIGGER output of the Type 180 to the TRIGGER INPUT of the Type 517. Set the TRIGGER RATE SELECTOR switch of the Type 180 to 1 KC .

To time the sweep, observe the output of the Type 180 on the Type 517 screen. One cycle of the $50-\mathrm{mc}$ wave should occupy two centimeters at the 10 MILLI μ SEC PER CM setting. For this setting only, adjust the timing by adjusting the drive on the negative sweep amplifier, V118, by means of C136, a 5-20 $\mu \mu \mathrm{f}$ ceramic trimmer located on the left face of the sweep output board, accessible from left center of the indicator unit. Do not change this setting when adjusting subsequent sweep times.

To time the 23 MILLI μ SEC PER CM position, determine the multivibrator pulse length as above, and adjust it to 0.4 microseconds by means of C128J, a 5-20 $\mu \mu \mathrm{f}$ ceramic trimmer located next to C128K. Adjust C129J until one cycle of the $50-\mathrm{mc}$ wave occupies one centimeter.

Except for the three longest TIME PER CM settings, subsequent adjustment are made in the same manner by adjusting the corresponding trimmer capacitors, C129J to C129D, and counting cycles or pips displayed of the Type 180 Time Market Generator. The Type 180 provides sine waves of $50 \mathrm{mc}, 10 \mathrm{mc}$ and 5 mc , and pips spaced between 1μ second and 1 second. Cycles
per centimeter $=$ SWEEP TIME PER CM \times oscillator frequency.

A shocked oscillator can also be used for a timing-wave source. The oscillator should operate at the frequencies mentioned. To use such an oscillator for time measurements, connect the oscillator to the Type 517 SIGNAL INPUT, gate the oscillator and trigger the Type 517 sweep with the same pulse at a safe repetition rate. Then observe the stationary pattern displayed in the same manner as previously described.

A less satisfactory measurement can be made, if no better means are at hand, by observing a single trace of the output of a signal generator or similar oscillator capable of developing a tenth of a volt or so across the 170 -ohm input impedance of the Type 517. A mercury switch breaking a 1.5 -volt battery source will provide a satisfactory triggering means. At the fastest sweep speeds a mercury switch will probably be necessary to avoid multiple triggering caused by contact jitter found in most other kinds of contacts. The room should be darkened or the viewing hood should be used, with rather high spot intensity, or the trace can be recorded photographically. Since each trace will be of a random section of the oscillator output wave a stationary pattern cannot be obtained, and such information as can be must be obtained from single traces.
7. Low-Frequency Compensation:

The screwdriver adjust potentiometer, R160A, is adjusted at the factory for the best balance
between fast and slow sweep times. It should be necessary to readjust R160A only in the event of major changes in circuit components.
8. Horizontal Positioning:

Set the SENSITIVITY switch to NORMAL (24 KV) and SWEEP STABILITY and TRIGGER AMPL. full counterclockwise. Advance the INTENSITY control clockwise and adjust FOCUS to get a fine spot not bright enough to damage the screen. With the HORIZONTAL POSITIONING, 1 CENTIMETER control, at 0 , position the spot with the FULL RANGE control near the screen center at one of the graticule lines. Advance the 1 CENTIMETER control to 10 . The spot should move to the next graticule line. If it does not, adjust R188, a $500-\mathrm{k}$ resistor labeled HOR. POS. VERN. ADJ. located near the 1 CENTIMETER control, accessible from the right front of the indicator unit.
9. Pulse Calibrator:

This check should be made by comparing the voltage from the CAL. OUTPUT terminal with that of a calibrated square wave generator such as TEKTRONIX Type 104A, or by measuring the calibrator pulse on a TEKTRONIX Type 512 or 514 oscilloscope.

First determine that the zero adjustment is correct. If it is not, set the control to zero output, loosen the set screw and position the dial properly. Then set the CAL. RANGE switch to 50 and the CAL. VOLTAGE scale to 5. Adjust R907A, a 100-k resistor, labeled CAL. ADJ., located on the lower right side of the indicator unit.

```
    Instmucttong for 23wwyalt uperation
```


Gmless are are instracted otherviso we ont tho Type 517 oscillosoopa combetad ior operation at 205 to 125 polts. 50 to 60 cyoles ace Eloveror. provistont are mate Lor casy conversion to nperation at 210 to 250 volta? 50 to 60 cycles. In instuments with serial mumber 100 and hither. three transfomerts Thor.s Thoz, and Tgolg and ono series reactors Lhorg are prom vided With apltt input dindings wioh are nomally compected in parallol for $115=70$ t operathong but wion an asily be comectel in series fox 230 -polt operation. Fach of thase gelit mindtings mermitates in a ruest of four terminal lugs arranged In a square on bakelite tamainal boardg and numbered $l_{3} 2_{3} 3$ and b $4 x$ clockalse rotathon.

Teminala muberon + and 3 are sonnected to one winding and terminals numberod 2 and 4 are comoct i to the second Hinduns. Tsw ac nput leade axt condected to teratnals 1 and 4 whether for 125 mott or for $230-701 t$ operatuong so that theso leads lo not noed to be noved wher conversion is made crom one to tha other operatin. Lnputovaltase level.

Whan hire for 115 -volt operationg terminala 1 and 2 are foinud by a bare bua thre, and temtnals 3 and 4 are similarly foined. To ronvert to 230 volt operathong renove the are bus wires between these termuals and

Trassiomer Whad berminal bond is loostod on the waderside of the sullatar unt. pearily accegaible at the right rear when the inducator unit to tume 2 upeile dotm。 The remaining three tomminal poards are 100 catad on tho understae of the exterme powerosupply mato then the porerwo supply unit $4 s$ thumed upstie down 4.02 is on the rifht front of the chaso als. Thon is located at the Last max and Nuv2 at the migh moaro

Whaes whoula be changed to acoonnodiate the reduction of Input cument by a fractor th two for 230 molt optraciono The botug Do guf hites fruse ohould be replaced by whth 3atmp ratings the 5 -amp pramato Haturs Ruse by a 2.5mary fuse, ond the 3maup ponif supply Hfetorts fuse with a 1.5.0.are one

The tharrans show comections of the oplitwindin terninalso
$115-101 t$ conmettion
230 molt comection

Type 517 Indicator, Top View

Type 517 External Power Supply, Top View

IMPORTANT

Include INSTRUMENT TYPE and SERIAL NUMBER in all correspondence regarding any Tektronix instrument. The serial number stamped in the instruction manual must match the instrument serial number if parts are to be ordered from the manual. Observance of the above precautions will assure your receipt of the correct replacement parts with a minimum of delay.

WARRANTY

This instrument is guaranteed to the original user to be free from defects in material and workmanship for a period of one year from date of purchase. Our responsibility under this warranty is limited to the repair or replacement of the instrument, or any part thereof, failure of which is not due to abuse.

For service under this warranty, promptly advise the factory of all details pertinent to the failure. Replacement parts will be shipped, via air transportation upon request, prepaid to any point within the continental United States or Canada. Should it be more convenient to ship the entire instrument, transportation prepaid, to the factory, it will be serviced as required, at no charge and returned via surface transportation.

Replacement parts ordered after termination of warranty will be billed at current net prices and shipped via air prepaid to any point within the continental United States or Canada.

All price revision and design modification privileges reserved.

TYPE 517 CATHODE-RAY OSCILLOSCOPE

INSTRUCTION MANUAL

SECTION VI

DIAGRAMS

Trigger and Sweep Amplifier Block Diagram Fig. 1
Trigger Amplifier Fig. 2
Sweep Circuit Fig. 3
Trigger Rate Generator Fig. 4
Trigger Rate Generator Fig. 5
Vertical Amplifier, Simplified Schematic Fig. 6
Vertical Pre-Amplifier Fig. 7
Vertical Amplifier Fig. 8
Vertical Amplifier, Plate and Screen Supply Distribution Fig. 9
Calibrator Block Diagram Fig. 10
Calibrator Circuit Fig. 11
External Power Supply Fig. 12
Heater Voltage Regulator Circuit Fig. 13
Power Supply Oscillators and Filament Supply, Block Diagram Fig. 14
Power Supply Oscillators and Filament Supply Fig. 15
Cathode-Ray Tube Circuit Fig. 16
Power Distribution Diagram Fig. 17
Type B170-V 170 Ohm Attenuator Fig. 18
Attenuator and Probe PR-170-CF Fig. 19

ABBREVIATIONS

Cer. - Ceramic	μ - Micro or x 10-6
Comp. - Composition	$\Omega-$ Ohm
Dep. Carb. - Deposited Carbon	PBT - Paper, Bath Tub
EMC - Electrolytic, Metal Cased	PMC - Paper, Metal Cased
f - Farads	Poly - Polystrene
GMV - Guaranteed Minimum Value	Prec. - Precision
h - Henries	PTM - Paper, Tubular Molded
k - Kilo or $\times 10^{3}$	Var. - Variable

	CAPACITORS					R111A R111B	27 k 27 k	1 watt 1 watt	Fixed	Comp. Comp.	10% 10%
						R111C	27 k	1 watt	Fixed	Comp.	10\%
C101	. $001 \mu \mathrm{f}$	Cer.	Fixed	500 WVDC	GMV	R112	560Ω	1/2 watt	Fixed	Comp.	10\%
C102	$20 \mu \mathrm{f}$	EMC	Fixed	450 WVDC	$-20 \%+50 \%$ (1/2 of 2×20)	R113	560Ω	1 watt	Fixed	Comp.	10\%
C103	. $001 \mu \mathrm{f}$	Cer.	Fixed	500 WVDC	GMV						
C104	. $005 \mu \mathrm{f}$	Cer.	Fixed	500 WVDC	GMV	R114	10Ω	1/2 watt	Fixed	Comp.	10\%
C105	. $01 \mu \mathrm{f}$	PTM	Fixed	400 WVDC	20\%	R115A	15 k	1 watt	Fixed	Comp.	10\%
						R115B	15 k	1 watt	Fixed	Comp.	10\%
C106A	. $01 \mu \mathrm{f}$	Cer.	Fixed	500 WVDC	GMV	R115C	15 k	1 watt	Fixed	Comp.	10\%
C106B	. $01 \mu \mathrm{f}$	Cer.	Fixed	500 WVDC	GMV	R116A	820 k	1/2 watt	Fixed	Comp.	10\%
C106C	. $01 \mu \mathrm{f}$	Cer.	Fixed	500 WVDC	GMV						
C107A	. $001 \mu \mathrm{f}$	Cer.	Fixed	500 WVDC	GMV	R116B	820 k	1/2 watt	Fixed	Comp.	10\%
C107B	. $001 \mu \mathrm{f}$	Cer.	Fixed	500 WVDC	GMV	R116C	820 k	1/2 watt	Fixed	Comp.	10\%
						R117	560Ω	1 watt	Fixed	Comp.	10\%
C107C	. $001 \mu \mathrm{f}$	Cer.	Fixed	500 WVDC	GMV	R118	10Ω	1/2 watt	Fixed	Comp.	10\%
C108A	. $01 \mu \mathrm{f}$	Cer.	Fixed	500 WVDC	GMV	R119	560Ω	1 watt	Fixed	Comp.	10\%
C108B	. $01 \mu \mathrm{f}$	Cer.	Fixed	500 WVDC	GMV						
C108C	. $01 \mu \mathrm{f}$	Cer.	Fixed	500 WVDC	GMV	R120	10Ω	1/2 watt	Fixed	Comp.	10\%
C109	. $01 \mu \mathrm{f}$	Cer.	Fixed	500 WVDC	GMV	R121	220Ω	1 watt	Fixed	Comp.	10\%
						R122	470Ω	1 watt	Fixed	Comp.	10\%
C110	. $01 \mu \mathrm{f}$	PTM	Fixed	400 WVDC	20\%	R123	470Ω	2 watt	Fixed	Comp.	10\%
C111	$20 \mu \mathrm{f}$	EMC	Fixed	450 WVDC	$-20 \%+50 \%$ ($1 / 2$ of 2×20)	R124	47Ω	$1 / 2$ watt	Fixed	Comp.	10\%
C112	$20 \mu \mathrm{f}$	EMC	Fixed	450 WVDC	$-20 \%+50 \%$ ($1 / 2$ of 2×20)						
C113	$20 \mu \mathrm{f}$	EMC	Fixed	450 WVDC	$-20 \%+50 \%$ ($1 / 2$ of 2×20)	R125	470 k	1/2 watt	Fixed	Comp.	10\%
C114	. $01 \mu \mathrm{f}$	Cer.	Fixed	500 WVDC	GMV	R126	270 ת	2 watt	Fixed	Comp.	10\%
						R127	15 k	2 watt	Fixed	Comp.	10\%
C115	$6.25 \mu \mathrm{f}$	EMC	Fixed	300 WVDC	-20\%+50\%	R128	390 k	1/2 watt	Fixed	Comp.	10\%
C116	. $001 \mu \mathrm{f}$	Cer.	Fixed	500 WVDC	GMV	R129	2.7 k	1/2 watt	Fixed	Comp.	10\%
C117	$220 \mu \mu \mathrm{f}$	Mica	Fixed	500 WVDC	20\%						
C118	$6.25 \mu \mathrm{f}$	EMC	Fixed	300 WVDC	-20\%+50\%	R130	10 k	2 watt	Fixed	Comp.	10\%
C119	$6.25 \mu \mathrm{f}$	EMC	Fixed	300 WVDC	-20\% $+50 \%$	R131	220 ת	2 watt	Fixed	Comp.	10\%
						R132A	6.8 k	1/2 watt	Fixed	Comp.	10\%
						R132B	100 k	2 watt	Var.	Comp.	20\%
				INDUCTORS		R132C	820 k	1/2 watt	Fixed	Comp.	10\%
L101	First distributed stage trigger amplifier, grid inductor					R190	27 k	1 watt	Fixed	Comp.	10\%
L102	First distributed stage trigger amplifier, plate inductor										
L103	Second distributed stage trigger amplifier, grid inductor							SWITCHES			
L104	Second distributed stage trigger amplifier, plate inductor										
L105	$12 \mu \mathrm{~h}$	Fixed									

RESISTORS

						VACUUM TUBE COMPLEMENT		
R101	100Ω	1/2 watt	Fixed	Comp.	10\%			
R102	470 k	1/2 watt	Fixed	Comp.	10\%	V101	6J6	Trigger phase changer
R103	47Ω	1/2 watt	Fixed	Comp.	10\%	V102	6AK5	Trigger distributed amplifier
R104	220Ω	1/2 watt	Fixed	Comp.	10\%	V103	6AK5	Trigger distributed amplifier
R105	3.9 k	2 watt	Fixed	Comp.	10\%	V104	6AK5	Trigger distributed amplifier
						V105	6AK5	Trigger distributed amplifier
R106	270Ω	1/2 watt	Fixed	Comp.	10\%			
R107	100Ω	1/2 watt	Fixed	Comp.	10\%	V106	6AK5	Trigger distributed amplifier
R108	470 k	1/2 watt	Fixed	Comp.	10\%	V107	6AK5	Trigger distributed amplifier
R109	10Ω	1/2 watt	Fixed	Comp.	10\%	V108	6AG7	Trigger limiter
R110	10Ω	1/2 watt	Fixed	Comp.	10\%	V109	6AG7	Trigger switch

ABBREVIATIONS

Cer. - Ceramic	μ - Micro or x 10^{-6}
Comp. - Composition	$\Omega-$ Ohm
Dep. Carb. - Deposited Carbon	PBT - Paper, Bath Tub
EMC - Electrolytic, Metal Cased	PMC - Paper, Metal Cased
f - Farads	Poly - Polystrene
GMV - Guaranteed Minimum Value	Prec. - Precision
h - Henries	PTM - Paper, Tubular Molded
k - Kilo or x 10^{3}	Var. - Variable

CAPACITORS						RESISTORS					
C120	$6.25 \mu \mathrm{f}$	EMC	Fixed	300 WVDC	-20\%+50\%	R133	27Ω	1/2 watt	Fixed	Comp.	10\%
C121	$100 \mu \mu \mathrm{f}$	Mica	Fixed	500 WVDC	20\%	R134	150 k	1/2 watt	Fixed	Comp.	10\%
C122	$6.25 \mu \mathrm{f}$	EMC	Fixed	300 WVDC	-20\% $+50 \%$	R135A	180 k	1/2 watt	Fixed	Comp.	10\%
C123	$47 \mu \mu \mathrm{f}$	Cer.	Fixed	500 WVDC	20\%	R135B	100 k	2 watt	Fixed	Comp.	20\% 10%
C124	$20 \mu \mathrm{f}$	EMC	Fixed	450 WVDC	$-20 \%+50 \%$ ($1 / 2$ of 2×20)						
C125	$47 \mu \mu \mathrm{f}$	Cer.	Fixed	500 WVDC	20\%	R136	5.6 k	2 watt	Fixed	Comp.	10\%
C126	$6.25 \mu \mathrm{f}$	EMC	Fixed	300 WVDC	-20\% $+50 \%$	R137	120 k	1 watt	Fixed	Comp.	10\%
C127	$47 \mu \mu \mathrm{f}$	Cer.	Fixed	500 WVDC	20\%	R139	15 k 15 k	10 watt	Fixed	WW	10\%
C128A	$4000 \mu \mu \mathrm{f}$	Mica	Fixed	500 WVDC	5\%	R140	100 k	1 watt	Fixed	Comp.	10\%
C128B	$2000 \mu \mu \mathrm{f}$	Mica	Fixed	500 WVDC	5\%	R140	100 k	1 watt	Fixed	Comp.	10\%
C128C	$1000 \mu \mu \mathrm{f}$	Mica	Fixed	500 WVDC	5\%	R141	47Ω	1/2 watt	Fixed	Comp.	10\%
C128D	$500 \mu \mu \mathrm{f}$	Mica	Fixed	500 WVDC	5\%	R142	1.5 k	5 watt	Fixed	WW	10\%
C128E	$250 \mu \mu \mathrm{f}$	Mica	Fixed	500 WVDC	5\%	R144	470 k	$1 / 2$ watt	Fixed	Comp.	10\%
C128F	$100 \mu \mu \mathrm{f}$	Mica	Fixed	500 WVDC	5\%	R144 R145	8820 k	1/2 watt	Fixed	Comp.	10\%
C128G	$47 \mu \mu \mathrm{f}$	Cer.	Fixed	500 WVDC	5\%			1/2 watt		Comp.	
						R146	10 k	2 watt	Fixed	Comp.	10\%
C128H	$27 \mu \mu \mathrm{f}$	Cer.	Fixed	500 WVDC	5\%	R147	150Ω	1 watt	Fixed	Comp.	10\%
C128I	$12 \mu \mu \mathrm{f}$	Cer.	Fixed	500 WVDC	5\%	R148A	1.5 k	25 watt	Fixed	WW	10\%
C128J	5-20 $\mu \mu \mathrm{f}$	Cer.	Var.	500 WVDC		R148B	1. 5 k	25 watt	Fixed	WW	10\%
C128K	3-12 $\mu \mu \mathrm{f}$	Cer.	Var.	500 WVDC		R149	47Ω	1/2 watt	Fixed	Comp.	10\%
C129A	$750 \mu \mu \mathrm{f}$	Mica	Fixed	500 WVDC	5\%						
C129B		Mica	Fixed	500 WVDC	5\%	R150	15 k	10 watt	Fixed	WW	10\%
C129C	$170 \mu \mu \mathrm{f}$	Mica	Fixed	500 WVDC	5\%	R151	47Ω	1/2 watt	Fixed	Comp.	10\%
C129D	7-45 $\mu \mu \mathrm{f}$	Cer.	Var.	500 WVDC		R152 R153	15 k	1/2 watt	Fixed	WW	10\%
C129E	$7-45 \mu \mu \mathrm{f}$	Cer.	Var.	500 WVDC		R154	47Ω	1/2 watt	Fixed	Comp.	10\%
C129F	7-45 $\mu \mu \mathrm{f}$	Cer.	Var.	500 WVDC		R154		1/2 watt	Fixed	Comp.	
C129G			Var.			R155	56Ω	1/2 watt	Fixed	Comp.	10\%
C 129 H	$7-45 \mu \mu \mathrm{f}$	Cer.	Var.	500 WVDC		R156	47Ω	1/2 watt	Fixed	Comp.	10\%
${ }^{\text {C129H }}$	7-45 $\mu \mu \mathrm{f}$	Cer.	Var.	500 WVDC		R157	56Ω	1/2 watt	Fixed	Comp.	10\%
C129J	$7-45 \mu \mu \mathrm{f}$	Cer.	Var.	500 WVDC		R158	$15 \mathrm{k}$	10 watt	Fixed	WW	10\%
C130	$15 \mu \mathrm{f}$	EMC	Fixed	450 WVDC	$-20 \%+50 \%(1 / 2$ of $2 \times 15)$	R159	Unassigned				
C131	$1 \mu \mathrm{f}$	PBT	Fixed	600 WVDC	20\%	R160A	500 k	2 watt	Var.	Comp.	20\% L. F. Comp
C132	. $022 \mu \mathrm{f}$	PTM	Fixed	600 WVDC	20\%	R160B	100 k	1/2 watt	Fixed	Comp.	10\%
C133	. $022 \mu \mathrm{f}$	PTM	Fixed	600 WVDC	20\%	R161	470 k	1/2 watt	Fixed	Comp.	5\% Selected*
C134	. $001 \mu \mathrm{f}$	PTM	Fixed	1000 WVDC	20\%	R162	470Ω	1/2 watt	Fixed	Comp.	10\%
C135	. $01 \mu \mathrm{f}$	Cer.	Fixed	500 WVDC	GMV	R163	10 k	10 watt	Fixed	WW	5\%
C136	5-20 $\mu \mu \mathrm{f}$	Cer.	Var.	500 WVDC		R164	490 k	1/2 watt	Fixed	Prec.	1\%
C137	$7 \mu \mu \mathrm{f}$	Cer.	Fixed	500 WVDC	$\pm .25 \mu \mu \mathrm{fd}$	R165	3.3 Meg.	1/2 watt	Fixed	Comp.	10\%
C138	. $01 \mu \mathrm{f}$	Cer.	Fixed	500 WVDC	GMV	R166	3.3 Meg .	1/2 watt	Fixed	Comp.	10\%
C139	. $01 \mu \mathrm{f}$	Cer.	Fixed	500 WVDC	GMV	R167	68 k	1/2 watt	Fixed	Prec.	1\%
C140	. $01 \mu \mathrm{f}$	Cer.	Fixed	500 WVDC	GMV	R169	120 k	1/2 watt	Fixed	Comp.	10\%
C141A	. $01 \mu \mathrm{f}$	Cer.	Fixed	500 WVDC	GMV	R171	370 k	1/2 watt	Fixed	Prec.	1\%
C141B	. $01 \mu \mathrm{f}$	Cer.	Fixed	500 WVDC	GMV	R172	150 k	1/2 watt	Fixed	Comp.	10\%
C142	. $001 \mu \mathrm{f}$	Cer.	Fixed	500 WVDC	GMV	R173	1 k	25 watt	Fixed	WW (non-	5\%
C143	Unassigned									inductive)	
C144	Unassigned					R174	47Ω	1/2 watt	Fixed	Comp.	10\%
						R175A	2 Meg .	2 watt	Var.	Comp.	20\%
C145	. $01 \mu \mathrm{f}$	Cer.	Fixed	500 WVDC	GMV						
C146	$0.5 \mu \mathrm{f}$	PBT	Fixed	1000 WVDC	20\%	R175B	3.3 Meg.	1/2 watt	Fixed	Comp.	10\%
						R176	22 k	1/2 watt	Fixed	Comp.	10\%
						R177	15 k	2 watt	Fixed	Comp.	10\%
	INDUCTORS					R178	Unassigned				
						R179A	, 2-1 Meg.	1/2 watt	Fixed	Comp.	10\%
L106	$7 \mu \mathrm{~h}$	Fixed				R179B-	Unassigned				
L107	20-30 $\mu \mathrm{h}$	Var.	$22 k$	-1x		R179E	820 k 220 k	$1 / 2$ watt $1 / 2$ watt	Fixed	Comp.	10\%
L108	2.5 mh	Fixed				R179F		1/2 watt	Fixed	Comp.	10\%
L109	$270 \mu \mathrm{~h}$	Fixed				R179H	Unassigned	1 watt		Comp.	10\%
L110	6.5-13 $\mu \mathrm{h}$	Var.									

RESISTORS (Cont.)

R179I	4.7 k	1/2 watt	Fixed	Comp.	10\%
R179J	1.2 k	1/2 watt	Fixed	Comp.	10\%
R179K	100Ω	1/2 watt	Fixed	Comp.	10\%
R180A-D	Unassigned				
R180E	2.7 k	1 watt	Fixed	Comp.	10\%
R180F	1.8 k	1 watt	Fixed	Comp.	10\%
R180G	1.2 k	1 watt	Fixed	Comp.	10\%
R180H	820Ω	1 watt	Fixed	Comp.	10\%
R180I	680Ω	1 watt	Fixed	Comp.	10\%
R180J	390Ω	1 watt	Fixed	Comp.	10\%
R181A	100 k	2 watt	Var.	Comp.	20\%
R181B	220 k	2 watt	Fixed	Comp.	10\%
R181C	100 k	2 watt	Var.	Comp.	20\%
R181D	220 k	2 watt	Fixed	Comp.	10\%
R181E	100 k	2 watt	Var.	Comp.	20\%
R181F	220 k	2 watt	Fixed	Comp.	10\%
R181G	150 k	2 watt	Fixed	Comp.	10\%
R181H	150 k	2 watt	Fixed	Comp.	10\%
R181I	39 k	2 watt	Fixed	Comp.	10\%
R181J	39 k	2 watt	Fixed	Comp.	10\%
R181K	22 k	2 watt	Fixed	Comp.	10\%
R181L	22 k	2 watt	Fixed	Comp.	10\%
R181M	30 k	10 watt	Fixed	WW	10\%
R181N	7.5 k	10 watt	Fixed	WW	10\%
R1810	4.5 k	20 watt	Fixed	WW	10\%
R181P	2.5 mh		Fixed		See also Inductors
R182	1.2 Meg.	1/2 watt	Fixed	Comp.	10\%
R183A, D	220 k	2 watt	Var. Dual	Comp.	20\%
R183B	150 k	1/2 watt	Fixed	Comp.	10\%
R183C	150 k	1/2 watt	Fixed	Comp.	10\%
R183D	See R183A				
R184	5.6 Meg	1/2 watt	Fixed	Comp.	10\%
R185	5.6 Meg.	1/2 watt	Fixed	Comp.	10\%
R186	1.2 Meg.	1/2 watt	Fixed	Comp.	10\%
R187A, B	220 k	2 watt	Var. Dual	Comp.	20\%
R188	500 k	2 watt	Var.	Comp.	20\%
R189	Unassigned				
R191	3 k	10 watt	Fixed	WW	10\%
R192	470 k	1/2 watt	Fixed	Comp.	10\%
R193	33 k	2 watt	Fixed	Comp.	10\%
R194	666.6 k	1/2 watt	Fixed	Prec.	1\%

SWITCHES

SW102 Sensitivity (unblanking level)
SW103 Sweep time per centimeter

VACUUM TUBE COMPLEMENT

V110	6J6	Trigger coupling diode
V111	6AG7	Sweep minus multivibrator
V112	6AG7	Sweep generator clamp
V113	6AG7	Sweep generator clamp
V114	6X4	Sweep decoupling diode
V115	12BH7	Sweep boot strap
V116	12BH7	Sweep boot strap
V117	12BH7	Positive sweep cathode follower
V118	6AG7	Sweep inverter and negative sweep out
V119	6AG7	Sweep positive multivibrator
V120	6AG7	Unblanking amplifier
V121	6AG7	Unblanking amplifier
V122	6AS5	Unblanking screen regulator
V123	6J6	Unblanking cathode follower
V124	6J6	Positive gate cathode follower
V133	6AL5	Sweep dc restorer
V137A	1/2	12AU7
V137B	1/2	12AU7

PARTS LIST

ABBREVIATIONS

Cer. - Ceramic	$\mu-$ Micro or x 10^{-6}
Comp. - Composition	$\Omega-$ Ohm
Dep. Carb. - Deposited Carbon	PBT - Paper, Bath Tub
EMC - Electrolytic, Metal Cased	PMC - Paper, Metal Cased
f - Farads	Poly - Polystrene
GMV - Guaranteed Minimum Value	Prec. - Precision
h-Henries	PTM - Paper, Tubular Molded
k - Kilo or $\times 10^{3}$	Var. - Variable

CAPACITORS

C801A	7-45 $\mu \mu \mathrm{f}$	Cer.	Var.	500 WVDC	
C801B	$200 \mu \mu \mathrm{f}$	Mica	Fixed	500 WVDC	$-20 \% 50$
C802	. $0022 \mu \mathrm{f}$	Mica	Fixed	500 WVDC	10\% selected*
C803	. $022 \mu \mathrm{f}$	PTM	Fixed	400 WVDC	10\% selected*
C804	$0.1 \mu \mathrm{f}$	PBT	Fixed	600 WVDC	20\% ($1 / 3$ of $3 \mathrm{x} .1 \mu \mathrm{f}$)
C805	$12 \mu \mu \mathrm{f}$	Cer.	Fixed	500 WVDC	20\%
C806	$2247 \mu \mu \mathrm{f}$	Cer.	Fixed	500 WVDC	20\%
C807	$22 \mu \mu \mathrm{f}$	Cer.	Fixed	500 WVDC	20\%
C808	$0.1 \mu \mathrm{f}$	PBT	Fixed	600 WVDC	20\% (1/3 of $3 \mathrm{x} .1 \mu \mathrm{f}$)
C809	$6.25 \mu \mathrm{f}$	EMC	Fixed	300 WVDC	-20\%+50\%
C810	$0.1 \mu \mathrm{f}$	PBT	Fixed	600 WVDC	$20 \%(1 / 3$ of $3 \times .1 \mu \mathrm{f})$
C811	Unassigned				
C812	Unassigned				

* Pair with ratio within 1 per cent of $.022 / .0022$

RESISTORS

TRANSFORMERS
T801 Blocking oscillator 3 windings, turns ration 1:1:1

VACUUM TUBE COMPLEMENT

V125	12AU7	Plate catching diode V126
6BH6	Phantastron oscillator	
V127A, B	12AU7	1/2 Capacitor recharging cathode follower 1/2 Trigger coupling amplifier
V128	12AU7	Blocking oscillator Trigger output cathode follower
V129	12AU7	Trigger output cathode follower
V130	12AU7	Tricher

Section VI Fig. 4 and Fig. 5

PARTS LIST
ABBREVIATIONS

Cer. - Ceramic	$\mu-$ Micro or x 10^{-6}
Comp. - Composition	$\Omega-$ Ohm
Dep. Carb. - Deposited Carbon	PBT - Paper, Bath Tub
EMC - Electrolytic, Metal Cased	PMC - Paper, Metal Cased
f - Farads	Poly - Polystrene
GMV - Guaranteed Minimum Value	Prec. - Precision
h - Henries	PTM - Paper, Tubular Molded
k - Kilo or $\times 10^{3}$	Var. - Variable

CAPACITORS						C514C	. $005 \mu \mathrm{f}$	Cer.	Fixed	500 WVDC	GMV
						C514D	. $005 \mu \mathrm{f}$	Cer.	Fixed	500 WVDC	GMV
						C514E	. $005 \mu \mathrm{f}$	Cer.	Fixed	500 WVDC	GMV
						C514F	. $005 \mu \mathrm{f}$	Cer.	Fixed	500 WVDC	GMV
C501A	. $005 \mu \mathrm{f}$	Cer.	Fixed	500 WVDC	GMV	C514G	. $005 \mu \mathrm{f}$	Cer.	Fixed	500 WVDC	GMV
C501B	. $005 \mu \mathrm{f}$	Cer.	Fixed	500 WVDC	GMV	C515A	50 -	EMC		3 WVDC	
C501C	. $005 \mu \mathrm{f}$	Cer.	Fixed	500 WVDC	GMV	C515B	$50 \mu \mathrm{f}$	EMC	Fixed	3 WVDC	
C501D	. $005 \mu \mathrm{f}$	Cer.	Fixed	500 WVDC	GMV	C515C	$50 \mu \mathrm{f}$	EMC	Fixed	3 WVDC	
C501E	. $005 \mu \mathrm{f}$	Cer.	Fixed	500 WVDC	GMV	C515D	$50 \mu \mathrm{f}$	EMC	Fixed	3 WVDC	
C501F	. $005 \mu \mathrm{f}$	Cer.	Fixed	500 WVDC	GMV	C515E	$50 \mu \mathrm{f}$	EMC	Fixed	3 WVDC	
C502A	. $5-5 \mu \mu \mathrm{f}$	Poly	Var.	500 WVDC		C515F		EMC			
C502B	. $5-5 \mu \mu \mathrm{f}$	Poly	Var.	500 WVDC		C515G	$50 \mu \mathrm{f}$	EMC	Fixed	3 WVDC	
C502C	. $5-5 \mu \mu \mathrm{f}$	Poly	Var.	500 WVDC		C516A	. $001 \mu \mathrm{f}$	Cer.	Fixed	500 WVDC	GMV
C502D	. $5-5 \mu \mu \mathrm{f}$	Poly	Var.	500 WVDC		C516B	. $001 \mu \mathrm{f}$	Cer.	Fixed	500 WVDC	GMV
C502E	. 5-5 $\mu \mu \mathrm{f}$	Poly	Var.	500 WVDC		C516C	. $001 \mu \mathrm{f}$	Cer.	Fixed	500 WVDC	GMV
C502F	. $5-5 \mu \mu \mathrm{f}$	Poly	Var.	500 WVDC							
C503A	. $001 \mu \mathrm{f}$	Cer.	Fixed	500 WVDC	GMV	C516D	. $001 \mu \mathrm{f}$	Cer.	Fixed	500 WVDC	GMV
C503B	. $001 \mu \mathrm{f}$	Cer.	Fixed	500 WVDC	GMV	C516E	. $001 \mu \mathrm{f}$	Cer.	Fixed	500 WVDC	GMV
C503C	. $001 \mu \mathrm{f}$	Cer.	Fixed	500 WVDC	GMV	C516F C 516 G	. $001 \mu \mathrm{f}$	Cer.	Fixed Fixed	$\begin{aligned} & 500 \text { WVDC } \\ & 500 \text { WVDC } \end{aligned}$	$\begin{aligned} & \text { GMV } \\ & \text { GMV } \end{aligned}$
C503D	. $001 \mu \mathrm{f}$	Cer.	Fixed	500 WVDC	GMV	C517	Unassigned				
C503E	. $001 \mu \mathrm{f}$	Cer.	Fixed	500 WVDC	GMV						
C503F	. $001 \mu \mathrm{f}$	Cer.	Fixed	500 WVDC	GMV	C518	$8 \mu \mathrm{f}$			500 WVDC	
C504	Unassigned					C519 C 520	. $005 \mu \mathrm{f}$	Cer.	Fixed	500 WVDC	GMV
C505A	. $005 \mu \mathrm{f}$	Cer.	Fixed	500 WVDC	GMV	C521	${ }^{50} .001 \mu \mathrm{f}$	Cer.	Fixed	500 WVDC	GMV
C505B	. $005 \mu \mathrm{f}$	Cer.	Fixed	500 WVDC	GMV	C522	. $005 \mu \mathrm{f}$	Cer.	Fixed	500 WVDC	GMV
C505C	. $005 \mu \mathrm{f}$	Cer.	Fixed	500 WVDC	GMV	C523A	. $005 \mu \mathrm{f}$	Cer.	Fixed	500 WVDC	GMV
C505D	. $005 \mu \mathrm{f}$	Cer.	Fixed	500 WVDC	GMV	C523B	. $0005 \mu \mathrm{f}$	Cer.	Fixed	500 WVDC	GMV
C505E	. $005 \mu \mathrm{f}$	Cer.	Fixed	500 WVDC	GMV	C523C	. $005 \mu \mathrm{f}$	Cer.	Fixed	500 WVDC	GMV
C505F	. $005 \mu \mathrm{f}$	Cer.	Fixed	500 WVDC	GMV	C524A	. $50 \mu \mathrm{f}$	EMC	Fixed	3 WVDC	
C506A	1-8 $\mu \mu \mathrm{f}$	Poly	Var.	500 WVDC	GMV	C524B	$50 \mu \mathrm{f}$	EMC	Fixed	3 WVDC	
C506B	1-8 $\mu \mu \mathrm{f}$	Poly	Var.	500 WVDC	GMV	C524C	$50 \mu \mathrm{f}$	EMC	Fixed	3 WVDC	
C506C	1-8 $\mu \mu \mathrm{f}$	Poly	Var.	500 WVDC	GMV	C525A	. $001 \mu \mathrm{f}$	Cer.	Fixed	500 WVDC	GMV
C506D	1-8 $\mu \mu \mathrm{f}$	Poly	Var.	500 WVDC	GMV	C525B	. $001 \mu \mathrm{f}$	Cer.	Fixed	500 WVDC	GMV
C506E	1-8 $\mu \mu \mathrm{f}$	Poly	Var.	500 WVDC	GMV	C525C	. $001 \mu \mathrm{f}$	Cer.	Fixed	500 WVDC	GMV
C506F	1-8 $\mu \mu \mathrm{f}$	Poly	Var.	500 WVDC	GMV	C526A	. $5-5 \mu \mu \mathrm{f}$	Poly	Var.	500 WVDC	
C507A	. $001 \mu \mathrm{f}$	Cer.	Fixed	500 WVDC	GMV	C526B	. $5-5 \mu \mu \mathrm{f}$	Poly	Var.	500 WVDC	
C507B	. $001 \mu \mathrm{f}$	Cer.	Fixed	500 WVDC	GMV	C526C	. $5-5 \mu \mu \mathrm{f}$	Poly	Var.	500 WVDC	
C507C	. $001 \mu \mathrm{f}$	Cer.	Fixed	500 WVDC	GMV	C526D	. $5-5 \mu \mu \mathrm{f}$	Poly	Var.	500 WVDC	
C507D	. $001 \mu \mathrm{f}$	Cer.	Fixed	500 WVDC	GMV	C526E	. $5-5 \mu \mu \mathrm{f}$	Poly	Var.	500 WVDC	
C507E	. $001 \mu \mathrm{f}$	Cer.	Fixed	500 WVDC	GMV	C526F	. 5-5 $\mu \mu \mathrm{f}$	Poly	Var.	500 WVDC	
C507F	. $001 \mu \mathrm{f}$	Cer.	Fixed	500 WVDC	GMV	C526G	. 5-5 $\mu \mu \mathrm{f}$	Poly	Var.	500 WVDC	
C508	$8 \mu \mathrm{f}$	EMC	Fixed	150 WVDC		C527A	. $5-5 \mu \mu \mathrm{f}$	Poly	Var.	500 WVDC	
C509	$150 \mu \mathrm{f}$	EMC	Fixed	150 WVDC	-20\%+50\%	C527B	. 5 . $5-5 \mu \mu \mathrm{f}$	Poly	Var.	500 WVDC	
C510	$150 \mu \mathrm{f}$	EMC	Fixed	150 WVDC	$-20 \%+50 \%$	C527C	.5-5 $\mu \mu \mathrm{f}$	Poly	Var.	500 WVDC	
C511	$150 \mu \mathrm{f}$	EMC	Fixed	150 WVDC	-20\% $+50 \%$	C528	$8 \mu \mathrm{f}$	EMC	Fixed	150 WVDC	
C512	$39 \mu \mu \mathrm{f}$	Cer.	Fixed	500 WVDC	20\%	C529	$8 \mu \mathrm{f}$	EMC	Fixed	150 WVDC	
C513	Unassigned					C530	$8 \mu \mathrm{f}$	EMC	Fixed	150 WVDC	
C514A	. $005 \mu \mathrm{f}$	Cer.	Fixed	500 WVDC	GMV	C531	$275 \mu \mathrm{f}$	EMC	Fixed	6 WVDC	$-20 \%+50 \%$
C514B	. $005 \mu \mathrm{f}$	Cer.	Fixed	500 WVDC	GMV	C532	$8 \mu \mathrm{f}$	EMC	Fixed	150 WVDC	-20\%+50\%

Inductors							R518C	150Ω	1/2 watt	Fixed	Comp.	10\%	
							R518D	150Ω	1/2 watt	Fixed	Comp.	10\%	
L501	First stage vertical amplifier, grid inductor						R518E	150Ω	$1 / 2$ watt	Fixed	Comp.	10\%	
L502	First stage vertical amplifier, plate inductor						R518F	150Ω	$1 / 2$ watt	Fixed	Comp.	10\%	
L503	Second stage vertical amplifier, grid inductor						R518G	150Ω	1/2 watt	Fixed	Comp.	10\%	
L504	Second stage vertical amplifier, plate inductor												
L505	Third stage vertical amplifier, grid inductor						$\begin{aligned} & \text { R519A } \\ & \text { R5198 } \end{aligned}$	10Ω 10Ω	$1 / 2$ watt $1 / 2$ watt	Fixed	Comp.	10% 10%	
L506	Third stage vertical amplifier, plate inductor						R519C	10Ω	$1 / 2$ watt	Fixed	Comp.	10\%	
L507	Inverter stage vertical amplifier, grid inductor						R519D	10Ω	1/2 watt	Fixed	Comp.	10\%	
L508	Inverter stage vertical amplifier, plate inductor						R519E	10Ω	$1 / 2$ watt	Fixed	Comp.	10\%	
L509	$0.79-1.5 \mu \mathrm{~h}$ Var. 2. 8-6 $\mu \mathrm{h} \quad$ Var.												
L510							R519F	10Ω	$1 / 2$ watt	Fixed	Comp.	10\%	
							$\begin{aligned} & \text { R519G } \\ & \text { R520 } \end{aligned}$	$\begin{array}{r} 10 \Omega \\ 122 \Omega \end{array}$	$1 / 2$ watt $1 / 2 \text { watt }$	Fixed	Comp. Comp.	$\begin{gathered} 10 \% \\ 1 \% \end{gathered}$	Selected
							R521	10Ω	1/2 watt	Fixed	Comp.	10\%	
							R522	470 k	1/2 watt	Fixed	Comp.	10\%	
	RESISTORS						R523	150Ω	1/2 watt	Fixed	Comp.	10\%	
							R524	5.6 k	1 watt	Fixed	Comp.	10\%	
R501A	470 k	1/2 watt	Fixed	Comp.	10\%		R525	10Ω	$1 / 2$ watt	Fixed	Comp.	10\%	
R501B	470 k	1/2 watt	Fixed	Comp.	10\%		R526A	470 k	$1 / 2$ watt	Fixed	Comp.	10\%	
R501C	470 k	$1 / 2$ watt	Fixed	Comp.	10\%		R526B	470 k	1/2 watt	Fixed	Comp.	10\%	
R501D	470 k	1/2 watt	Fixed	Comp.	10\%								
R501E	470 k	1/2 watt	Fixed	Comp.	10\%		R526C	470 k	$1 / 2$ watt	Fixed	Comp.	10\%	
							R527A	150Ω	1/2 watt	Fixed	Comp.	10\%	
R501F	470 k	1/2 watt	Fixed	Comp.	10\%		R527B	150Ω	$1 / 2$ watt	Fixed	Comp.	10\%	
R502	170Ω	$1 / 2$ watt	Fixed	Comp.	1\%	Selected	R257C	150 Z	1/2 watt	Fixed	Comp.	10\%	
R503	12Ω	$1 / 2$ watt	Fixed	Comp.		Selected***	R527C	150Ω	$1 / 2$ watt	Fixed	Comp.	10\%	
R504	170Ω	1/2 watt	Fixed	Comp.	1\%	Selected	R528A	10Ω	1/2 watt	Fixed	Comp.	10\%	
R505A	10Ω	1/2 watt	Fixed	Comp.	10%								
							R528B	10Ω	$1 / 2$ watt	Fixed	Comp.	10\%	
R505B	10Ω	$1 / 2$ watt	Fixed	Comp.	10\%		R528C	10Ω	$1 / 2$ watt	Fixed	Comp.	10%	
R505C	10Ω	$1 / 2$ watt	Fixed	Comp.	10\%		R529	117Ω	$1 / 2$ watt	Fixed	Comp.	1\%	Selected
R505D	10Ω	$1 / 2$ watt	Fixed	Comp.	10\%		R530	10Ω	$1 / 2$ watt	Fixed	Comp.	10\%	
R505E	10Ω	$1 / 2$ watt	Fixed	Comp.	10\%		R531	122Ω	1/2 watt	Fixed	Comp.	1\%	Selected
R505F	10Ω	1/2 watt	Fixed	Comp.	10%								
							R532	10Ω	1/2 watt	Fixed	Comp.	10\%	
R505G	10Ω	$1 / 2$ watt	Fixed	Comp.	10\%		R533	Unassi					
R506	10Ω	$1 / 2$ watt	Fixed	Comp.	10\%		R534	10 k	1/2 watt	Fixed	Comp.	10\%	See note on
R507A	5.6 k	1/2 watt	Fixed	Comp.	5\%	Selected*	R535	10 k	$1 / 2$ watt	Fixed	Comp.	10\%	diagram
R507B	5 k	2 watt	Var.	Comp.	20\%		R536	10 k	1/2 watt	Fixed	Comp.	10\%	
R507C	6.8 k	$1 / 2$ watt	Fixed	Comp.	5\%	Selected*							
R507D	680 k	1/2 watt	Fixed	Comp.	5\%	Selected*	R537	10 k	1/2 watt	Fixed	Comp.	10\%	
R508A	470 k	$1 / 2$ watt	Fixed	Comp.	10\%								
R508B	470 k	$1 / 2$ watt	Fixed	Comp.	10\%		** Sroup	, all mi	lerance	all plus	erance.		
R508C	470 k	$1 / 2$ watt	Fixed	Comp.	10\%		*** Sele	ed for b	amplifier	perform			
R508D	470 k	1/2 watt	Fixed	Comp.	10\%		*** Sel	ed for b	mplifier	forman			
R508E	470 k	$1 / 2$ watt	Fixed	Comp.	10\%				UUM TU	COMP	MENT		
R508F	470 k	$1 / 2$ watt	Fixed	Comp.	10\%								
R509	170Ω	1/2 watt	Fixed	Comp.	1\%	Selected	V501	6 AK 5	First	age ver	amplif		
R510	10Ω	1/2 watt	Fixed	Comp.	10\%		V502	6AK5	First	age ver	amplif		
R511	250Ω	10 watt	Fixed	ww	10\%		V503	$6 \mathrm{AK5}$	First	age ver	amplif		
							V504	6 6K5	First	ge ver	amplif		
R512	40Ω	10 watt	Fixed	WW	10\%		V505	6AK5	First	age ver	1 ampli		
R513A	10Ω	$1 / 2$ watt	Fixed	Comp.	10\%								
R513B	10Ω	$1 / 2$ watt	Fixed	Comp.	10\%		V506	$6 \mathrm{AK5}$	First	ge ver	ampli		
R513C	10Ω	$1 / 2$ watt	Fixed	Comp.	10\%		V507	6AK5	Secon	tage ve	cal amp		
R513D	10Ω	1/2 watt	Fixed	Comp.			V508	$6 \mathrm{AK5}$	Secon	tage v	cal amp		
							V509	6AK5	Secon	tage ve	cal amp		
R513E	10Ω	$1 / 2$ watt	Fixed	Comp.	10\%		V510	6AK5	Secon	tage v	cal amp.		
R513F	10Ω	$1 / 2$ watt	Fixed	Comp.	10\%								
R514	82Ω	$1 / 2$ watt	Fixed	Comp.	10\%		V511	$6 \mathrm{AK5}$	Secon	tage v	cal amp		
R515A	117Ω	$1 / 2$ watt	Fixed	Comp.	1\%		V512	6AK5	Secon	tage ve	cal amp		
R515B	5Ω	1/2 watt	Fixed	Comp.	10\%	Selected**	V513	${ }^{6} \mathrm{CB} 6$	Third	age ver	al ampli		
							V514	$6 \mathrm{CB6}$	Third	age ve	al ampli		
R516	Unassi						V515	$6 \mathrm{CB6}$	Third	age ve	al ampli		
R517A	470 k	$1 / 2$ watt	Fixed	Comp.	10\%								
R517B	470 k	$1 / 2$ watt	Fixed	Comp.	10\%		V516	$6^{6 C B 6}$	Third	age ve	al ampli		
R517C	470 k	$1 / 2$ watt	Fixed	Comp.	10\%		V517	${ }^{6} \mathbf{C B 6}$	Third	age ver	al ampli		
R517D	470 k	$1 / 2$ watt	Fixed	Comp.	10\%		V518	${ }^{6 C B 6}$	Third	age ver	al ampli		
							V519	$6 \mathrm{CB6}$	Third	age ver	al ampli		
R517E	470 k	1/2 watt	Fixed	Comp.	10\%		V520	$6 \mathrm{CB6}$	Trigg	couplin	tube		
R517F	470 k	$1 / 2$ watt	Fixed	Comp.	10\%								
R517G	470 k	$1 / 2$ watt	Fixed	Comp.	10\%		V521	$6 \mathrm{CB6}$	Inver	, verti	amplifie		
R518A	150Ω	$1 / 2$ watt	Fixed	Comp.	10\%		V522	$6 \mathrm{CB6}$	Inver	, verti	amplifie		
R518B	150Ω	1/2 watt	Fixed	Comp.	10\%		V523	6CB6	Inver	, verti	amplifie		

TYPE. 517 CATHODE-RAY OSCILLOSCOPE

Cer. - Ceramic	μ - Micro or x 10^{-6}
Comp. - Composition	$\Omega-$ Ohm
Dep. Carb. - Deposited Carbon	PBT - Paper, Bath Tub
EMC - Electrolytic, Metal Cased	PMC - Paper, Metal Cased
f - Farads	Poly - Polystrene
GMV - Guaranteed Minimum Value	Prec. - Precision
h - Henries	PTM - Paper, Tubular Molded
k - Kilo or $\times 10^{3}$	Var. - Variable

WW - Wire Wound

PARTS LIST
ABBREVIATIONS
Cer. - Ceramic
Comp. - Composition
Dep. Carb. - Deposited Carbon
EMC - Electrolytic, Metal Cased
f - Farads
GMV - Guaranteed Minimum Value
h - Henries
k - Kilo or $\times 10^{3}$
μ - Micro or x 10^{-6}
Ω - Ohm
PBT - Paper, Bath Tub
PMC - Paper, Metal Cased
Poly - Polystrene
Prec. - Precision
PTM - Paper, Tubular Molded
Var. - Variable
WW - Wire Wound

CAPACITORS

C901	$47 \mu \mu \mathrm{f}$	Cer.	Fixed	500 WVDC	20%
C902	$100 \mu \mu$	Mica	Fixed	500 WVDC	20%
C903	$.01 \mu \mathrm{f}$	Cer.	Fixed	500 WVDC	GMV
C904	$0.1 \mu \mathrm{f}$	PTM	Fixed	400 WVDC	20%
C905	$.01 \mu \mathrm{f}$	PTM	Fixed	400 WVDC	20%
C906	$15 \mu \mathrm{f}$	EMC	Fixed	450 WVDC	$-20 \%+50 \%(1 / 2$ of $2 \times 15 \mu \mathrm{f})$
C907	$B \mu \mathrm{f}$	EMC	Fixed	150 WVDC	

R901	10 k	1/2 watt	Fixed	Comp.	10\%
R902	150 k	1/2 watt	Fixed	Comp.	10\%
R903	150 k	1/2 watt	Fixed	Comp.	10\%
R904	10 k	10 watt	Fixed	WW	10\%
R905	10 k	1/2 watt	Fixed	Comp.	10\%
R906	27 k	1/2 watt	Fixed	Comp.	10\%
R907A	100 k	2 watt	Var.	Comp.	20\%
R907B	390 k	1/2. watt	Fixed	Comp.	10\%
R907C	82 k	1/2 watt	Fixed	Comp.	10\%
R908	470 k	1/2 watt	Fixed	Comp.	10\%
R909	47Ω	1/2 watt	Fixed	Comp.	10\%
R910	5 k	3 watt	Var.	WW	10\%
R911	47Ω	1/2 watt	Fixed	Comp.	10\%
R912	180Ω	1 watt	Fixed	Comp.	10\%
R913	470 k	1/2 watt	Fixed	Comp.	10\%
R914	100 k	1/2 watt	Fixed	Comp.	10\%
R915	47 k	1 watt	Fixed	Comp.	10\%
R916	47Ω	1/2 watt	Fixed	Comp.	10\%
R917A	700Ω	1/2 watt	Fixed	Prec.	1\%
R917B	200Ω	1/2 watt	Fixed	Prec.	1\%
R917C	70Ω	1/2 watt	Fixed	Prec.	1\%
R917D	20Ω	1/2 watt	Fixed	Prec.	1\%
R917E	7Ω	1/2 watt	Fixed	Prec.	1\%
R917F	3Ω	1/2 watt	Fixed	Prec.	1\%
R918	$47 \mathrm{k} / 2$	2×2 watt	Fixed	Comp.	10% two $47 \mathrm{k}, 2$ watt resistors in parallel
R919	47 k	1/2 watt	Fixed	Comp.	10\%

SW901 Calibrator range

VACUUM TUBE COMPLEMENT

V131	6 J 6	Calibrator cathode follower out
V132	6 J 6	Calibrator cathode follower
V135A, B	6J6	Calibrator clipper
V136A, B	12AU7	Calibrator multivibrator

BLOCK DIAGRAM OF CALIBRATOR
Fig. 10

Cer. - Ceramic	$\mu-$ Micro or x 1^{-6}
Comp. - Composition	$\Omega-$ Ohm
Dep. Carb. - Deposited Carbon	PBT - Paper, Bath Tub
EMC - Electrolytic, Metal Cased	PMC - Paper, Metal Cased
f - Farads	Poly - Polystrene
GMV - Guaranteed Minimum Value	Prec. - Precision
h - Henries	PTM - Paper, Tubular Molded
k - Kilo or $\times 10^{3}$	Var. - Variable

AlddnS : \ddagger MOd IVN:IIX3

PARTS LIST

ABBREVIATIONS

VACUUM TUBE COMPLEMENT

V419	Sorensen 2AS-15	Filament voltage sensing diode
V420	6AU5	Amplifier filament regulator

1-25-52 ese

ABBREVIATIONS

Cer. - Ceramic	μ - Micro or x 10-6
Comp. - Composition	$\Omega-$ Ohm
Dep. Carb. - Deposited Carbon	PBT - Paper, Bath Tub
EMC - Electrolytic, Metal Cased	PMC - Paper, Metal Cased
f - Farads	Poly - Polystrene
GMV - Guaranteed Minimum Value	Prec. - Precision
h - Henries	PTM - Paper, Tubular Molded
k - Kilo or $\times 10^{3}$	Var. - Variable

CAPACITORS

PARTS LIST
ABBREVIATIONS
Cer. - Ceramic
Comp. - Composition
Dep. Carb. - Deposited Carbon
EMC - Electrolytic, Metal Cased
f - Farads
GMV - Guaranteed Minimum Value
h - Henries
μ - Micro or x 10^{-6}
$\Omega-$ Ohm
PBT - Paper, Bath Tub
PMC - Paper, Metal Cased
Poly - Polystrene
Prec. - Precision
PTM - Paper, Tubular Molded
Var. - Variable
k - Kilo or $\mathrm{x} 10^{3}$
WW - Wire Wound

CAPACITORS

C813	Unassigned				
C814	Unassigned				
C815	$.01 \mu \mathrm{f}$	PTM	Fixed	400WVDC	20%
C816	$.01 \mu \mathrm{f}$	PTM	Fixed	400WVDC	20%
C817	$20 \mu \mathrm{f}$	EMC	Fixed	450WVDC	$-20 \%+50 \%(1 / 2$ of $2 \times 20 \mu \mathrm{f})$
C818	$.0068 \mu \mathrm{f}$	PTM	Fixed	5000 WVDC	20%
C819	$.001 \mu \mathrm{f}$	PTM	Fixed	600 WVDC	20%
C820	$.05 \mu \mathrm{f}$	PMC	Fixed	5000 WVDC	20%
C825	$1000 \mu \mathrm{f}$	EMC	Fixed	15 WVDC	-20% to $+50 \%(1 / 22 \times 1000 \mu \mathrm{f})$
C826	$1000 \mu \mathrm{f}$	EMC	Fixed	15 WVDC	-20% to $+50 \%(1 / 22 \times 1000 \mu \mathrm{f})$

RESISTORS

R825	150 k	$1 / 2$ watt	Fixed	Comp.	10%
R826	180 k	$1 / 2$ watt	Fixed	Comp.	10%
R827	220 k	$1 / 2$ watt	Fixed	Comp.	10%
R828	220 k	$1 / 2$ watt	Fixed	Comp.	10%
R829	.5 Meg.	2 watt	Var.	Comp.	20%
R830	330 k	$1 / 2$ watt	Fixed	Comp.	10%
R831	1 k	$1 / 2$ watt	Fixed	Comp.	10%
R832	100 k	$1 / 2$ watt	Fixed	Comp.	10%
R833	$3.3 \mathrm{Meg}$.	2 watt	Fixed	Comp.	10%
R834	2.7 Meg.	2 watt	Fixed	Comp.	10%
R835	3.3 Meg	2 watt	Fixed	Comp.	10%
R836	2 Meg.	2 watt	Var.	Comp.	20%
R837	$3.3 \mathrm{Meg}$.	2 watt	Fixed	Comp.	10%
R838	2 Meg.	2 watt	Var.	Comp.	20%
R839	2 Meg.	2 watt	Var.	Comp.	20%
R840	$2.2 \mathrm{Meg}$.	$1 / 2$ watt	Fixed	Comp.	10%
R841	22 k	$1 / 2$ watt	Fixed	Comp.	10%
R842	Unassigned				
R845	10Ω	1	watt	Fixed	Comp.
R846	10Ω	1 watt	Fixed	Comp.	10%
					10%

SWITCHES
SW802 Sensitivity (CR tube bias)

VACUUM TUBE

V134A, B $12 \mathrm{AU} 7 \quad$| $1 / 2$ Probe power regulator |
| :--- |
| |
| |
| |
| MISCELLASASEOUS |

NE2	Neonnglow lamps	Cathode-Ray tube bias regulator
SR801	Selenium Rectifier	500 ma

PARTS LIST

ABBREVIATIONS

Cer. - Ceramic Comp. - Composition				μ - Micro or x 10-6	
				Ω - Ohm	
Comp. - Composition Dep. Carb. - Deposited Carbon				PBT - Paper, Bath Tu	
EMC - Electrolytic, Metal Cased				PMC - Paper, Metal C	
f - Farads				Poly - Polystrene	
				Prec. - Precision	
h - Henries$\mathrm{k} \text { - Kilo or } \times 10^{3}$				PTM - Paper, Tubular	
				r. - V	
		WW - Wi	Wound		
		RESI	ORS		
R325	27Ω	1/2 watt	Fixed	Comp.	10\%
R326	50Ω	2 watt	Var.	WW	20\%

[^0]

PARTS LIST

ABBREVIATIONS
Cer. - Ceramic
Comp. - Composition
Dep. Carb. - Deposited Carbon
EMC - Electrolytic, Metal Cased
f - Farads
GMV - Guaranteed Minimum Value
h- Henries
k - Kilo or $\times 10^{3}$
μ - Micro or x 10^{-6}
Ω - Ohm
PBT - Paper, Bath Tub
PMC - Paper, Metal Cased
Poly - Polystrene
Prec. - Precision
PTM - Paper, Tubular Molded
Var. - Variable

WW - Wire Wound

Figure 18

INDUCTORS

L995	Special
L996	Special

RESISTORS

R995A	2960Ω	1/2 watt	Fixed	Dep. Carb.	2\%
R995B	1480Ω	1/2 watt	Fixed	Dep. Carb.	2\%
R995C	995 ת	1/2 watt	Fixed	Dep. Carb.	2\%
R995D	513Ω	1/2 watt	Fixed	Dep. Carb.	2\%
R995E	285Ω	1/2 watt	Fixed	Dep. Carb.	2\%
R995F	208Ω	1/2 watt	Fixed	Dep. Carb.	2\%
R995G	208Ω	1/2 watt	Fixed	Dep. Carb.	2\%
R996A	19.6Ω	1/2 watt	Fixed	Dep. Carb.	2\%
R996B	39.5Ω	1/2 watt	Fixed	Dep. Carb.	2\%
R996C	60Ω	1/2 watt	Fixed	Dep. Carb.	2\%
R996D	127Ω	1/2 watt	Fixed	Dep. Carb.	2\%
R996E	317Ω	1/2 watt	Fixed	Dep. Carb.	2\%
R996F	840Ω	1/2 watt	Fixed	Dep. Carb.	2\%
R996G	840Ω	1/2 watt	Fixed	Dep. Carb.	2\%
R997A	2960Ω	1/2 watt	Fixed	Dep. Carb.	2\%
R997B	1480Ω	1/2 watt	Fixed	Dep. Carb.	2\%
R997C	995Ω	1/2 watt	Fixed	Dep. Carb.	2\%
R997D	513Ω	1/2 watt	Fixed	Dep. Carb.	2\%
R997E	285Ω	1/2 watt	Fixed	Dep. Carb.	2\%
R997F	208Ω	1/2 watt	Fixed	Dep. Carb.	2\%
R997G	208Ω	1/2 watt	Fixed	Dep. Carb.	2\%

SWITCHES

SW995A to G Attenuator toggle switches

Figure 19
CAPACITORS

C951	$.001 \mu \mathrm{f}$	Cer.	Fixed	500 WVDC	GMV
C952	$.01 \mu \mathrm{f}$	Cer.	Fixed	500 WVDC	GMV
C953	$.01 \mu \mathrm{f}$	Cer.	Fixed	500 WVDC	GMV
C954	$.04 \mu \mathrm{f}$	Cer.	Fixed	500 WVDC	GMV (2 x.02)
C955A	$.5-5 \mu \mu \mathrm{f}$	Special	Var.		
C955B	$.5-5 \mu \mu \mathrm{f}$	Special	Var.		
C955C	$.5-5 \mu \mu \mathrm{f}$	Special	Var.		
C956A	Special*				
C956B	Special*				
C956C	Special*				

*Silvered Mica Disk. Capacitance depends on desired time constant and voltage division ratio. Limits between $2 \mu \mu \mathrm{f}$ and $500 \mu \mu \mathrm{f}$, approximately.

RESISTORS

R951	100Ω	$1 / 4$ watt	Fixed	Comp.	20%
R952	12 Meg	$1 / 2$ watt	Fixed	Comp.	10%
R953	10Ω	$1 / 2$ watt	Fixed	Comp.	10%

VACUUM TUBE
V951 571

995: 20 TURN \# 28 BARE COPPER 3/32"FORM, 1/2" LON
1-28-52 cuse. cas

Fig. 18 TYPE BI7O-V 170 OHM ATTENUATOR

[^0]: NE $51 \quad$ Pilot light, indicator unit, DC power 6 V TS47 Brown Bead Pilot light, indicator unit, heaters 6 V TS47 Brown Bead Scale illumination, two

