DEFINE 7
MNEMONICS
MENU

The Define Mnemonics menu provides disassembly capability ranging from simple lookup tables to
complete microprocessor disassembly. While the menu may be displayed on the monitor screen at
any time, it is useful only if data acquisition modules are installed in the mainframe.

In this section you will find: Page
List of lllustrations e e e e iv
DEFINE MNEMONICS MENU e e e e e 7-1
OV VI BW L e 7-1
SUD-MeNnU FUNCHIONS e e e 741
LOOKUP TABLE DISASSEMBLYttt e e e e e 7-2
Table Entry SUD-MeNnU e 7-2
MODE Field ... oot e e e 7-2
TABLE NAME Field e e e e e 7-2
SEQ (Sequence) Column and Table Editing oo, 7-4
VALUE Field ..o e e e e e e e 7-4
DISPLAY Fleld ...t 7-4
Display Setup SUD-MeNU e 7-5
MODE Fild ... o 7-6
GROUP COlUMN et e e e e e e e 7-6
DISPLAY DATA Fieldottt e e e e e 7-6
DISPLAY MNEMONICS Field i e e 7-6
MNEMONICS WIDTH Figldt e e 7-6
GROUP HEADING Fieldottt e e i e 7-6
MICROPROCESSOR DISASSEMBLY it e e e e 7-7
OV VIBW .ottt 7-7
Table Definition SUD-MeNU ittt 7-8
TABLE NAME Field e e e e e 7-9
GROUP INPUT Field ... ottt e e e e e e 7-9
BITS PASSED Fieldttt e e e e e e e 7-10
TABLE TYPE Fieldttt e e e e e e 7-10
ACCESS COUNT and SEQ COUNT Columns couiiniiniininiiiiininnnnnn., 7-10
MICRO NAME Fieldt e e 7-1
Defining a Mnemonic Structure 7-11
Using Call Tables in the Table Entry Sub-Menu, 7-13
(07 Y T - 7-13
VALUE Field ... et e i et i e e 7-14
DISPLAY Fleld ...ttt e e e 7-14
Accessing the Next Word i i it 7-15
Disassembling a Series of Machine Instructions 7-16
System Calls e 7-17
System Calls for Controling Mnemonic Display, 717
System Calls for Relative Addressingc.cooiiiiiiiiiiiinniiiaann, 7-18
Error-Handling System Calls t e 7-19
System Calls for Pipelined Processorsc.coiiiiiiineiiineiinnn... 7-20
Disassembly GUIJBINESuiuunniiirnettiiiiiii i 7-25
Study YOUr PrOCESSOrttt ittt iiie e ittt i 7-25
Using the Display Setup Sub-Menu with Call Tables 7-26
Designing Call Table Structuresttt 7-26

Figure
No.
7-1
7-2

7-3
7-4
7-5
7-6
7-7
7-8
7-9
7-10
7-11
7-12
7-13
7-14

7-15
7-16

7-17
7-18
7-19
7-20
7-21
7-22
7-23
7-24

LIST OF ILLUSTRATIONS

Page

Functional overview of the Define Mnemonics menu 7-1
Relationship of Table Entry sub-menu to the Channel Specification and State Table

137 T T PP 7-3
Table Entry sub-menu andits fields il 7-3
Relationship of the Display Setup sub-menu to the State Table Display 7-5
Display Setup sub-menu andits fields 7-6
Example of a nested table structure using the 8085A microprocessor 7-7
The Table Definition sub-menu and its fields 7-8
Table Definition values for disassembling an 8085A microprocessor 7-11
Overview of how table calls operate iiiint. 7-12
Table C (master table) for 8085A disassembly 7-13
Table OPCODE for 8085A disassemblyccoiiiiiiiinn.. 7-14
Table BYTE for 8085A disassembly 7-15
Table WORD for BO85A disassemblyo . 7-16
Table OPCODE for disassembling an extended address mode STA (store

accumulator in memory) of a 6809 microprocessor 7-16
Using *RED, *HEXS, *BLANK, *TAB, and *HEX 7-17
The *RLADD system calls use group A data from the data sequence most recently

looked at by group Ct e e 7-18
Using *RLADD1 to calculate a relative address 7-19
Basic operation of ® DECRottt 7-20
Using ®*RECALL i i i e 7-22
Using *NOP and *HEX torearrange data 7-22
Using *NOP with ®*RECALL i 7-23
Using ®MIRACLE i i i it 7-24
Using ®MARK 7-25

How improper group access can misalign display of group data with call table
diSaSSeMbDlYy e 7-29

Define Mnemonics Menu—DAS 9100 Series Operator's

DEFINE MNEMONICS MENU

Overview

The Define Mnemonics menu is used to set up disassembly Figure 7-1 provides a general overview of how the Define

tables for the State Table display. It is composed of three Mnemonics menu works with the other DAS menus.
sub-menus which allow you to define mnemonics at two

different levels: lookup tables for simple applications, and call
tables for complete microprosessor disassembly.

(internal Clock) P - - - -y
= ‘ | I .
External TRIGGER REFERENCE g e DEFINE
Clock Probe SPEC | "mEmoRy : Cnsnnete T % MNENONICS
o MENU | 1)
100 MMz | e
Clock Probe ' '
e o o= e oo s ol
Formats s
STORE F.:“”""‘ n
= - - - ey
1
lAcomsmou| L. CHANNEL STATE
Acuoih Do MEMOAY . SPEC TABLE DISPLAY
Probes DATA f)! '- DAY MENU :> MENU :>
|
L-----‘
Determines
Lay
F-----q
' oaos |} RATA 1 Tmine
I Guren | DIAGRAM
m MEMORY | ECITEREE ~ MENU
L-----J
362489

Figure 7-1. Functional overview of the Define Mnemonics menu. This menu reads the channel group information from the Channel

Specification menu and provides the level of disassembly you select using the sub-menus. The acquired data and/or the associated mnemonics
selected appear in the State Table display.

Sub-Menu Functions To enter the Table Entry and Display Setup sub-menus,

press the DEFINE MNEMONICS menu key.
The three Define Mnemonics sub-menus are called Table

Entry, Display Setup, and Table Definition. These sub-menus Table Entry sub-menu - This sub-menu allows you to

allow you to use lookup tabies fo{ simple applications, or call enter data values and associated mnemonics in disas-
tables for complete microprocessor disassembly. sembly tables.

Lookup Tables. The default configuration of the Define Display Setup sub-menu - This sub-menu allows you

Mnemonics menu is set up for lookup tables. This configura- to alter the default State Table's display format for
tion provides one mnemonic table for each channel group (A- acquired data and mnemonics.

F, 0-9). To use the default menu configuration, you enter
values only in the Table Entry and Display Setup sub-menus. To move between these two sub-menus, place the
cursor in the MODE field and press the SELECT key.

71

Define Mnemonics Menu—DAS 9100 Series Operator’'s

Microprocessor Disassembly. For microprocessor disas-
sembly applications, the Define Mnemonics menu can be
reconfigured, letting you create call table setups that are
personalized for your system under test. This capability is
available through the Table Definition sub-menu.

To enter the Table Definition sub-menu, si
press the SHIFT and DEFINE MNEMONICS keys.

Table Definition sub-menu — This sub-menu allows
you to define new tables, to specify more than one

channel group for input to tables, and to set up a call
table structure. The call table structure lets you call one
table from another, pass data bits from one table to
another, and use special system calls.

To move from Table Definition to the Table Entry and the
Display Setup sub-menus, press the DEFINE MNE-
MONICS menu key. To move directly to any other menu,
press the appropriate menu key.

LOOKUP TABLE DISASSEMBLY

The following paragraphs describe the Table Entry sub-menu
in its default configuration (i.e., with no entries made in the
Table Definition sub-menu). The default configuration is in-
tended for simple lookup table applications.

NOTE

Non-default configuration of the Table Entry sub-
menu changes its appearance and use, and of-
fers features intended for complete microproces-
sor disassembly. Details are provided later in this
section under the title Complete Microprocessor
Disassembly.

TABLE ENTRY SUB-MENU

To enter the Table Entry sub-menu, press the DEFINE
MNEMONICS menu key and select the TABLE ENTRY
mode (by pressing the SELECT key while in the MODE fieid).

The Table Entry sub-menu allows you to enter mnemonic
definitions for disassembly tables. In its default configuration,
the sub-menu provides one table for each channel group.
You can enter up to 256 definitions in each table. The sub-
menu displays one table at a time.

Figure 7-2 shows how the Table Entry sub-menu relates to
the DAS Channel Specification menu and State Table dis-
play. The Table Entry sub-menu receives channel group and
bit organization from the Channel Specification menu. Then,
using the mnemonic definitions entered in its disassembly

tables, it provides mnemonics for display on the State Table
menu.

Figure 7-3 shows the Table Entry sub-menu's default display.
Refer to the numbered call-outs in Figure 7-3 when reading
the following paragraphs. The numbers are intended as a
visual reference, and do not imply sequence of use.

7-2

(1) MODE Field

The MODE field is used to select between the Table Entry
and Display Setup sub-menus. To move between these two
sub-menus, press the SELECT key.

@ TABLE NAME Field

The TABLE NAME field lets you specify which table you want
to display on the screen. Only one table is displayed at a time.
In the default menu configuration, there is one table defined
for each of the 16 channel groups. The tables have the same
names (A-F, 0-9) as their corresponding channel groups.

NOTE

You can also specify tables that you have de-
fined in the Table Definition sub-menu. Definition
of tables is explained in the Table Definiton Sub-
Menu portion of this section.

To select a table for display:

Press the DON'T CARE key to clear the field, and use
the DATA ENTRY keys to type the table’s name.

If you have selected a valid table, the new table will be
displayed on the sub-menu. Invalid tables are those that have
no channels assigned, and those that have not been defined.

If you specify an undefined table and attempt to move the
cursor out of the Table Name field, the error message TABLE
HAS NOT BEEN DEFINED will appear on the second line of
the screen.

if you select a defined table that has no channels assigned to
it, the error message NO CHANNELS ASSIGNED will appear
in place of the usual sequence, data, and display columns.

Define Mnemonics Menu—DAS 9100 Series Operator's

| ABCOEF1234567¢

4380-02

Figure 7-2. Relationship of Table Entry sub-menu to the Channel Specification and State Table menus. This simple ASCI! lookup table
shows how values entered in the Channel Specification menu and Table Entry sub-menu affect the data displayed in the State Table.

4380-03

Figure 7-3. TABLE ENTRY sub-menu and its fields. This illustra-
tion shows the sub-menu in its defauit configuration. (When using the
Table Definition sub-menu to define nested tables, additional fields
will appear in this sub-menu. For details, refer to Table Definition
Sub-Menu and Using Call Tabies in the Complete Microprocessor
Disassembly section.)

7-3

Define Mnemonics Menu—DAS 9100 Series Operator’s

(3) sEQ (sequence) Column and Table Editing
This column shows the sequence number of each entry in the
disassembly table. A default sequence occupies one line of
the display and consists of a value field and a DISPLAY field.
Altogether, there are 256 sequences (0-255) available for

each table that has one or more channels assigned to it. The
screen displays 19 entries (lines) at a time.

To scroll through sequences:

Press the N or V key.

Adding and Deleting Sequences. Two editing functions are
provided for the mnemonic tables:

To add a sequence:

1. Move the screen cursor to the sequence line where
you want to add a new line. For exampie, SEQ 0:

0 [10110010] [JMP]
2. Press the ADD LINE key.
The DAS moves the values associated with SEQ 0
down one line, and inserts a new empty sequence at
the cursor location:
0 [XXXXXXXX] [1
1 [10110010] [JMP]
To delete a sequence:

1. Move the screen cursor to the sequence you want
to delete. For example, SEQ 0:

0 [00000000]) [1
1 [10110010] [JMP]
2. Press the DEL LINE key.

The DAS deletes that line from the table, and moves
all following sequences up one line.

0 [10110010] [JMP]

@ VALUE Field

The VALUE field allows you to enter the data words you want
recognized as mnemonics.

Above the VALUE field column there are two headings. The
top heading indicates the source of data that is to be
disassembied by the table. In the default configuration (i.e.,
with no changes made to the Table Definition sub-menu), the
data source is the channel group associated with the table

currently displayed. The second heading indicates the radix
of the data values.

The radix of the channel group in the Channel Specification
menu determines the radix of the data in the Table Entry sub-
menu. Radix changes in the Channel Specification Sub-menu
are automatically reflected in the Table Entry sub-menu.

You may enter mnemonics using one radix, then later change
the radix in the Channel Specification menu for acquisition
and disassembly.

You may change the number of VALUE field bits, but only
before entries have been made in a table. To do so you must
add or delete group channel inputs in the Channel Specifica-
tion menu. In default, all bits in the VALUE field are in the
don’t care state.

During disassembly, tables are searched sequentially start-
ing at sequence 0. If data received by the table matches the
data in the field, then the sequence performs its part of the
disassembly. If the data received by the table does not match
the data specified, the table looks at the next sequence for a
match. If two entries can both accept the same bit pattern,
the entry with the lowest sequence number performs the
disassembly.

Use the data entry keys to enter the desired value. Don't
care values are entered by using the DON'T CARE key.
The DAS enters the value at the cursor location, then
moves the cursor one space to the right.

@ DISPLAY Field

Once you have specified data values in the VALUE field,
enter that value's corresponding mnemonic label in the DIS-
PLAY field. In default, 10 characters are provided for State
Table display of the mnemonic. Extra characters will be
truncated from the right. (You can change the number of
available display characters in the Display Setup sub-menu.
Refer to the Display Setup Sub-Menu portion of this section
for details.)

When entering the mnemonic, you may use the data entry
characters (A-Z and 0-9), and the special symbols (available
by pressing the pattern generator keys and SHIFT simulta-
neously). You can also use any of the other DAS 9100
character set symbols (available by pressing the SHIFT and
SELECT keys simultaneously).

NOTE
Proceadures for accessing the DAS Character

Set are provided in Appendix B of this
aadaenaum

To enter a mnemonic:
1 Move the screen cursor to the DISPLAY field.
2. Use the data entry keys. the special symbol keys

(SHIFT;pattern generator keys), or the SHIFT/SE-
LECT function to enter the desired mnemonic.

To remove a mnemonic:

Place the cursor anywhere in the DISPLAY field and
press the DON'T CARE key

DISPLAY SETUP SUB-MENU

To enter the Display Setup sub-menu, press the DEFINE
MNEMONICS menu key and select the Display Setup mode
(by pressing the SELECT key while the cursor is in the MODE
field)

Define Mnemonics Menu—DAS 9100 Series Operator's

The Display Setup sub-menu allows you to format the dis-
play of data and mnemonics in the State Table. It lets you
turn State Table display of data and mnemonics on or off.
and lets you specify the character width allowed for each
column of mnemonics on the State Table.

Figure 7-4 shows the relationship of the Display Setup sub-
menu to the State Table menu.

NOTE

Certain details of the Display Setup sub-menu s
use will change when the Define Mnemonics
menu is in non-default configuration (i.e., when
changes have been made in the Table Definition
sub-menu). For more information, refer to the
Disassembly Guidelines at the end of this
section.

Figure 7-5 shows the Display Setup sub-menu and its default
tields and values. Refer to this figure while reading the
following paragraphs. The numbers are intended as a visual
reference, and do not imply sequence of use.

DEF INE "NEMONICS

mrmr
Aagaaaaa‘
bbb BREE

—- ™M
¥

8 3 7 A

3
4
S
6
8

44

4380-04

Figure 7-4. Relationship of the Display Setup sub-menu to the State Table Display. The Display Setup sub-menu formats the display of data
and mnemonics in the State Table display. In this example, the default group heading (B) was changed to ASCII, and the default mnemonic width
(10) was changed to 2 (to center the group heading over the column). For details, see the discussion of Display Setup sub-menu fields.

7-5

Define Mnemonics Menu—DAS 9100 Series Operator's

4380-05
Figure 7-5. Display Setup sub-menu and its fieids.

@ MODE Field

The MODE field is used to select between the Display Setup
and Table Entry sub-menus. To move between these two
sub-menus, press the SELECT key.

@ GROUP Column

Each line on the Display Setup sub-menu formats the State
Table's display of mnemonics for one channel group. The
GROUP column shows which channel group is formatted by
each line. In default operation, the name of the channel group
is the same as the name of the table (e.g., data from channel
group A is disassembled using table A).

(3) DISPLAY DATA Field

This field allows you to choose whether or not to display a
channel group's acquired data on the State Table menu. The
default value of the DISPLAY DATA fieid is YES (the data will
be displayed).

To set State Table display of data to YES or NO:

1. Move the screen cursor to the DISPLAY DATA
field.

2. Press the SELECT key.

The value in the field alternates between YES and
NO.

7-6

When the DISPLAY DATA fieid for a channel group is set to
NO, the DAS will not display that group's acquired data on
the State Table menu. You can use this feature to provide
more room for other data and mnemonics on the State Table
menu.

@ DISPLAY MNEMONICS Field

This field allows you to turn off the display of a channel
group's mnemonics on the State Table menu. The default
value of the DISPLAY MNEMONICS field is YES (the mne-
monics will be displayed).

To set State Table display of mnemonics to YES or NO:

1. Move the screen cursor to the DISPLAY MNEMON-
ICS field.

2. Press the SELECT key.

The value in the field alternates between YES and
NO.

When the DISPLAY MNEMONICS field for a channel group
is set to NO, the DAS will not display mnemonics next to that
group on the State Table menu. You can use this feature to
provide more screen space for other data and mnemonics on
the State Table menu.

@ MNEMONICS WIDTH Field

This field lets you specify how many characters will be
aliotted for display of mnemonics next to a channel group on
the State Table menu. The default value is 10 characters.
You can specify from 1 to 64 characters by placing the cursor
in this field and using the data entry keys.

To conserve display space on the State Table menu, specify
only the number of characters necessary to display your
longest mnemonic.

It is possible to enter a mnemonic in the Table Entry sub-
menu's DISPLAY field that has more characters than speci-
fied in the MNEMONICS WIDTH field. In this case, the
mnemonics will be truncated (from the right) when they
appear on the State Table menu.

(8) GROUP HEADING Field

This field allows you to specify a titie which will be displayed
over the mnemonics for a group's data. In default, a group's
title will be the same as the group's name (i.e., A-F or 0-9). If
you are using the default menu configuration, there is no
need to change these values. If you do wish to change the
heading displayed over the mnemonics column, enter a new
heading in this field. See Figure 7-4 for an example.

Define Mnemonics Menu—DAS 9100 Series Operator's

MICROPROCESSOR DISASSEMBLY

Overview

Microprocessor disassembly is set up through the Table Figure 7-6 provides a conceptual overview of how the nested
Definition sub-menu. This sub-menu lets you build a nested table structure works. In this exampie, the table structure is
table structure where one master table can control the set up for the B0BSA 8-bit microprocessor. You can modify
incoming acquisition data, then pass relevant bits to appro- this structure to fit any other type of microprocessor
priate sub-table levels. This allows bit-by-bit disassembly of disassembly.

every incoming microprocessor instruction.

l_ ACQUISITION MEMORY !
I Address Data Control '
Bus Bus Lines
h_ __I — e —
Master
Table
c
ABSOLUTE OPCODE
Table Table
REG BYTE WORD
Table Table Table
Table Definitions:
Group Table C This master table receives the incoming data word, categorizes it by whether or not it is an instruction

fetch, then calls tables and passes bits accordingly.

ABSOLUTE Table This table contains mnemonic definitions for operations like memory read/writes, |/O read/writes, and

interrupt acknowiedges.

OPCODE Table This table contains mnemonic definitions for the 8085A instruction set. This table can call and pass
bits to the register tabie, or call either the byte or word table, depending on the instruction needs.

REG Table This table contains names and decoding for the 8085A internal registers.

BYTE Table This table does not receive passed bits. When called, it fetches the next data byte from memory and
displays it in hexadecimal.

WORD Table This table does not receive passed bits. When called, it fetches the next two data bytes from memory
and displays them as a 16-bit word. (Note: This table calls and uses the functions of the Byte Table.)

4380-06

Figure 7-8. Example of s nested table structure using the 8085A microprocessor.

Define Mnemonics Menu—DAS 9100 Series Operator's

The nested table structure works in the foliowing way. First,
the incoming acquisition data is input to one of the group
tables A-F or 0-9 (in this example, group table C). This table
then serves as the master table for the structure.

Under the master table there is a series of user-defined
nested tables. These nested tables are designed to break the
data word down into smaller and smaller categories of
recognizable bit patterns. Altogether, there can be up to 48
user-defined nested tables that can nest up to 16 levels deep.

In this example. the first level of nesting categorizes data by
whether or not it is an instruction fetch. If the data is not an in-
struction fetch, it is passed from the master table to the
absolute table which identifies such operations as memory
and | O reads and writes.

If the data is an opcode, it is passed from the master table to
the opcode table. This table categorizes the data according
to the microprocessor's instruction set. Depending on the
complexity of the microprocessor. there may be several of
these opcode tables. each supporting specific bit patterns.

Under the opcode table there are general-purpose support
tables. These tables are designed to support often-used
instruction parameters, such as source and destination
operands.

Overall. the structure of the master table and its nested
tables '1s highly flexible. The nested levels, table names, and
table values can all be tailored to your specific
MICrOprocessor.

The following parts of this section describe how you use the
sub-menus to set up a nested structure and its elements.

TABLE DEFINITION SUB-MENU

The Table Definition sub-menu is used to enter the frame-
work for your nested table structure. In this sub-menu. you
define the new nested tables and their names, specify data
input to the tables, and determine which tables can call other
tables. Once you have entered the framework for the table
structure in this sub-menu, you then use the Table Entry sub-
menu to impiement the table values and actions.

NOTE

The table structure must be entered in the Table
Definition sub-menu before you can enter values
in the Table Entry sub-menu.

The Table Definition sub-menu is entered by pressing the
SHIFT and DEFINE MNEMONICS keys simultaneously

Figure 7-7 illustrates a typical display of the Table Definition
sub-menu and its fields. In this example, the framework for
the table structure in Figure 7-6 has been entered into the
sub-menu.

The following paragraphs describe each of the sub-menu
fields and show how they are used. Refer to the numbered
callouts in Figure 7-7 when reading these field descriptions.
The numbers are intended as a visual reference, and do not
imply sequence of use.

8
8
8
8
]
8
8
]
8
]
L]
8
il

|
|

I N TP IPEDO®®D |

4380-07

Figure 7-7. The Table Definition sub-menu and its fields.

7-8

@ TABLE NAME Field

The TABLE NAME field is used to enter the tables for the
nested table structure.

The TABLE NAME field aiways contains the group tables A-F
and 0-9. These tables are always available and can serve as
master tables in the nested structures. They can aiso serve
as simple lookup tables as described in the front portion of
this section.

In addition to the group tables, you can create up to 48
nested tables.

To create a nested table:

Use the A (scroll up) key to scroll to the end of the group
tables. Then, in the biank fieid, use the data entry keys to
enter the nested table's name. The name can be up to
eight characters long.

To change the name of a nested table:

Move the screen cursor into the TABLE NAME field to
be changed. Use the data entry keys to enter the new
name over the old name. Any calls in the Tabile Entry
sub-menu to the old table name will be changed to the
new name.

The TABLE NAME field also provides a special function that
lets you quickly access a table for display in the Table Entry
sub-menu.

To display a table quickly in Table Entry:

Scroll the table you want to display to the top line of the
screen, then press the DEFINE MNEMONICS key and
enter the Table Entry sub-menu. The Table Entry sub-
menu automatically dispiays the table that was located
on the top line.

@ GROUP INPUT Field

Use the GROUP INPUT fieid to control which tables have
direct access to the acquired data. The master table and any
nested tables that look at the next data word must have
values specified in the GROUP INPUT field.

mfdlowingpaugraphsduerhhmwmmmm

Setting Up The Master Table And its Data input. in defauit,
sach of the group tables receives data input from its corre-
sponding channel group. When establishing a nested table
structure, you need to change this default configuration so
that one group tabie receives data from all channel groups
associated with the program data (i.e., address, data, and
control information). This group table then serves as the
master table.

Define Mnemonics Menu—DAS 9100 Series Operator's

Before estabiishing the master group table and its channel
group inputs, you must first consider how you have set up
the channel group format in the Channel Specification menu.
it is recommendad that you set up the channel group format

as follows:
Address Bus — Channel Group A
Data Bus — Channel Group D
Control Lines — Channel Group C
NOTE

While the above group format is only recom-
mended, special features called System Calls
work on the assumption that you have grouped
the channeis in this manner. For more informa-
tion, refer to Systern Calis later in this section.

Once you have determined the channel group format, you
then select the master group table by specifying these chan-
nel groups as inputs to the table.

To select the master group table and its data input:

Move the screen cursor to the group input fields of the
group table you want to serve as the master table. Then,
using the data entry keys, enter the channel group
inputs. Up to four channel groups can be specified.

Any of the group tables (A-F and 0-9) can be used for the
master table. However, to ensure proper disassembly, you
should select a group table that corresponds to one of the
channel groups acquiring data. It is recommended that you
select group table C for compatibility with the system calls.

For more information regarding the relationship of the master
table to its group inputs, refer to Disassembly Guidelines
given later in this section.

Setting Up A Nested Table To Access The Next Data
Word. A nested table can receive data in two ways: group
input and passed bits. The following paragraphs describe the
reasons for using group input to a nested table. The reasons
for using passed bits are described under the PASSED BITS
Fleld.

Many microprocessor instructions require more than one
byte of sequential data. For example, an 8085A's MOVI
(Move immediate) instruction requires the use of the next
eight bits of data. To get these next eight bits, you must
establish a nested tabile that, when called by another table,
goes to memory and accesses the next sequential data
word. You establish this nested table by giving it group
inputs.

TJo access the next deta word:

Move the screen cursor to the GROUP INPUT fields of
the nested table you want to access the next data. Then,

using the data entry keys, enter the channel groups
which contain the data you want the table to access. To

Define Mnemonics Menu—DAS 9100 Series Operator’s

ensure proper disassembly, one of these group inputs
should be the channel group which corresponds to your
master table.

NOTE

The number of channels that are assigned to a
table cannot change once values are entered in
that table. Plan carefully when defining your table
structure.

@ BITS PASSED Field

A nested table can receive data in two ways: group input and
passed bits. The following paragraphs describe the reasons
for using passed bits. The reasons for using group input are
described under the GROUP INPUT field.

NOTE

This field only applies to nested tables. Tables A-
F and 0-9 cannot receive passed bits.

The purpose of a nested table structure is to take a data
word and send it through increasingly detailed disassembly.
To do this, the various nested tables of the structure must be
able to receive pieces of the data word from other tables. The
amount and type of data the table needs to receive is
dependent on the table's disassembly function.

You specify whether a nested table can receive data bits in
the PASSED BITS field. Any individual nested table can
receive up to 32 bits.

NOTE

The number of bits passed to a table cannot
change once values are entered in that table.

To specify the number of bits passed:

Move the screen cursor to the bit field of the nested table
you want to receive data. Then, use the data entry keys
to specify from 1 to 32 bits.

In addition to specifying the number of bits, you use the BITS
PASSED field to specify the radix of the bits as they appear
in the Table Entry sub-menu.

To specity the radix of bits passed:

Move the cursor to the radix field, then press the SE-
LECT key. The field displays the optional radix values in
this order:

[BIN]
[HEX]
[OCT |

NOTE

The selected radix does not affect the number in
the BITS PASSED field. The number in this field
always refers to binary bits.

@TABLE TYPE Field

The TABLE TYPE field is used to specify whether or not a
table can call other tables.

In default, all tables are a DEFAULT type. They operate as
simple lookup tables and can be called by other tables, but
they cannot call other tables.

You can change any of the tables to a CALL type. This
means that the table can call other tables. In a nested
structure, the master table, and any nested tables that rely
on other nested tables, must be a CALL type.

NOTE

A table must also be a CALL type if it accesses
any system calls. For more information, refer to
the System Calls description later in this section.

To change a table to a CALL type:

Move the screen cursor to the table's TABLE TYPE
field, then press the SELECT key. The field displays
optional values in this order:

[DEFAULT |
[CALL |

@ ACCESS COUNT and SEQ COUNT Columns

These two columns keep track of the various tables once you
start entering values in the Table Entry sub-menu.

The SEQ COUNT column keeps track of how many se-
quence values each table contains. In default, the number of
sequences for each table is zero, which means the tables are
empty. This number will increment when you start entering
table sequence values. To decrement the sequence count
use the DEL LINE key to remove the entry from the table.

The ACCESS COUNT column keeps track of how many
times a table is accessed or called by another source.

In default, the access count value for each group table A-F
and 0-9 is one. These tables will always have an access
count of at least one because they are automatically ac-
cessed by their corresponding group column on the State
Table.

Each nested table starts out with an access count of zero.
This count value will increment each time you call the table
from another table.

NOTE

The access count for nested tables must be zero
before you can change the table’s GROUP IN-
PUT or BITS PASSED fields.

@ MICRO NAME Field

This field allows you to specify the name of the processor for
which your mnemonic disassembly is designed. The name
entered in the field may then be displayed in the State Table
and Trigger Specification menus.

The name entered in the MICRO NAME field can be dis-
played in the column headings in the State Table menu.
Before the name will be displayed, however, the following
conditions must be met:

® The name only appears over the group A, group C, and
group D columns of the State Table.

® The name only appears over a group column in the State
Table when the DISPLAY MNEMONICS field for that
group is set to YES, in the Display Setup sub-menu.

® The display width for the group column in the State
Table display must exceed the length of the name in the
MICRO NAME field by at least five characters. The

Figure 7-8. Table Definition values for disassembling an 8085A
microprocessor. The ACCESS COUNT and SEQ COUNT fields are
still at their default values because no tables for disassembling the
8085A have yet been entered. Note that tables A, B, D-F, and 0-9 are
left as they were in the default situation because they are not used
for disassembly.

Define Mnemonics Menu—DAS 9100 Series Operator's

display width is the sum of the mnemonic width (as
defined in the Display Setup sub-menu) and the data
display width.

The name entered in the MICRO NAME field is also displayed
in the Trigger Specification menu whenever a PMA 100
Personality Module Adapter is connected to the DAS.

To enter a micro name:

Move the cursor to the bottom of the DAS display. Then.
in the blank field, use the data entry keys to enter the
processor’'s name. The name can be up to nine charac-
ters long.

To delete a micro name:

Place the cursor in the MICRO NAME field, then press
the DON'T CARE key. This blanks the entire MICRO
NAME field.

Defining a Mnemonic Structure

As mentioned previously, the table structure for any disas-
sembly tables must be entered into the Table Definition sub-
menu before entering values into the Table Entry sub-menu.

Taking the previously developed example of an 8085A disas-
sembly structure (refer to Figure 7-6), the values shown in
Figure 7-8 would be entered in the Table Definition sub-menu
to disassemble an 8085A microprocessor. Refer to Figure 7-
8 while reading the following text.

Table C (Figure 7-10) is the master table in this example. It
receives all address (group A), data (group D), and control
lines (group C) as specified in the GROUP INPUTS field. The
TABLE TYPE field is set to CALL so the master table can call
the nested tables.

Table ABSOLUTE has data and control bits passed to it.
This table disassembles operations like memory reads and
writes, 1/0 reads and writes, and interrupt requests. Notice
that the ABSOLUTE table is a DEFAULT table since it does
not need to call other tables.

Table OPCODE (Figure 7-11) also has data and control bits
passed to it. But, unlike table ABSOLUTE, OPCODE is a
CALL table since it calls other tables to complete disassem-
bly of most instructions.

Table BYTE (Figure 7-12) does not have any bits passed to it.
BYTE's function is to look at the next acquired word (so it
has group inputs C and D) to decode operands of the current
machine instruction.

Most other nested tables, like WORD and REG, are similar to
one of the three nested tables just described.

Define Mnemonics Menu—DAS 9100 Series Operator’s

STATE TABLE DISPLAY

TABLES CALLED STACK CONTENTS
l Dsta Received: C200 100 E8 I
' DEFINE METONICS e we I
AoC D
| | WX v U DISPLAY
0 Xox 1 %
_— e Y CALL Stack level 0. Table C. SEQ 0. Entry #1
1
| |
Pass [
101000) e meomvics T e (NI !
P |
i S B oL DISPLAY |
;;J‘) 2 1100000 T, | Stack level 0. Table C. SEQ 0. Entry #1
i e | (CALL ———————== Stack level 1. Table Y SEQ 2. Entry #1
—_— 2) |
|
Pass
10100 EFINE MEONICS e we N
‘ »
N o [T
| 0 e0x [
| — Stack level 0, Table C. SEQ 0. Entry #1
| 1 X X ——RETURN ———a Stack level 1, Table Y. SEQ 2. Entry #1
|
OEFINE MEONICS oL we NI RETURN
1
BIN oL DISPLAY
2 100000 .
a0 (Stack level 0. Table C. SEQ 0, Entry #1
—_— 7) ————CALL —l——> Stack level 1. Table Y. SEQ 2, Entry #2
! |
Pass
100 OEFINE MENONICS et we N
P
[DISPLAY
. o m s
i 1w B
FN - Stack leve! 0. Table C. SEQ 0, Entry #1
;\) T RETURN Stack level 1. Table Y. SEQ 2. Entry #2
s o F
6 10 G
T W
DEFINE MENONICS TRLE Wt IR RETURN
[
S BN oL DISPLAY
2 1100000 T,
VAN | ¢
—. 1) RETURN —— = Stack level 0, Table C. SEQ 0, Entry #1
UEFINE MEONICS e wet IR RETURN
[0
WX BN X ou oISPLAY
0 XX 100 X
- =~ DONE

URT, CFK

le GK(

URT, CFK(E

URT, CFKCE)

URT,CFKCE)

4380-09

Figure 7-9. Overview of how table calls operate. This figure shows how using call tables for disassembly is like a program which calls and re-
turns from subroutines. The locations that must be returned to are saved in a push-down stack. Each of the called tables may add a portion to the

displayed mnemonic.

7-12

Define Mnemonics Menu—DAS 9100 Series Operator’s

USING CALL TABLES IN THE TABLE ENTRY SUB-MENU

Call tables occur in the Table Entry sub-menu of the Define
Mnemonics menu when CALL is selected in the TABLE
TYPE field of the Table Definition sub-menu. Call tables can
call disassembly procedures that are set up in other tables.
By spreading mnemonic disassembly through several tables
that act as subroutines, disassembly of complex micro-
processors is possible without immense lookup tables. Ta-
bles that function as subroutines are called using the CALL
field.

When a table is called by another table. disassembly moves
from the current table to the beginning of the called table. The
called table may also call other tables (tables may be called
up to 16 deep). When any called table reaches the end of a
sequence. disassembly returns to the table that called the
completed table. Figure 7-9 shows how the call structure of
disassembly works.

It may be helpful to consider called tables as a set of
subroutines in a program. There is a main program se-
quence. the master table, which calls subroutines. Each
subroutine may then call other subroutines. When a subrou-
tine finishes, the program returns to the next step in the
subroutine that initiated the call. A stack keeps track of each
subroutine call, so the disassembly can return to the correct
location in the table that called the subroutine.

The foliowing discussion of call tables describes how to use
the CALL field, how to pass bits to called tables, and how to
access the next data word. The discussion focuses on
disassembly of the 8085A microprocessor. However, other
processors can be disassembled using the techniques
shown here.

4380-10

Figure 7-10. Table C (master table) for 8085A disassembly. This
table seperates opcode fetches from other types of machine cycles
(like memory reads and writes and |/O reads and writes).

These paragraphs describe each of the sub-menu fields and
show how they are used. Figure 7-10 illustrates a typical
display of a call table. Refer to the numbered callouts in
Figure 7-10 when reading the field descriptions. The numbers
are intended as a visual reference, and do not imply se-
quence of use.

@ CALL Field

The CALL field is used to specify the table or system call that
the disassembly routine goes to next.

There are two table calls in Figure 7-10, one in SEQ 0 to table
OPCODE and one in SEQ 1 to table ABSOLUTE.

To call a table, enter that table's name in the appropriate
CALL field. A return is performed when disassembly reaches
the end of a sequence in the called table.

NOTE

Any table name entered in the CALL field must
match one of the table names already set up in
the Table Definition sub-menu. The cursor will
not leave a CALL field containing an undefined
table name.

To enter a CALL value:

1. Move the screen cursor to the CALL field.

2. You may use the data entry keys, A-Z and 0-9, and the
punctuation keys to enter the desired name in the field.
Names entered may be a maximum of eight characters
long. For example, ABSOLUTE.

[ABSOLUTE |

3. The DAS displays the entered table name in the field.
Any mnemonic disassembly that reaches this point per-
forms the disassembly in table ABSOLUTE.

If you look in the Table Definition sub-menu (by pressing the
SHIFT/DEFINE MNEMONICS keys), you will see that the
ACCESS COUNT value for table ABSOLUTE has increment-
ed by one. The ACCESS COUNT of a table increments every
time that table is called by another table.

To delete a CALL value:

Move the cursor to the call value to be removed and
press DON'T CARE. The field will blank.

Define Mnemonics Menu—DAS 9100 Series Operator’s

@ VALUE Field

The VALUE field of the Table Entry sub-menu is used to enter
the data which will be recognized as mnemonics. The field is
also used to pass bits from the current table to a called table.

VALUE Field Column Headings. Before entering anything in
the VALUE field, note the labels at the top of each of the
columns in the VALUE field. Each column head corresponds
to inputs to the table as specified in the Table Definition sub-
menu. In Figure 7-10 these inputs are group A, group C, and
group D. If bits were passed to the table, there would also be
a column labeled P (for pass).

Specifying Values. You may specify a data value in the
VALUE field on the first line of any sequence. If data received
by the table matches the value in the field, then the sequence
performs its part of the disassembly. If the data received by
the table does not match the value specified, the table looks
at the next sequence for a match. So if two entries can both
accept the same bit pattern, the entry with the lowest
sequence number performs the disassembly.

This hierarchical design can reduce the number of entries in a
table. Note that in Figure 7-10 sequence 0 requires a specific
bit pattern to call table OPCODE. This bit pattern corre-
sponds to an instruction fetch by an 8085A microprocessor.
Sequence 1 accepts any bit pattern at all, but it only receives
bit patterns that are not instruction fetches because se-
quence 0 intercepts all instruction fetches.

To specify or change a value:

1. Move the screen cursor to the topmost value field of a
sequence. This field contains all Xs (don't cares) in
default.

2. Using the data entry keys, enter the desired value in the
radix indicated at the top of the column. X (don't care) is
specified with the DON'T CARE key.

To delete an entire sequence:

1. Move the screen cursor into the topmost value field of
the sequence you want to delete.

2. Press the DEL LINE key. The sequence will disappear
and any sequences below the deleted sequence will
move up.

Passing Bits. Whenever a table is called that has bits passed
to it, the bits to be passed must be specified in the value field.
The bits passed to the table are indicated by the A (SHIFT/H-
ALT) character on the DAS screen.

NOTE

When passing bits to a table, you must pass
exactly the number of bits expected by the called
table. The cursor will not leave the field if you
pass the wrong number of bits.

Data passed from one table to the next need not match
radices, but the number of binary bits sent must equal the
number of binary bits expected by the called table. For
example, passing a hexadecimal digit passes four bits, pass-
ing an octal digit passes three bits, and passing a binary digit
passes one bit.

To indicate the bits passed to a table:

Move the screen cursor into the value field to the left of
the table call.

HEX BIN HEX

[===l | o2]

[= = =] [ABSOLUTE |
Press the SHIFT/HALT keys (/) at every location that you
want to pass bits.

HEX BIN HEX

el [7771 [~7] [ABSOLUTE]

The A indicates the bits to be passed to the next table.
In this example, table ABSOLUTE will receive 11 bits.

Passed bits may be removed by moving the cursor over
the N to be removed and pressing DON'T CARE.

(3) oIsPLAY Field

For an example of how the DISPLAY field may be used in call
tables, refer to Figure 7-11. This figure shows how table
OPCODE uses the DISPLAY field in conjunction with the
CALL field.

4380-11

Figure 7-11. Table OPCODE for 8085A disassembly. This tabie
is called by table C (the master table) to translate 8085A opcodes
into mnemonics. Note that this table, which acts as a subroutine
for table C, also calls other tables.

When using the DISPLAY fields in call tables, it is useful to
think of disassembly moving from left to right, then top to
bottom. Disassembly happens in the following sequence:

1. The table receives data and locates a sequence that
matches this data. The data may include both passed
bits and group data from the State Table.

2. The Define Mnemonics menu writes the characters from
the first DISPLAY field of the table sequence on to the
State Table display. For example, if 01000111 were
passed to table OPCODE in Figure 7-11, the disassem-
bly would start at table sequence 1 and *“MOV," would
be displayed on the screen.

3. Disassembly moves down to the next line of the table
sequence. If there is a name in the CALL field, the table
is called. Disassembly proceeds to the called table, in
this case table REG.

4. When table REG is finished, disassembly returns to the
current table and whatever is in the DISPLAY field next
to the table call is displayed on the State Table (a
comma).

5. Disassembly continues in this order until all table calls
and displays have been performed. In this example the
State Table would display “MOV,B,A". The B and A
would be decoded by table REG.

NOTE

Display entries are placed adjacent to one anoth-
er without spaces between them. To place
spaces between display entries, system calls
must be used. System calls are described later,
under the heading System Calls.

To enter characters in the DISPLAY field:

Move the screen cursor into the field. Enter characters
with the data entry keys 0-9 and A-Z, and the punctua-
tion keys.

To delete a display entry:

Move the screen cursor into the display field to be
blanked. Press the DON'T CARE key. The field will be
blanked.

Accessing the Next Word

Many microprocessor instructions are fetched by the proces-
sor over more than one machine cycle. In the 8085A micro-
processor there are instructions with one or two operands
that must be fetched before the instruction cycle is complete.
The 280 microprocessor has some opcodes that occupy two
successive memory locations as well as having operands.

To disassemble instructions that occupy several machine

Define Mnemonics Menu—DAS 9100 Series Operator's

cycles, the Define Mnemonics menu uses call tables to work
on several consecutive sequences of acquired data.

An Example with the 8085A. One example of an instruction
that takes two machine cycles is the MVI (move immediate)
instruction of the 8085A microprocessor. Table OPCODE,
shown in Figure 7-11, decodes a move immediate instruction
in table sequence 2. Sequence 2 displays the next acquired
word by calling table BYTE. Table BYTE is shown in Figure 7-
12. Notice that no bits are passed to table BYTE.

Figure 7-12. Table BYTE for 8085A disassembly. This table is
called by table OPCODE to display the next byte of data. Table
BYTE has group C and D inputs, but receives no passed bits. The
proup inputs send the next acquired data to the table.

*HEX is a system call that displays the bits passed to it in hexadeci-
mal radix. System calls are described in detail later, under the
heading System Calls.

By accessing successive words, multiple byte instructions
can be decoded. Table BYTE checks the control lines to
make sure the byte is part of the instruction, then the
acquired data is displayed in hexadecimal radix. Disassembly
then returns to table OPCODE.

Table WORD (shown in Figure 7-13) provides an example
showing which word is disassembled by each table. Table
WORD is called by OPCODE to display the next two trailing
data bytes as one word. The second byte must be displayed
first since the second byte is the high-order half of the word
and the first byte is the low-order half of the word.

Tables, other than the master table, only receive new data
when they are called. Returning from a table does not bring
new data into a table, even if the table has group inputs. After
returning from a called table, the calling table's disassembly
continues as though uninterrupted.

7-15

Define Mnemonics Menu—DAS 9100 Series Operator's

DEF INE MNEMOKI

4380-13
Figure 7-13. Table WORD for 8085A disassembly. Table WORD is
called by OPCODE (shown in Figure 7-11) to display the next two
acquired bytes from the microprocessor data bus as one 16-bit
word. The first acquired word contains the low-order byte, and the
second acquired word contains the high-order byte.

Table WORD receives word 2 (the first word after OPCODE's word -
word 1), but does not display it yet. WORD calls BYTE, which
displays word 3 (the second word after OPCODE's word), and
returns to WORD. Then WORD displays the data it received (word 2)
and returns to table OPCODE.

An Example with the 6809. On the other hand, consider
disassembling a two-byte word for a 6809 microprocessor.
With the 6809 (in contrast to the 8085), the first byte is high-
order, and the second byte is low-order. So the first byte
should be displayed first and the second byte displayed
second. With this high-low byte order, table WORD is no
longer needed. It can be replaced by calling table BYTE twice
as shown in Figure 7-14.

Figure 7-14 shows that once a word has been used, it is not
used again by any other tabie in the structure. Calling BYTE
twice in Figure 7-14 displays two consecutive words, not the
same word twice. (Some system calls can be used to over-
ride this, allowing words to be dissassembled more than
once. For more details see the System Calls description.)

Disassembling a Series of Machine Instructions

When an opcode is entirely disassembied, the Define Mne-
monics menu starts disassembly of the next opcode by
calling the master table. The following rules indicate when the
master table is called.

1. The word at the top of the State Table screen (the one
with the lowest sequence number) is the first word sent
to the master table. The Define Mnemonics menu disas-
sembies only the data currently displayed on the State
Table. New data is disassembled when it is moved into
the display area of the State Table menu, either by
scrolling or changing sequence numbers.

7-16

the State Table menu, by scrolling or changing sequence
numbers.

2. When a machine instruction is completely disassembled
(there are no more call or display instructions for that
instruction) the next acquired data that has not been
disassembled is sent to the master table. This continues
until the State Table display is filled or there is no more
acquired data.

3. The master table determines the next data to use by
looking at the last-used data in its own group (e.g., table
C checks group C acquired data). The master table
assumes that the last data used in its group corre-
sponds to the last data used in all of its accessed
groups.

Figure 7-14. Table OPCODE for disassembling an extended
address mode STA (store accumulator in memory) of a 6809
microprocessor. The hexadecimal machine code B7 is detected,
which indicates an extended address STA instruction. Table BYTE is
then called twice in a row. The first call to BYTE displays the first
(high) byte after the STA opcode. The second call to BYTE displays
the next (low) byte, which is the second byte after the STA opcode.

Define Mnemonics Menu—DAS 9100 Series Operator’s

SYSTEM CALLS

Define Mnemonics System Calls are special commands
which facilitate mnemonic disassembly. They give you added
capability to control the disassembly and display of acquired
data. You can use them in any call table.

To enter a system call:

You enter a system call in the same way you enter a
table call: by entering the name of the system call in a
Table Entry sub-menu CALL field. (System calls are
essentially reserved table names, and are always pre-
ceded by an asterisk.) Some of the system calls require
you to pass bits. You do this in the same manner as you
would pass bits to a table.

During disassembly of a data word, most system calls be-
have in the same nested fashion as table calls. When the
DAS has executed a system call, it returns to the next line of
the call table's disassembly sequence.

The following paragraphs describe each of the system calls
and their use.

System Calis for Controlling Mnemonic Display

These system calls control how disassembled data is dis-
played on the State Table.

*BLANK. This system call displays one blank character. You
can use it to separate different groups of displayed data (for
example. opcodes from operands).

*TAB. This system call also allows you to separate displayed
data by advancing display of the next item to the next tab
setting. Tabs are preset to character positions 1, 9, 17,...57.

*HEX. This system call displays the hexadecimal value of the
bits passed to it. It does not suppress leading zeroes.

*OCT. This system call works in the same manner as *HEX
but displays an octal value.

*BIN. This system call works in the same manner as *HEX
but displays a binary value.

*HEXS. This system call displays the value of the bits passed
to it in signed hexadecimal.

NOTE

*HEXS only works on 8 or 16 bits. If you pass
the wrong number of bits to *HEXS, negative
word values can cause the wrong number to be
displayed.

*HEXS assumes the bits passed to it form a two's comple-
ment number. It displays a plus sign if the most significant bit
is a 0, or a minus sign if the most significant bit is a 1.

The example in Figure 7-15 shows how some of the system
calls for controlling mnemonic display might be used.

DATA ACQUIRED

A o D A c D ﬁ
‘ HEX BIN HEX HEX BIN HEX CALL DISPLAY 4 }
’ 200 10011 D2 ——= XXXX XXXX XX
... %RED
B AN FHEXS —/——————
XBLANK—‘ AT ——————
- 1 TAB
AAAA {HEX

DISASSEMBLY TABLE

STATE TABLE DISPLAY

4380-15

Figure 7-15. Using *RED, *HEXS, *BLANK, *TAB, and *HEX. This example demonstrates how the display system calls can organize the dis-
play of data. The highlighted display line is caused by the *RED system call.

7-17

Define Mnemonics Menu—DAS 9100 Series Operator’s

*RED (highlight). This system call sets the display to the
color red, or, in the case of a monochrome display, causes a
highlighted display.

*GREEN. This system call works in the same way as *RED
but causes a green display. *GREEN has no effect on a
monochrome DAS display.

*YELLOW. This system call works in the same way as *RED
but causes a yellow display. (Note that yellow is the default
color for State Table display of disassembled data.) *YEL-
LOW has no effect on a monochrome DAS display.

All of the color calls affect the entire line of the group
displayed on the State Table, not just a single item. If more
than one color is called during disassembly of a machine
instruction, the last color specified is the one displayed.

System Calls for Relative Addressing

The four *RLADD system calls perform relative address
calculations. For example, when disassembling a relative
jump instruction you can use a *RLADD system call to

display the actual address jumped to, rather than displaying
the offset. The *RLADD system calls operate on addresses
up to 32 bits long.

NOTE

All of the *RLADD system calls assume that the
microprocessor address lines are acquired
through group A (in the Channel Specification
menu). Values are displayed in the radix of group
A

Table A can receive a maximum of 32 bits from
combined inputs when relative adds are used. All
other tables can receive 138 bits.

All of the *RLADD system calls use the value in group A as
their base and then add or subtract an offset from this group
A value. Do not pass bits from group A to the *RLADD
system call; the *RLADD system call automatically gets the
value from group A for you. The group A data used is the
value in group A that matches the most recently looked at
group C data. Figure 7-16 illustrates which group A data is
used by *RLADD calls.

DATA ACQUIRED DISASSEMBLY TABLES RESULTS
A c 0 TABLE NAME = C
SEQ HEX BIN HEX A C 0
1 HEX BIN HEX CALL
2 22 010 2 J S XXX XX Adataseg! D dataseq!
3 3333 o k] tA SRLADD! =i 1111 - 0011 =1122
ALPHA
1
A C D '
SEQ HEX BIN HEX TABLE NAME = ALPHA
1 111 001 1
2 220102 0
3 1333 0N 3 | BIN HEX CALL
XXX XX Adataseq? D dataseq?
.- AN $RLADD! e 9277 - 0022 = 44
BETA
[|
A C D ® I
SEQ HEX BIN HEX TABLE NAME = BETA
1 11 001 1 0
2 2222 010 2 HEX CALL
3 3333 o 3 XX Adataseq? Ddataseq3
AR $RLADD! ool 2222 - 0033 - 2255
438016

Figure 7-16. The *RLADD system calls use group A data from the data sequence most recently looked at by group C. Table BETA provides
an unexpected result because the group A and group D data read by table BETA do not come from the same data sequence. Because table
BETA did not access group C, the last data sequence looked at by group C was data sequence 2.

The data (offset) you pass to a *RLADD call is treated as a
two's complement number. The most significant bit is treated
as a sign bit. Each of the *RLADD calls display the resuiting
number in whatever radix group A is set to. Details specific to
each of the *RLADD system calls are provided in the follow-
ing paragraphs.

NOTE

*RLADD system calls only operate properly if
you pass 8, 11, or 16 bits to them.

*RLADD1. (Group A + offset). This system call adds the
value in group A to the bits you pass to it.

Define Mnemonics Menu—DAS 9100 Series Operator’s

*RLADD2. (Group A + 1 + offset). The *RLADD2 system
call adds 1 to group A and the bits you pass to it. This method
of relative addressing is typically used by 8-bit processors.

*RLADD3. (Group A + 2 + offset). *RLADD3 adds 2 to
group A and the bits you pass to it. Sixteen-bit processors

with byte addressing typically use this method of relative
addressing.

*RLADD4. [Group A + 2 + (2 x offset)]. *RLADD4 adds
group A plus two plus two times the bits you pass to it. This
method of relative addressing is used by Z8000 and DEC
PDP 11 processors.

The example in Figure 7-17 shows how *RLADD1 might be
used.

DATA ACQUIRED

A c D A C
HEX BN HEX HEX BIN
(200, 10011 FE————XXXX XXXX

DISASSEMBLY TABLE

STATE TABLE DISPLAY

D — C1FE
HEX CALL

XX

IA $RLADD1

'

C200 - FFFE = CIFE —

4380-17

Figure 7-17. Using *RLADD1 to calculate a relative address. This table could be called by another table that discovered a relative branch or
jump instruction. Note that the group A bits are not passed to *RLADD1; the system call automatically gets the group A data.

Error-Handling System Calls

*ERROR. This system call erases any disassembly which
has occurred so far on the current machine instruction, then
calls the table named ERROR*.

You must create the table named ERROR?®*. It allows you to
define what information about the error you want to display.
ERROR* may only have group inputs. The usual inputs are
the address and data groups. The control line group may also
be an input to show the bus cycle type.

ERROR®* operates on the data sent to the master table for
the current machine instruction. So even though the table
has group inputs, it does not access the next data. In fact, it
may move backwards through the disassembled data to
arrive at the point where the master table was last called.

Once table ERROR?®* is finished, the next data in acquisition
memory is automatically sent to the master table to start
disassembling the next machine cycle.

*EXIT. The *EXIT system call displays all of the disassembly
performed up to the *EXIT, then terminates disassembly of
the current data word. The next word is then disassembled
starting from the master table, and displayed on the next line
of the State Table.

*DECR. The *DECR system call backs up the data used
during disassembly by one acquisition data sequence. After a
*DECR, the next table call (master table or nested table) that
accesses group data directly (not passed bits) receives the
same data word that the table containing *DECR was look-
ing at.

The effect of the *DECR system call continues even when
disassembly is restarted and the master table is called for the
next instruction. If several *DECRs are used, the data used
for disassembly is backed up as many acquisition sequences
as there are *DECRs.

7-19

Define Mnemonics Menu—DAS 9100 Series Operator’'s

The *DECR system call only affects the channel groups that
serve as inputs to the current table. If the current table has no
channel inputs (only passed bits) then *DECR has no effect.

*DECR is useful when a called table (that uses group inputs)
determines that the data word in acquisition memory is not

what was expected, i.e., that it was not part of the previous
instruction. When this occurs, *DECR gets the previous
word in acquisition memory. The unexpected data word can
then be disassembled correctly, starting from the next mas-
ter table call. Figure 7-18 shows one possible use of the
*DECR system call.

DATA ACQUIRED

DISASSEMBLY TABLES

TABLE NAME - C

STATE TABLE DISPLAY

1 XXXX

A

SEQ HEX

A c) A c
2 SEQ HEX BIN HEX ; SEQ HEX BIN
20 C200 10011 02 C—————) XX XX 100XX
2 R Mo 00 —23—ﬁ R
L—"
3

110X

...

TABLE NAME - BYTE

¢
BIN

0 XX XX 101XxX

XXXX

XXXXX

D SEQ
HEX CALL DISPLAY 2 OPCODE 02,, 4%
XX OPCODE - e
-- 1BLANK J 21 | READ FBY,

A $HEX

XX

D

HEX CALL DISPLAY

XX

- $BLANK OPERAND

- $BLANK

) $HEX

X X 2

.. tDECR ff

4380-18

Figure 7-18. Basic operation of *DECR. In step 1. acquired data sequence 20 is sent to the master table (C) and is decoded as an opcode Se-
quence 0 of table C then calls table BYTE to display the operand.

In step 2. table BYTE accesses acquired data sequence 21. However, table BYTE detects that the acquired data on sequence 21 is a read cycle
not an operand. Since the data was not an operand, table BYTE prints **, performs a *DECR, and returns disassembly to the master table (C)

In step 3. the data acquired on sequence 21 is sent to table C where it is decoded as a read cycle and displayed.

System Calls for Pipelined Processors

These system calls are intended to faciltate disassembly with
pipelined processors.

® The system calls *NOP, *RECALL, *LOOP, and *SKIP
are useful when determining whether an instruction that
enters the pipeline is actually executed.

¢ The *MARK and *MIRACLE system calls are useful for
changing the order in which data is displayed.

Details of these system calls are provided in the following
paragraphs.

7-20

NOTE

System calls *MARK and *MIRACLE only work
if the master table for disassembly is table C.
They have no effect when any other master table
is used.

*MARK, *MIRACLE, and * SKIP have no effect if
you scroll backwards through the State Table
display. However, by pressing the STATE TA-
BLE key after scrolling backwards, you can dis-
play the mnemonics with all system calls
operating.

*SKIP. The *SKIP system call prevents the disassembly of
the current machine instruction from being displayed. Disas-
sembly of the machine instruction continues until completed,
but the results are not displayed. Disassembly display is
enabled again when the disassembly of the current machine
instruction is completed and the master table is re-entered.

*SKIP is useful if, for example, a table discovers that the
machine instruction being disassembled was never executed
by the microprocessor due to a queue flush.

*RECALL. This system call is designed to search ahead
through acquired data. When a *RECALL occurs, the table
containing the *RECALL calls itself (therefore receiving the
next acquired data). and a counter is incremented to show
how many times the table has *RECALLed itself. The table
may *RECALL itself through the entire acquisition memory.
The table may have group inputs or pass bits to itself by
passing bits to the *RECALL.

NOTE

*RECALLs that search far through acquisition
memory may take a long time to display results.
If a disassembly routine with a *RECALL takes a
long time to display mnemonics on the State
Table. you can press the STOP key. Pressing
STOP stops disassembly of the current word
and restarts disassembly on the next acquired
word.

When the table containing the *RECALL is finished (reaches
the end of a table sequence). the table performs as many

Define Mnemonics Menu—DAS 9100 Series Operator’s

*DECRs as there were times that the table *RECALLed
itself, before returning to the calling table.

The end result is that even though the *RECALL may have
scanned through the entire acquisition memory, the stack
does not overfiow. Also, to any tables that receive group
data after the *RECALL is finished, it appears that the table
with the *RECALL only looked at the first word passed to
it—not at any of the following acquired data.

For example, a table with a *RECALL might look ahead
through memory to see if an instruction going into a pipelined
processor was actually executed. If the instruction was
executed the disassembly would be displayed. If not, a
*SKIP would be called. When the table with the *RECALL
was done, the disassembly would continue as though the
table with the *RECALL only looked at one word. not
several.

Place *RECALLs at the end of table sequences. After a
*RECALL is executed the mnemonic table does not return to
complete any disassembly placed after the *RECALL.

NOTE

If *RECALL is used in a table that receives
passed bits, the *RECALL must have as many
bits passed to it as the table expects. Otherwise.
the error message INCORRECT NUMBER OF
BITS PASSED will appear during disassembly.

Figure 7-19 shows how *RECALL might be used to locate

data far down in the acquisition memory and return to the
current disassembly status.

7-21

Define Mnemonics Menu—DAS 9100 Series Operator's

DATA ACQUIRED DISASSEMBLY TABLES STATE TABLE DISPLAY

TABLE NAME: C
A c D A c 0 REG ADDR JMP TO 1 15F2 | | REG D
SEQ HEX BIN HEX SEQ HEX BIN HEX CALL DISPLAY L J USF2g j
5 C00 10011 D2 _2_____.’ 0 XXXX 10XXX X2 REG ADDR JMP T0 ¥ T
6 C201 10111 FE XXXXX - JUMP @ REG
7 152 1010 3 = Sooo XXKXX A § HEX
Jump bit TABLE NAME JUMP
(active low) A c 0
SEQ HEX BIN HEX CALL DISPLAY
— XXXX XXXXO0 XX
ceee e -- $BLANK
PAAA - $HEX
R $DECR
2
e 1 XXXX XXXXX XX
Seee e $RECALL

4380-1¢

Figure 7-19. Using *RECALL. In this example the user is trying to decipher a register-addressed jump. In step 1. acquired data sequence 5 's
sent to table C. Table C decodes the data as a register-addressed jump. Since the register is internal to the processor, table C must use taple
JUMP to search through acquired data and discover where the jump is going.

In step 2. table JUMP receives acquired data sequence 6. but finds that this sequence does not contain the jumped-to address. Table JUMP pe--

forms a *RECALL so it can look at acquired data sequence 7.

In step 3. table JUMP receives acquired data sequence 7, which contains the jumped-to address. Table JUMP displays the jumped-to address on
the screen and returns disassembly to table C. The combination of *RECALL and *DECR in table JUMP sets the acquired data so table C re-
ceives acquired data sequence 6 next. So the next table to access acquired data will be unaware that table JUMP ever looked at the acquirec

data.

*LOOP. This system call causes the table to loop on itself
without overflowing the stack. *LOOP works similarly to
*RECALL. but does not perform any of the automatic
*DECRs that *RECALL does when returning to the calling

le.
table NOTE

If*LOORP is used in a table that receives passed
bits, the *LOOP must have as many bits passed
to it as the table expects.

*NOP. This system call is used to rearrange the order in
which bits are displayed or used. *NOP is only useful when
followed by *RECALL, *LOOP, *MIRACLE, *HEXS, *HEX,
*OCT, or *BIN system calls.

*NOP allows you to gather specific bits from more than one
line of a call table sequence, which you can then pass to an
appropriate system call. When you use *NOP to pass bits to
*RECALL, *LOOP or *MIRACLE, you must gather the exact
number of bits that the table expects. Figure 7-20 shows how
*NOP can be used to rearrange the data display. Figure 7-21
shows how *NOP and *RECALL can operate together.

NOTE

In Figure 7-21 the user knew the table would
receive 001 as bits passed from the previous
table. Passing unknown bits would cause unpre-
dictable results.

DATA ACQUIRED DISASSEMBLY TABLE STATE TABLE DISPLAY

A C D A C] 7
HEX BIN HEX HEX BIN HEX CALL
C00 10011 D2 =—————e XXXX XXXXX XX
AN mop—l—‘ l
---A- -- $NOP AR
A---- -0 BHEX w011 1 =7
I

4380-20

Figure 7-20. Using *NOP and *HEX to rearrange data. In this example, the user rearranged control bits to make a hexadecimal code

7-22

Define Mnemonics Menu—DAS 9100 Series Operator’s

DATA ACQUIRED DISASSEMBLY TABLE STATE TABLE DISPLAY
P A C 0 A c D P
EQ LATER
BIN HEX BN HEX SEQ HEX BIN HEX BIN CALL DISPLAY S.SEQ LATER
;o C200 00011 2 =—— 0 XXXX IXXXX XX 001
—— 010 cor 010m BE 2 e e $DECR 1SEQLATER
r__z_.woo c03 w0 Fe 3 |_
1 XXXX 1Xxxx XX 010
e _. ... IDECR 2SEQLATER
rchi i .;
Searching 1o 2 XKXX IXXXX XX 100
atintns . .. $DECR 3 SEQ LATER
column
3 XXXX OXXXX XX 100
. IDECR NOT FOUND
ﬁu.4 XXXX XXXXX XX XXX - 2
e e oo+ INOP ;
..... YRECALL
438C 2

Figure 7-21. Using *RECALL with *NOP. This table would be used to search for an occurrence later in acquired data. The user designed al! ta-
bles which call this table to always pass 001. SEQ 4 of the disassembly table acts as a shift register on the bits passed to indicate how many
*RECALLS have been executed. In step 1. the data received by the table does not match the searched- for pattern. so sequence 4 of the table
uses *NOP and *RECALL to do a shift ght on the passed bits and look at the next acquired data.

In step 2. the next acquired data is received by the disassembly table. The searched for-pattern is still not found. so table sequence 4 does anoth-
er shift nght on the passed bits and *RECALLs the table to look at the next acquired bits.

In step 3. the last acquired data is received by the disassembly table. Disassembly sequence 2 recognizes the desired pattern. and displays a
message. If the pattern sequence had not been present in step 3, disassembly sequence 3 would have displayed NOT FOUND and stopped the
search. This way. a maximum of three acquisition sequences are checked, rather than the entire acquisition memory.

NOTE

System calls *MARK and *MIRACLE only work
if the master table for disassembly is table C.
They have no effect when any other master table
is used.

*MIRACLE. This system call allows disassembly of micro-
processors that interweave instructions with data fetches for
the previous instruction (such as the 8086).

For example, suppose a table were disassembling an instruc-
tion and it discovered a data fetch embedded in the middie of
the instruction. The *MIRACLE system call stops disassem-
bly of the machine instruction without displaying any of the
results. *MIRACLE disassembles and displays the embed-
ded instruction (the data fetch) by sending it to the master
table. After the embedded instruction is displayed, then the
disassembly of the original instruction is completed and
displayed following the embedded instruction.

The effect of the *MIRACLE is to display the disassembly of
an embedded instruction cycle in front of the instruction
currently being disassembled. Figure 7-22 gives a simplified
example of how *MIRACLE might be used.

The *MIRACLE system call can be used to disassemble
several embedded instructions within a machine instruction.
but each embedded instruction may only occupy one acquisi-
tion sequence. For example, data reads and writes will be
disassembled properly by *MIRACLE, but instructions with
following operands will not.

NOTE

If embedded instructions decoded with the
*MIRACLE call occupy several acquisition se-
quences, erroneous data may be displayed.

If *MIRACLE is used in a table that receives
passed bits, you must pass the *MIRACLE the
same bits that the table received. For example, if
your table recieves group inputs A, C, and D and
3 passed bits, the *MIRACLE should look like:

A c D P
HEX BIN HEX BIN
[----][---]1 [-] [AAA] *MIRACLE

7-23

Define Mnemonics Menu—DAS 9100 Series Operator’s

DATA ACQUIRED DISASSEMBLY TABLES STATE TABLE DISPLAY
TABLE NAME - C
A C 0D A c 0
SEO (*:*250’; 13(‘)”1 ”052" 1 5 SEQ HEX BN HEX CALL DISPLAY _ SEQ
6§ ca 01031 ¥ 2 q|T=0 PO oexxx READ AT ; SEADAT "
R, o I R HIFTR D2 , 97
T ot w3 $BLANK =
- nu ©c PHEX]
J 7
1 XXXX 1XXXX XX SHIFTR
R TR - IBLANK
----- T $HEX
----- SHIFT i
TABLE NAME - SHIFT
2 A c D
SEQ HEX BN HEX CALL DISPLAY

2
""" IMRACLE ~—=—

----- 1 fHEX

4380-22

Figure 7-22. Using *MIRACLE. This illustration shows a simplified microprocessor with two instructions: READ and SHIFTR The SHIFTR in-
struction requires two machine cycles to execute. These two machine cycles may be separated by another bus cycle.

In step 1. the master table (C) detects the first cycle of a SHIFTR and calls table SHIFT to read the next half of the instruction

In step 2. table SHIFT recognizes that the next cycle is not a SHIFTR, so it performs a *MIRACLE. The *MIRACLE sends acquired data se-
quence 6 back to table C where the READ instruction is disassembled and displayed, completing the *MIRACLE.

In step 3. acquired data sequence 7 is sent to table SHIFT because of the *MIRACLE in the previous step. Table SHIFT now completes the disas-
sembly of the SHIFTR instruction. The entire SHIFTR instruction is displayed on the State Table line below the READ instruction

*MARK. This system call lets you mark an acquisition se- ple. when a 68000 microprocessor in the absolute long
quence for display after disassembly of the current machine addressing mode performs a move operation. the source
instruction is completed. This allows disassembled data to be memory read occurs before the entire instruction is fetched.
displayed in the proper order. You may have up to three You can use *MARK to display the memory read after the
*MARKed acquisition sequences in your disassembly at any instruction operands are completely disassembled.

one time.

Figure 7-23 shows how the *MARK system call might be
*MARK is useful for showing all of an instruction before any used.
of the associated reads and writes are displayed. For exam-

7-24

Define Mnemonics Menu—DAS 9100 Series Operator’'s

DATA ACQUIRED DISASSEMBLY TABLES STATE TABLE DISPLAY
A ¢ 0
SEZ mEX BN HEX TABLE NAME - C
¢ O e 2 A c D SEQ
-

@ CEEopem0 FE 21 SEQ HEX BiN HEX CALL DISPLAY 0 | MOVEFROY, E T 06

e “iEmez 27 Q0FE 1001t AA -’=_ 5 —e0 XXXX 100X XX READ FROM [— Ny
3 B3 C0 oo 06 4| e e <. PBLANK L 2 BEADFROM Q0°E
28 0008 vt AR 6

== SRR - bHEX 4 _WRTETC 000
Ll XXxx 101X XX WRITE 70 —I_—-

st -+ 3BLANK
Ter e <. BHEX

!]
L-»: XXXX 010X0 21 MOVE FROM

""" Tt $BLAMK
----- - MOVER

...

TABLE NAME = MOVER

A c D
2 SeQ HEX BIN HEX CALL DISPLAY
— 0 XXXx 00110 XX
e o $HEX
----- -~ ¥BLANKTO
----- <. PBLANK
..... .- MOVER
4
— XXXx 00100 XX
~~~~~ M EHEX
3
— 2 XXXX  XXXXX XX
So-- .o IMARK
..... .. MOVER

4380-2:

Figure 7-23. Using *MARK. This example shows a processor with three instructions: READ. WRITE. and MOVE. Move has two operands. a
FROM operand and a TO operand, and the processor does a read between the two. The processor starts executing a MOVE instruction before
the entire instruction is fetched.

In step 1. table C detects a MOVE opcode, displays MOVE FROM, and calls table MOVER to get an operand.

In step 2. table MOVER reads data sequence 21, decodes the data as a FROM operand, and calls MOVER again to get the last operand

In step 3. table MOVER reads data sequence 22. Sequence 22 is not a MOVE operand, however, so sequence 2 of table MOVER *MARKs the
acquisition sequence and calls table MOVER again to look at the next acquired word.

In step 4. table MOVER receives data sequence 23. Sequence 1 of table MOVER identifies the last operand of the MOVE instruction and dis-
plays it.

in step 5. disassembly returns to the *MARKed instruction. The master table (C) receives data sequence 22 and decodes it as a READ
instruction.

In step 6, disassembly of the MOVE and the *MARKed instruction is now complete. Disassembly goes to acquisition sequence 24, which table C
decodes as a WRITE instruction.

7-25



Define Mnemonics Menu—DAS 9100 Series Operator’s

DISASSEMBLY GUIDELINES

STUDY YOUR PROCESSOR

The best way to determine the disassembly tables you need
is to carefully study your processor. The tables described
below are suggested as a starting place. You will probably
need tables in addition to those described below to cover
special requirements of your processor.

Acquisition Channels. To insure compatibility with all sys-
tem calls, you should define your table structure so that the
following signals are acquired through the correct Channel
Specification groups:

® acquire all address bus signals through group A
® acquire all control signals through group C
® acquire all data bus signals through group D

Master Table. This CALL-type table is where disassembly
starts. Table C is recommended as the master table. If the
acquisition channel recommendations are followed, then
groups A, C. and D should be the group inputs.

The master table must have group inputs from all groups that
acquire disassembly data. Under most circumstances these
are the groups that acquire control signals, data, and ad-
dress. The master table determines whether the acquired
data is an opcode, and then passes the acquired bits to the
appropriate table. If the data is an opcode, table OPCODE is
called; otherwise table ABSOLUTE is called.

Before calling tables OPCODE or ABSOLUTE, the master
table should display the acquired address, using the *HEX
system call, so the address bits do not have to be passed to
later tables.

ABSOLUTE Table. This table is needed to decode all proces-
sor states other than opcode fetches. The master table
passes data bus and control signal bits to this table. The
ABSOLUTE table examines the control signals to determine
the operation performed by the processor, then displays the
operation type. Usually, the ABSOLUTE table displays oc-
currences like memory reads, memory writes, I/O reads, 1/O
writes, and interrupt requests.

OPCODE Tables. Because most processors have a large
instruction set, opcode decoding usually requires several
tables. When the master table determines that an opcode
was acquired, it passes bits to table OPCODE. The bits
passed to OPCODE are those needed to decode the opcode;
usually all control signals and the bits from the data bus. With
small instruction sets, table OPCODE can decode the entire
instruction set. Usually the instruction set is too large, so
table OPCODE divides the opcodes into major categories.
These categories are determined by significant bit patterns in
the opcode. Possible categories are:

7-26

opcodes that have no following operand
opcodes that use registers

opcodes that have one operand

opcodes that have two operands
condition-testing opcodes like branch or jump

There are other possible categories, depending on your
processor and the bit patterns that its opcodes follow. Each
category has a corresponding table, named OPCODE2, OP-
CODES, etc. Table OPCODE tests bits to find the proper
category, then passes all the necessary bits to the corre-
sponding table. The second opcode table then completes
disassembly and displays the resuits.

Opcode tables can call support tables which display oper-
ands or reduce table size. All opcode tables must be of the
CALL type to use support tables. Commonly used support
tables are discussed next.

Address Mode Table. Processors with several address
modes usually require this table. The table is called by an
opcode table to provide punctuation for an operand (such as
#, spaces, commas, or parentheses).

The address mode table receives bits from the opcode table.
displays punctuation in front of the operand, then passes bits
to an operand display or register table. When disassembly
returns from the operand display or register table, the ad-
dress mode table adds any closing punctuation and returns
to the opcode table.

Operand Display Tables. Operands follow an opcode in the
data stream, therefore operand display tables must access
words following an opcode. Operand display tables might be
needed to display one word operands (with a table called
BYTE), or two word operands (with a table called WORD).

Operand display tables must access the control signal and
data groups. group inputs C and D, but do not usually receive
passed bits. Opcode tables determine when and where an
operand must be displayed, and then call an operand table.
Examples of typical operand display tables are given in
Figures 7-12, 7-13, and 7-14.

Register Tables. Bit patterns indicate particular registers in
a microprocessor. Since the patterns are consistent from
one opcode to the next, one register table can decode
registers for many opcode tables. This reduces the size of
the opcode tables and speeds disassembly. If there are
several register sets or several bit patterns which access the
same register, then more than one register table may be
required. For example, some processors may need a REG8
table to decode 8-bit registers and a REG16 table to decode
16-bit registers.



Opcode tables use register tables by passing them the
register indication bits. The register table displays the regis-
ter name that matches the passed bit pattern and returns
disassembly to the opcode table. Since the register table
does not call other tables it can be a DEFAULT-type table,
unless system calls are used.

Error-Handling Tables. Sometimes an illegal opcode or
illegal control line state is acquired. In these cases use the
*ERROR system call and create table ERROR®* to indicate
errors on the state table screen. The ERROR®* table can then
be called using *ERROR whenever an error is detected.

Call table structures in the Define Mnemonics menu should
be designed carefully. Attention to detail will prevent prob-
lems such as improper disassembly, endless loops, or trun-
cated mnemonics. The remaining text in this section de-
scribes where possible problem areas exist and what to do if
problems occur.

USING THE DISPLAY SETUP SUB-MENU
WITH CALL TABLES

The Display Setup sub-menu controls which data and mne-
monics appear on the State Table display and how wide each
display is. The following rules will be helpful when controlling
the display of call table mnemonics with this menu:

1. Characters displayed by call tables are cumulative. Be
sure the MNEMONICS WIDTH field for your master
table has a large enough value to show all your mnemon-
ics. Mnemonics that are too long are truncated from the
right.

2. If you need more State Table display area, set the
DISPLAY DATA field to NO. In many applications, the
numerical data acquired is not useful. In these cases
only the DISPLAY MNEMONICS field should be set to
YES.

3. If you use *MARK or *MIRACLE, and you have more
than one possible master table in your call table struc-
ture, do not display mnemonics from table C along with
mnemonics from any other table. Doing so may cause
incorrect disassembly.

DESIGNING CALL TABLE STRUCTURES

The following are recommended design practices for using
the Table Definition and the Table Entry sub-menus to create
a call table structure. These recommendations are intended
to provide consistent disassembly resuits.

Define Mnemonics Menu—DAS 9100 Series Operator’s

There may be situations when the recommended practices
will not produce the disassembly you want. In these cases.
experiment freely. It is not possible to disrupt the mnemonic
structure, any DAS setups, or the acquired data with a
peculiar table structure.

NOTE

If disassembly is taking a long time or is in an
endless loop, pressing the STOP key will stop
disassembly of the current data and move disas-
sembly on to the next acquired data.

Choose the Correct Groups and Tables

For almost all disassembly situations you will want to acquire
your address through group A in the Channel Specification
menu. The *RLADD system calls assume that group A
contains the address of the data acquired.

Use table C as your master table if you are going to use either
*MARK or *MIRACLE. These system calls will not work with
any other master table.

Always acquire some data for disassembly through the
group that corresponds to your master table. For example. if
you ac<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>