
DEFINE 7
MNEMONlCS

MENU
The Define Mnemonics menu provides disassembly capability ranging from simple lockup tables to
complete microprocessor disassembly. While the menu may be displayed on the monitor screen at
any time, it is useful only if data acquisition modules are installed in the mainframe.

In this section you will find: Page

List of Illustrations iv

DEFINE MNEMONlCS MENU ... 7-1
Overview ... 7-1

Sub-Menu Functions .. 7-1

LOOKUP TABLE DISASSEMBLY .. 7-2
Table Entry Sub-Menu .. 7-2

MODE Field .. 7-2
TABLE NAME Field .. 7-2
SEQ (Sequence) Column and Table Editing 7-4
VALUE Field .. 7-4
DISPLAY Field .. 74

Display Setup Sub—Menu .. 7-5
MODE Field .. 7-6
GROUP Column ... 7-6
DISPLAY DATA Field ... 7-6
DISPLAY MNEMONlCS Field .. 7-6
MNEMONlCS WIDTH Field .. 7-6
GROUP HEADING Field ... 7-6

MICROPROCESSOR DISASSEMBLY .. 7-7
Overview ... 7-7
Table Definition Sub—Menu ... 7-8

TABLE NAME Field .. 7.9
GROUP lNPUT Field ... 7-9
BITS PASSED Field .. 7-10
TABLE TYPE Field ... 7-10
ACCESS COUNT and SEQ COUNT Columns 7-10
MICRO NAME Field .. 7-11
Defining a Mnemonlc Structure ... 7-11

Using Call Tables in the Table Entry Sub—Menu 7-13
CALL Field ... 7-13
VALUE Field .. 7-14

DISPLAY Field .. 7-14
Accessing the Next Word ... 7-15
Disassembling a Series of Machine Instructions 7-16

System Calls .. 7-17

System Calls for Controlling Mnemonlc Display 7-17
System Calls for Relative Addressing .. 7-18
Error-Handllng System Calls ... 7-19
System Calls for Pipelined Processors ... 7-20

Dlsassembly Guidelines .. 7-25
Study your Processor .. 7-25
Using the Display Setup Sub-Menu with Call Tables 7-26
Designing Call Table Structures ... 7-26

Figure
No.
7-1
7-2

7-3
7-4
7-5
7-6
7-7
7-8
7-9
7-1 0
7-1 1
7-12
7-13
7-14

7-15
7-16

'7-17
7-1 8
7-19
7-20
7-21
7-22
7-23
7-24

LIST OF ILLUSTRATIONS

Page

Functional overview of the Define Mnemonics menu 7-1
Relationship of Table Entry sub-menu to the Channel Specification and State Table
menus .. 7-3

Table Entry sub-menu and its fields 73
Relationship of the Display Setup sub—menu to the State Table Display 7-5
Display Setup sub-menu and its fields 7-6
Example of a nested table structure using the 8085A microprocessor 7-7

The Table Definition sub-menu and its fields 7-8
Table Definition values for disassembling an 8085A microprocessor 7-11
Overview of how table caus operate 7-12
Table C (master table) for 8085A disassembly 7-13
Table OPCODE for 8085A disassembly 7-14
Table BYTE for 8085A disassembly 7-15

Table WORD for 8085A disassembly 7-16
Table OPCODE for disassembling an extended address mode STA (store

accumulator in memory) of a 6809 microprocessor 7-16
Using 'RED, 'HEXS, °BLANK, 'TAB, and 'HEX 7-17
The 'RLADD system calls use group A data from the data sequence most recently

looked at by group C .. 7-18
Using 'RLADD1 to calculate a relative address 7-19
Basic operation of ‘DECR ... 720
Using ‘RECALL .. 7-22
Using 'NOP and 'HEX to rearrange data 7-22
Using 'NOP with 'RECALL .. 7-23
Using 'MIRACLE ... 7-24
Using 'MARK » ... 7-25
How improper group access can misalign display of group data with call table

disassembly ... 7-29

Define Mnemonice Menu—DAS 9100 Series Operator’s

DEFINE MNEMONICS MENU

Overview

The Define Mnemonics menu is used to set up disassembly

tabies for the State Tabie display. It is composed of three
sub-menus which allow you to define mnemoniee at two
diflerent levels: iookup tabies for simpie applications. and call
tables for oompiete mioroprosessor disassembiy.

Figure 7-1 provides a general overview of how the Define
Mnemonies menu works with the other DAS menus.

(Mhmli Clock) r —————1

or i I |

Fomllmom! TRIGGER REFERENCE ., ,, M m
Cioen onbe SPEC I MEMORY | o homing. I

o. MENU I .. 1”
100mm I .. _

Cinch P'obo I

5-- ‘—d

Pom" I

stone W |-

p— .-~

I
ACQUISITION " CHANNEL “ATE

| I
- M" 9373:" ““0"" I SPEC TABLE DISPLAY

"W 5‘" |.9..'n ”E” ‘21) “EN“ :1)
l

him

r

P-----‘

' ouoe mama
I GLITCH ousam
m usuoavi new

L-—---J

352mg

Figure 1-1. Functional overview of the Define Mnemonice menu. This menu reads the channel group information trom the Channel
Specification menu and provides the level of disassembiy you seiect using the sub-menus. The acquired data end/or the associated mnemomcs
seiected appear in the State Tabie display.

Sub-Menu Functions

The three Define Mnemonies sub-menus are called Tabie
Entry. Display Setup. and Table Definition. These sub-menus
allow you to use lockup tabies fq simple applications. or call
tables for complete microprocessor disassembly.

Lookup Tables. The defeuit configuration of the Define
Mnemonim menuiseetupforiookwtabies.Thisconflgme-

tionprovidesonemnemonictabietoreadidnnneigroupm-
F. 0-9). To use the default menu configuration, you enter
values only in the Tabie Entry and Display Setup sub-menus.

To enter the Table Entry and Display Setup sub-menus.
press the DEFINE MNEMONICS menu key.

Table Entry sub-menu — This sub-menu allows you to
enter data values and associated mnemonic: in disas-

sembiy tables.

Displaysuweub-menu—MWWSyou

to utter the defauit State Tabie's display format for
aoquireddntaandmnemonios.

To move between these two sub-menus, place the
cursor in the MODE fieid and press the SELECT key.

7-1

Define Mnemonlce Menu—DAS 9100 306..We

Microprocessor Dlmumbly. Fat microprocessor dus-
semblyapplicatlmeAheDefineMnenmmemoenbe
reconfiguredlettingyoucreateoeltableeetupethatere
personallzedtorywsystemmdertest.Thieoepebllltyis
available through the Table Definition sub-menu.

ToentertheTableDeflnitionsub—menu,’
press the SHIFT and DEFINE MNEMONlCS keys.

TableDeflnltloneub-menu—Thissub—melows

youtodefinenewtebles,tospecllymorethanone

ohennelgrwptorinputtotablee.andtosetupacal
tableswcture.Thecailtablestructureleteyouoellone
tabletromenothenpassdatabitstromonetableto

anothet. and use special system cells.

To move from Table Definition to the Table Entry and the
Display Setup sub-menus. press the DEFINE MNE-
MONICS menu key. To move directly to any other menu.
press the apptopriate menu key.

LOOKUP TABLE DISASSEMBLY

The following paragraphs describe the Table Entry sub-menu
in its default configuration (i.e.. with no entries made in the
Table Definition sub-menu). The default configuration is in-
tended for simple lookup table applications.

N0TE

Non-defautt configuration of the Table Entry sub-
menu changes its appearance and use, and of-
fers features intended foroomplete micropono-
sordisassembty. Details areprovidedlaterin this
section under the title Complete Microprocessor
Disassembty.

TABLE ENTRY SUB-MENU

To enter the Table Entry sub-menu, press the DEFINE
MNEMONICS menu key and select the TABLE ENTRY
mode (by pressing the SELECT key while in the MODE field).

The Table Entry sub-menu allows you to enter mnemonic
definitions for disassembly tables. In its default configuration.
the sub-menu provides one table for each channel group.
You can enter up to 256 definitions in each table. The sub-
menu displays one table at a time.

Figure 7-2 shows how the Table Entry sub-menu relates to
the DAS Channel Specification menu and State Table dis-

play. The Table Entry sub-menu receives channel group and

bit organization from the Channel Specification menu. Then.
using the mnemonic definitions entered in its disassembly
tables. it provides mnemonic: for display on the State Table
menu.

Figure 7.3 shows the Table Entry sub-menu's default display.
Refer to the numbered call-outs in Figure 7-3 when reading

the following paragraphs. The numbers are intended as a
visual reference, and do not imply sequence of use.

7-2

@Mooam

The MODE field is used to select between the Table Entry
and Display Setup sub-menus. To move between these two
sub-menus. press the SELECT key.

®TABLE NAME Field

The TABLE NAME field lets you specify which table you want
to display on the screen. Only one table is displayed at a time.
in the default menu configuration. there is one table defined
for each of the 16 channel groups. The tables have the same
names (A-F. 0-9) as their corresponding channel groups.

NOTE

You can also specify tables that you have de-
fined in the Table Definition sub-menu. Definition

of tables is explained in the Table Definiton Sub-
Menu portion of this section.

To select a table for display:

Press the DON'T CARE key to clear the field, and use
the DATA ENTRY keys to type the table's name.

If you have selected a valid table. the new table will be
displayed on the sub-menu. Invalid tables are those that have
no channels assigned, and those that have not been defined.

It you specify an undefined table and attempt to move the
cursor out of the Table Name field. the error message TABLE
HAS NOT BEEN DEFINED will appear on the second line of
the screen.

It you select a defined table that has no channels assigned to
it. the error message NO CHANNELS ASSIGNED will appear
in place of the usual sequence. data. and display columns.

Mn.WMonu—DAS 9100 80th: Opontor's

[1)C Ii-Ifil‘ri'

 £36002

Figure 7-2. Relationship 017-030 EmWto tho Chemo! Specification findM Table mus. This simp|e ASCII lookup tame
showsmmmsenwadinwcmWmanbhEmyun-mwflnMMysdhmsmeTable.

4:30-03

mJAJMIWWLmMMa-
mmwmhmmm.mmm
Table Definitionmmmmm.WW
wluppouhflsW.Fordouh.meuoDofimflon
SmeNUWCdTMhNWMW
mm.)

7-3

Define Mnemonice Menu—DAS 9100 Series Opontot’e

@sea (Sequence) Column and Table Editing

This column shows the sequence number of each entry in the
disassembly table. A default sequence occupies one line of
the display and consists of a value field and e DISPLAY field.
Altogether. there are 256 sequences (0-255) avaliable for
each table that has one or more channels assigned to it. The
screen displays 19 entries (lines) at a time.

To scroll through sequences:

Press the A or v key.

Adding and Deleting Sequences. Two editing functions are
provided for the mnemonic tables:

To add a sequence:

1. Movethescreencursortothesequenoelinewhere
you want to add a new line. For example, SEQ 0:

0 [10110010] [JMP]

2. Press the ADD LINE key.

The DAS moves the values associated with SE0 0
down one line, and inwrts a new empty sequence at
the cursor location:

0 [XXXXXXXX] []

1 [10110010] [JMP]

To delete a sequence:

1. Move the screen cursor to the sequence you want

to deiete. For example. SEC 0:

O [0000 0 00 0] [l

1 [10110010] [JMP]

2. Press the DEL LINE key.

The DAS deletes that line from the table. and moves
all following sequences up one line.

0 [10110010] [JMP]

G) VALUE Field

The VALUE field allows you to enter the data words you want
recognized as mnemonids.

Above the VALUE field column there are two headings. The
top heading indicates the source of data that is to be
disassembled by the table. in the default configuration (i.e.,
with no changes made to the Table Definition sub-menu). the
data source is the channel group associated with the table
ourrenfly displayed. The second heading indicates the radix
of the data values.

The radix of the channel group in the Channel Specification
menu determines the radix of the date in the Table Entry sub-
menu. Radix changes in the Channel Specification Sub-menu
are automatically reflected in the Table Entry sub-menu.

You may enter mnemonios using one radix. then later change
the radix in the Channel Specification menu for acquisition
and disassembly.

You may change the number of VALUE field bits, but only
before entries have been made in a table. To do so you must
add or delete group channel inputs in the Channel Specifica-
tion menu. In default, all bits in the VALUE field are in the
don't care state.

During disessembiy, tables are searched sequentially start-

ing at sequence 0. If data received by the table matches the
data in the field. then the sequence performs its part oi the
disassembly. if the data received by the table does not match
the date specified, the table looks at the next sequence for a
match. If two entries can both accept the same bit pattern.
the entry with the lowest sequence number performs the
disassembly.

Use the data entry keys to enter the desired value. Don‘t
care values are entered by using the DON'T CARE key.
The DAS enters the value at the cursor location, then
moves the cursor one space to the right.

(5) DISPLAY Field

Once you have specified data values in the VALUE field,
enter that value’s corresponding mnemonic label in the DIS.
PLAY field. In default. 10 characters are provided for State
Table display of the mnemonic. Extra characters will be

truncated from the right. (You can change the number of
available display characters in the Display Setup sub-menu.
Rafe! to the Display Setup Sub-Menu portion of this section
for details.)

When entering the mnemonic. you may use the data entry
characters (A-2 and 0-9). and the special symbols (available

by pressing the pattern genetator keys and SHIFT simulta-
neouely).YoucenelsouseenyoftheotherDA89100
character set symbols (available by pressing the SHIFT and
SELECT keys simultaneously).

NOTE

Procedures for accessing the DA5 Character

Set are prowded in Appendix B at "7’5
addendum

To enter e mnemonic:

1 Move the screen cursor to the DISPLAY held.

2. Use the data entry keys. the speCIal symbol keys

(SHIFTxpattern generator keys). or the SHIFT/SE-

LECT tunctaon to enter the desired mnemonic.

To remove e mnemonic:

Place the cursor anywhere m the DISPLAY toeld and
press the DON T CARE key

DISPLAY SETUP SUB-MENU

To enter the Display Setup sub-menu. press the DEFINE

MNEMONICS menu key and select the Display Setup mode
(by pressing the SELECT key while the cursor is in the MODE
field)

Detine Mnemonice Menu—DAS 9100 Series Operator‘s

The Display Setup sub—menu altows you to format the d15-
ptay at data and mnemonics in the State Table. It lets you

turn State Tebte display ot data and mnemomcs on or ott.
and lets you specity the character Width allowed tor eacn
column of mnemonics on the State Tame.

Figure 7-4 shows the relationship at the Display Setup sub-
menu to the State Table menu.

NOTE

Certain details of the Display Setup sub-menu 5
use will change when the Define Mnemomcs
menu is in non-detault configuration (1.9., when
changes have been made in the Table Definition

sub-menu). For more information, refer to the
Disassembly Guidelines at the end of this
section.

Figure 7-5 shows the Display Setup sub-menu and Its default

fields and values. Refer to this figure while readmg the
tollowmg paragraphs. The numbers are intended as a v15ua>

reference. and do not imply sequence of use.

1‘ M “KNCS

C)
r—
m

x~

A
a
g
a
e
a
a
a
‘

-.
«
p

v:
m

w
A
a
s
-
a
r
a

1
,
n
.

U
V
»
.

3
l

5

6

r

ia
m

l
t

 4380-04

Figure 7-4. Reletionehip ot the Disney Setup eub-mem to the State TIN. Dlepley. The Dtsptey Setup sub-menu tormets the display 01 data

and mnemonics in the State Table display. In this example. the deteutt group heading (B) was changed to ASCII. and the deteutt mnemomc wudth

(10) was changed to 2 (to center the group heeding over the cotumn). For deteits. see the discussion of Display Setup sub-menu fnelds,

7-5

Define Mhemnlce Menu—DAS 0100 Sellee Operator's

mos

Figure 1-5. Display Setup eub-menu end he fields.

@MODE Field

The MODE field is used to select between the Display Setup

and Table Entry sub-mehus. To move between these two
Sub-menus. press the SELECT key.

C2) GROUP Column

Each line on the Display Setup sub-menu formats the State
Table's display at mnemonics for one channel group. The

GROUP column shows which channel group is formatted by
each line. In default operation. the name of the channel group
is the same as the name of the table (e.g., date from channel
group A is disassembled using table A).

@DISPLAY DATA Field

This field allows you to choose whether or hot to display a

channel group's acquired data on the State Table menu. The
default value of the DISPLAY DATA field is YES (the date will

be displayed).

To set State Table display at dete to YES 0: NO:

1. Move the screen cursor to the DISPLAY DATA
field.

2. Press the SELECT key.

The value in the tieid alternates between YES and
NO.

7-6

When the DlSPLAY DATA held tor a channel group is set to
NO. the DAS witl hot displey that group's acquired data on
the State Table menu. You can use this feature to provide
more room for other date end mnemonics on the State Table
menu.

Q) DISPLAY msuomcs Field

Thisfieldellowsyoutotumoflthedispteyotaohannel

group's mnemonics on the State Table menu. The default
value of the DISPLAY MNEMONICS field is YES (the mne-
monics will be displayed).

To set State Table display at mnemonics to YES or NO:

1. Move the screen cursor to the DISPLAY MNEMON-

ICS field.

2. Press the SELECT key.

The value in the field alternates between YES and

NO.

When the DISPLAY MNEMONlCS field for a channel group
is set to NO. the DA8 will not display mnemonics next to that
group on the State Table menu. You can use this feature to
provide more screen space for other data and mnemonics on
the State Table menu.

@unzuomcs WIDTH Field

This field lets you specify how many characters will be
allotted for display of mnemonics next to a channel group on
the State Table menu. The default value is 10 characters.
Youcenspedtytrorm t064diarectersbyplacing the cursor

'hthistleldehduslhgthedeteentrykeys.

To conserve display space on the State Table menu. specify
only the number of characters necessary to display your

longestW.

ltispossibletoentefenmtonicmtheTable Entrysub—
menu's DISPLAY heid that has more characters than speci—

fied in the MNEMONlCS WIDTH field. In this case. the
mmonieswillbetrmted(tromtheright)whenthey

appear on the State Table menu.

@onoue READINGFleld

Thisfleldellowsyoutospeeityetitlewhiehwitibedisplayed
overthemnonieetorem‘s date. In default. agroup's
titlewillbetheemuthem'enm(i.e..A-Foro-s). It
youueueingthedetlutmcontiguetionJhereisno
needtoct'tengetheeevdues.ltyoudowishtochangethe
WMMMthemmcolummenterenew
Wihttisflelo.8eere7-4torahexemple.

Define Mnemonice Menu-DAS 0100 Series Operator's

MICROPROCESSOR DISASSEMBLY

Overview

Microprocessor disassembiy is set up through the Table Figure 7-6 provides a conceptual overview of how the nested
Definition suD-menu. This sub-rnenu lets you build a nested tents structure wovks. in this exempts. the tabte structure IS

table structure where one master table can control the set up for the 8085A 8-bit microprocessor. You can modify

incoming acquisition data. then pass relevant bits to appro- this stmcture to tit any other type of microprocessor
priate sub-tabie levels. This allows bit-by-bit disassembiy of disessembly.

every incoming microprocessor instruction.

|_— Acomsmon MEMORY '

I Address Date Controi I

Bus Bus Lines

l _ _ _ __| _ _ .. _J

Muster

Tebie

c

ABSOLUTE OPCODE

Tame Tunic

REG BYTE WORD

Tabie Tnbie Tebie

Table Definitions:

Group Table C This master tabie receives the incoming data word. categorizes it by whether or not it is an instruction

fetch, then calls tables and passes bits accordingly.

ABSOLUTE Tnble This table contains mnemonic definitions for operations like memory read/writes. I/O read/writes. and

interrupt acknowiedges.

OPCODE Table This tabie contains mnemonic definitions for the 8085A instruction set. This table can call and pass
bitstotheregistertebie.orcelleithatthebyteorwordtebie.dependingontheinstruction needs.

REG Table This table contains names and decoding tor the 8085A internal registers.

BYTE Table This tabledoesnotreceivepessedbits.Wheneeled.itfetdiesthenext data byte from memory and

displays it in hexadecimal.

WORD Tobie This tabie does not receive passed bits. When called. it fetches the next two data bytes from memory

and displays them as 316-bit word. (Note: This table cells and uses the functions of the Byte Table.)

M06

mn.wm.wmmmumm.

Define Mnemonics Menu—DAS 9100 Series Operator’s

The nested table structure works in the following way. First.
the incoming acquisition data is input to one of the group

tables A-F or 0-9 (in this example, group table C). This table
then serves as the master table for the structure.

Under the master table there is a series of user-detined
nested tables. These nested tabies are designed to break the
data word down into smaller and smalier categories of
recognizable bit patterns. Altogether, there can be up to 48

usendefined nested tables that can nest up to 16 ievels deep.

In this example. the first ievel of nesting categorizes data by
whether or not it is an instruction fetch. It the data is not an in-

struction fetch. it is passed from the master table to the

absolute table which identifies such operations as memory
and I 0 reads and writes.

It the data IS an opcode, it is passed from the master table to

the opcode table. This table categorizes the data according

to the microprocessors instruction set. Depending on the

complexity of the microprocessor. there may be several of

these opcode tables. each supporting specific bit patterns.

Under the opcode table there are general-purpose support

tables. These tables are designed to support often-used

instruction parameters, such as scurce and destination

operands.

Overall. the structure of the master table and its nested
tables is highly flexible. The nested levels. table names. and
table values can all be tailored to your specific

microprocessor.

The foiiowing parts of this section describe how you use the
sub—menus to set up a nested structure and its elements.

TABLE DEFINITION SUB-MENU

The Table Definition sub-menu is used to enter the frame-
work tor your nested table structure. In this submenu. y0u

define the new nested tables and their names. specify data
input to the tables. and determine which tabies can call other

tables. Once you have entered the framework for the table

structure in this sub-menu. you then use the Table Entry sub-
menu to implement the table values and actions.

N0TE

The table structure must be entered in the Table

Definition sub-menu before you can enter values
in the Table Entry sub-menu.

The Table Definition sub-menu is entered by pressong the
SHIFT and DEFINE MNEMONICS keys sumuttaneousiy

Figure 7-7 illustrates a typical display of the Table Definition

sub-menu and its fields In this example, the framework for

the table structure in Figure 7-6 has been entered into the
sub-menu.

The following paragraphs describe each of the Subcmenu

fields and show how they are used. Refer to the numbered
caiiouts in Figure 7-7 when reading these field descriptions.
The numbers are intended as a visual reference, and do not
imply sequence of use.

i

v]
H
B
6
t3
9
8
v3
3
03
F!
E

»i

V
w
a
u
q
a

i

v
"
X
X
‘
X
'
Y
X
‘
L
S
‘
R
X
I

“
‘
)
.
;

4380-07

Figure 7-7. The Tabb Definition Iub-monu and its fields.

7-8

6) TABLE NAME Field

TheTABLE NAMEfietdisusedtoehterthetnblesforthe
nested teue structure.

The TABLE NAME hetd eMeys contains the group tables A-F
and 0-9. These tables are always evelebie end can eetve as
master tabtes in the nested structures. They can the eerve
essimpielookuptabiesesdeecrbedhthelrmtpofliohof
this section.

In addition to the group tables. you can create up to 48
nested tames.

To create e nested table:

Usethe ’\ (scroll up)keytoserolltotheendofthegroup
tables. Then. in the blank field. use the date entty keys to
enter the nested tabte‘s name. The name» be up to
esght characters long.

To change the name of e nested table:

Move the screen cursor into the TABLE NAME field to

bechanged. Usethedataentrykeystoenterthenew
nemeovertheoldneme. AnyeellsintheTebleEntry

sub-menutomeoidtablenmwiubedwtgedtom
new name.

The TABLE NAME field also provides a special function that
lets you quickly access a table for display in the Table Entry
sub-menu.

To display I bu. quickly in TIN. Em:

Scrollthetable you wenttodiepleytothetopli'teotthe
screen. then press the DEFINE MNEMONICS key Ind
entertheTebte Entry sub-mentheTebleEntryetb-
menu automatically displays the table that was belted
on the top line.

®enoup INPUT Field

Use the GROUP INPUT fietd to control which tdalee have
directeocesstotheacquireddeta.mmtwlemdmy

neetedtebtesthetlookltthenextdetawordnmtuve
values specified in the GROUP INPUT hid.

meeregmphsdeecrhhmwmmmue

mwmmnuommmmmw.
mdwmmmmmmmm
WMM.WMIWW
Immedouneedtodwugetthmmeo
Mmmmmmmumm

ueodetedwiththeprogrundeuo.e..m.den.md
convolhtohnetion).Triemtehletheneuveeathe
mm.

WWWMNNIWW:

Befaeeeteblishhgthemutermtnblewitsemhnel
mm.ywmmtbetmiderhm~youheveeetup
mmmmmmmsmuonmnu.
lthmthatmeetwhdwumtormat
um:

mam — mmA
DeteBue — autumn
mum — enmempc

NOTE

While theebovegruplonmtis onlyrecom-

mended, special features cuedSystem Cells
Mwavemmmtywhevegrmped
mmnvfismw.Farmmorme-
fim.refertoSystemCdsmerin0iseection.

Onoeyouhavedetemmedthemmtonnat. you
theneelecttt'uemutermteblebyepedfymtheeeman-
nelgrwpeesinputstotheteble.

Toeelectthemeebtmtnueendlhminput:

Movetheecreenetmtomeminpmfietdsotthe

mubIeyouwenttoeerveesthemutertabte.Then.
mmmmkeys.mthedunnelgroup
hpute. Uptomdtanneiglmpseenbespeeified.

Myoffltemtnblesfl-FandO-flanbeusedforthe
mesterteble.However.toensureproperdisassemny.you
shmldeelecteglmpteblethatoormpmdstomofthe
mmwmpswqumdetemismuuedthatyou
eelectgrwptebleCtorcmtpetfilltyMththesysterncaus‘

Formehfovmefionregmmerelefionehbofthemester

mmmmhputsJetertoDieueemuyGuédeunes
given met In this eection.

WWAWTmTereeeeTheNextDeta
WMAnestedtebteeenreceivedatahtwoways:group
Mendpeeeedbltsfhetouowhgparqephsdescfibethe
numfonnhgmmntoaneetedteblefihereasons
bruehgpeseedbitseredeeaibeduuerthePASSEDBITS
Field.

mmmmmmanone
mumm.Forexemple.m8085A's MOVI
(MM)hwctiohrequireetheueeofthenext

mmdm.Togettheeenextmuts.youmust
m:wmm.maledbymmble.
mbwuflmflumxtmnfieldata
wud.Yweetd:lehWneetedt-blebymngroup

W-

Toeeceeethenextmvau:

MovetheeaeencureorbtheGROUPINPUTfieldsof

themehdtfleyoummeeceuthemxtdntaihen.
unity the date entry keys. enter the dunno! groups
mmmmmmmmwmh

Detine Mnemonics Menu—DAS 9100 Series Operator’s

ensure proper disassembly. one of these group inputs

should be the channei group which corresponds to your
master table.

N0TE

The number of channels that are assigned to a
table cannot change once values are entered in
that table. Plan carefully when definingyour table
structure.

@en‘s PASSED Field

A nested table can receive data in two ways: group input and

passed bits. The following paragraphs describe the reasons
for using passed bits. The reasons for using group input are
described under the GROUP INPUT field.

NOTE

This field only applies to nested tables. Tables A-
F and 0-9 cannot receive passed bits.

The purpose of a nested table structure is to take a data

word and send it through increasingly detailed disassembly.

To do this. the various nested tables of the structure must be
able to receive pieces of the data word from other tables. The

amOunt and type of data the table needs to receive is
dependent on the table‘s disassembly function.

You specify whether a nested table can receive data bits in
the PASSED BITS field. Any individual nested table can
receive up to 32 bits.

NOTE

The number of bits passed to a table cannot
change once values are entered in that table.

To specify the number of bits passed:

Move the screen cursor to the bit field of the nested table

you want to receive data. Then. use the data entry keys
to specify from 1 to 32 bits.

In addition to specifying the number of bits, you use the BITS
PASSED fieId to specify the radix ot the bits as they appear
in the Table Entry sub-menu.

To specity the radix of bits passed:

Move the cursor to the radix field, then press the SE-
LECT key. The field displays the optional radix values in
this order:

1 EN 1
[HEX 1
1 OCT 1

NOTE

The selected radix does not affect the number in

the BITS PA8850 field. The number in this field
always refers to binary bits.

@TABLE TYPE Field

The TABLE TYPE field is used to specify whether or not a
table can call other tabies.

In default, all tables are a DEFAULT type. They operate as
simple Iookup tables and can be called by other tables. but

they cannot call other tables.

You can change any of the tables to 3 CALL type. This
means that the table can call other tables. In a nested
structure. the master table. and any nested tabies that rely
on other nested tabIes. must be a CALL type.

NOTE

A table must also be a CALL type if it accesses
any system calls. For more information. refer to
the System Calls descn‘ption later in this section.

To change a table to 3 CALL type:

Move the screen cursor to the table's TABLE TYPE
field. then press the SELECT key. The field displays
optional values in this order:

1 DEFAULT 1
[CALL 1

@ACCESS counr and see coum Columns

These two columns keep track of the various tables once you
start entering values in the Table Entry sub-menu.

The SEQ COUNT column keeps track of how many se-
quence values each table contains. In default. the number of

sequences for each table is zero, which means the tabies are

empty. This number wiII increment when you start entering
table sequence values. To decrement the sequence count

use the DEL LINE key to remove the entry from the tabIe.

The ACCESS COUNT column keeps track of how many
times a table is accessed or called by another source.

In default. the access count value for each group table A-F

and 0-9 is one. These tables will always have an access
count of at least one because they are automatically ac-

cessed by their corresponding group column on the State
Table.

Each nested table starts out with an access count of zero.

This count value will increment each time you call the table
from another table.

NOTE

The access count for nested tables must be zero

before you can change the table's GROUP IN-
PUT or BITS PASSED fields.

@MICRO NAME Field

This field allows you to specify the name of the processor for

which yOur mnemonic disassembly is designed. The name
entered in the field may then be displayed in the State Table
and Trigger Specification menus.

The name entered in the MICRO NAME field can be dis-
played in the column headings in the State Table menu.

Before the name will be displayed. however, the following
conditions must be met:

0 The name only appears over the group A. group C. and
group D columns of the State Table.

° The name only appears over a group column in the State

Table when the DISPLAY MNEMONlCS field for that
group is set to YES, in the Display Setup sub—menu.

0 The display width for the group column in the State
Table display must exceed the length of the name in the
MICRO NAME field by at least five characters. The

Figure 7-8. Table Definition values tor disassembling en 0005A
microprocessor. The ACCESS COUNT end SEQ COUNT fields are
still at their default values because no tables for disassembling the
8085A have yet been entered. Note that tables A, B. D—F. and 0-9 are
left as they were in the default situation because they are not used
for disassembly.

Define Mnemonice Menu—DAS 9100 Series Operator’s

display width is the sum of the mnemonic width (as
defined in the Display Setup sub-menu) and the data
display width.

The name entered in the MICRO NAME field is also displayed
in the Trigger Specification menu whenever a PMA 100
Personality Module Adapter is connected to the DAS.

To enter a micro name:

Move the cursor to the bottom of the DA8 display. Then
in the blank field, use the data entry keys to enter the
processor's name. The name can be up to nine charac-

ters long.

To delete e micro name:

Place the cursor in the MICRO NAME field. then press
the DON'T CARE key. This blanks the entire MICRO
NAME field.

Defining a Mnemonic Structure

As mentioned previously. the table structure for any disas-
sembly tables must be entered into the Table Definition sub-
menu before entering values into the Table Entry sub-menu.

Taking the previously developed example of an 8085A disas-
sembly structure (refer to Figure 7-6). the values shown in
Figure 7-8 would be entered in the Table Definition sub-menu
to disassemble an 8085A microprocessor. Refer to Figure 7—
8 while reading the following text.

Table C (Figure 7-10) is the master table in this example. It
receives all address (group A). data (group D). and control

lines (group C) as specified in the GROUP INPUTS field. The
TABLE TYPE field is set to CALL so the master table can call
the nested tables.

Table ABSOLUTE has data and control bits passed to it.
This table disassembies operations like memory reads and
writes, l/O reads and writes. and interrupt requests. Notice
that the ABSOLUTE table is a DEFAULT table since it does

not need to call other tables.

Table OPCODE (Figure 7-11) also has data and control bits
passed to it. But, unlike table ABSOLUTE. OPCODE is a
CALL table since it calls other tables to complete disassem-
bly of most instructions.

Table BYTE (Figure 7-12) does not have any bits passed to it.
BYTE's function is to look at the next acquired word (so it
has group inputs C and D) to decode operands of the current
machine instruction.

Most other nested tables. like WORD and REG, are similar to
one of the three nested tables just described.

Define Mnemonics Menu—DAS 9100 Series Operator‘s

TABLES CALLED

DI“ IOCOIVM: C200 1” El

STACK CONTENTS

mt mus nu mt -

a c n
I a Dr m Ex au. mm

I mu m x:
_ _.. - V CALL———I—> Suck Ion! 0. Ylbln C. SEO 0. Entry #1

|

, [3
Pill I

“‘°‘°°° mmmm m: m— I

n x
‘ ii I!!! m maul f

xj‘) 2 mm m, | Such Incl 0. mm c. SEO 0, Entry n
' _~‘-*. 0 (CALL —‘—. Slack Incl 1. TIM. V SEO 2. Entry #1

....-. z) 1¢

I i |
Fun ,
‘0‘00 mt newts nu Int — g

‘ .
a m on am

1 I m u

l _ Slack hnl 0, mm c. 550 0. Entry n
. l M m —IETUIN ——-> Suck low! 1. Tobin V. SEO 2. Entry n

l
mm nonucs tau m! _ ~—nsrunn

B

m m. I!”

2 um um.
..... a (Slack Ionl 0‘ leh C. SEO 0. Entry :1
-W. Z J CALL —l——’ Slack lcvol 1. Tau. 1. SEO 2. Entry v2

‘ i
Pul!

‘09 mm mu: M: m! —

v
n m mm

. ‘ u a a
1 :1 a

1 ' 10 c‘ J\ § .11 a such man 0. run c, 5:0 0. army n
_) . 1. E nmum—. Suck um v. Tau. v. sea 2. Entry :2

a m r
6 m c
7 m n

mu:ms M: m:— <——-—-n:runn

a

5: DIN m. mm

2 um m.
_~«~. a (
—““ Z newvm ___. Suck mm o. nun C. sea 0. am n

B!!! mm: Tu m! - <—-—-——n£runn

a c n
a 0 III In an MM

0 M m a

: - : ' —— m

STATE TABLE DISPLAY

lRHIK

WT! W(

IRLCFKE

LRLCFKG)

|_______fi

IRLCFKG)
4380-09

Figure 7-9. Overflow of how tabla calls operate. This figure shows how using call tables for disassembly is like a program which calls and re-
turns from subroutines. The locations that must be returned to are saved in a push-down stack. Each of the called tables may add a portion to the
displayed mnemonic.

7-12

Deline Mnemonics Menu—DAS 9100 Series Operator‘s

USING CALL TABLES IN THE TABLE ENTRY SUB-MENU

Call tables occm in the Table Entry sub-menu of the Define
Mnemonics menu when CALL is selected in the TABLE
TYPE field of the Table Definition sub-menu. Call tables can
call disassembly procedures that are set up in other tables.

By spreading mnemonic disassembly through several tables
that act as subroutines, disassembly of complex micro-

processors is possible without immense lookup tables. Ta-

bles that function as subroutines are called using the CALL
field.

When a table is called by another table. disassembly moves
from the current table to the beginning of the called table. The

called table may also call other tables (tables may be called

up to 16 deep). When any called table reaches the end of a
sequence. disassembly returns to the table that called the
completed table. Figure 7-9 shows how the call structure of
disassembly works.

It may be helpful to consider called tables as a set of

subroutines in a program. There is a main program se-
quence the master table, which calls subroutines. Each

subroutine may then call other subroutines. When a subrou-
tine finishes, the program returns to the next step in the
Subroutine that initiated the call. A stack keeps track of each
subroutine call, so the disassembly can return to the correct

location in the table that called the subroutine.

The following discussion of call tables describes how to use
the CALL field. how to pass bits to called tables. and how to

access the next data word. The discussion focuses on
disassembly of the 8085A microprocessor. However. other
processors can be disassembled using the techniques

shown here.

438040

Figure 7-10. Table c (master table) for 0005A dluaumbly. This
table separates opoode fetches from other types of machine cycies
(like memory reads and writes and I/O reads and writes).

These paragraphs describe each of the sub-menu fields and
show how they are used. Figure 7.10 illustrates a typical
display of a call table. Refer to the numbered callouts in

Figure 7-10 when reading the field descriptions. The numbers
are intended as a visual reference. and do not imply se-
quence of use.

(D CALL Field

The CALL field is used to specify the table or system call that
the disassembly routine goes to next.

There are two tabie calls in Figure 7-10, one in SE0 0 to table

OPCODE and one in SE0 1 to table ABSOLUTE.

To call a table. enter that table's name in the appropriate
CALL field. A return is performed when disassembly reaches
the end of a sequence in the called table.

N0TE

Any table name entered in the CALL field must
match one of the table names already set up in
the Table Definition sub-menu. The cursor wi/I

not leave a CALL field containing an undefined
table name.

To enter 1: CALL value:

1. Move the screen cursor to the CALL field.

2. You may use the data entry keys. A-2 and 0-9. and the
punctuation keys to enter the desired name in the field.
Names entered may be a maximum of eight characters
long. For example. ABSOLUTE.

[ABSOLUTE 1

3. The DAS displays the entered table name in the field.
Any mnemonic disassembly that reaches this point per-
forms the disassembly in table ABSOLUTE.

if you look in the Table Definition sub-menu (by pressing the
SHIFT/DEFINE MNEMONICS keys), you will see that the
ACCESS COUNT value for table ABSOLUTE has increment-

ed by one. The ACCESS COUNT of a table increments every
time that table is called by another table.

To delete I CALL value:

Move the cursor to the call value to be removed and

press DON‘T CARE. The field will blank.

Define Mnemonics Menu—DAS 9100 Series Operator’s

@VALUE Field

The VALUE field of the Table Entry sub-menu is used to enter
the data which will be recognized as mnemonics. The field is
also used to pass bits from the current table to a called table.

VALUE Field Column Headings. Before entering anything in
the VALUE field, note the labels at the top of each of the
columns in the VALUE field. Each column head corresponds

to inputs to the table as specified in the Table Definition sub-
menu. In Figure 7-1 0 these inputs are group A, group C, and

group D. it bits were passed to the table, there would also be
a column labeled P (for pass).

Specifying Values. You may specify a data value in the
VALUE field on the first line of any sequence. If data received
by the table matches the value in the field. then the sequence

performs its part of the disassembly. if the data received by
the table does not match the value specified, the table looks
at the next sequence for a match. So it two entries can both

accept the same bit pattern, the entry with the lowest

sequence number performs the disassembly.

This hierarchical design can reduce the number of entries in a
table. Note that in Figure 7-10 sequence 0 requires a specific

bit pattern to call table OPCODE. This bit pattern corre-

sponds to an instruction fetch by an 8085A microprocessor.
Sequence 1 accepts any bit pattern at all, but it only receives
bit patterns that are not instruction fetches because se-

quence 0 intercepts all instruction fetches.

To specity or change a value:

1‘ Move the screen cursor to the topmost value field of a

sequence. This field contains all Xs (don't cares) in

default.

2‘ Usmg the data entry keys. enter the desired value in the
radix indicated at the top of the column. X (don't care) is

specified with the DON‘T CARE key.

To delete an entire sequence:

1. Move the screen cursor into the topmost value field of

the sequence you want to delete.

2. Press the DEL LINE key. The sequence will disappear
and any sequences below the deleted sequence will

move up.

Passing Bits. Whenever a table is called that has bits passed
to it. the bits to be passed must be specified in the value field.

The bits passed to the table are indicated by the /\ (SHIFT/H-

ALT) character on the DAS screen.

N0TE

When passing bits to a table, you must pass
exactly the number ofbits expectedby the called

table. The cursor will not leave the field if you
pass the wrong number of bits.

Data passed from one table to the next need not match
radices. but the number of binary bits sent must equal the
number of binary bits expected by the called table. For
example, passing a hexadecimal digit passes four bits. pass-
ing an octal digit passes three bits. and passing a binary digit
passes one bit.

To indicate the bits passed to a table:

Move the screen cursor into the value field to the left of

the table call.

HEX BlN HEX
L--.) l---] l -_l [ABSOLUTE]

Press the SHlFT/HALT keys (A) at every location that y0u
want to pass bits.

HEX BIN HEX
l..---l l “’1 l l [ABSOLUTE]

The A indicates the bits to be passed to the next table.

In this example. table ABSOLUTE will receive 11 bits.

Passed bits may be removed by moving the cursor over
the A to be removed and pressing DON‘T CARE.

@ DISPLAY Field

For an example of how the DlSPLAY field may be used in call

tables. refer to Figure 7-11. This figure shows how table
OPCODE uses the DISPLAY field in conjunction with the
CALL field.

4380-! 1

Figure 7-11. Table OPCODE for 8085A diusurnbly. This table

is called by table C (the master table) to translate 8085A opcodes
into mnemonics. Note that this table. which acts as a subroutine

for table 0. also calls other tables.

When using the DISPLAY fields in call tables. it is useful to
think oi disassembly moving from left to right, then top to
bottom. Disassembly happens in the following sequence:

1. The table receives data and locates a sequence that
matches this data. The date may include both passed
bits and group data from the State Table.

2. The Define Mnemonies menu writes the oheractets from

the first DISPLAY field of the table sequence on to the
State Table display. For example. if 01000111 were
passed to table OPCODE in Figure 7-11. the disassem-
bly would start at table sequence 1 end ‘MOV.’ would
be displayed on the screen.

3. Disassembly moves down to the next line of the table
sequence. If there is a name in the CALL field. the table
is called. Disassembly proceeds to the called table, in
this case table REG.

4. When table REG is finished. disassembly returns to the
current table and whatever is in the DISPLAY field next
to the table cell is displayed on the State Table (a
comma).

5. Disassembiy continues in this order until all table calls
and displays have been performed. In this example the
State Table would display 'MOV.B,A'. The B and A
would be decoded by table REG.

NOTE

Display entries areplacedadjacent to one anoth-
er without spaces between them. To place

spaces between display entries, system cells
must be used. System calls are described later,
under the heading System Calls.

To enter cherectei'e in the DISPLAY field:

Move the screen cursor into the field. Enter characters
with the data entry keys 0.9 and A-2, and the punctua-
tion keys.

To delete I display entty:

Move the screen cursor into the display field to be
blanked. Press the DON‘T CARE key. The field will be
blanked.

Accessing the Next Word

Many microprocessor instructions are fetched by the proces-
sor over more than one machine cycle. In the 8085A micro-
processorthereareinstructionswithoneortwooperands
that must be fetched before the instruction cycle is complete.
TheZBOmicroprooessorhessaneopoodesthatoowpytwo

successive memory locations as well as having operands.

To disassemble instructions that occupy several machine

Define Mnemonlce Menu—DAS 0100 Series Operetor's

cycles. the Define Mnemonias menu uses call tables to work
on several consecutive sequences oi acquired data.

An Exemple with the 0005A. One example of an instruction
that takes two machine cycles is the MVI (move immediate)
instruction of the 0085A microprocessor. Table OPCODE.
shown in Figure 7-11 . decodes a move immediate instruction
in table sequence 2. Sequence 2 displays the next acquired
word by ceiling table BYTE. Teble BYTE is shown in Figure 7-
12.NotioethetnobltsarepessedtotableBYTE.

Figure 7-12. Teble BYTE tot 0005A dlueeembly. This table is
called by teble OPCODE to display the next byte of data. Table
BYTEhesgroupCendDinputs.butreoeivesnopessedbits.The
arctipil'iputseendthenextecmireddetetotheteble.

'HEX is eeystem calithet displeysthe bitspessed to it in hexadeci-
mal radix. System eels are described in detail later. under the
heedlng System Cells.

By accessing successive words. multiple byte instructions
can be decoded. Table BYTE checks the control lines to
make sure the byte is part of the instruction, then the
acquired data is displayed in hexadecimal radix. Disassembly
then returns to table OPCODE.

Table WORD (shown in Figure 7-13) provides an example
showing which word is disassembled by each table. Table
WORD is called by OPCODE to display the next two trailing
data bytes as one word. The second byte must be displayed
firstsinoetheeecondbyteisthehigh—ordeihetfoftheword
endthefirstbyteisthelow-orderhalfoftheword.

Tables, other then the master table. only receive new data
whentheyarecalled. Retuminglromatebledoesnotbring
new data into a table. even if the table has group inputs. After
returning from a cefled table, the calling table's disassembly

continues as though uninterrupted.

7-15

Define Mnemonics Menu—DAS 8100 Sen” Operator’s

'i; ‘1' mgyy

M13
Figure 7-13. Table WORD totWAdeem.TueWORD is
called by OPCODE (shown in Figure 7~11) to display the next two
eoquiredbytesfmnthemieroproeeeeordatabmumete-bit
word. The first acquired word contains the low-Otoer byte. end the
second acquired word contains theWbyte.

Table WORD receives word 2 (the first wad attet OPCODE's word -
word 1). but does not display it yet. WORD eels BYTE. which
dispiays word a (the second word after OPCODE's word). and
retume to WORD. ThenWORD dispiays thedateitreoeiveflwom 2)
and returns to table OPCODE.

An Example with the 0809. On the other hand. consider

disassembling a two-byte word for a 6809 microprocessor.
With the 6809 (in contrast to the 8085). the first byte is high-
order. and the second byte is iow-order. So the first byte
should be displayed first and the second byte displayed
second. With this high~|ow byte order, table WORD is no
longer needed. It can be replaced by caning table BYTE twice
as shown in Figure 7-14.

Figure 7-14 shows that once a word has been used. it is not
used again by any other table in the structure. Caiiing BYTE
twice in Figure 7-14 displays two consecutive words. not the
same word twice. (Some system calls can be used to over-
ride this. allowing words to be dissassembied more than

once. For more details see the System Calis description.)

Disassembling a Series of Machine instructions

When an opoode is entirely disassembled. the Define Mne-
monios menu starts disassembly of the next opoode by
calling the master table. The foiiowing rules indicate when the
master table is salted.

1. ThewordatthetopottheSteteTabiesereen(theone
withtheiowestsequenoenmnber)isthefimtwordeent
tothemaetertebie.TheDeflneMnetnonioemdiees—
sembies only the date wmtiy displayed on the State
Tebie. New data is disassembied when it is moved into
the display area of the State Table menu. either by
scrolling or changing sequence numbers.

7-16

the State Tabie menu. by scrolling or changing sequence
numbers.

2. When a machine instruction is completely disassembled

(there are no more call or display instructions for that
instruction) the next acquired data that hes not been
disassembled is sent to the master table. This continues
until the State Table display is filled or there is no more
acquired data.

3. The master table determines the next date to use by
looking at the iast-used data in its own group (e.g., table
C checks group C acquired data). The master table
assumes that the last data used in its group corre-
sponds to the last data used in all of its accessed
groups.

Figure 7-14. Table OPCODE tov dimeunbling an extended
eddmemodesuhmeocumuetorinmmory)otauos
microprocessor. The hexadecimal machine code B7 is detected,
which indicates an extended address STA inshuction. Table BYTE is
then called twice in a row. The first call to BYTE displays the first
(high) byte after the STA opoode. The second call to BYTE displays
the next (low) byte. which is the second byte after the STA opoode.

Define Mnemonics Menu—DAS 9100 Series Operator’s

SYSTEM CALLS
Define Mnemonics System Calls are special commands

which facilitate mnemonic disassembly. They give you added
capability to control the disassembly and display of acquired
data. You can use them in any call table.

To enter a system call:

You enter a system call in the same way you enter a
table call: by entering the name of the system call in a
Table Entry sub-menu CALL field. (System calls are
essentially reserved table names. and are always pre-
ceded by an asterisk.) Some of the system calls require
you to pass bits. You do this in the same manner as you
would pass bits to a table.

During disassembly of a data word. most system calls be-
have in the same nested fashion as table calls. When the
DA8 has executed a system call, it returns to the next line of
the call table‘s disassembly sequence.

The following paragraphs describe each of the system calls
and their use.

System Calls for Controlling Mnemonic Display

These system calls control how disassembled data is dis-
played on the State Table.

'BLANK. This system call displays one blank character. You
can use it to separate different groups 01 displayed data (for
example. opcodes from operands).

'TAB. This system call also allows you to separate displayed

data by advancing display of the next item to the next tab
setting. Tabs are preset to character positions 1. 9, 17....57.

'HEX. This system call displays the hexadecimal value of the

bits passed to it. It does not suppress leading zeroes.

'OCT. This system call works in the same manner as ‘HEX
but displays an octai value.

‘BIN. This system call works in the same manner as ‘HEX
but displays a binary value.

‘HEXS. This system call displays the value of the bits passed
to it in signed hexadecimal.

N0TE

'HEXS only works on 8 or 16 bits. If you pass
the wrong number of bits to ‘HEXS, negative
word values can cause the wrong number to be
displayed.

'HEXS assumes the bits passed to it form a two's comple-
ment number. it displays a plus sign it the most significant bit
is a 0. or a minus sign if the most significant bit is a 1.

The example in Figure 7-15 shows how some of the system
calls for controlling mnemonic display might be used.

DATA ACQUIRED

i A c D A c D fl
! HEX BIN HEX HEX BIN HEX CALL DISPLAY 4 }
% c200 10011 D2———-—XXXX xxxx xx

‘ _ _ - . . _ _ , . XRED
_ /\/\ *HEXS —_——‘

’ XBLANK—l AT -—
E - ms——————

i \ i"\ 'A\. t HEX

DISASSEMBLY TABLE STATE TABLE DISPLAY

4380-15

Figure 7-15. Using ‘RED. 'HEXS, 'BLANK, ‘TAB. and 'HEX. This example demonstrates how the display system calls can organize the dis-
play of data. The highlighted display line is caused by the 'RED system call.

7-17

Detine Mnemonics Menu—DAS 9100 Series Operator's

‘RED (highlight). This system cali sets the display to the
color red. or. in the case of a monochrome display. causes a
highlighted display.

‘GREEN. This system call works in the same way as ‘RED
but causes a green display. 'GREEN has no effect on a
monochrome DAS display.

‘YELLOW. This system call works in the same way as 'RED
but causes a yellow display. (Note that yellow is the default

color for State Table display of disassembled data.) 'YEL-
LOW has no effect on a monochrome DAS display.

All of the color calls affect the entire line of the group
displayed on the State Table. not just a singie item. It more
than one color is called during disassembly of a machine
instruction. the last color specified is the one displayed.

System Calls for Relative Addressing

The four ‘RLADD system calls perform relative address

caICUlations. For example. when disassembling a relative
jump instruction you can use a 'RLADD system call to

display the actual address jumped to. rather than displaying

the offset. The ‘RLADD system calls operate on addresses
up to 32 bits long.

NOTE

All of the 'HLADD system calls assume that the
microprocessor address lines are acquired

through group A (in the Channel Specification
menu). Values are displayed in the radix ofgroup
A.

Table A can receive a maximum of 32 bits from

combined inputs when relative adds are used. All

other tables can receive 138 bits.

All of the 'RLADD system calls use the value in group A as
their base and then add or subtract an offset from this group
A value. Do not pass bits from group A to the 'RLADD
system call; the ‘RLADD system call automatically gets the
value from group A for you. The group A data used is the
value in group A that matches the most recently looked at
group C data. Figure 7-16 illustrates which group A data is
used by 'RLADD calls.

DATA ACQUIRED DISASSEMBLY TABLES RESULTS

A c D TABLE NAME = C

SEO HEX BIN HEX A c D
1 HEX BIN HEX CALL
2 2222 010 22 LU” XXX XX Aoataseqt Ddataseqi
3 3333 011 33 “ tRLADDt —> 1111 - oon =t122

ALPHA

I
A C D

550 HEX BIN HEX TABLE NAME = ALPHA ‘J
1 mt 001 n
2 2222 010 22 D
3 3333 011 33 I BIN HEX CALL

XXX XX Acataseq2 Daataseq2
—-- M ”MODi —> 2222 - 0022 : 224.:

BETA
I

A C D
SEQ HEX BIN HEX TABLE NAME = BETAJ

1 1111 001 h D

2 22 HEX CALL
3 3333 0” —-————-———-—>xx Adataseq? Ddataseq3

A 2. tRLADD‘. —> 2222 - 0033 , 2255

4380 76

Figure 7-16. The ‘RLADD system calls use group A data from the data sequence most recently looked at by group c. Table BETA provides
an unexpected result because the group A and group D data read by table BETA do not come from the same data sequence. Because table
BETA did not access group C. the last data sequence looked at by group C was data sequence 2.

The data (offset) you pass to a ‘FlLADD call is treated as a

two's complement number. The most significant bit is treated
as a sign bit. Each of the 'RLADD calls display the resulting

number in whatever radix group A is set to. Details specific to
each of the 'RLADD system calls are provided in the follow-
ing paragraphs.

NOTE

'RLADD system calls only operate properly it
you pass 8. 11, or 16 bits to them.

'RLADm. (Group A + offset). This system call adds the

value in group A to the bits you pass to it.

Define Mnemonics Menu—DAS 9100 Series Operator’s

'RLADDZ. (Group A + 1 + offset). The °RLADD2 system
call adds 1 to group A and the bits you pass to it. This method
of relative addressing is typically used by 8-bit processors.

'RLA003. (Group A + 2 + offset). °RLADD3 adds 2 to
group A and the bits you pass to it. Sixteen-bit processors

with byte addressing typically use this method of relative
addressing.

‘RLADD4. [Group A + 2 + (2 x offset”. °RLADD4 adds
group A plus two plus two times the bits you pass to it. This

method of relative addressing is used by 28000 and DEC
POP 11 processors.

The example in Figure 7-17 shows how ‘RLADD1 might be
used.

DATA ACQUIRED

A c D A c
HEX 13111 115x HEX BIN
£299] 10011 FE———>XXXX xxxx

DISASSEMBLY TABLE STATE TABLE DISPLAY

D C1FE
HEX CALL F
XX

AA XRLADD1

l

l
c200 - FFFE = C1FE }

|
l4380-"

Figure 7-17. Using ‘RLADD1 to calculate a relative address. This table could be called by another table that discovered a relative branch or
jump 1nstruct1on. Note that the group A bits are not passed to °RLADD1; the system call automatically gets the group A data.

Error-Handling System Calls

'ERROR. This system call erases any disassembly which
has occurred so far on the current machine instruction, then

calls the table named ERROR‘.

You must create the table named ERROR‘. It allows you to
define what information about the error you want to display.
ERROR‘ may only have group inputs. The usual inputs are
the address and data groups. The control line group may also
be an input to show the bus cycle type.

ERROR‘ operates on the data sent to the master table for

the current machine instruction. So even though the table
has group inputs. it does not access the next data. In fact. it

may move backwards through the disassembled data to
arrive at the point where the master table was last called.

Once table ERROR‘ is finished. the next date in acquisition
memory is automatically sent to the master table to start
disassembling the next machine cycle.

‘EXIT. The ‘EXIT system call displays all of the disassembly
performed up to the 'EXIT, then terminates disassembly of

the current data word. The next word is then disassembled

starting from the master table, and displayed on the next line
of the State Table.

'DECR. The 'DECR system call backs up the data used
during disassembly by one acquisition data sequence. After a

'DECR, the next table call (master table or nested table) that

accesses group data directly (not passed bits) receives the
same data word that the table containing 'DECR was look-

ing at.

The effect of the ‘DECR system call continues even when

disassembly is restarted and the master table is called for the
next instruction. If several ‘DECRs are used. the data used
for disassembly is backed up as many acquisition secluences

as there are 'DECRs.

7-19

Define Mnemonics Menu—DAS 9100 Series Operator’s

The ‘DECR system call only affects the channel groups that

serve as inputs to the current table. If the current table has no

channeI Inputs (only passed bits) then 'DECR has no effect.

‘DECFI Is useful when 3 called table (that uses group inputs)
determines that the data word In acquisition memory is not

what was expected. i.e.. that it was not part of the previous
instruction. When this occurs. ‘DECR gets the previous
word in acquisition memory The unexpected data word can
then be disassembled correctly. starting from the next mas-
ter table call. Figure 7-18 shows one possible use of the
'DECFI system call.

DATA ACQUIRED DISASSEMBLY TABLES

TABLE NAME 7 C

STATE TABLE DISPLAY

0 SEO
HEX CALL DISPLAY 20 opcooe DZ :1
xx opcooe L——-—“—-J
-- tBLANK 21 IiEAD—moj
‘ ‘ WEX

A

A c o A
2 550 HEX em HEX I I see HEX 3m

20 C200 10011 02 —-—-—>0 XXXX IOOXX

—>21 F830 11010 oo—zfi

3
1 XXXX IIOiX

...

TABLE NAME : BYTE

XX

D

SEO R.Ex HEX CALL DISPLAY

0 xxxx 10?“ xx

--~ -~»- 7- XBLANK OPERAND
' XELANK

‘ thEx

L_3_ I xxxx xxxxx xx 2
, tDECFI "

 4330-‘8

Figure 7-18. Basic operation of 'DECR. In step 1. acqunred data sequence 20 is sent to the master table (C) and Is decoded as an opcode Se-
quence 0 of table C then caIIs table BYTE to display the operand.

In step 2. table BYTE accesses acquired data sequence 21. However. table BYTE detects that the acquired data on sequence 21 IS a read cycle

not an operand, Since the data was not an operand. table BYTE pnnts ”. performs a 'DECR. and returns dIsassemny to the master table (CI

In step 3. the data acquired on secuence 21 05 sent to table C where it Is decoded as a read cycIe and displayed

System Calls for Pipelined Processors

These system calls are Intended to taciltate disassembly with
pipelined processors.

0 The system calls ’NOP, 'RECALL, ‘LOOP, and ’SKIP

are useful when determining whether an instruction that
enters the pipeline Is actually executed.

0 The ‘MARK and 'MIRACLE system calls are useful for

changing the order in which data is displayed.

Details of these system calls are provided in the following
paragraphs.

7-20

N0TE

System calls 'MARK and 'M/HACLE only work
if the master table for disassembly is table C.
They have no effect when any other master table

is used.

'MARK, ‘M/RACLE, and ‘ SKIP have no effect if

you scroll backwards through the State Table
display. However, by pressing the STATE TA-
BLE key after scrolling backwards. you can dis-
play the mnemonics with all system calls

operating.

‘SKIP. The ‘SKlP system call prevents the disassembly of

the current machine instruction from being displayed. Disas-
sembly ot the machine instruction continues until completed.
but the results are not displayed. Disassembly display is

enabled again when the disassembly of the current machine
instruction is completed and the master table is re-entered.

'SKIP is useful if. for example. a table discovers that the
machine instruction being disassembled was never executed

by the microprocessor due to a queue flush.

'RECALL. This system call is designed to search ahead
through acquired data. When a 'RECALL occurs, the table

containing the 'RECALL calls itself (therefore receiving the
next acquired data). and a counter is incremented to show
how many times the table has 'RECALLed itself. The table
may ‘RECALL itself through the entire acquisition memory.
The table may have group inputs or pass bits to itself by
passing bits to the ‘RECALL.

N0TE

'RECALLS that search far through acquisition
memory may take a long time to display results.

If a disassembly routine with a ‘RECALL takes a
long time to display mnemon/cs on the State
Table. you can press the STOP key. Pressing

STOP stops disassembly of the current word

and restarts disassembly on the next acquired

word.

When the table containing the ‘RECALL is finished (reaches
the end of a table sequence)‘ the table periorms as many

Define Mnemonics Menu—DAS 9100 Series Operator’s

'DECFls as there were times that the table ‘RECALLed
itself. betore returning to the calling table.

The end result is that even th0ugh the °RECALL may have
scanned through the entire acquisition memory. the stack
does not overflow. Also. to any tables that receive group
data after the °RECALL is finished. it appears that the table
with the °RECALL only looked at the first word passed to
it—not at any ot the following acquired data.

For example. a table with a 'RECALL might look ahead
through memory to see it an instruction going into a pipelined
processor was actually executed. It the instruction was
executed the disassembly would be displayed If not, a
'SKIP would be called. When the table with the 'RECALL
was done. the disassembly would continue as though the
table with the ‘RECALL only looked at one word. not
several,

Place ‘RECALLs at the end of table sequences. After a
'RECALL is executed the mnemonic table does not return to
complete any disassembly placed after the ‘RECALL.

NOTE

If 'RECALL is used in a table that receives

passed bits, the 'FIECALL must have as many
bits passed to it as the table expects. Otherwise.
the error message INCORRECT NUMBER OF
BITS PASSED will appear during disassembly.

Figure 7-19 shows how ‘RECALL might be used to locate
data far down in the acquisition memory and return to the

current disassembly status.

7-21

Define Mnemonics Monu—DAS 9100 Series Operator’s

DATA ACQUIRED DISASSEMBLY TABLES STATE TABLE DISPLAY

TABLE NAME. c

A c D A C D nee ADDR JMP T0 151:2 ass o550 HEX am HEX sso HEX a | N HEX CALL DISPLAY |__.___I L_I L_i
5 C200 1th 02 T__.’ o xxxx iOXXX x2 REGADDHJMPTO____4 t
6 C201 tom FE XXXXX - - JUMP .REG

7 15F2 10110 no - xxxxx max

Jump bit TABLE NAME JUMP

(active low) A C D

550 HEX 3m HEX CALL mspw
_. 0 X X X X X X X X 0 X X

- - - - ----- - - taumx
' M 1‘ »»»»» - - tHEX
» . - - ----- toscn

2
—-. 1 X X X X X X X X X X X

- - > , ----- - ~ tRECALL 4380 ‘ E

Figure 7-19. Using 'RECALL. In this example the user is trying to decipher a register-addressed jump. In step 1, acqu1red data sequence 5 Is
sent to table C. Table C decodes the data as a register-addressed jumps Since the register is internal to the processor, table C must use taoie
JUMP to search through acquired data and discover where the jump is going.

In step 2. table JUMP receives acquired data sequence 6. but finds that this sequence does not contain the iumped-to address. Table JUMP p6"-
torms a 'RECALL so it can look at acquired data sequence 7.

in step 3. table JUMP receives acquired data sequence 7. which contains the jumped-to address Table JUMP displays the Jumped~to address on
the screen and returns disassembly to table C. The combination of 'RECALL and 'DECR 1n table JUMP sets the acquired data so table C re»
ceives acquured oata sequence 6 next. So the next table to access acquired data will be unaware that table JUMP ever looked at the acouuec
datav

'LOOP. This system call causes the table to loop on itself
without overflowing the stack. 'LOOP works similarly to
'RECALL. but does not perform any of the automatic
'DECRs that °RECALL does when returning to the calling

I .
tab e NOTE

It 'LOOP is used in a table that receives passed

‘NOP allows you to gather specific bits from more than one
line of a call table sequence. which you can then pass to an

appropriate system call. When you use ‘NOP to pass bits to
'RECALL. ‘LOOP or 'MIRACLE, you must gather the exact
number of bits that the table expects. Figure 7-20 shows how
'NOP can be used to rearrange the data display. Figure 7-21
shows how 'NOP and 'RECALL can operate together.

bits, the 'LOOP must have as many bits passed
to it as the table expects.

N0TE

In Figure 7-21 the user knew the table would

receive 001 as bits passed from the previous

table. Passing unknown bits would cause unpre-

dictable results.

'NOP. This system call is used to rearrange the order in
which bits are displayed or used. 'NOP is only useful when
followed by ‘RECALL. 'LOOP, 'MIRACLE. 'HEXS, 'HEX.
‘OCT, or 'BiN system calls.

DATA ACQUIRED DISASSEMBLY TABLE STATE TABLE DISPLAY

A C D A C D 7
HEX BIN HEX HEX BIN HEX CALL
C200 10011 DZ—‘WXXXX XXXXX XX

--/\-/\ -~ XNOP—l I
»--A. -- tNOP L .—.
/\--~- -- tHex—> 011¢=7

L_____4
4380 2C-

Figure 7-20. Using ‘NOP and 'HEX to rearrange data. In this example, the user rearranged control bits to make a hexadecnmal code

7-22

Define Mnemonics Menu—DAS 9100 Series Operator’s

DATA ACQUIRED DISASSEMBLY TABLE STATE TABLE DISPLAY

p A c 0 A c D P E w R
BIN HEX BIN HEX MEX am uzx am CALL DISPLAY 35 o E

I 001 c200 00011 22 xxxx 1xxxx xx 001
4—. 010 c201 01011 SE --.v H. ‘DECR lSEO LATER

r __2_,100 c203 10011 F1
xxxx 1xxxx xx 010

..... ._ 30KB 2SEOLATER

sef'mg 1"" xxxx 1xxxx xx 100
3 mm _____ _, xoscn assouten
column

xxxx oxxxx xx 100
..... .A IDECR DOTFOUND

xxxx xxxxx xx xxx - 2
..... .. .~ um I
..... tRECALL

A38{ 2‘

Figure 7-21. Using 'RECALL with 'NOP. This table would be used to search for an occurrence later in acquired data. The user de51gned al! ta-

bles which call this table to always pass 001. SEC 4 of the disassembly table acts as a shift register on the bits passed to Indicate how many

‘RECALLS have been executed. In step 1. the data received by the table does not match the searched- for pattern. so sequence 4 of the table

uses ‘NOP and 'RECALL to do a shift right on the passed bits and look at the next acquired data.

In step 2. the next acqu1red data lS received by the disassembly table. The searched tor-pattern is still not found. so table sequence 4 does anoth-

er shift right on the passed bits and 'FlECALLs the table to look at the next acquired bits,

In step 3. the last acqunred data is received by the disassembly table. Disassembly sequence 2 recognizes the deswed pattern and displays a

message. If the pattern sequence had not been present in step 3. disassembly sequence 3 would have displayed NOT FOUND and stopped the

search. This way. a max1mum ot three acquisition sequences are checked. rather than the entire acqu151tion memory.

NOTE

System calls 'MARK and ‘M/RACLE only work
if the master table for disassembly is table C.

They have no effect when any other master table

is used.

'MlRACLE. This system call allows disassembly of micro-
processors that interweave instructions with data fetches for

the previous instruction (such as the 8086).

For example. suppose a table were disassembling an instruc-

tion and it discovered a data fetch embedded in the middle of
the instruction. The ‘MIRACLE system call stops disassem-
bly of the machine instruction without displaying any of the
results. 'MIRACLE disassembles and displays the embed-
ded instruction (the data fetch) by sending it to the master
table. After the embedded instruction is displayed. then the
disassembly of the original instruction is completed and
displayed following the embedded instruction.

The effect of the 'MIRACLE is to display the disassembly of

an embedded instruction cycle in front of the instruction
currently being disassembled. Figure 7-22 gives a simplified
example of how 'MIRACLE might be used.

The °MlFtACLE system call can be used to disassemble
several embedded instructions within a machine instruction.
but each embedded instruction may only occupy one aCQUlSl-
tion sequence. For example. data reads and writes Will be

disassembled properly by ‘MIRACLE. but instructions with

following operands will not.

N0TE

If embedded instructions decoded with the

“MIRACLE call occupy several acquisition se-
quences, erroneous data may be displayed.

If ‘MIRACLE is used in a table that receives

passed bits, you must pass the ‘MIRACLE the
same bits that the table received. For example, if

your table recieves group inputs A, C, and D and
3 passed hits, the 'M/RACLE should look like:

p

BIN
[/\/\/\] 'MIRACLE

D
HEX
[- -]

A C
HEX BIN

[----11---1

7-23

Define Mnemonics Menu—DAS 9100 Series Operator’s

DATA ACQUIRED DISASSEMBLY TABLES STATE TABLE DISPLAY

TABLE NAME : c
A C D A c D

5:0 €250); 13“)”1 “52" I 2 gm HEX BIN HEX CALL DISPLAY_ 550

6 czoi 01031 SE 7— '0 xxxx 0”” XX READ AT 6 gm AT C201,,,,, __ —1 5 HIFTRDZ 97
‘ c202 11000 97 3 ”LAN" g4“—I ----- ~ max _

I '11 xxxx Ixxxx xx 5mm
-- ~ ----- -~ ISLANK

----- “ tHEx
----- SHIFT _

TABLE NAME , SHIFT
2 A c D

SEO HEX am HEX CALL DISPLAY 0 XXXX OXXXX XX 2
tMIRACLE —'—‘
 |—-—>‘, XXXX IXXXX XX

 MEX

4353722

Figure 7-22. Using ‘MIRACLE. This illustration shows a simplified microprocessor with two instructions: READ and SHIFTR The SHIFTR In-
struction reqUIres two machine cycles to execute These two machine cycles may be separated by another bus cycle.

In step 1, the master table (C) detects the first cycle of a SHIFTR and calls table SHIFT to read the next haII of the instruction

In step 2 tabIe SHIFT recognizes that the next cycle is not a SHIFI'R. so it performs a 'MIRACLE. The 'MIRACLE sends acqwred data se-
quence 6 back to table C where the READ instruction is disassembled and displayed. compteting the ‘MIRACLE.

In step 3. acqmred data sequence 7 is sent to table SHIFT because of the 'MIRACLE in the preVIous step, Table SHIFT now completes the disas-
semny of the SHIFTR instruction. The entire SHIFTR instruction is displayed on the State Table line below the READ instruction

'MARK. This system call lets you mark an acquisition se- P‘e. when a 53000 microprocessor in the absolute long
quence for display after disassembly of the current machine addressing mode performs a move operation. the source
instruction is compIeted. This allows disassembled data to be memory read occurs before the entire Instruction is fetched.
displayed in the proper order. You may have up to three YOU can “59 'MARK to display the memory read after the
‘MARKed acquisition sequences in your disassembly at any instruction operands are completely disassembled.

one time.

Figure 7-23 shows how the 'MARK system caII might be
'MARK is useful for showing all of an instruction before any used.

of the associated reads and writes are displayed. For exam-

7-24

Define Mnemonics Menu—DAS 9100 Series Operator’s

DATA ACQUIRED DISASSEMBLV TABLES STATE TABLE DISPLAY

A C D55: ~Ex BIN. HEX TABLENAME=C

2: C‘=E cm: 21 ’ A c o 550
2. yr; mug ;E 2 HEX aw HEX CALL DISPLAY 20 [MOVEWOV' figm

_.n-:=«=: 2: we soon It 3: xxxx «ocx‘ xx ammom ' H , I
3 23 :20: 0010: 06 4_ -- tetw l 22 .“EAe-ROV 35W:

-: nos .31“ ,..t-l 3» “ ’L “3" 24 wn'E'c 3005

xxxx 15th xx wnns‘o
----- ~ 16mm
----- -- :Hex

xxxx atom 21 MOVEFRON‘
----- .. 3BLANK
----- ~ MOVE:

TABLE NAME = MOVEF

A c D
2 SEO HEX aw HEX CALL DISPLAY
#0 xxxx COMO xx

..... w tusx

..... -- tBLANK TO

..... ,. taLANK

..... .. MOVE:

4
—-——>I xxxx 00‘“ xx

~~~~~ M Mix

3
--—>2 xxxx xxxxx xx

I .. mm
..... .. MOVES?  4350-2.   

Figure 7-23. Using 'MARK. Thus example shows a processor with three instructions: READ. WRITE. and MOVE. Move has two operands a
FROM operand and a T0 operand. and the processor does a read between the two. The processor starts executing a MOVE Instructton before

the entsre Instruction IS fetched.

In step 1, table C detects 3 MOVE opcode, displays MOVE FROM. and calls table MOVER to get an operand

In step 2. table MOVER reads data sequence 21, decodes the data as 3 FROM operand, and caIIs MOVER again to get the last operand

In step 3, table MOVER reads data sequence 22. Sequence 22 is not 3 MOVE operand. however. so sequence 2 of table MOVER 'MARKs the
acquusitlon sequence and calls table MOVER again to look at the next acquired word.

In step 4. table MOVER receives data sequence 23. Sequence 1 of table MOVER Identifies the last operand of the MOVE Instructnon and dls-

plays it.

In step 5. disassembly returns to the 'MARKed instruction. The master table (C) receives data sequence 22 and decodes It as a READ

Instruction

In step 6. disassemny o! the MOVE and the 'MARKed Instruction is now complete. Disassembly goes to acquisition sequence 24. which table C

decodes as a WRITE instruction.

7-25



Define Mnemonics Menu—DAS 9100 Series Operator’s

DISASSEMBLY GUIDELINES

STUDY YOUR PROCESSOR

The best way to determine the disassembly tables you need
is to carefully study your processor. The tables described
below are suggested as a starting place. You will probably
need tables in addition to those described below to cover
special requirements of your processor.

Acquisition Channels. To insure compatibility with all sys-
tem calls. y0u should define your table structure so that the
following signals are acquired through the correct Channel
Specification groups:

0 acquire all address bus signals through group A
0 acquire all control signals through group C
0 acouire all data bus signals through group D

Master Table. This CALL-type table is where disassembly

starts Table C is recommended as the master table. if the
acquisnion channel recommendations are followed. then
groups A. C. and D should be the group inputs.

The master table must have group inputs from all groups that

acquire disassembly data. Under most circumstances these

are the groups that acquire control signals. data. and ad-
dress. The master table determines whether the acquired
data IS an opcode. and then passes the acquired bits to the
appropriate table. If the data is an opcode, table OPCODE is
called: otherwise table ABSOLUTE is called.

Before calling tables OPCODE or ABSOLUTE, the master
table should display the acquired address, using the ‘HEX
system call, so the address bits do not have to be passed to

later tables.

ABSOLUTE Table. This table is needed to decode all proces-

sor states other than opcode fetches. The master table

passes data bus and control signal bits to this table. The
ABSOLUTE table examines the control signals to determine

the operation performed by the processor, then displays the
operation type. Usually. the ABSOLUTE table displays oc-
currences like memory reads, memory writes. IIO reads. l/O
writes, and interrupt requests.

OPCODE Tables. Because most processors have a large
instruction set. opcode decoding usually requires several

tables. When the master table determines that an opcode

was acquired. it passes bits to table OPCODE. The bits

passed to OPCODE are those needed to decode the opcode;

usually all control signals and the bits from the data bus. With

small instruction sets. table OPCODE can decode the entire
instruction set. Usually the instruction set is too large. so
table OPCODE divides the opcodes into major categories.
These categories are determined by significant bit patterns in

the opcode. Possible categories are:

7-26

opcodes that have no following operand
opcodes that use registers

opcodes that have one operand

opcodes that have two operands

condition-testing opcodes like branch or jump

There are other possible categories. depending on your

processor and the bit patterns that its opcodes follow. Each

category has a corresponding table. named OPCODE2. OP.
cooea, etc. Table OPCODE tests bits to find the proper

category, then passes all the necessary bits to the corre-
sponding table. The second opcode table then completes

disassembly and displays the results.

Opcode tables can call support tables which display oper-

ands or reduce table size. All opcode tables must be of the

CALL type to use support tables. Commonly used support

tables are discussed next.

Address Mode Table. Processors with several address
modes usually require this table. The table is called by an

opcode table to provide punctuation for an operand (such as

#. spaces. commas. or parentheses).

The address mode table receives bits from the opcode table.

displays punctuation in front of the operand, then passes bits

to an operand display or register table. When disassembly
returns from the operand display or register table. the ad-

dress mode table adds any closing punctuation and returns

to the opcode table.

Operand Display Tables. Operands follow an opcode in the
data stream. therefore operand display tables must access

words following an opcode. Operand display tables might be

needed to display one word operands (with a table called

BYTE), or two word operands (with a table called WORD).

Operand display tables must access the control signal and

data groups. group inputs C and D, but do not usually receive
passed bits. Opcode tables determine when and where an

operand must be displayed. and then call an operand table.

Examples of typical operand display tables are given in

Figures 7-12. 7-13. and 7-14.

Register Tables. Bit patterns indicate particular registers in
a microprocessor. Since the patterns are consistent from

one opcode to the next. one register table can decode
registers for many opcode tables. This reduces the size of

the opcode tables and speeds disassembly. If there are

several register sets or several bit patterns which access the
same register, then more than one register table may be
required. For example. some processors may need a REGB
table to decode 8-bit registers and a REG16 table to decode
16-bit registers.



Opcode tables use register tables by passing them the
register indication bits. The register table displays the regis-
ter name that matches the passed bit pattern and returns
disassembly to the Opcode table. Since the register table
does not call other tables it can be a DEFAULT-type table.
unless system calls are used.

Error-Handling Tables. Sometimes an illegal opcode or
illegal control line state is acquired. in these cases use the

°ERFlOFl system call and create table ERROFP to indicate
errors on the state table screen. The ERROFP table can then
be called using ‘ERROR whenever an error is detected.

Call table structures in the Define Mnemonics menu should
be designed carefully. Attention to detail will prevent prob—

lems such as improper disassembly, endless loops. or trun-

cated mnemonics. The remaining text in this section de-
scribes where possible problem areas exist and what to do if

problems occur.

USING THE DISPLAY SETUP SUB-MENU
WITH CALL TABLES

The Display Setup sub-menu controls which data and mne-
monics appear on the State Table display and how wide each

display is. The following rules will be helpful when controlling
the display of call table mnemonics with this menu:

1. Characters displayed by call tables are cumulative. Be

sure the MNEMONICS WIDTH field for your master
table has a large enough value to show all your mnemon-
ics. Mnemonlcs that are too long are truncated from the
right.

2. if you need more State Table display area, set the
DISPLAY DATA field to NO. in many applications, the
numerical data acquired is not useful. In these cases

only the DISPLAY MNEMONICS field should be set to
YES.

3. If you use 'MARK or 'MIRACLE, and you have more
than one possible master table in your call table struc-
ture. do not display mnemonics from table C along with

mnemonics from any other table. Doing so may cause
incorrect disassembly.

DESIGNING CALL TABLE STRUCTURES

The following are recommended design practices for using
the Table Definition and the Table Entry sub-menus to create
a call table structure. These recommendations are intended
to provide consistent disassembly re5ults.

Define Mnemonics Menu—DAS 9100 Series Operator’s

There may be situations when the recommended practices
will not produce the disassembly you want. in these cases.
experiment freely. It is not possible to disrupt the mnemonic
structure. any DAS setups. or the acquired data with a
peculiar table structure.

NOTE

If disassembly is taking a long time or is in an
endless loop, pressing the STOP key will stop
disassembly of the current data andmove disas-
sembly on to the next acquired data.

Choose the Correct Groups and Tables

For almost all disassembly situations you will want to acquire
your address through group A in the Channel Specification
menu. The ‘RLADD system calls assume that group A
contains the address of the data acquired.

Use table C as your master table it you are going to use either
‘MARK or °MIRACLE. These system calls will not work wnh
any other master table.

Always acquire some data for disassembly through the
group that corresponds to your master table. For example. it
you acquire data through groups A. C. and D. use only table
A. table C. or table D as a master table.

Design Complex Disassembly Structures on Paper
First

Once a table is defined and entered into the DA8. some of its
characteristics are difficult to change. After a table with bits
passed or group inputs has a sequence entered. the number

of bits passed and the group inputs to that table cannot be

changed. To change the group inputs or the number of bits
passed to a table, all sequences must be deleted from the
table. This is indicated in the Table Definition sub-menu when
the SEQ COUNT field for that table is zero.

The Define Mnemonics menu will nest call tables 16 deep, If
the disassembly routine calls too many tables. the error
message TOO MANY CALLS will appear on the State Table

display. Sometimes using 'RECALL or 'LOOP can reduce
the number of calls nested.

Conserve Tables and Table Entries

There are 48 user~definabie tables. For almost all applica-

tions these will be more than enough tables. Still, judicious
use of tables will leave room for changes or expansion in your

disassembly routine.

Defined tables require space in the DA8 memory. Overly
large table structures may exceed the amount of memory
available for the Define Mnemonics menu. In these cases the
DA8 will display the error message TABLE FULL.

7-27



Define Mnemonics Menu—DAS 9100 Series Operator’s

If the TABLE FULL message appears. and a reference

memory has been stored. you can create more mama.

space for your tables by reducing or removingtheietermce
memory. Change the size of the reference memory ytha
ing the COMPARE: START SEQ and STOP SEQ fields in the

Reference Memory sub-menu of the State Table menu and
pressing the STORE key. The Define Mnemonics menu and
the reference memory share the same memory block. By

reducing the size of the reference memory. more memory is
available for disassembly tables.

Use System Calls Carefully

The most common system calls. like 'HEX and ‘TAB. pre-
sent no difficulty for the user. There are six system calls that
deserve special attention:

0 'DECR. if used improperly. may cause the disassembly
to go into an infinite loop. For example, 'DECR followed

by 'FlECALL will call the same table with the same data
until you interrupt the loop by pressing the STOP key.

0 'RECALL can cause a search through the entire acquisi-
tion memory. if the first occurrence of the searched-for

data is not present in the acquisition memory, the ‘RE-
CALL may find a second occurrence and display it.
which w0uid cause incorrect disassembly. This problem

could occur when disassembling data that was acquired
with qualifiers operating.

When ‘RECALL is used in a table that receives passed
bits, you must pass the same number of bits to the
‘RECALL as the table expects. For example, if a table
with a ‘RECALL is defined in the Table Definition sub-
menu as receiving five bits. then you must pass five bits
to the 'RECALL in that table. If you do not pass the
correct number of bits to “RECALL, the error message
INCORRECT NUMBER OF BlTS PASSED will appear
during disassembly.

' 'LOOP requires the same precautions that 'RECALL
has.

0 When 'MIRACLE is used in a table that receives passed
bits, you must pass the same number of bits to the
'MIRACLE as the table expects. If you do not pass the
correct number of bits to 'MIRACLE, the error message
INCORRECT NUMBER OF BITS PASSED will appear
during disassembly.

*MIRACLE only disassembles data that was acquired

on one sequence. if the 'MlRACLE call to the master
table decodes data from several acquisition sequences.
erronious data may be displayed.

7-28

'MIRACLE will also only operate in a table structure
with table C as the master table. if table C is not the
master table, the 'MIRACLE is ignored.

0 ‘MARK will only operate in a table structure with table C
as the master table. if table C is not the master table. the
‘MARK system call is ignored.

0 'MARK only disassembles data that was acquired on
one sequence. li 'MARKed data is decoded over several
acquisition sequences, erronious data may be
displayed.

0 'HEXS only works on 8 or 16 bits. If the wrong number
of bits is passed to 'HEXS, negative word values can
cause the wrong number to be displayed.

Keep Group Data Aligned

Data acquired through different groups in the State Table
menu can become misaligned when accessing the next data.
This misaligned data may result in faulty disassembly which
is very difficult to detect. Misaligning data intentionally can be
useful when reducing table sizes or decreasing the number of
nested calls. Read the following paragraphs carefully before
intentionally misaligning data between groups.

Normally. group data will remain aligned it you use the
following rule:

When accessing a series of data words, do not access a
group that the previous tables in the call sequence have

not accessed. For example. if table X accesses groups C

and D and then calls table Y. table Y should access only
groups C and/or D. it table Y accessed group A. the
group data would be misaligned.

The Define Mnemonics menu uses a set of pointers into

memory to indicate which data it has used. There is one
pointer for every group accessed by the master table. For

example. if groups A. C, and D are accessed by the master
table. three pointers are set up; one for each accessed
group.

The pointer for a group is advanced whenever the Define
Mnemonics menu uses a word from that group. Calling a
table that accesses group C advances the pointer for group

C. but leaves the other pointers as they were. Figure 7-24
shows how accessing groups in the wrong sequence can
misalign group data.



Define Mnemonics Menu—DAS 9100 Series Operator's

 

TABLE DEFINITION

lShnm u'mr "puln ir ear“ :ahw

 

ACQUIRED DATA

IShuws puslmr- 0' [7w

memuu pomINsI

TABLE ENTRY

lSnows how group mpuls are useoi

STATE TABLE DISPLAY ‘I
:Snows 'ESallmg d-sulay

 

 

 

 

 

 

 

 

 

Table C aavances me pomte' lov group C men
aligns all otne' grout: INDulS Wlth QIOUD C 45m .4

mi: mzcs :9 a c D Em omits nu M — 5“ ‘

nu ma: ms t 2, ““4,” a c u 21
M NETS Pm WK 22 ‘ D . ID #0 l0 IO M DIWV

; a c c l mu m :3 cm: I u i m x xx5 2.? E w m IE! ._ . .. I
labia C 'PCPNPS Gala "(w al gvcup inputs —' ' —

g'ouI‘S A C and D I

rm! mics mu M in c

ELK IWIES I §D a t D I i I 21 mm
mu m, m I“ I 2: m4-» I :9 lo cu. man I t
l“ N‘UYS pm WP! 22 - u E ALPHA displays BBBB because W— ;'o.w. #-

I 23 m t g I O m m I pomle' Is advanced

Uw- a 0 III on I g g g g I 3 m __ .l.____.____l

Table ALPHA recewes the men aala tvom I I _ 2: I
your A :v. leaves the data w gVDuDS C and D “‘
Deh‘n: —

| I M)! mu: m: M — I

. . £0 Emm mom am a r n t t I
In I I l :0 la in m mm 21 “I m m can

Tu W Y5 8.! -
m Ims min w: I 2 2,: f; | o m x m I ,

I 23 _. m E (I I _ . M I BETA displays CCCC B becauss ;';.: _ a;
I” a E 0 DIN 64.; W . DEX . gvouo A l

I 2‘ m D g I . EDI
5 EEE E —

Table BEYA vecewes the next data from — - nu
gvoups A ano C out Ieaves grout D Demnc I I —- . m I

UM names 1“ M 9 t

mic mm I sea I c n | a c o |
ill! W |le mg I I ii [I lot 0 m mm I 21 m m Eli (112.8 m mt!

IISSD 21 m d M

M ”“5 “NE I g a E’g I 9 W X ”I m I GAMMA o-splays all three g'ouzs a a‘ 3 “a - ,
I "~ — - -— W cm sequences Im a C D 0 ID! on. I 22; *g E m I W _ _ g I ! I

E! _ . _ I I
7am GAMMA recewes me next date horn an I I _ ‘ » m I I
twee J'OuDS __ _ ._ i

' I I I I

I

I I I an c I
Nil! wzcs I SEO ‘1 C ll I D'llt WIS Til: M! - I

I“ W “5 ms 21 M ‘I M | a E D I g‘l m m m cocoa W mat

m was m w I 22 n s n so no icx on m DIWV
C A C E I BIN 01‘. I g .-g -g-g I 0 >000! X lot I Table C advances to data sequence 2-1 De

I B E E E I __ . _ W I Cause gvou; C was pomung a' semen? 23

| l " ' I

Figure 7-24. How impropev group access can misalign display of group data with call table disassembly. Display of data is offset because
the called tables do not access all of the groups that are used by tables further in the call sequence.

Whenever the master table is called to start disassembly of a
new instruction, all pointers are set to the same position as
the pointer for the master table's group. For this reason, if

you do not want to see the same data disassembled more
than once. you should always access the master table‘s
group whenever you are accessing any group data.

Any table with group access needs to access:

0 the groups the called table operates on

0 any groups that tables called later will operate on

0 the master group

This will prevent the group pointers from being misaligned. In
most cases a table with group access should also access:

Otherwise, you may see the same data disassembled more
than once.

Keep in mind that the pointers are only realigned when the

master table is called. The problems indicated in Figure 7-24
may still occur between times when the master table is

called.

729


	List of Illustrations
	Define Mnemonics Menu
	Overview
	Sub-Menu Functions

	Lookup Table Disassembly
	Table Entry Sub-Menu
	Display Setup Sub-Menu

	Microprocessor Disassembly
	Overview
	Table Definition Sub-Menu
	Using Call Tables in the Table Entry Sub-Menu
	System Calls
	Disassembly Guidelines


