

CME Bulletin 9781 Copyright © 1978 Tektronix, Inc. Beaverton OR 97077 U.S.A.

#### DIGITAL INTERFACING

#### FOR THE TYPE 7L18 SPECTRUM ANALYZER

The internal data bus of the Tektronix Type 7L18 Spectrum Analyzer plug-in unit may be monitored externally to read out the significant measurement parameters, and the data from display memories A and B. It is also possible to interpose external commands for the control of Time/div, Span/div, Resolution bandwidth, Phase-lock and Band-select functions.

However, external control of Center frequency (a direct analog function not mediated by the 7L18's internal microprocessor) cannot easily be implemented externally, and such an attempt is not recommended.

The 7L18's internal microprocessor operates from internal ROM programs and data tables to read the front-panel control settings and drive the appropriate control circuits, to compute and implement the "auto" functions and to read the center-frequency control voltages and convert this information to frequency values for readout and display. There is no provision for "handshaking" with an external device for output of this information, however: any external monitor must catch this data "on the fly".

There are two "dump" commands which will be recognized by the internal processor to provide a burst of specific data on the 7L18's 4-bit I/O bus.

The first of these, a "dump front panel" command, will trigger a burst of ten 4-bit words describing Center frequency, Vertical mode, Reference level, Span/div and Resolution bandwidth.

The second command will provide a dump of both display memories as a sequence of 2048 4-bit words, issued at the rate of one every 80 (approx.) microseconds. A pair of 4-bit words forms the 8-bit vertical amplitude value (most-significant bits are sent first, then the least-significant bits) for each of the 512 horizontal locations in each display.

In the 7L18, the conversion and storage of data from the analyzer to the display memories takes place via dedicated hardware circuits rather than via the processor. Therefore, it is not possible via the accessible I/O lines to change the content of the 7L18 display memories -- e.g., for the purpose of displaying externally saved or generated waveforms.

Although it would be possible to construct a dedicated hardware interface circuit to read, assemble and output the panel and display data and to introduce external control commands, the design and layout of such a system in "random" logic is burdensome and inflexible, and would require an inordinate amount of ECB space and power.

Instead, a microprocessor-based interface using just 19 IC packages on an ECB of about 6 x 10 inches (as small as 3.5 x 7" if wire-wrap or point-to-point soldered handwiring is used) is suggested, providing the basic capability of reading and interpreting all internal data transfers on the 7L18 I/O data bus, and communicating with an external controller via a parallel 8-bit duplex or bidirectional data bus with handshake facility. The interface requires +5V at about 1A, easily obtainable from low-cost regulated power-supply assemblies. The interface uses the Motorola MC6802 microprocessor (with on-chip clock and scratchpad RAM), MC6820 PIA's, an Intel 2758 EPROM (1/2 2716. A full 2716 may be used with minor wiring changes), and standard memory and SSI/MSI logic chips. Total parts cost, including power supply, is under \$250 at the 1-each distributor price level.

The resulting assembly is then limited only by the EPROM firmware in the number of functions which can be implemented with respect to retrieving and processing available information from the 7L18. Additional hardware would be required, however, to implement a full GPIB (IEE-488) external interface.

The following paragraphs discuss some of the basic constraints imposed by the 7L18, and the approach used in the microprocessor-based interface to deal with them. Whether the user chooses to follow this design or pursue an independent course, the following note should be heeded:

#### NOTE

- (a) The Type 7L18 is not sold with interfacing hardware (connectors and cables) installed, nor are the internal Digital Storage Interface circuits 190% tested for external interfacing timing and logic compatibility. Particularly with 7L18's sold before September 1978, some internal modifications may be required for satisfactory interfacing.
- (b) This interfacing information and prefabricated cable assemblies have been offered at no charge to selected 7L18 purchasers who have expressed both a need for the information and confidence in their own electronic design and fabrication capabilities to undertake their own interface construction. No interface parts, boards or EPROM's are available from Tektronix, Inc. The suggested interface has been breadboarded just once on perf-board to demonstrate technical feasibility. The inordinate cost of equipping manufacturing, applications

and service personnel throughout the world with computer hardware and software and training to support such a device precludes any offering of it for sale as a kit, accessory or product by Tektronix, Inc.

(c) No external interface facilities will be supported by Tektronix Service centers. It is recommended that any 7L18 equipped with the front-panel Lemo interconnect have the cable and connector removed before submitting the instrument to a Tektronix Service center for calibration or repair. Otherwise the cable and connector assembly may be removed and discarded by the Service center. Their operations are strictly limited to "as shipped" configurations of Tektronix products.



Fig. 1. Option connector pin-out identification and cable wire color code.

#### GENERAL INTERFACING INFORMATION

## 1. Access to the 7L18 Data Bus.

The 7L18 microprocessor I/O data bus is accessible at J4225 and J4230 on the 7L18 mother board (See Service Manual schematic 28 \*). By use of "harmonica" connectors and two 7-wire ribbon-cables, this bus may be brought to a front-panel connector in the OPTION position. The panel there is punched to accept a Lemo #RA-C2314 panel-mount 14-contact polarized connector (7 male, 7 female contacts). A mating Lemo #F-C2314 cable-end connector then may be used with a 14-conductor shielded umbilical cable to interconnect with the interface assembly.

Note: Because the 7L18's I/O address and data lines are un-buffered lines with passive pull-up, the use of a long umbilical will introduce crosstalk and signal-risetime degradation, interfering not only with external operations, but with the internal operation of the 7L18 itself. Two meters should be considered the maximum usable cable length, and one meter or less preferable.

In addition to the I/O bus (4 address lines, 4 data lines, an IN stobe and an OUT strobe), a sweep-ramp output, two sweep-control lines and a FRONT PANEL INHIBIT control line are also available at J4225-J4230, and should be brought to the front-panel connector. The sweep-control and ramp output lines are not used in this interface implementation, however, and may be omitted from the umbilical.

# 2. Data Timing.

The data lines available are those of the 32 "I/O ports" of the 7L18's microprocessor. The CPU controls the four port-address lines at all times. Sixteen ports are designated INPUT ports, and 16 are designated OUTPUT ports having the same 16 port addresses. Separate IN and OUT lines strobe the data for input or output operations respectively, creating in effect 32 "ports".

For data output operation, the port address lines are set 20 to 120  $\mu s$  before the data lines are set. Approximately 0.2  $\mu s$  after the data are valid, a positive-going OUT strobe of 1 to 2  $\mu s$  duration is generated by the CPU. The trailing edge of the OUT pulse releases the data lines to go high again: valid data are on the line only for 1 to 2  $\mu s$  (and therefore

\*Early interim service manual schematics contain an error: the address bus "2" bit is at pin 1 of J4230; the "4" bit is at pin 7 of J4225, rather than as shown. Later printings show the correct connections.

must be latched externally for recognition by the interface processor). At a time between 20 and 320 µs after the OUT pulse, the address bus may change.

For data input operations, the address is set up 20 to 100  $\mu$ s before the IN pulse. However, the data are in this case strobed onto the data bus by the IN pulse, and so are not valid until 0.2 to 0.5  $\mu$ s after the leading edge of the IN pulse. The IN pulse is 1 to 2  $\mu$ s in duration; the data-valid time is therefore only 0.5 to 1.5  $\mu$ s. The address lines may change at any time from 32 to 120  $\mu$ s after an IN pulse.

If a single external data latch is used to allow the interface processor time to recognize the I/O pulse and read the data (data latch triggered by the logical OR of the IN and OUT pulses), timing limitations will be approximately as follows:

- (a) Time to recognize an address and start to watch for an IN or OUT pulse,  $20~\mu s$ .
- (b) Time to read and process data after an IN or OUT pulse, approximately 44 µs.
- (c) If data are latched and addresses are not, time to read address and data, approximately 32  $\mu s$  after an IN pulse.

Some typical timing characteristics are shown in Fig. 2 below.



FIGURE 2. 7L18 EVENT TIMING

- A: Address change to IN or OUT pulse 20 µs min.
- B: OUT or IN pulse to address change 30 µs min.
- C: OUT to IN pulse 44 us min. )
  D: IN to OUT pulse 100 us min, ) Do happen together!
- E: IN to IN 150 μs min except 80 μs in data dump. F: OUT to OUT 320 μs min. except 80 μs in data dump.

## 2.1 Data Sequencing.

Except under specific circumstances, an external device cannot anticipate the exact sequence of addresses and IN/OUT strobes which will occur. In the normal course of operation, the 7L18 processor may sequence through several consecutive addresses, then stop at one address, issue an OUT command, and read in a sequence of words from the same or a different single address. For this reason, much of the data available from the IN and OUT ports is not externally usable unless the external processor can follow each step of the internal processor's program, reading its data and anticipating its decisions. (Note that the externally accessible bus is the 7L18's I/O bus, not the internal processor's address and data buses.)

#### 2.1.1 IN Data.

In order to determine the Time/div setting and to perform substitution of external commands for the five externally-controllable functions, it's necessary to be able to read Port Ø IN through at least Port 4 IN.

Data from Ports Ø through 4 and 8 IN are usually read in consecutive order on 6 consecutive IN pulses: Ø, 1, 2, 3, 4, 8. After reading Port 8 IN, the sequence may be (hex notation): C, D, E, A, F; or C, D, E, A, A, B, B, B, B, B, F. In the case of the longer sequence, OUT pulses (A OUT) are interspersed with the B IN pulses as the internal processor commands the DVM to step through its digits.

Because the external interface processor may jump into the I/O sequence at any point without being able to anticipate the length of the sequence, the simplest algorithm accepts all IN data, storing it in 16 consecutive memory locations according to the address which is on the I/O bus at the time each IN pulse occurs. In the normal operating mode (not during a data dump) there is about 150 µs between consecutive IN pulses --enough time in which to compute a location and store the data. If a large (redundant) number of IN reads is performed, at least one reading for each port number is guaranteed.

However, this scheme does <u>not</u> provide proper data for Ports 10 and 11 (A and B), which may have multi-word data, of which only one word will be saved. Fortunately, the Port 10 and Port 11 data are not externally significant. Port 10 indicates DVM status; Port 11 outputs DVM <u>voltage</u> readings which will be translated by the internal processor into center-frequency values. The translated information is available via the Front-Panel Data Dump operation.

Port Ø-4 data coding is shown in Appendix B. In the suggested interface firmware, the data are re-grouped to provide just one parameter per word, and are transferred to and from the controller in that form; then re-translated to 7L18 form when used to control front-panel functions. This pre-processing reduces the required bit-manipulation in the controller, and thus facilitates use of high-level language programming of the controller.

## 2.2 Dump Operations.

The data-dump operations triggered by an external command introduced at Port 15 IN generate a defined sequence of data on the bus.

## 2.2.1 Panel Dump.

When a Panel Dump command (bit pattern 1xxØ) is recognized at Port 15 IN, the 7L18 processor will respond with ten consecutive 4-bit words via Port 15 OUT, at approximately 80 µs intervals. The address lines do not change after the first 15 OUT strobe, so with latched data, the interface processor has about 80 us to read and store each output data word and get back to watch for the next OUT strobe. The available time allows address verification for each word, and any other housekeeping required.

Interpretation of the Panel Dump data is shown in Appendix A.

Typical timing of the Panel Dump sequence is shown in Fig. 3, below.



FIGURE 3. TIMING SEQUENCE -- PANEL DUMP

\*Planning value (actual may be longer). Others are observed values.

## 2.2.2 Data Dump.

When a Data Dump command (bit pattern Øxx1) is recognized by the 7L18 processor at Port 15 IN, the processor will respond after about 210 µs by switching the address lines to Port 8, and about 20 µs later will issue an OUT pulse. After another 50 µs there will be a status word strobed at Port 8 IN, followed after about 120 µs by the 2048-word display-data stream, starting with the lowest location in Display Memory B (left-hand side of the B display) and continuing through Display Memory A, all strobed at Port 8 IN at about 80 µs intervals. When the 1024th word of Display Memory A has been strobed, the 7L18 processor switches the address lines to Port 15 and the OUT pulse strobes a status word (bit pattern 0001 for a successful dump or 0010 for an abort or "no request").

The 160 to 170 µs taken in the data dump to output two 4-bit words allows the interface processor time to assemble the two words into one byte before storing in the interface memory, as well as check address validity and provide selective storage of A or B data only, if the interface processor is run at full speed.

If the 7L18 is not in the <u>Store</u> mode, the status word at Port 8 IN after the Dump command will have the least-significant bit high (xxx1), and the 7L18 processor will abort the dump operation immediately, issuing an "abort" status word ( $\emptyset\emptyset1\emptyset$ ) via Port 15 OUT, then resume normal operation. By evaluating the Port 8 IN status word, the interface processor can anticipate the abort, and need not monitor Port 15 OUT until after a completed dump.

Typical timing of the start of the Data Dump operation is shown in the sketch on the next page (Fig. 4).

# 2.2.2.1 Unaddressed Locations.

About 40 locations at the start and another 40 at the end of each display memory are not addressed during display conversion and storage, and therefore contain random, non-significant data. The suggested interface firmware clears the corresponding interface memory locations after each RECORD operation, to minimize confusion. Some experimentation with the specific 7L18 to be used may suggest using a smaller or a larger number.

# 2.2.2.2 Scaling.

Neither the vertical (data dump value) nor the horizontal (memory location) information in a data dump is directly scaled in terms of amplitude or frequency (span/div or center frequency). The controller must be programmed to establish both vertical and horizontal calibration using the CAL OUT and other standard waveforms, even to obtain the same accuracy as specified for operator reading of the CRT display. For accuracy approaching the resolution ( $\emptyset.5\%$  FS vertical,  $\emptyset.25\%$  FS horizontal), calibration for the exact span, center frequency and reference level used will be required.



FIGURE 4. TIMING SEQUENCE -- DISPLAY DATA DUMP
\*Planning value -- may actually be longer. Others are observed values.

# 3. Command Input to the 7L18.

The command to dump front-panel control information or display-memory data must be strobed onto the 7L18 data bus by the Port 15 IN pulse, and must not be just "left hanging" on the data bus until a Port 15 IN strobe occurs. Because there is not time (only 20 µs typically) after the Port 15 address is valid to "turn around" a peripheral interface adapter and output the command, special interface hardware is required to strobe the command onto the data bus only when the selected address and the IN pulse occur. Both the command and the address may be preset by the interface processor, after which it need only watch to see that the command actually appears on the bus. Thereafter it will have up to 200 µs to disable the special hardware and start monitoring Port 15 OUT or Port 8 IN for the requested data.

In the suggested configuration, the added hardware consists of a CMOS 4-bit magnitude comparator for address-recognition, and a tri-state CMOS buffer for strobing the command onto the data bus when enabled by the comparator and the IN pulse.

# 4. Control Output to the 7L18.

Five functions controlled normally by front-panel push-button or rotary switches may be controlled remotely. These are:

Time/div: 20s/div to 1µs/div, Auto, Ext, Manual Span/div: 0, 5kHz to 500MHz, Identify, Max Resolution Bandwidth: 30Hz to 3MHz, Auto

Phase-lock: Auto or Off Band select: 1 to 11

These five front-panel controls are disabled by pulling high on the FPDIS line (nominal pullup current is +5mA to +5V; however, 3V (3mA) is adequate for reliable control). When the controls are disabled, the I/O data lines remain high during the Port Ø through Port 4 IN pulses and may be pulled low by the external interface circuit to effect control of the desired functions.

Since it is not possible to disable individual front-panel controls (the Port 1 control word, for instance, sets two of the five bits which control Time/div and two of the five bits which control Span/div), the control process must be:

(a) Record the present control words, in the interface memory.

(b) Read out the data to the controller.

(c) Change the required parameters in the controller.(d) Load the interface memory with the entire set of altered and unaltered commands, from the controller.

(e) Substitute the entire set of new commands from the interface

while holding the FPDIS line high continuously.

Additional hardware will be required for this function, since the data must go onto the 7L18 data bus only during Port Ø through Port 4 IN pulses. Furthermore, the substituted commands must be presented every time the Port Ø through Port 4 IN strobes occur. The internal processor does not implement the commands until after several successive IN readings agree, but they are not thereafter "locked in forever" -- only until such time as other readings are registered consistently for several passes.

In the suggested interface, this command-latching function is performed by a 4-bit-wide read/write memory (a Type 2101 was used, but any memory of 5 x 4 bits capacity with tri-state output could be used). The memory address lines are controlled by the 7L18 I/O address bus; the data-in lines go to the interface processor data bus; the data-out lines go to the 7L18 I/O data bus. The data are written into the control memory by the interface processor, monitoring thr 7L18 address lines, and generating a WRITE to the control memory each time a desired address turns up. The data are read out of the memory by a combination of an IN pulse, a Port address lower than 8, and an enable line from the interface processor.

A latched control line from the interface processor enables the control memory and asserts the FPDIS line to the 7L18 at the same time. Once the interface processor has latched the command on line (and has verified it), it may return to other functions, such as recording data and outputing it to the controller.

# 5. External Display Generation.

An OUTPUT routine has been incorporated in the firmware to output the B and/or A display data from the interface memory repetitively until interrupted by the controller, for creation of an external real-time display. To generate a horizontal sweep for a CRT display from this data, one of the following may be used:

- (a) A conventional oscilloscope time-base, triggered from a retriggerable multivibrator having a 100 us period (effectively recognizing the 6 ms interval between displays) the multivibrator in turn triggered from the SDAV handshake line.
- (b) A bucket-and-ladle integerator (operational amplifier, diode and capacitor) pumped by the SDAV pulse and reset by a retriggerable multivibrator as in (a) above, or by a comparator set to the proper peak value.
- (c) A 9-bit binary counter and ADC, clocked by the SDAV line (self-resetting).

In all cases, and inexpensive 8-bit DAC may be used with the amplitude data-bytes to generate the Y-axis deflection.

For all of these displays, the controller or the display circuit must complete the SDAV-SDAC handshake to obtain a steady data-stream.

The LOAD operation in the interface firmware (routine to load data from the controller into the interface display-data memories) is included to enhance the utility of the OUTPUT routines, by allowing the controller to introduce arbitrary or reference waveforms for display via the OUTPUT routine (OUTPUT may be commanded to alternate A and B displays).

## 6. Special Precautions.

6.1 <u>7L18 Lines.</u> As mentioned above, the 7L18 I/O lines are un-buffered. If power to the interface is removed while the 7L18 is operating, the interface will load down the I/O lines and effectively disable the 7L18. This occurrence will not normally damage either the interface or the 7L18, but should be avoided on general principle.

There are no protective circuits on the 7L18 I/O lines. The 7L18 circuits connected to these lines (mostly low-power Schottky TTL devices) are therefore subject to damage from static electricity or fault transients introduced via the umbilical. The user will be required to exercise particular care when connecting and disconnecting interface and controller cables to assure that damaging voltages or currents are notintroduced into the 7L18.

6.2 <u>Interface-to-Controller Lines</u>. In the interest of simplicity, no protective circuits are shown on the 20 lines running between the interface and controller. However, in construction, each line should be clamped at circuit ground and the +5V supply bus by diodes, and at least 100 ohms series resistance be added in each line between the clamps and the off-board connection. The MC6820 PIA is a MOS device and quite susceptible to damage by static discharges or fault transients.

If separate input and output buses are selected, more rugged line-buffers may be added to reduce transient susceptibility. For a bidirectional data line, however, additional steering logic and interface/controller protocols would be required to permit use of transceiver-type buffers.

## APPENDIX A

# "PANEL DUMP" DATA CODING

Data appear as 10 consecutive outputs to Port 15 OUT after a "panel dump" request externally introduced to Port 15 IN.

| Words | Parameter        | <u>Code</u>                                                                                                                                 |  |  |  |  |  |
|-------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 1-5   | Center Frequency | BCD, with MSD sent first. Code 1010 represents a leading zero (blank). For value in GHz, put decimal point after the second digit (nn.nnn). |  |  |  |  |  |
| 6     | Vertical Mode    | Øxxx 10 dB/div<br>1xxx 2 dB/div or LIN                                                                                                      |  |  |  |  |  |
|       | Cal/Uncal        | xxxØ Reference level is uncalibrated xxx1 Reference level is calibrated                                                                     |  |  |  |  |  |
| 7     | Reference Level  | Binary 0000-1111. Value in dBm is (code minus 1011) times ten: Code 0000 = -110 dBm.                                                        |  |  |  |  |  |
| 8     | Span Units       | 0000 = X 100 Hz                                                                                                                             |  |  |  |  |  |
| 9     | Span Mantissa    | 0001 = 2 or 0 Hz<br>0010 = 5<br>0011 = 10, IDENTIFY or MAX SPAN                                                                             |  |  |  |  |  |
|       |                  | Note: After decoding the Span Units and Mantissa the controller should normalize the units again (e.g., 1 Mhz, not $10 \times 100$ kHz).    |  |  |  |  |  |
| 10    | *Res. Bandwidth  | x001 = 30  Hz $x100 = 30  kHzx010 = 300  Hz$ $x101 = 300  kHzx011 = 3  kHz$ $x110 = 3  MHz$                                                 |  |  |  |  |  |
|       | Auto or Manual   | Øxxx Manually selected resolution bandwidth 1xxx Auto bandwidth mode                                                                        |  |  |  |  |  |

\*Note: This is the preferred source for resolution bandwidth data. The Port 3 IN data will indicate the actual setting only if manually selected, indicating simply "Auto" if Auto mode is selected. The readout here shows both the mode and the value at all times.

#### APPENDIX B

#### INPUT PORTS DATA CODING

The suggested interface re-groups Port Ø-1-2 data as shown in the right-hand columns. See following pages for detail coding.

| 7L18 ———       |                                          |         | Interface   |             |                                        |  |
|----------------|------------------------------------------|---------|-------------|-------------|----------------------------------------|--|
| Port           | Data                                     | Format  | Word        | Data        | Format                                 |  |
| Ø              | Time/div exponent                        | xTTT    | Ø           | Time/div    | <b>ØØØ</b> EEEMM                       |  |
| 1              | Time/div mantissa +<br>Span/div mantissa | TTSS    | 1           | Span/div    | ØØØEEEMM                               |  |
| 2              | Phaselock +<br>Span/Div exponent         | PSSS    | 2           | Phase lock  | ØØØØPØØØ                               |  |
| 3              | Band                                     | BBBB    | 3           | Band        | <b>ØØØØ</b> BBBB                       |  |
| 4              | Resolution Bandwidth                     | RRRR    | 4           | Res. b/w    | ØØØØRRRR                               |  |
| 5)<br>6)<br>7) | (Not read)                               |         | 5<br>6<br>7 | =           | 00000000000000000000000000000000000000 |  |
| 8              | Storage Status                           | 0000*   | 8           | Stor. Stat. | 99999999                               |  |
| 9              | (Not read)                               |         | 9           |             | ØØØØØØØØ                               |  |
| 10             | DVM Status                               | nnØn**  | 10          | DVM Status  | 9999****                               |  |
| 11             | DVM Data                                 | nnnn*** | 11          | DVM Data    | 9999****                               |  |
| 12             | Vertical Mode                            | VxxV    | 12          | Vert Mode   | ØØØØV××V                               |  |
| 13             | RF Attenuators                           | XAAA    | 13          | RF Atten    | ØØØØ×AAA                               |  |
| 14             | IF Gain                                  | GGGG    | 14          | IF Gain     | ØØØØGGG                                |  |
| 15             | External command input                   | ExxE    | 15          | Ext         | 00001111                               |  |

<sup>\*</sup>Always 0000 except immediately after request for display data dump.

\*\*Two consecutive readings here if Port 11 is to be read.

\*\*\*Five consecutive readings here when read.

<sup>\*\*\*\*</sup>Invalid data (only one word saved out of 2 or 5).

## DETAIL INPUT PORT DATA CODING

```
Word Ø in Memory D (From Ports Ø & 1)
```

TIME/DIV

Format: 8 4 2 1 8 4 2 1 -- (Values for hex notation)

Exponent:

us or Auto 0 x 10 us or Manual 0 1 Ø 1 0 x 100 µs or External 0 1 1 ms 00 x 10 ms 1 0 1 x 100 ms 1 0 1 1 x 10 s

Mantissa:

Ø Ø Auto, Manual or External
Ø 1 1
1 Ø 2
1 1 5

Word 1 in Memory D (From Ports 1 & 2)

SPAN/DIV

Format:

Note: SPAN/DIV data are read from a rotary switch using Gray code. Just 23 of the possible 32 codes are used. The controller should use table-lookup to determine values.

1101

MAX

```
CME Bulletin 9781 7L18 Digital Interface APPENDIX B
                                                                    Page 3
Word 2 in Memory D (From Port 2)
                                                              PHASE LOCK
                       8 4 2 1 8 4 2 1
        Format:
                      0000 P000
                               1 Ø Ø Ø Auto phase-lock.
                               Ø Ø Ø Ø Phase lock off.
Word 3 in Memory D (From Port 3)
                                                             BAND SWITCH
                       8 4 2 1 8 4 2 1
        Format:
                       9999
                              BBBB
                               0000
                                        "Options"
                               Ø Ø Ø 1 Band 1 (1.5 - 3.5 GHz)
                                        (Band coding 1-11 in binary code)
                               1 Ø 1 1 Band 11 (30.5 - 60.5 GHz)
Word 4 in Memory D (From Port 4)
                                                     RESOLUTION BANDWIDTH
                       8 4 2 1 8 4 2 1
                       0000 RRRR
        Format:
                               0001
                                        30 Hz
                               9 9 1 9
9 9 1 1
                                        300 Hz
                                        3 kHz
                                 100
                                        30 kHz
                                 1 0 1
                                        300 kHz
                               0110
                                        3 Mhz
                               1000
                                         AUTO
Words 5-6-7 in Memory D (From Ports 5, 6, 7)
                                                                NO DATA
Word 8 in Memory D (From Port 8)
                                                           STORAGE STATUS
                       8421 8421
         Format:
                       0000 5555
                               Ø Ø Ø Ø No dump command received.
                                        -1 = Non-store mode (abort)
                                        1 = SAVE A is on
                                        -1 = MAX HOLD is on
```

Note: Nonzero status word is not normally output during a read of IN ports. It is triggered only by a Port 8 OUT command from the 7L18's processor, which is triggered in turn only by a "data dump" command.

-----1 = Data dump OK.

CME Bulletin 9781 7L18 Digital Interface APPENDIX B

Page 4

Word 9 in Memory D (From Port 9)

NO DATA

Word 10 in Memory D (From Port 10)

DVM STATUS

Format:

```
8421 8421
0000 5505
             L--1 = Counter is at LSB
            ----1 = Port 11 data isvoltage value
         ----1 = Ready to send
```

Note: Port 10 data is not normally usable by an external controller. The status information relates only to the Port 11 data.

Word 11 in Memory D (From Port 11)

DVM RAW DATA

Format:

8 4 2 1 8 4 2 1 0000 DDDD

> Sequence of 5 BCD digits, LSD first.

Note: Port 11 data is not normally usable by an external controller. For center-frequency data, use the "Panel dump" data.

Word 12 in Memory D (From Port 12)

VERT MODE & CAL/UNCAL

```
8421 8421
0000 MxxC
               -1 = Calibrated Reference level
               -Ø = Uncalibrated*
             ---1 = 2 dB/div or LIN
            ----Ø = 10 dB/div
```

\*Reference Variable control is out of its detent "Calibrated" position. Other possible "uncal" conditions are not flagged here.

Word 13 in Memory D (From Port 13)

RF ATTENUATOR

Format:

8 4 2 1 8 4 2 1 0000 0 AAA

> 000 Ø dB 001 10 dB Ø 1 Ø 20 dB Ø 1 1 3Ø dB 1 0 0 40 dB 1 0 1 50 db 1 1 Ø 6Ø dB

CME Bulletin 9781

7L18 Digital Interface APPENDIX B

Page 5

Word 14 in Memory D (From Port 14)

IF GAIN

Format:

8 4 2 1 8 4 2 1 Ø Ø Ø Ø G G G G

7418 JP INTERFACE BLOCK DIAGRAM 9-15-78 GG/CNE



#### 7L18 uP Interface

1 ea

#### PARTS LIST Capacitors C1 1 ea 2 uF 20% 25 V Tantalum Dip C2 1 ea 5% .001 100V Ceramic disc Diodes CR1 Small signal, Silicon, 30V 1 ea DO-35 CR2-41 Small signal, Silicon, 30V DO-35 (Protective networks) 40 ea Resistors R1 1 ea 100k 5% 1/4 W Carbon film R2 1 ea 5% 47k 1/4 W Carbon film R3-22 20 ea 100 ohm 5% Carbon film (Protective networks) 1/4 W Misc. Electronic X1 1 ea Crystal, 4 MHz Integrated Circuits U1 MC6802 MOS 8-bit Microprocessor 1 ea U2-9 8 ea 21LØ2 1k x 1 MOS RAM, 35Ø ns U11-12 2 ea MC6820 or MC6821 MOS Peripheral Interface Adapter U21 256 x 4 MOS RAM, 350 ns 1 ea 2101A U22 1k x 8 EPROM, 5V, MOS 1 ea 2758 U23 4042 Quad latch, CMOS 1 ea Dual 1 to 4 line decoder, CMOS U24 1 ea 4555 Quad 2-input NAND gate, CMOS U25, 28 2 ea 4011 U26 1 ea 4001 Quad 2-input NOR gate, CMOS U27 1 ea 4585 Four-bit magnitude comparator, CMOS U29 1 ea 8ØC97 Hex tri-state buffer (4 + 2), CMOS Misc. Hardware and Assemblies SW1 1 ea SPST N.O. Pushbutton (RESET) J20 1 ea Lemo #RA-C2314 Interface-to-umbilical 1 ea DB-25S 25-contact Interface-to-controller DB-25P 25-contact Interface-to-controller 1 ea 3 ea 40-pin sockets 16-pin sockets 12 ea 3 ea 14-pin sockets 1 ea 22-pin socket 1 ea ECB

Regulated power-supply: 115VAC to 5V at 2A.

#### 7L18 uP Interface

#### EXTERNAL CONTROLLER COMMANDS

The interface processor responds to single 8-bit commands from the controller as follows:

FORMAT: 8 4 2 1 -- Values for hex notation

Opcodes: 0000-1111 as shown below.

Operands: Bits in the D,C,B and A positions flag one to four interface memory areas as operands for the command opcode.

| Command | Coding                 | Operation                                                                 |
|---------|------------------------|---------------------------------------------------------------------------|
| RECORD  | DODD DCBA              | Transfer data from 7L18 to interface memory                               |
| READ    | ØØØ1 DCBA              | Interface memory to controller                                            |
| LOAD    | 0010 DCBA              | Controller to interface memory                                            |
| SUB     | 0011 1xxx<br>0011 0x00 | Substitute D memory for 7L18 panel controls Re-enable 7L18 panel controls |
| OUTPUT  | 0011 0xAB              | Continuous data output until interrupted                                  |
| (NOP)   | Ø1xx xxxx              | Reserved for user-defined functions*                                      |
| (NOP)   | 10xx xxxx              | Reserved for user-defined functions*                                      |
| NOP     | 1100 xxxx              | No action (jumps to COMAND)                                               |
| INZ     | 1101 xxxx              | Resets PIA's, jumps to COMAND                                             |
| INZ     | 111Ø xxxx              | Resets PIA's, jumps to COMAND                                             |
| RESET   | 1111 xxxx              | Clears memory, resets CPU & PIA's.                                        |

<sup>\*</sup>Firmware as coded returns ENQ on receipt of these instructions.

## **OPERATIONS**

| Command          | <u>Operation</u>                                                                                                                                                                                                              |  |  |  |  |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| RECORD (D,C,B,A) | Interface reads data from 7L18.                                                                                                                                                                                               |  |  |  |  |
|                  | RDAC remains low until operation is finished, or error condition is encountered.                                                                                                                                              |  |  |  |  |
|                  | Returns status byte on output bus:                                                                                                                                                                                            |  |  |  |  |
|                  | ACK (\$06): Operation complete.<br>ENQ (\$05): Bad instruction, or questionable data.<br>NAK (\$15): Abort status from 7L18. May not have re-<br>corded any data (B or A data only).                                          |  |  |  |  |
| READ (D,C,B,A)   | Interface reads requested data from interface memory to external device.                                                                                                                                                      |  |  |  |  |
|                  | RDAC goes high as soon as instruction is received.                                                                                                                                                                            |  |  |  |  |
|                  | Returns ACK ( $\$\emptyset6$ ) before outputting data. Returns ENQ ( $\$\emptyset5$ ) if invalid instruction (i.e., READ $\emptyset\emptyset$ ). Returns EOT after last data byte sent.                                       |  |  |  |  |
| LOAD (D,C,B,A)   | Interface loads selected memory or memories with data from external device.                                                                                                                                                   |  |  |  |  |
|                  | RDAC goes high as soon as instruction is received.                                                                                                                                                                            |  |  |  |  |
|                  | Returns ACK (ready to receive data) or ENQ (invalid instruction) when instruction decoded. Then accepts the proper number of bytes for each memory selected, in D,C,B,A order. Issues another ACK when last byte is received. |  |  |  |  |
| SUB/OUTPUT       |                                                                                                                                                                                                                               |  |  |  |  |
| SUB (Ø)          | Restores front-panel control of 7L18; issues ACK when instruction received.                                                                                                                                                   |  |  |  |  |
| SUB (D)          | Sets memory D to control five 7L18 front-panel functions; issues ACK when instruction completed.                                                                                                                              |  |  |  |  |
| OUTPUT (B, A)    | Continuous display memory output.                                                                                                                                                                                             |  |  |  |  |

RDAC and ACK issued when instruction is received. If A and/or B is specified, will respond properly. (If only memory C is specified in the operand, the instruction will be treated as SUB  $(\emptyset)$ .)

Sets RDAC low, runs through B or A (or B, then A) display memory, sets RDAC high, waits 6 ms, then repeats.

Any command issued to the interface will interrupt the output during the wait period between displays, and then the new command will be read from the bus and be implemented. If a bidirectional bus is used, the external command word will contend with the last display cycle on the bus. To avoid bus contention, the external device should wait for the RDAC line going high before putting the new command on the data bus. The interrupt is implemented by setting the RDAV line low.

During the display OUTPUT, the external device must supply a SDAC \( \sigma\) for each SDAV \( \sigma\) transition on line. An auto-response circuit may be enabled for this purpose if desired to maximize throughput.

The maximum data output rate (50 usec or shorter SDAC response) is a little over 15,000 bytes/sec or a 512-byte display in about 33 ms. With a 6-ms wait between displays, the refresh rate is about 25 hz for a single-memory display, or about 13 hz if both A and B memories are being output.

-0-

D Memory: 16 bytes, front-panel settings.
C Memory: 10 bytes, "panel dump" data.
B Memory: 512 bytes, display memory B.
A Memory: 512 bytes, display memory A.

If more than one memory is referred to in a command, the order of reference is always D,C,B,A (READ, LOAD, OUTPUT commands).

#### 7L18 uP Interface



#### HANDSHAKE DETAIL FOR OUTPUT OPERATION

Output continues recurrently until controller interrupts with new command during the 6ms interval between displays, when RDAC is high. RDAC signal can be used to reset the display-generator horizontal deflection system.



# Y-AXIS:



## X&Z





# (3) NORE ELABORATE



Page Ø1

\*IF7L18 Rev. 1.2

FCØØ-FFFF

```
*IF7L18 Rev. 1.2
                          FCØØ-FFFF
                                                Page Ø2
*August 21, 1978
*RESET is entry point after power-on or restart.
FC00
        01
                 RESET
                          NOP
                                                Re-sync for runaway.
FCØ1
        01
                          NOP
FCØ2
        01
                          NOP
        CE 0020
FCØ3
                          LDX
                                 #$0020
                                                Start of buffer area.
FCØ6
        6F ØØ
                 CLRM
                          CLR
                                 $00.X
                                                Clear all RAM except $0000-001F.
FCØ8
        08
                          INX
                                                Step.
FCØ9
        8C 8000
                          CPX
                                 #$8000
                                                At I/O area yet?
FCØC
        26 F8
                          BNE
                                 CLRM
                                                If not, loop.
*IOSET is reentry point for NMI or SWI.
FCØE
       CE 8008
                IOSET
                         LDX
                                 #$8008
                                                Top of PIA group.
FC11
       C6 Ø8
                         LDA B #$08
                                                Will be clearing 8 locations.
FC13
       09
                 CLRP
                         DEX
                                                Clear control registers first.
FC14
       6F ØØ
                          CLR
                                 $00.X
FC16
       5A
                         DEC B
FC17
       2E FA
                         BGT
                                 CLRP
FC19
       DF 2E
                         STX
                                 IOBASE
                                                XR now at $8000.
FC1B
       86 3E
                         LDA A
                                 #$3E
                                                CB-2 high; CB-1 + transition.
FC1D
       A7 Ø7
                         STA A
                                 $07.X
                                               Disables control RAM.
FC1F
       86 16
                         LDA A
                                 #$16
                                                C()-2 open; C()-1 + transition.
FC21
       A7 Ø3
                         STA A
                                 $Ø3,X
                                                PIAIB control register.
FC23
       A7 Ø5
                         STA A
                                 $Ø5.X
                                                PIA2A control register.
FC25
       C6 28
                         LDA B
                                 #$28
                                                Bytes in display to be cleared.
FC27
       D7 24
                         STA B BLANK
                                               Page p reference for RECORD.
*COMND routine inputs command words via PIA1-A;
*finds proper routine in INSTBL jump-table.
FC29
       01
                 COMAND
                         NOP
                                                Optional breakaway, if needed.
FC2A
       01
                         NOP
FC2B
       01
                         NOP
FC2C
       ØF
                         SEI
                                                No interrupts.
FC2D
       8E 004F
                         LDS
                                 #$ØØ4F
                                                Reset Stack Pointer.
FC3Ø
       DE 2E
                         LDX
                                 IOBASE
                                                Get start of I/O area.
FC32
       86 14
                         LDA A
                                 #$14
                                               Lock DDR; CA-2 open; CA-1 - edge
FC34
       A7 Ø1
                         STA A
                                               PIA1A (receive).
                                 $Ø1,X
FC36
       C6 34
                         LDA B
                                 #$34
                                                Code to set CA-2 low (RDAC).
FC38
       6D Ø1
                         TST
                                 $Ø1.X
                                               Watch for input IRO.
FC3A
       2A FC
                         BPL
                                 *-$02
                                               None? Loop.
FC3C
       E7 Ø1
                 COMND1 STA B
                                 $Ø1,X
                                               RDAC low (CA-2).
FC3E
       A6 ØØ
                         LDA A
                                 $00,X
                                               Get command.
FC4Ø
       97 20
                         STA A
                                 COMND
                                               Save it on Page Ø.
FC42
       84 FØ
                         AND A
                                 #$FØ
                                               Scrub off operand.
FC44
       44
                         LSR A
                                               Starts as CCCC 0000.
FC45
       44
                         LSR A
```

```
*IF7L18 Rev. 1.2
                          FCØØ-FFFF
                                                Page Ø3
 *August 21, 1978
FC46
        44
                          LSR A
                                                Ends as ØØØC CCCØ (opcode x 2).
FC47
        CE FFEØ
                          LDX
                                 #INSTBL
                                                S. A. of jump table.
FC4A
        DF 21
                          STX
                                 FUNCT
                                                For manipulation.
FC4C
        9B 22
                          ADD A
                                 FUNCT + 1
                                                Opcode X 2 + LSB
FC4E
        97 22
                          STA A
                                 FUNCT + 1
                                                Position in table.
FC5Ø
        DE 21
                          LDX
                                 FUNCT
                                                Location into XR.
FC52
        EE ØØ
                          LDX
                                 $00,X
                                                Get routine address there.
FC54
        AD 00
                         JSR
                                 $00.X
                                                Do the routine.
FC56
        2Ø D1
                         BRA
                                 COMAND
                                                Get next command.
FC58
        01
                         NOP
*ERROR outputs a NAK via PIA1B to the external device.
FC59
        86 15
                 ERROR
                         LDA A #$15
                                               ASCII 'NAK': aborted operation.
*STATO outputs one byte from ACC A via PIA1B;
*then 'turns around' PIA1B to open-circuit state again.
FC5B
       BD FE76 STATO
                         JSR
                                 FOUT
                                                'First output' routine.
FC5E
       6D Ø3
                         TST
                                 $03.X
                                                Wait for +SDAC from other device
FC6Ø
       2A FC
                         BPL
                                 *-$02
FC62
       6F Ø3
                         CLR
                                 $Ø3,X
                                                Open DDR for PIA1B
FC64
       6F Ø2
                         CLR
                                 $02,X
                                                Change back to 8 inputs.
FC66
       39
                         RTS
                                                Return.
*ERRORQ sends back ENQ to external device.
FC67
       86 Ø5
                 ERRORQ
                         LDA A
                                #$05
                                               ASCII ENQ: Command error.
FC69
       20 FØ
                         BRA
                                 STATO
                                               Output to external device.
*ACK sends command acknowledgement to external device.
FC6B
       86 Ø6
                         LDA A
                 ACK
                                #$06
                                               ASCII ACK: "Roger".
FC6D
       20 EC
                         BRA -
                                STATO
*DONE sends EOT to external device after READ.
FC6F
       86 Ø4
                 DONE
                         LDA A
                                #$04
                                               ASCII EOT: "All done".
FC71
       20 E8
                         BRA
                                 STATO
*RECORD gets 7L18 data from IN bus, Panel Dump or
*Display memory, loads into interface memory.
FC73
       96 20
                RECORD
                         LDA A
                                COMND
                                               Get command.
FC75
       84 ØF
                         AND A
                                #$ØF
                                               Scrub opcode, get operand.
FC77
       27 EE
                         BEQ
                                ERRORQ
                                               Record 00? Invalid command.
FC79
       01
                         NOP
FC7A
       01
                         NOP
```

```
*IF7L18 Rev. 1.2
                          FCØØ-FFFF
                                                Page Ø4
*August 21, 1978
                          NOP
                                                 (Optional breakaway).
FC7B
       01
FC7C
       DE 2E
                          LDX
                                 IOBASE
                                                Get PIA2B control code.
FC7E
       E6 Ø7
                          LDA B
                                 $07.X
FC8Ø
       C4 FB
                          AND B
                                 #$FB
                                                Scrub DDR bit.
FC82
                          STA B
                                                Back into PIA2B control register
       E7 Ø7
                                 $07,X
FC84
       CA Ø6
                                 #$06
                                                DDR lock; CB-1 + transition.
                          ORA B
FC86
       37
                          PSH B
                                                 Save that code for later.
FC87
       D6 26
                                                 I/O pattern for PIA2B.
                          LDA B
                                 IOWORD
FC89
       C4 FØ
                          AND B
                                 #$FØ
                                                No outputs at 4 low-order bits.
FC8B
                          STA B
       E7 Ø6
                                 $Ø6,X
                                                 Set data-direction register.
FC8D
                          PUL B
       33
                                                Get saved code.
FC8E
       E7 Ø7
                          STA B
                                                 Lock up DDR.
                                  $07,X
FC9Ø
       85 Ø8
                          BIT A
                                  #$08
                                                 Check operand: record D?
FC92
       27 5D
                          BEQ
                                  CREC
                                                 If not, check for C.
FC94
       C6 10
                 DREC
                          LDA B
                                  #$10
                                                 Recording D...16 bytes.
FC96
       CE ØØ5Ø
                          LDX
                                  #EMEM
                                                 E buffer for raw D data.
FC99
       DF 28
                          STX
                                 MEMAD
                                                 Start location
FC9B
       DF 2A
                          STX
                                 MEMLOC
                                                 Working location
FC9D
       6F ØØ
                 CLRE
                          CLR
                                  $00,X
                                                 Clear out any old data.
FC9F
       08
                          INX
                                                 Step.
FCAØ
       5A
                          DEC B
                                                 Count.
FCA1
       2E FA
                          BGT
                                  CLRE
                                                 Loop until done.
FCA3
       C6 4Ø
                          LDA B
                                                 To assure catching all ports.
                                  #$40
FCA5
       DE 2E
                 NEXTD
                          LDX
                                  IOBASE
                                                 Set XR for I/O operations.
                                                 Clear any old IRQ's.
FCA7
       A6 Ø6
                          LDA A
                                  $Ø6,X
FCA9
                                                 Look for IRQ (IN pulse).
       A6 Ø7
                          LDA A
                                  $Ø7,X
FCAB
       2A FC
                          BPL
                                  *-$02
                                                 Loop until IN detected.
FCAD
       A6 Ø4
                          LDA A
                                  $04.X
                                                 Get address & data.
FCAF
       36
                          PSH A
                                                 Save it.
FCBØ
       44
                          LSR A
                                                 Shift address down to low-order.
FCB1
       44
                          LSR A
FCB2
       44
                          LSR A
FCB3
       44
                          LSR A
FCB4
       9B 29
                          ADD A
                                                 Add to start of buffer (LSB).
                                  MEMAD + 1
FCB6
       97 2B
                          STA A
                                  MEMLOC + 1
                                                 Working location.
FCB8
       DE 2A
                          LDX
                                  MEMLOC
                                                 Get location in XR.
FCBA
        32
                          PUL A
                                                 Recover data.
FCBB
       84 ØF
                          AND A
                                                 Scrub off address.
                                  #$ØF
FCBD
        A7 ØØ
                          STA A
                                                 Into buffer.
                                  $00,X
FCBF
        5A
                          DEC B
                                                 Operation counter.
FCCØ
        2E E3
                          BGT
                                  NEXTD
                                                 Loop until done.
FCC2
        DE 28
                          LDX
                                  MEMAD
                                                 $0050, E memory.
FCC4
        A6 ØØ
                          LDA A
                                  $00,X
                                                 Get Time/Div Exponent
FCC6
        84 Ø7
                          AND A
                                  #$07
                                                 Scrub extraneous data.
FCC8
        48
                          ASL A
                                                 Shift left (also clears Carry).
FCC9
        48
                          ASL A
                                                 NOW DODE EEDD
FCCA
        E6 Ø1
                          LDA B
                                  $Ø1,X
                                                 Time/Div mantissa.
FCCC
        C4 ØC
                          AND B
                                                 Scrub other data.
                                  #$ØC
```

```
*IF7L18 Rev. 1.2
                          FCØØ-FFFF
                                                 Page Ø5
*August 21, 1978
FCCE
       01
                          NOP
                                                 0000 M100
FCCF
       54
                          LSR B
                                                 Shift down
FCDØ
       54
                          LSR B
                                                 Now 9999 99MM
FCD1
       1B
                          ABA
                                                 Assemble in A: 000E EEMM.
FCD2
       A7 10
                          STA A
                                 $10,X
                                                 Into D register at $0060.
FCD4
       A6 Ø2
                          LDA A
                                 $02.X
                                                 Get Span/div exponent.
FCD6
       84 07
                          AND A
                                 #$07
                                                 Scrub other data bit.
FCD8
       48
                          ASL A
                                                 Shift.
FCD9
                          ASL A
       48
                                                 Now DODE EEDD.
FCDA
       E6 Ø1
                          LDA B
                                 $01.X
                                                 Mantissas.
FCDC
       C4 Ø3
                          AND B
                                 #$Ø3
                                                 Delete Time/div data.
FCDE
       1B
                          ABA
                                                 Assemble Span/div in A.
FCDF
       A7 11
                          STA A
                                 $11,X
                                                 Into D register at $0061.
FCE1
       A6 Ø2
                          LDA A
                                 $02.X
                                                 Phase-lock code.
FCE3
       84 Ø8
                          AND A
                                 #$08
                                                 One-bit code: 0000 P000.
FCE5
       A7 12
                          STA A
                                 $12.X
                                                 Into D register.
FCE7
       C6 ØD
                          LDA B
                                 #$ØD
                                                 13 more bytes in buffer.
FCE9
       A6 Ø3
                 TRANSD
                          LDA A
                                 $Ø3.X
                                                 Move other data to D register.
FCEB
       A7 13
                          STA A
                                 $13,X
FCED
       08
                          INX
                                                 Step
FCEE
       5A
                          DEC B
                                                 Count
FCEF
       2E F8
                          BGT
                                 TRANSD
                                                 Loop
*CREC obtains a dump of front-panel control information.
FCF1
       96 20
                 CREC
                          LDA A
                                 COMIND
                                                 Get original command.
FCF3
       85 04
                          BIT A
                                 #$04
                                                 Check for "C" bit.
FCF5
       27 25
                          BEQ
                                 ABQP
                                                 None? Check for A or B.
FCF7
       CE ØØ7Ø
                          LDX
                                                 Get S.A. of C register.
                                 #CMEM
FCFA
       DF 28
                          STX
                                 MEMAD
                                                 Start-point reference.
FCFC
       DF 2A
                          STX
                                 MEMLOC
                                                 Working location.
FCFE
       86 F8
                          LDA A
                                 #$F8
                                                 Port 15, command 1000.
FDØØ
       8D 1C
                          BSR
                                 COMOUT
                                                 Output command to 7L18.
FDØ2
       C6 ØA
                          LDA B
                                 #$ØA
                                                 Will be getting 10 output words.
FDØ4
       DE 2E
                 NEXTC
                          LDX
                                  IOBASE
                                                 Start of I/O area.
FDØ6
       A6 Ø5
                 OUTCK
                          LDA A
                                 $05,X
                                                 Watch for OUT pulse.
FDØ8
       2A FC
                          BPL
                                  OUTCK
                                                 None? Loop.
FDØA
       A6 Ø4
                          LDA A
                                                 Get address & data; clear IRQ.
                                 $Ø4.X
FDØC
       81 FØ
                          CMP A
                                 #$FØ
                                                 Check address: 15?
FDØE
       25 F6
                          BCS
                                  OUTCK
                                                 If not, get next.
FD1Ø
       DE 2A
                          LDX
                                                 Addr = 15. Get register location
                                 MEMLOC
FD12
       84 ØF
                          AND A
                                 #$ØF
                                                 Scrub address data.
FD14
       A7 ØØ
                          STA A
                                                 Store data.
                                  $00,X
FD16
       08
                          INX
                                                 Next location.
FD17
       DF 2A
                          STX
                                 MEMLOC
                                                 For next operation.
FD19
       5A
                          DEC B
                                                 Count
FD1A
       2E E8
                          BGT
                                 NEXTC
                                                 Loop
FD1C
       20 57
                 ABQP
                          BRA
                                 ABQ
                                                 Done. Go to A - B check.
```

FD6B

85 Ø2

\*COMOUT outputs command in low-order bits of ACC A to 7L18 \*to IN Port address contained in high-order bits of ACC A. \*Specialized interface hardware puts data on-line to the \*7L18 when the 7L18 address bus matches the ACC A address. FD1E 97 25 COMOUT STA A TEMD Save command. DE 2E FD2Ø LDX IOBASE Get start of I/O area in XR. FD22 86 3E #\$3E LDA A Code for CA-2 high. A7 Ø5 FD24 STA A \$Ø5,X Disable comparator via PIA2A C6 FF fd26 LDA B #\$FF Code for 8 outputs. FD28 8D 21 BSR BSET Set PIA2B control. FD2A 96 25 TEMD LDA A Get command (addr + data) FD2C A7 Ø6 STA A \$06.X PIA2B data register. FD2E C6 ØF LDA B #\$ØF Highest code for Address Ø. FD3Ø A6 Ø6 LDA A \$06,X Clear any IN IRQ's. E1 04 FD32 CMP B Check for a "Ø" address. \$04.X FD34 25 FA BCS \*-504 \$10 or higher? Keep looking. FD36 86 36 LDA A #\$36 Code to set CA-2 low. FD38 A7 Ø5 STA A \$05.X Enable address comparator. FD3A 96 25 LDA A TEMD Get command again. FD3C E6 Ø7 COMCHK LDA B \$07.X Watch for IN pulse. FD3E 2A FC BPL Loop until IN IRQ. COMCHK FD4Ø E6 Ø6 LDA B \$06,X Got an IN. Clear IRQ. A1 Ø4 FD42 CMP A Check address & data. \$04.X FD44 26 F6 BNE COMCHK Hasn't shown yet? Get next IN. FD46 86 3E COMEX LDA A #\$3E Code to disable comparator. FD48 A7 Ø5 STA A \$Ø5,X CA-2 high via PIA2A control. FD4A 5F CLR B 00 for 8 inputs. FD4B A6 Ø7 LDA A Get PIA2B control register. \$Ø7,X 84 FB FD4D AND A #\$FB Clear the DDR bit. FD4F A7 Ø7 STA A \$Ø7,X Opens DDR. FD51 E7 Ø6 STA B \$Ø6,X Set I/O pattern. FD53 8A Ø4 ORA A #\$04 Set DDR bit. FD55 A7 Ø7 STA A \$07,X Lock up DDR. FD57 A6 Ø6 LDA A \$Ø6,X Clear any IN IRQ. FD59 39 RTS Return. \*MPREP sets up Page Ø registers for RECORD and OUTPUT routines FD5A CE 4200 MPREP LDX #AMEM Start of A register. FD5D 85 Ø1 BIT A #\$Ø1 ACC A has command word. FD5F 27 Ø3 BEO \*+\$05 Not recording A? Skip next. FD61 CE 43FF LDX #\$43FF Will do A. Get end of A. DF 2C FD64 STX MEMEND Set terminating address. FD66 CE 4000 LDX #BMEM Start of B register. FD69 DF 2A STX MEMLOC 1st working address always.

Is B bit in command?

BIT A

#\$Ø2

```
*IF7L18 Rev. 1.2
                          FCØØ-FFFF
                                                Page Ø7
*August 21, 1978
FD6D
        26 Ø3
                          BNE
                                 *+$05
                                                If so, skip next.
FD6F
        CE 4200
                          LDX
                                 #AMEM
                                                A only. Get start of A.
FD72
        DF 28
                          STX
                                 MEMAD
                                                Set operation-start register.
FD74
        39
                          RTS
                                                That's all.
*ABQ checks for A or B RECORD operation.
FD75
        96 20
                 ABQ
                          LDA A
                                 COMND
                                                Get command word.
FD77
        85 Ø3
                          BIT A
                                 #$Ø3
                                                Recording A or B?
FD79
        26 Ø3
                          BNE
                                 DUMPC
                                                If either, do it.
FD7B
       7E FC6B
                          JMP
                                 ACK
                                                Else, terminate operations.
*DUMPC sets up for display memory A or B recording.
FD7E
       8D DA
                 DUMPC
                          BSR
                                 MPREP
                                                Set up pointers per command word
FD80
       86 F1
                          LDA A
                                 #$F1
                                                Port 15, command 0001.
FD82
       8D 9A
                                 COMOUT
                          BSR
                                                COMOUT sets XR to IOBASE.
FD84
       A6 Ø5
                          LDA A
                                 $Ø5.X
                                                Watch for OUT pulse.
FD86
       2A FC
                          BPL
                                 *-$02
                                                Loop until OUT detected.
FD88
       A6 Ø4
                                 $04,X
                          LDA A
                                                Clear the OUT IRQ.
FD8A
       E6 Ø7
                          LDA B
                                 $Ø7.X
                                                Now, watch for IN pulse.
FD8C
       2A FC
                          BPL
                                 *-$02
                                                Loop until next IN.
FD8E
       E6 Ø6
                          LDA B
                                 $06.X
                                                Clear that IRQ.
FD9Ø
       A6 Ø4
                         LDA A
                                 $Ø4,X
                                                Get the IN data.
FD92
       16
                          TAB
                                                Save a copy in B.
FD93
       C4 FØ
                         AND B
                                 #$FØ
                                                Scrub off the data.
FD95
       C1 80
                          CMP B
                                 #$80
                                                Check the address.
       27 07
FD97
                          BEQ
                                 READS
                                                Port 8 IN? All's well.
FD99
       C1 FØ
                          CMP B
                                 #$FØ
                                                Port 15 IN?
FD9B
       27 E1
                          BEQ
                                 DUMPC
                                                Command ignored? Try again.
FD9D
       7E FC67
                 ERROP
                         JMP
                                 ERRORO
                                                Not 8 or 15? Abort.
FDAØ
       85 Ø1
                 READS
                         BIT A
                                 #$Ø1
                                                Check status byte from 8-IN.
       27 Ø3
FDA2
                          BEQ
                                 ABSTOR
                                                Non-store bit low? OK.
FDA4
       7E FC59
                 ERRORP
                         JMP
                                 ERROR
                                                Non-store bit high.
                                                                      Abort.
*ABSTOR inputs and assembles Display A or Display B memory
*data from 7L18 and stores in Registers B or A as full bytes.
FDA7
       5F
                 ABSTOR CLR B
                                                B is "save" flag: Ø = no-save.
FDA8
       DE 2E
                 ABST01
                         LDX
                                 IOBASE
                                                Reset XR (needed in loop).
FDAA
       A6 Ø7
                 ABST02
                         LDA A
                                                Look for IN pulse.
                                 $Ø7,X
FDAC
       2A FC
                         BPL
                                 ABST02
                                                No IRQ? Loop.
FDAE
       A6 Ø6
                         LDA A
                                 $06.X
                                                Clear IRO.
FDBØ
       A6 Ø4
                         LDA A
                                 $Ø4,X
                                                Get address and data.
FDB2
       97 25
                         STA A
                                 TEMD
                                                Save it.
FDB4
       84 FØ
                                 #$FØ
                         AND A
                                                Scrub the data.
FDB6
       81 80
                         CMP A
                                 #$80
                                                Check the address.
FDB8
       26 EA
                         BNE
                                 ERROP
                                                Not 8? Something's wrong.
```

| *IF7L18 Rev. 1.2<br>*August 21, 1978                                 |                                                                            |                 | FCØØ-FFFF                                                             |                                                                               | Page Ø8                                                                                                                                                                                         |
|----------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------|-----------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FDBA<br>FDBC<br>FDBD<br>FDBE                                         | 96 25<br>48<br>48<br>48                                                    |                 | LDA A<br>ASL A<br>ASL A                                               | TEMD                                                                          | Address OK. Recover data.<br>Shift data to MSD position.                                                                                                                                        |
| FDBF<br>FDCØ<br>FDC2<br>FDC4<br>FDC6<br>FDC8<br>FDCA<br>FDCC         | 48<br>97 25<br>A6 Ø7<br>2A FC<br>A6 Ø6<br>A6 Ø4<br>84 ØF<br>9B 25          |                 | ASL A<br>STA A<br>LDA A<br>BPL<br>LDA A<br>LDA A<br>AND A<br>ADD A    | TEMD<br>\$Ø7,X<br>*-\$Ø2<br>\$Ø6,X<br>\$Ø4,X<br>#\$ØF<br>TEMD                 | Now DDDD 0000. Park it. Look for next IN pulse. None yet? Loop. Clear IRQ. Get address & data. Chop off address. Assemble with MSD.                                                             |
| FDCE<br>FDDØ<br>FDD2<br>FDD4<br>FDD5<br>FDD6                         | DE 2A<br>9C 28<br>26 Ø1<br>5A<br>5D<br>27 Ø2                               |                 | LDX<br>CPX<br>BNE<br>DEC B<br>TST B<br>BEQ                            | MEMLOC<br>MEMAD<br>*+\$Ø3                                                     | Get working location. At start-recording point? If not, skip next. Set "save" flag. Check "save" flag. Ø? Skip the Store operation.                                                             |
| FDD8<br>FDDA<br>FDDB<br>FDDD<br>FDDF<br>FDE1<br>FDE4                 | A7 ØØ<br>Ø8<br>DF 2A<br>9C 2C<br>27 C6<br>8C 44ØØ<br>26 C2                 |                 | STA A INX STX CPX BEQ CPX BNE                                         | \$00,X<br>MEMLOC<br>MEMEND<br>ABSTOR<br>#\$4400<br>ABSTO1                     | Data into register. Next location. For next go 'round. \$4200 or \$43FF. Clear B; don't store next block. Past end of registers? If not, keep on truckin'.                                      |
| FDE6<br>FDE8<br>FDEA<br>FDEC<br>FDEE<br>FDF9<br>FDF2<br>FDF4<br>FDF6 | DE 2E<br>E6 Ø5<br>2A FC<br>A6 Ø4<br>81 FØ<br>25 F6<br>D6 24<br>27 1C<br>5Ø | ABDONE<br>ENDCK | LDX<br>LDA B<br>BPL<br>LDA A<br>CMP A<br>BCS<br>LDA B<br>BEQ<br>NEG B | IOBASE<br>\$Ø5,X<br>ENDCK<br>\$Ø4,X<br>#\$FØ<br>ENDCK<br>BLANK<br>ABEXIT      | Hit \$4400. End of operations. Watch for an OUT pulse. No IRQ? Loop. Get OUT data. Address 15? If not, keep looking. Get # of invalid data locations. None? Do nothing. Get complement.         |
| FDF7<br>FDF9<br>FDFB<br>FDFD<br>FDFF<br>FEØ1<br>FEØ3<br>FEØ6         | D7 2B<br>D7 2D<br>C6 41<br>D7 2A<br>CB Ø2<br>D7 2C<br>CE 4ØØØ<br>8D 15     |                 | STA B<br>STA B<br>LDA B<br>STA B<br>ADD B<br>STA B<br>LDX<br>BSR      | MEMLOC +<br>MEMEND +<br>#\$41<br>MEMLOC<br>#\$Ø2<br>MEMEND<br>#BMEM<br>CLREND | S.A. for end-register clearing. Also for A register. 2nd-half addresses, B register. MEMLOC now \$41nn. Now \$43. MEMEND now \$43nn. Start point for clearing. Clear (BLANK) bytes, start of B. |
| FEØ8<br>FEØA<br>FEØC<br>FEØE<br>FE1Ø<br>FE12                         | DE 2A<br>8D 11<br>8D ØF<br>DE 2C<br>8D ØB<br>81 F2                         | ABEXIT          | LDX<br>BSR<br>BSR<br>LDX<br>BSR<br>CMP A                              | MEMLOC<br>CLREND<br>CLREND<br>MEMEND<br>CLREND<br>#\$F2                       | (BLANK) bytes from end of B. Clear end of B register. Now the start of A register. Now the end of A register. Do it. Check that "15 OUT" word.                                                  |

```
*IF7L18 Rev. 1.2
                         FCØØ-FFFF
                                               Page Ø9
*August 21, 1978
FE14
       27 8E
                         BEQ
                                ERRORP
                                                'Abort' code? Issue a NAK.
FE16
       81 F1
                         CMP A
                                #$F1
                                               Check for "OK" code.
FE18
       26 83
                                ERRQP
                                               Not OK? Send out ENQ.
                         BNE
       7E FC6B
                         JMP
                                               Was "OK". Output ACK; return.
FE1A
                                ACK
*CLREND blanks (BLANK) consecutive bytes, per XR.
FE1D
       D6 24
                 CLREND
                         LDA B
                                BLANK
                                               Get # of invalid data locations.
FE1F
       6F ØØ
                 CLRE1
                         CLR
                                                Clear 1 location
                                 $00,X
FE21
       08
                         INX
                                                Step
FE22
                         DEC B
                                                Count
       5A
FE23
       2E FA
                         BGT
                                 CLRE1
                                                Loop
FE25
       39
                         RTS
                                                Return.
FE26
       01
                         NOP
FE27
                         NOP
       01
FE28
                         NOP
       01
*READ outputs content of Registers D, C, B and/or A to
*the external device via PIA1B, per external device command.
FE29
       D6 20
                 READ
                         LDA B
                                 COMIND
                                                Get command.
FE2B
       C5 ØF
                         BIT B
                                 #$0F
                                                Check for operand.
FE2D
       26 Ø3
                         BNE
                                 *+$05
                                                Got one? OK.
FE2F
       7E FC67
                         JMP
                                 ERRORQ
                                                Operand Ø. Invalid command.
FE32
       86 Ø6
                         LDA A
                                 #$06
                                                ASCII 'ACK'.
FE34
       8D 40
                         BSR
                                 FOUT
                                                RDAC +; set outputs; issue ACK.
FE36
       96 20
                         LDA A
                                 COMND
                                                Get command.
FE38
       85 Ø8
                         BIT A
                                #$08
                                                Check for 'D' bit.
FE3A
       27 Ø7
                         BEQ
                                 CREAD
                                                None? Try C.
*DREAD outputs 16 bytes from D register.
FE3C
       C6 1Ø
                 DREAD
                         LDA B
                                 #$10
                                                Byte count (16).
FE3E
       CE ØØ6Ø
                         LDX .
                                 #DMEM
                                                S. A. of D register.
FE41
       8D 46
                         BSR
                                 CONTO
                                                Output translated buffer.
*CREAD outputs 10 bytes from C register (panel dump data).
FE43
       96 20
                         LDA A
                                 COMND
                                                Get command.
FE45
                         BIT A
       85 Ø4
                                                Check for 'C' bit.
                                 #$04
FE47
       27 Ø7
                         BEQ
                                 BREAD
                                                None? Try B.
FE49
       C6 ØA
                         LDA B
                                 #$ØA
                                                Byte count (10).
FE4B
       CE 0070
                         LDX
                                 #CMEM
                                                S. A. of C register.
FE4E
       8D 39
                         BSR
                                 CONTO
                                                Output 10 bytes.
*BREAD outputs data from B register $4000-$41FF (512 bytes).
FE5Ø
       96 20
                 BREAD
                         LDA A COMND
                                                Get command.
```

```
*IF7L18 Rev. 1.2
                          FCØØ-FFFF
                                                Page 10
*August 21, 1978
FE52
        85 Ø2
                          BIT A
                                 #$02
                                                Check for 'B' bit.
FE54
        27 ØA
                          BEQ
                                                None? Try A.
                                 AREAD
        CE 4200
FE56
                          LDX
                                 #AMEM
                                                S. A. of A register.
FE59
       DF 2C
                          STX
                                 MEMEND
                                                Limit for output.
FE5B
       CE 4000
                          LDX
                                 #BMEM
                                                Start point.
FE5E
       8D 3Ø
                          BSR
                                 MEMO.
                                                Output the data.
*AREAD outputs data from A register $4200-43FF (512 bytes).
FE6Ø
       96 20
                 AREAD
                         LDA A
                                 COMIND
                                                Get command word.
FE62
       85 Ø1
                          BIT A
                                 #$Ø1
                                                Check for 'A' bit.
FE64
       27 ØA
                          BEO
                                 EXREAD
                                                None? Exit.
FE66
       CE 4400
                          LDX
                                 #$4400
                                                End of A register + 1.
FE69
       DF 2C
                          STX
                                 MEMEND
                                                Limit.
FE6B
       CE 4200
                          LDX
                                 #AMEM
                                                Start.
FE6E
       8D 2Ø
                          BSR
                                 MEN10
                                                Output data.
FE7Ø
       7E FC6F
                 EXREAD
                         JMP
                                 DONE
                                                Output EOT; return to COMAND.
FE73
       01
                          NOP
FE74
       01
                         NOP
FE75
       01
                         NOP
*FOUT releases RDAC; sets up 8 outputs at PIA1B;
*outputs character in ACC A; leaves outputs set at PIA1B.
FE76
       DE 2E
                 FOUT
                         LDX
                                 IOBASE
                                                Get start of I/O area.
FE78
       C6 14
                         LDA B
                                 #$14
                                                CA-2 open; CA-1 - transition.
FE7A
       E7 Ø1
                          STA B
                                 $Ø1,X
                                                PIA1A control: release RDAC.
FE7C
       C6 FF
                 FOUT1
                         LDA B
                                 #$FF
                                                Code for 8 outputs.
FE7E
       6F Ø3
                         CLR
                                 $Ø3,X
                                                Open DDR on B side.
FE8Ø
       E7 Ø2
                          STA B
                                 $02,X
                                                Set outputs.
FE82
       C6 26
                         LDA B
                                 #$26
                                                Code for CB-2: /SDAV after write
FE84
       E7 Ø3
                          STA B
                                 $Ø3,X
                                                Lock DDR; CB-1 + edge.
FE86
       A7 Ø2
                          STA A
                                 $Ø2,X
                                                Output character; set /SDAV.
FE88
       39
                         RTS
                                                /SDAV will be released by CB-1 +
*CONTO outputs (ACC B) characters per XR to external device.
FE89
       8D ØD
                 CONTO
                         BSR
                                 OUT1
                                                Output character in ACC A.
FE8B
       08
                          INX
                                                Step
FE8C
       5A
                         DEC B
                                                Count
FE8D
       2E FA
                         BGT
                                 CONTO
                                                Loop
FE8F
       39
                         RTS
                                                Return.
*MEMO outputs data to external device, per XR up to MEMEND.
FE9Ø
       8D Ø6
                 HE10
                         BSR
                                 OUT1
                                                Output 1 character.
FE92
       08
                          INX
                                                Step
```

```
*IF7L18 Rev. 1.2
                         FCØØ-FFFF
                                               Page 11
*August 21, 1978
FE93
       9C 2C
                         CPX
                                                At limit?
                                MEMEND
       26 F9
FE95
                         BNE
                                MEMO
                                                If not loop.
FE97
       39
                         RTS
                                                At limit. Return.
*OUT1 outputs 1 character per XR, via PIA1B.
FE98
       A6 00
                 OUT1
                         LDA A
                                 $00.X
                                                Get character.
       DF 2A
FE9A
                         STX
                                 MEMLOC
                                                Save XR value.
FE9C
       DE 2E
                         LDX
                                 IOBASE
                                                Get start of I/O area.
FE9E
       6D Ø3
                         TST
                                                Check for +SDAC from previous.
                                 $Ø3.X
       2A FC
FEAØ
                         BPL
                                 *-502
                                                Wait for it if not here.
FEA2
       A7 Ø2
                         STA A
                                 $02,X
                                                Output PIA1B data.
       A6 Ø2
FEA4
                                 $02,X
                         LDA A
                                                Clear IRO.
FEA6
       DE 2A
                         LDX
                                 MEMLOC
                                                Recover XR.
FEA8
       39
                         RTS
                                                Return.
*LOAD inputs data from external device via PIA1A,
*to be stored in interface memory registers.
FEA9
       D6 20
                 LOAD
                         LDA B
                                 COMMD
                                                Get command word.
FEAB
       C5 ØF
                         BIT B
                                 #$0F
                                                Check operand.
FEAD
       26 Ø3
                         BNE
                                 *+$05
                                                Not Ø? Go.
FEAF
       7E FC67
                         JMP
                                                Invalid command. Output ENQ.
                                 ERRORO
FEB2
       8D 72
                         BSR
                                 ACKP
                                                Output ACK.
*DLOAD accepts 16 bytes for D register.
FEB4
       96 20
                 DLOAD
                         LDA A
                                 COMND
                                                Get command.
FEB6
       85 08
                         BIT A
                                 #$08
                                                Check for 'D' bit.
FEB8
       27 Ø7
                         BEO
                                 CLOAD
                                                None? Check C.
                         LDA B
FEBA
       C6 1Ø
                                 #$10
                                                Byte count.
FEBC
       CE ØØ6Ø
                         LDX
                                                S. A. of Register D.
                                 #DMEM
FEBF
       8D 2F
                         BSR
                                 CONTLD
                                                Input 16 bytes.
*CLOAD accepts 10 bytes for C register.
FEC1
       96 20
                 CLOAD
                         LDA A
                                 COMIND
                                                Get command.
FEC3
       85 Ø4
                          BIT A
                                 #$04
                                                Check for 'C' bit.
FEC5
       27 Ø7
                          BEQ
                                 BLOAD
                                                No C? Try B.
FEC7
       C6 ØA
                         LDA B
                                                Count for 10 bytes.
                                 #$ØA
FEC9
       CE ØØ7Ø
                         LDX
                                 #CMEM
                                                Get S. A. of register.
FECC
       8D 22
                          BSR
                                 CONTLD
                                                Input the data.
*BLOAD accepts 512 bytes for storage in B register.
FECE
       96 20
                 BLOAD
                                 COMMD
                         LDA A
                                                Get command.
FEDØ
       85 Ø2
                          BIT A
                                 #$02
                                                Look for 'B' bit.
FED2
       27 ØA
                          BEQ
                                 ALOAD
                                                None? Try A.
```

```
*IF7L18 Rev. 1.2
                          FC00-FFFF
                                                Page 12
*August 21, 1978
       CE 4200
FED4
                          LDX
                                 #AMEM
                                                Limit for input.
FED7
       DF 2C
                          STX
                                 MEMEND
FED9
       CE 4000
                          LDX
                                 #BMEM
                                                Start point.
FEDC
       8D 1B
                          BSR
                                 MEMLD
                                                 Input data.
*ALOAD accepts 512 bytes for storage in A register.
FEDE
       96 20
                 ALOAD
                          LDA A
                                 COMND
                                                 Get command.
FEEØ
                          BIT A
                                                 Check for 'A' bit.
       85 Ø1
                                 #$01
FEE2
       27 ØA
                          BEO
                                 ENDLD
                                                 None? You're done.
FEE4
       CE 4400
                          LDX
                                 #$4400
                                                 Limit.
       DF 2C
FEE7
                          STX
                                 MEMEND
FEE9
       CE 4200
                          LDX
                                 #AMEM
                                                 Start point.
FEEC
                          BSR
       8D ØB
                                 MEMLD
                                                 Load $4200-$43FF.
FEEE
       20 36
                 ENDLD
                          BRA
                                 ACKP
                                                 Output ACK: back to COMAND.
*CONTLD stores (ACC B) bytes per XR from external device.
FEFØ
       8D 11
                 CONTLD
                          BSR
                                 IN1
                                                 Get input byte.
FEF2
       A7 ØØ
                          STA A
                                 $00,X
                                                 Store per XR.
FEF4
       08
                          INX
                                                 Step
FEF5
                          DEC B
       5A
                                                 Count
FEF6
       2E F8
                          BGT
                                  CONTLD
                                                 Loop
FEF8
       39
                          RTS
                                                 Return.
*MEMLD stores data per XR up to MEMEND, from external device.
FEF9
       8D Ø8
                 MEMLD
                          BSR
                                  IN1
                                                 Get input data byte.
FEFB
       A7 00
                          STA A
                                  $00,X
                                                 Store per XR.
FEFD
       08
                          INX
                                                 Step
FEFE
       9C 2C
                                                 At limit?
                          CPX
                                 MEMEND
FFØØ
       26 F7
                          BNE
                                 MEHLD
                                                 If not, loop.
FFØ2
        39
                          RTS .
                                                 Done.
*IN1 inputs 1 character from external device via PIA1A.
FFØ3
       DF 2A
                 IN1
                          STX
                                  MEHLOC
                                                 Save XR.
FFØ5
                          LDX
       DE 2E
                                  IOBASE
                                                 Start of I/O area.
FFØ7
                                                 Code for CA-2 open circuit.
       86 14
                          LDA A
                                  #$14
FFØ9
       A7 Ø1
                          STA A
                                  $01,X
                                                 Release RDAC.
FFØB
       86 34
                          LDA A
                                  #$34
                                                 For RDAC low; CB-1 - edge.
FFØD
       6D Ø1
                          TST
                                                 Look for /RDAV.
                                  $Ø1,X
FFØF
       2A FC
                          BPL
                                  *-$02
                                                 Loop until received.
FF11
       A7 Ø1
                          STA A
                                                 Set RDAC low.
                                  $01,X
FF13
       A6 00
                          LDA A
                                  $00,X
                                                 Get input character.
FF 15
       DE 2A
                          LDX
                                  MEMLOC
                                                 Recover XR.
FF17
        39
                          RTS
                                                 Return.
```

\*August 21, 1978

```
*SUB restores front-panel control of Time/Div, Span/Div, Phase
 *Lock, Resolution Bandwidth and Band (SUB Ø), or puts these
 *functions under Control RAM, loaded from Register D (SUB D).
 FF18
         96 20
                  SUB
                          LDA A COMIND
                                                 Get command.
 FF 1A
         85 ØB
                          BIT A
                                  #$ØB
                                                 Get operand; ignore any C bit.
 FF1C
        26 ØB
                          BNE
                                  PLOAD
                                                 D, A or B? Skip next.
 FF1E
        DE 2E
                          LDX
                                  IOBASE
                                                 SUB Ø = restore front-panel.
 FF2Ø
        E6 Ø7
                          LDA B
                                  $Ø7.X
                                                 Get PIA2B control register.
 FF22
        CA 38
                          ORA B
                                  #$38
                                                 Set CB-2 bits high.
 FF24
        E7 Ø7
                          STA B
                                                CB-2 high; control RAM disabled.
                                  $07,X
 FF26
        7E FC6B ACKP
                          JMP
                                  ACK
                                                Issue ACK; return to COMAND.
 *PLOAD loads Control RAM with contents of Register D; disables
 *five 7L18 front-panel controls and enables Control RAM.
FF29
        85 08
                  PLOAD
                          BIT A
                                 #$08
                                                Check command for SUB D bit.
FF2B
        26 07
                          BNE
                                 PLOAD1
                                                Got one? Do it.
FF2D
        7E FFB3
                          JMP
                                 OUTPUT
                                                No SUB D. Do OUTPUT.
FF30
        01
                          HOP
FF31
        Ø1
                          NOP
FF32
        01
                          NOP
FF33
        01
                          NOP
FF34
        CE 0050
                 PLOAD1
                          LDX
                                 #EMEM
                                                Raw-data register.
FF37
        5F
                          CLR B
                                                B will get mantissa.
FF38
        A6 10
                          LDA A
                                 $10,X
                                                Time/Div from D register
FF3A
        46
                          ROR A
                                                Was: DODE EEIM
FF3B
        56
                          ROR B
                                                Mantissa bit from Carry into B.
FF3C
        46
                          ROR A
                                                Shift again, mantissa to Carry.
FF3D
        56
                          ROR B
                                                A: 0000 DEEE; B: MIOD 0000.
FF3E
        54
                          LSR B
                                                Shift B data to LSD
FF3F
        54
                          LSR B
FF40
       54
                         LSR B
FF41
       54
                         LSR B
                                                B now 9999 MM99
FF42
       A7 00
                         STA A
                                 $00,X
                                                Time/div exponent in E register.
FF 44
       A6 11
                         LDA A
                                 $11,X
                                                Get Span/div: DDDE EEMM
FF46
       84 Ø3
                         AND A
                                 #$Ø3
                                                Scrub exponent.
FF48
       18
                         ABA
                                                Assemble mantissas: 0000 TTSS
FF49
       A7 Ø1
                         STA A
                                 $Ø1,X
                                                Into E register.
FF4B
       A6 11
                         LDA A
                                 $11,X
                                                Get Span/div again.
FF4D
       44
                         LSR A
                                               Shift out mantissa.
FF4E
       44
                         LSR A
                                                A now: ØØØØ ØEEE
FF4F
       AB 12
                         ADD A
                                $12,X
                                               Add in phase-lock bit.
FF51
       A7 Ø2
                         STA A
                                 $02.X
                                                Into E register.
FF53
       A6 13
                         LDA A
                                 $13,X
                                                Resolution bandwidth code.
FF55
       A7 Ø3
                         STA A
                                 $03,X
                                                Intoo E register.
FF 57
       A6 14
                         LDA A
                                $14,X
```

Band switch code.

\*OUTPUT provides continuous output of B and/or A register data \*to external device via PIA1B, with 6 ms wait between repeats. FFB3 BD FD5A OUTPUT JSR MPREP Set MEMAD & MEMLOC per ACC A. ASCII 'ACK'. FFB6 86 06 LDA A #\$96 BD FE76 FFB8 JSR FOUT Output ACK; leave PIA1B set. **FFBB** A6 ØØ LDA A \$00.X Clear any old RDAV IRQ. FFBD C6 34 Code for RDAC low, CA-1 -edge. NEXOUT LDA B #\$34 **FFBF** E7 Ø1 \$Ø1,X STA B Into PIAIA control. DE 28 FFC1 LDX MEMAD Starting point. FFC3 BD FE90 JSR MEMO Output memory up to MEMEMD. FFC6 DE 2E LDX IOBASE Start of I/O area. FFC8 86 14 LDA A Code for RDAC high, CA-1 -edge. #\$14 **FFCA** 5F CLR B Counter.  $\emptyset = 256$ . **FFCB** 5A WAIT DEC B Counter **FFCC** 27 EF BEQ NEXOUT Done? Run another display. FFCE A7 Ø1 STA A \$Ø1,X Set RDAC high. (Helps fill time) **FFDØ** 6D Ø1 TST \$01,X Check for interrupt. FFD2 2A F7 BPL WAIT Not interrupt? Loop for 5.86 ms. FFD4 6F Ø3 **EXOUT** CLR \$Ø3,X Got interrupt. Open DDR. FFD6 6F Ø2 CLR \$02,X 8 inputs on B side. FFD8 8E ØØ4F LDS #\$004F Reset Stack Pointer. **FFDB** C6 34 LDA B #\$34 PIA code for COMND1. FFDD 7E FC3C JMP COMND1 Read new command. FFEØ FC INSTBL FDB SFC73 RECORD FFE1 73 FFE2 FE FDB \$FE29 READ 29 FFE3 FE FFE4 FDB \$FEA9 LOAD FFE5 A9 FFE6 FF FDB \$FF18 SUB/OUTPUT FFE7 18 FFE8 FC FDB ERRORQ NOP (Optional instructions) FFE9 67 FFEA FC FDB NOP ERRORQ FFEB 67 FFEC FC FDB ERRORQ HOP FFED 67 FFEE FC FDB ERRORO MOP FFEF 67 FFFØ FC FDB ERRORQ NOP FFF1 67 FFF2 FC FDB **ERRORQ** HOP FFF3 67

| *IF7L18 Rev. 1.2<br>*August 21, 1978 |                |        | FCØØ-FFFF |        | Page 16                        |
|--------------------------------------|----------------|--------|-----------|--------|--------------------------------|
| FFF4<br>FFF5                         | FC             |        | FDB       | ERRORQ | NOP                            |
| FFF6<br>FFF7                         | 67<br>FC       |        | FDB       | ERRORQ | NOP                            |
| FFF8<br>FFF9                         | 67<br>FC<br>29 | IRQ    | FDB       | COMAMO | Maskable interrupt (not used). |
| FFFA<br>FFFB                         | FC             | SWI    | FDB       | IOSET  | Software interrupt (not used). |
| FFFC                                 | ØE<br>FC       | IMN    | FDB       | IOSET  | Non-maskable interrupt.        |
| FFFD<br>FFFE<br>FFFF                 | ØE<br>FC<br>ØØ | RESTAR | FDB       | RESET  | Power-on reset.                |