## PLEASE CHECK FOR CHANGE INFORMATION AT THE REAR OF THIS MANUAL.

## PM 101 GENERAL PURPOSE PERSONALITY MODULE

INSTRUCTIDN MANபAL

Serial Number $\qquad$


## TABLE OF CONTENTS

Page
LIST OF ILLUSTRATIONS ..... iii
LIST OF TABLES ..... iii
OPERATOR'S SAFETY SUMMARY ..... iv
SERVICE SAFETY SUMMARY. ..... v
Section 1 INTRODUCTION
About This Manual ..... 1-1
Overview of the General Purpose Personality Module ..... 1-1
Section 2 OPERATING INSTRUCTIONS
Storing the General Purpose Personality Module ..... 2-1
Connecting the Personality Module to the Logic Analyzer ..... 2-1
Connecting the PM 101 to the System- Under-Test ..... 2-1
Control Lines ..... 2-1
Instruction Fetch and
Demultiplexing ..... 2-2
Clock ..... 2-2
User Clock Synthesis ..... 2-2
Inversion ..... 2-5
/STOP ..... 2-5
Application Examples ..... 2-5
6502 ..... 2-5
Intel's Multibus ${ }^{\circledR}$ ..... 2-6
How This Personality Module Affects The Logic Analyzer ..... 2-7
Word Recognizer Format ..... 2-7
Radix Selection ..... 2-7
Expansion Option ..... 2-7
Data Display Format ..... 2-7
Radix Selection ..... 2-7
Binary Address-Binary Data ..... 2-8
Expansion Option ..... 2-8
Page
Section 3 SPECIFICATIONS
Electrical ..... 3-1
Mechanical ..... 3-3
Environmental ..... 3-3
Logic Analyzer Connector Interface ..... 3-4
WARNING
the following servicing instructions areFOR USE BY QUALIFIED PERSONNEL ONLY. TO AVOIDPERSONAL INJURY, DO NOT PERFORM ANY SER-VICING OTHER THAN THAT CONTAINED INOPERATING INSTRUCTIONS UNLESS YOU AREQUALIFIED TO DO SO.
Section 4 THEORY OF OPERATION
General Theory of Operation ..... 4-1
Detailed Circuit Description ..... 4-1
Data Transfer Circuitry ..... 4-1
Clock Transmission Circuitry ..... 4-1
ROM Circuitry ..... 4-3
Control Circuitry ..... 4-3
Self Test Stimulus Circuitry ..... 4-4
Section 5 PERFORMANCE CHECK
Introduction ..... 5-1
Test Equipment Required ..... 5-1
Test Fixtures ..... 5-1
Connecting the Self Test Stimulus ..... 5-2
Performance Check ..... 5-4

1. Diagnostics ..... 5-4
2. HALT Circuit Functional Check ..... 5-5
3. Clock Checks ..... 5-6
4. Setup and Hold Check-Main Section ..... 5-10
5. Setup and Hold Check-ANDed Clocks ..... 5-12
6. Setup and Hold Check-ESYNC and WAIT ..... 5-14

## TABLE OF CONTENTS (cont)

Page Page
Section 6 MAINTENANCE AND TROUBLESHOOTING
Cleaning and Periodic Maintenance ..... 6-1
Exterior ..... 6-1
Interior ..... 6-1
Service ..... 6-1
Ordering Parts ..... 6-1
Disassembly ..... 6-1
Self Test Stimulus ..... 6-1
Timing Option ..... 6-5
Troubleshooting ..... 6-5
Diagnostic Flow Charts ..... 6-5
Substitution-the easiest test ..... 6-5
"Check ..... 6-5
Intermittent Problems ..... 6-5
Setup and Hold Performance Checks ..... 6-5
Test Notes ..... 6-12
Test Note 1 ..... 6-12
Test Note 2 ..... 6-12
Test Note 3 ..... 6-12
Diagnostic Monitor-Test Modules ..... 6-12
Module Test 9-1 ..... 6-12
Module Test 9-2 ..... 6-12

## Section 6 MAINTENANCE AND TROUBLESHOOTING (cont)

Module Test 9-3 ..... 6-12
Module Test 9-4 ..... 6-13
Module Test 9-5 ..... 6-13
Module Test 9-6 ..... 6-14
Module Test 9-7 ..... 6-14
Module Test 9-8 ..... 6-14
Module Test B-3 ..... 6-15
Signature Tables-Boards A1 and A2 ..... 6-15
Configuration ..... 6-15
Software ..... 6-15
Analyzer ..... 6-15
Signatures ..... 6-15
Section 7 REPLACEABLE ELECTRICAL PARTS
Section 8 DIAGRAMS
Section 9 REPLACEABLE MECHANICAL PARTS

## LIST OF ILLUSTRATIONS



## LIST OF TABLES

| Table <br> No. |  | Page |  |
| :--- | :--- | :--- | ---: |
| 2-1 | Typical Connections . . . . . . . . . . . . . . | $2-6$ |  |
| $3-1$ | Electrical Specifications . . . . . . . . . . | $3-1$ |  |
| $3-2$ | Mechanical Specifications . . . . . . . . | $3-3$ |  |
| $3-3$ | Environmental Specifications . . . . . . . | $3-3$ |  |
| $3-4$ | Logic Analyzer Connector Interface . . . | $3-4$ |  |
| $4-1$ | ROM Straps—A1 Board . . . . . . . . . . | $4-3$ |  |
| $5-1$ | Test Equipment Required . . . . . . . . | $5-2$ |  |
| $5-2$ | Self-Test Stimulus Connection . . . . . | $5-3$ |  |
| $6-1$ | Self-Test Stimulus Connection | ..... | $6-4$ |
| $6-2$ | Signatures . . . . . . . . . . . . . . . . . . . | $6-15$ |  |

## OPERATORS SAFETY SUMMARY

The general safety information in this part of the summary is for both operating and servicing personnel. Specific warnings and cautions will be found throughout the manual where they apply, but may not appear in this summary.

## TERMS

## In This Manual

CAUTION statements identify conditions or practices that could result in damage to the equipment or other property.

WARNING statements identify conditions or practices that could result in personal injury or loss of life.

## As Marked on Equipment

CAUTION indicates a personal injury hazard not immediately accessible as one reads the marking, or a hazard to property including the equipment itself.

DANGER indicates a personal injury hazard immediately accessible as one reads the marking.

## SYMBOLS

## In This Manual



This symbol indicates where applicable cautionary or other information is to be found.

## As Marked on Equipment



DANGER - High voltage.
Protective ground (earth) terminal.
ATTENTION - refer to manual.

## Power Source

This product is intended to operate from a power module connected to a power source that will not apply morethan 250 volts rms between the supply conductors or between either supply conductor and ground. A protective ground connection by way of the grounding conductor in the power cord is essential for safe operation.

## Grounding the Product

This product is grounded through the grounding conductor of the power module power cord. To avoid electrical shock, plug the power cord into a properly wired receptacle before connecting to the product input or output terminals. A protective ground connection by way of the grounding conductor in the power module power cord is essential for safe operation.

## Danger Arising From Loss of Ground

Upon loss of the protective-ground connection, all accessible conductive parts (including knobs and controls that may appear to be insulating) can render an electric shock.

## Use the Proper Fuse

To avoid fire hazard, use only the fuse of correct type, voltage rating and current rating as specified in the parts list for your product.

Refer fuse replacement to qualified service personnel.

## Do Not Operate in Explosive Atmospheres

To avoid explosion, do not operate this product in an explosive atmosphere unless it has been specifically certified for such operation.

## Do Not Operate Without Covers

To avoid personal injury, do not operate this product without covers or panels installed. Do not apply power to the plug-in via a plug-in extender.

## SERVICE SAFETY SUMMARY

## FOR QUALIFIED SERVICE PERSONNEL ONLY

Refer also to the preceding Operators Safety Summary.

## Do Not Service Alone

Do not perform internal service or adjustment of this product unless another person capable of rendering first aid and resuscitation is present.

## Use Care When Servicing With Power On

Dangerous voltages may exist at several points in this product. To avoid personal injury, do not touch exposed connections and components while power is on.

Disconnect power before removing protective panels, soldering, or replacing components.

## Power Source

This product is intended to operate in a power module connected to a power source that will not apply morethan 250 volts rms between the supply conductors or between either supply conductor and ground. A protective ground connection by way of the grounding conductor in the power cord is essential for safe operation.


PM 101 General Purpose Personality Module.

## INTRODUCTION

## About This Manual

This manual describes the operation and servicing of the PM 101 General Purpose Personality Module. The first part of this manual, the operator's portion, provides an overview of the module, instructions on how to connect it to Systems-Under-Test and the Logic Analyzer, and other information on operation. The second part of the manual, the service portion, is found after the colored divider page. It contains maintenance information, circuit descriptions, diagnostics, schematics, and parts lists, and is intended to be used only by qualified service personnel. Refer to the table of contents for the specific location of information.

This manual frequently refers to the "Logic Analyzer"; this means the 7D02 Logic Analyzer. It is assumed that the reader has access to Operator's and Service manuals for the 7D02.

## Overview of the General Purpose Personality Module

The PM 101 General Purpose Personality Module attaches to a TEKTRONIX7D02 Logic Analyzer allowing it to be used with virtually any system-under-test which has

16 or less data lines and 24 or less address lines. The rest of the PM 100 series of Personality Modules built by Tektronix are microprocessor-specific. The PM 101 is intended to allow a user to analyze systems for which a specific probe does not exist.

Physically, the PM 101 consists of a plastic pod containing the electronic circuitry on two circuit boards. A four foot ribbon cable and connector is attached to one end, and a set of 54 leads is connected to the other end. The ribbon cable and connector attach to the Logic Analyzer, while the leads are used to connect the Personality Module to the System-Under-Test or the Self Test Stimulus Circuitry of the PM 101 itself. Grabber tips for these leads (Tektronix Part No. 206-0222-00) are provided as a standard accessory.

Electrically, the General Purpose Personality Module buffers up to 16 Datalines, 24 Addresslines, 10 Control or Qualifier lines and a clock. It also contains Read-OnlyMemory Circuitry and Control Circuitry which allows the Logic Analyzer to read the ROM or halt the system under test. Self Test Stimulus Circuitry, used in diagnostics and troubleshooting, is on a second board.

## OPERATING INSTRUCTIONS

Storing the General Purpose Personality Module

Keep the General Purpose Personality Module in a clean area where the temperature remains between $-62^{\circ} \mathrm{C}$ and $85^{\circ} \mathrm{C}$. Humidity should not exceed $95 \%$, noncondensing. The PM 101 should not be taken above 50,000 feet.

## Connecting the Personality Module to the Logic Analyzer

## CAUTION

Always be certain to turn off the mainframe (logic analyzer) power before connecting or disconnecting any Personality Module.

Turn off the mainframe power and insert the ribbon cable connector labeled "PERSONALITY MODULEPM 100 SERIES" into the receptacle labeled "PERSONALITY MODULE-PM 100 SERIES" on the front of the Logic Analyzer.

## Connecting the PM 101 to the System-Under-Test

The leads on the other end of the Personality Module are Data, Address, Control and Clock input lines, and one System-Under Test Stop Not output line. The input lines are buffered by the Personality Module for transmission to the Logic Analyzer. The STOP output is a signal from the Logic Analyzer to halt the System-Under-Test. The Data, Address, and some of the Control lines (C $\square-\mathrm{C} 5$ ) are used for Word Recognizer event definition. Control lines C4C9 may be used in acquisition strobe (state clock) qualification.

The PM 101 has 24 Address lines, 16 Data lines, 10 Control lines, a Clock input and a Stop output. This allows it to be used with a 7D02 having the Expansion Option (Opt. 3, Field Opt. 03). The leads from the General Purpose Personality Module are grouped into bunches of eight or ten color-coded wires, each of which is fitted with a single 0.025 inch square connector. This allows connection to almost any circuit. The wires are color-coded using the standard resistor color-code scheme which is shown on the Personality Module cover. Only the second digit of two-digit numbers is used in the color coding. The heavy black leads are Ground (GND). The grey lead next to the end is the Clock (CLK) line. The remaining single red lead is Stop System-Under-Test Not (/STOP S.U.T.). Refer to the cover of the Personality Module.


#### Abstract

NOTE A "/"in front of a signal name or part of a signal name indicates that the signal is active when low. E.g., R/W implies


$$
\begin{aligned}
& 0-\text { Write } \\
& 1 \text { - Read }
\end{aligned}
$$

Because the PM 101 Personality Module buffers signals with very fast rise times, it is important that procedures be followed which minimize delay and prevent cross-talk and other noise.

Always connect the input leads as closely as possible to the signal source to minimize signal degradation.

Keep individual leads separated as much as possible beyond the identification labels; closely bundled lines increase cross-talk.

Connect the ground leads directly to the ground pin of the signal driver wherever possible. Do not add any additional lead length to the ground path. This probe will only work correctly at high frequencies with systems which have an effective system of grounds.

When used without the Expansion Option, only Address lines $\emptyset-15$ and Data lines $\emptyset-7$ are functional. Everything else about hook-up remains the same.

If the Expansion Option is present in the Logic Analyzer, but the additional lines are unused, the displays will show all " 1 "s in binary, or all " $F$ "s in hex, wherever there are lines without data. These can be inverted to appear as all " 0 "s by inversion in the Format mode.

Control lines. When connecting the PM 101 to a system, the control lines are used primarily for two things: qualification of data and qualification and synthesis of clocks. Control lines C0 through C3 are stored and displayed with each word. This makes them useful in the acquisition of processor lines which are not on the address or data busses, but which may be essential in establishing the status of the system under test. If not needed as control lines, C 0 - C3 may also be used as additional address or datalines, but they will still appear in
the CONTROL column. Control lines C4 and C5 may also be used in word recognizer event definition, though they are not stored. C4 through C9 can be used for clock qualification, which makes them useful for state clock generation, where the logical ANDing of the selected qualifiers and the input clock edge selects acquisition strobes (the State Clock) from the input clock signals and thereby limits the data collected. C6-C9 also have a role in USER CLOCK SYNTHESIS; see that subsection below.

## note

> All clock qualifiers must meet set-up and hold time specifications relative to the PM 101 clock input. Refer to Sections 3 and 5 .

When using USER CLOCK QUALification and USER CLOCK SYNTHESIS, the clock qualifier must be true when the clock synthesizer enables an Acquisition Strobe. It is possible to enter contradictory program instructions. If all clocks are disqualified, a NO CLOCK message will be displayed. If all data is disqualified, a NO DATA ACQUIRED message appears when the program is stopped.

Instruction Fetch and Demultiplexing. The PM 101 does not have circuitry for decoding Instruction Fetch cycles or demultiplexing busses because it is not specific to any particular protocol. Nonetheless, appropriately connected control lines can provide qualification information which allows the Logic Analyzer to derive Instruction Fetch cycles or demultiplexing timing. Knowledge of the workings of the system under test and appropriate qualification can be used to identify almost any state of the system and to collect data only while the system is in that state. The data collected may be limited by either clock qualification in the trigger command or word recognizer event definition.

Clock. The Clock input line to the PM 101 is used to detect the basic timebase of the system under test. This clock is transmitted by the PM 101 for use as the data acquisition timebase after any desired polarity selection and qualification have been applied. The 7D02 Logic Analyzer has the ability to divide the clock or delay the clock from the system-under-test by two, three, or four, to select the rising or falling edge, and to AND the selected clock edge with a control word selected from C4-C9. Without user intervention, the default values imbedded in the PM 101's ROM are: no division, positive edge, and all "Don't Cares" (Xs) for C4-C9. These default values may be varied by entries in the User Clock Qualification field in the Program mode.

User Clock Synthesis. ESYNC (C6 or C8) allows synchronization of the 7D02 Clock Synthesizer to the timebase of the system-under test. The ESYNC signal is the reference for both the DIVIDE BY N mode and the DELAY BY N mode.

If USER CLOCK SYNTHESIS is selected in the 7D02, the user then has a choice between DELAY CLOCK BY N, where N may be $0,1,2,3$, or 4 , and DIVIDE CLOCK BY N, where N may equal $1,2,3$, or 4 . A delay of 0 or a divideby 1 correspond to the inactivated states of these modes.

## NOTE

Do not use the ESYNC or WAIT lines when dividing by 1 or delaying by 0 .

If the user selects DELAY CLOCK BY N, one acquisition strobe (State Clock) will occur for every ESYNC, delayed by N input clock pulses. Refer to Fig. 2-1 and 2-3.

If the user selects DIVIDE CLOCK BY N, however, the Acquisition Strobe will occur on the N -1th input clock pulse after the end of the ESYNC signal, and at one Nth of the frequency of the input clock. The clock will continue at that frequency without further ESYNC signals. Refer to Fig. 2-2 and 2-3. In this mode it is assumed that ESYNC is asserted on the first phase of a multi-phase clock system and that it is desired to generate the 7D02 acquisition strobe (State Clock) on the last phase.

If ESYNC is repetitive, it should be regular and asserted at the same place in the input clock cycle of a system with a multiphase clock. If these conditions are not met, the clock phase may become un-synchronized or extra acquisition strobes (State Clocks) may be generated. Normally, when a repetitive ESYNC signal is available, the delay-by mode is most useful. Where no repetitive ESYNC is available, the divide-by mode is most useful, with ESYNC connected to some signal such as "Power-up Reset".

WAIT (C7 or C9) signals in both modes simply delay the next acquisition strobe (State Clock) by one input clock pulse for every input clock pulse that occurs while WAIT is asserted. See Fig. 2-1 and 2-2.

WAIT also qualifies acquisition strobes (the State Clock), inhibiting them even when all the ANDed Clock Qualifiers are true. Refer to Fig. 2-3.

## NOTE

If both WAIT and ESYNC are asserted at the same time, only the WAIT signal will be effective. See Fig. 2-3.


Fig. 2-1. User Clock Synthesis-Delay by 2.


Fig. 2-2. User Clock Synthesis—Divide by 2.


Fig. 2-3. 7D02 Clock Synthesis and Qualification Circuitry-Functional Block Diagram.
nversion. Unless a bus inversion has been defined in the Format mode, all field selections are positive-true logic. A "1" selection in a clock qualification field is a selection of the clock edge when that qualifier is in a high, logic " 1 " state. If negative or mixed logic is to be analyzed, either the choices made while programming in the Word Recognizer may be inverted or the Format Mode may be entered and appropriate bus inversions performed.

The Bus Inversion display in the Format mode is most usable when binary is selected as the radix in the Word Recognizer Address Field and the Word Recognizer Data Field. This is the Bus Inversion display with binary radices selected and default " 0 "s shown:

```
BUS INVERSION
DATA=0000000000000000
AD=000000000000000000000000
\(\mathrm{C} 0=0 \quad \mathrm{C} 1=0 \quad \mathrm{C} 2=0 \quad \mathrm{C} 3=0\)
C4=0 C5=0 EXT TRIG IN=0
```

/STOP. Stop System-Under-Test Not (/STOP S.U.T.) is the single output from the Logic Analyzer system back to the system-under-test. It is used by the Logic Analyzer to halt the system-under-test if "SYSTEM UNDER TEST HALT" is selected in the Main Trigger program. The STOP line can only be asserted low, i.e., the program runs with "STOP high; it is asserted low when main memory acquisition is complete. Since the STOP line cannot be set to low and then be asserted high, the system-under-test must be capable of responding to a low-true halt command.

## NOTE

A "/"in front of a signal name or part of a signal name indicates that the signal is active when low. E.g., R/W implies

$$
\begin{aligned}
& 0 \text { - Write } \\
& 1 \text { - Read }
\end{aligned}
$$

## Application Examples

One typical use of the PM 101 General Purpose Personality Module is to analyze a system based on a microprocessor which is not currently supported by Tektronix. Others include analyzing systems which are not microprocessor based and analyzing bus networks generally.

The PM 101 does not perform mnemonic disassembly because it has been designed for these non-specific applications. All bus transactions can be monitored in the absolute mode if the user has a means of identifying instructions and data. Demultiplexing can be accomplished if a system control line indicating the bus status is used to qualify clocks or define word recognizer
events. Systems which include their own demultiplexing circuitry can be analyzed either from points where the signals of interest are separate or from points where they are multiplexed by the use of appropriate qualification.
6502. The MOS Technology 6502 is a good example of a microprocessor whose operation can conveniently be analyzed using the PM 101. It is an 8-bit processor with internal clock generation and an instruction SYNC line output. The SYNC line makes it much easier to distinguish Instruction Fetch cycles; the Logic Analyzer can use it as a direct control line input to monitor and index bus transactions. The 6502 has another feature which aids in monitoring its bus-all data on the bus is defined for every cycle.

Connecting the General Purpose Personality Module to the 6502 involves identifying the address and data lines and connectingthecorrectleads from the PM 101 tothem. Depending on the availability of these lines the Grabber Tips (Tektronix Part No. 206-0222-00) which are standard accessories to the PM 101 may be required.

Connect the two black leads with the alligator clips to system ground. Connect the CLK connector, the grey lead next to the ground lead, to the Phase 2 clock output of the system-under-test.

The remaining single red wire is Stop System-UnderTest Not, /STOP S.U.T. The /STOP S.U.T. line must be used with discretion in the 6502 system. Conflict between the PM 101 circuitry and the system halt controls can cause improper system operation.

While particular applications might require monitoring other control lines, the following control lines are generally useful in most applications: SYNC, RDY, /NMI, /IRQ, S.O., and R/W. Only four of these lines can be stored and displayed, since only C $\emptyset$ through C3 receive this treatment in the Logic Analyzer. This example assigns Cøto R/W, C1 to /NMI, C2 to /IRQ, and C3 to SYNC (fetch). The two control lines which can be used for either word recognizer event recognition or clock qualification, C 4 and C 5 , will be assigned to RDY and S.O., respectively.

The Format Mode can be used to invert any signals which are only available in negative logic. But remember, while bus inversions in the Format mode affect word recognizer event definition and the display of acquired data, they do not affect the trigger command or Timing Option areas.

It may be helpful to make notes in table form of which control lines go to which signals, what form those signals are in (normal or inverted), and whether an inversion

## Operating Instructions-PM 101

decision was made in the Format Mode. Such a table may be of great assistance in correctly programming the word recognizer.

Intel's Multibus ${ }^{\circledR}$. The Intel MULTIBUS consists of a network of signal lines in the following categories: 20 address lines, 16 bidirectional data lines, 8 multilevel interrupt lines, and several bus control, timing and power supply lines. The data and address lines are driven by 3state devices. The interrupt and some other control lines are open-collector driven.

The MULTIBUS is compatible with 8 - or 16 -bit processors with data rates up to 5 MHz . While data is transferred asynchronously, XACK, the Transfer Acknowledge Signal, can be used as clock for bus traffic.

Table 2-1 gives a typical monitoring example for a user primarily interested in address and data information:

TABLE 2-1
TYPICAL CONNECTIONS

| PM101/7D02 Channels | Pin \# | Signal Name |
| :---: | :---: | :---: |
| Address $\emptyset$ | 57 | ADRØ |
| 1 | 58 | ADR1 |
| 2 | 55 | ADR2 |
| 3 | 56 | ADR3 |
| 4 | 53 | ADR4 |
| 5 | 54 | ADR5 |
| 6 | 51 | ADR6 |
| 7 | 52 | ADR7 |
| 8 | 49 | ADR8 |
| 9 | 50 | ADR9 |
| $1 \emptyset$ | 47 | ADRA |
| 11 | 48 | ADRB |
| 12 | 45 | ADRC |
| 13 | 46 | ADRD |
| 14 | 43 | ADRE |
| 15 | 44 | ADRF |
| 16 | 28 | ADR10 |
| 17 | 30 | ADR11 |
| 18 | 32 | ADR12 |
| 19 | 34 | ADR13 |
| $2 \emptyset$ | 27 | BHEN |
| 21 | spare |  |
| 22 | spare |  |
| 23 | spare |  |

TABLE 2-1 (cont)

| PM 101/7D02 Channels |  | Pin \# | Signal Name |
| :---: | :---: | :---: | :---: |
| DATA | $\emptyset$ | 73 | DATØ |
|  | 1 | 74 | DAT1 |
|  | 2 | 71 | DAT2 |
|  | 3 | 72 | DAT3 |
|  | 4 | 69 | DAT4 |
|  | 5 | 70 | DAT5 |
|  | 6 | 67 | DAT6 |
|  | 7 | 68 | DAT7 |
|  | 8 | 65 | DAT8 |
|  | 9 | 66 | DAT9 |
|  | 10 | 63 | DAT10 |
|  | 11 | 64 | DAT11 |
|  | 12 | 61 | DAT12 |
|  | 13 | 62 | DAT13 |
|  | 14 | 59 | DAT14 |
|  | 15 | 60 | DAT15 |
| CLOCK | CLK | 23 | XACK |
| CONTROL | $\emptyset$ | 19 | MRDC |
|  | 1 | 20 | MWTC |
|  | 2 | 21 | IORC |
|  | 3 | 22 | IOWC |
|  | 4 | spare |  |
|  | 5 | spare |  |
| ISTOP S.U.T. |  | not used |  |

In the Main Trigger section, choose the USER CLOCK QUAL. and FALLING EDGE OF CLOCK alternatives. Leave all other choices in their default states.

The data gathered will include all reads and writes to memory, all reads and writes to input-output devices and the Interrupt Response/Acknowledge cycle.

This set-up does not provide information about which cycle is an Instruction Fetch, which master is controlling the bus, or when an interrupt occurs. The spare channels can be used to ascertain which master is controlling and when interrupts occur, if desired.

The example given was for a 16 -bit system. The extra lines available when the PM 101 is used with an 8 -bit system can be used to derive much more system status and control line information. Particular choices vary with the user's needs and perspective.

## How this Personality Module Affects the Logic Analyzer

Part of the display of the Logic Analyzer and the choices that it offers are Personality Module dependent. The PM 101 General Purpose Personality Module contains $2 k$ words of ROM (Read Only Memory) which, when read by the Logic Analyzer, provide it with a variety of information which it needs to appropriately format displays, etc. This sub-section provides information about the ways in which the PM 101 ROM modifies the performance of the 7D02.

## Word Recognizer Format

The General Purpose Personality Module produces the following display format in the Word Recognizer:

```
DATA=nn
ADDRESS=nnnn
C0=b C1=b C2=b C3=b
C4=b C5=b EXT TRIG IN=b
where " \(b\) " is a binary digit or " \(X\) ", " \(n\) " is a binary, hex or octal digit, or " \(X\) " (default hex is shown), and " X " is "Don't care".
```

Radix Selection. To vary the radix of " $n$ " in the above example, enter the Format mode by pressing the FORMAT key and move the cursor to the Word Recognizer Address Field. The display looks like this:

```
WORD RECOGNIZER ADDRESS FIELD
    2-HEX
        O BINARY
        1 OCTAL
        2 HEX
```

indicating that if the user wishes to select an alternative radix to the default hexadecimal, the " 0 " or " 1 " key should be depressed.

Note: While the Data and Address field radices may be varied by selections made in the Format mode, the Control lines must always be binary.

Expansion Option. If the Expansion Option (Opt. 3, Field Opt. 03) is present, the following display is defined by the PM 101 for the Word Recognizer:

| DATA $=n n n n n$ |  |  |
| :--- | :--- | :--- |
| $\mathrm{AD}=$ nnnnnn |  |  |
| $\mathrm{C} 0=\mathrm{b}$ | $\mathrm{C} 1=\mathrm{b}$ | $\mathrm{C}=\mathrm{b}$ |
| $\mathrm{C} 4=\mathrm{b}$ | $\mathrm{C} 5=\mathrm{b}$ | $\mathrm{CX}=\mathrm{b}$ |
| EXT TRIG $\mathrm{IN}=\mathrm{b}$ |  |  |

where " $b$ " is a binary digit or " X ", " n " is a binary, hex or octal digit or " X " (default hex is shown), and " X " is "Don't care".

As above, the choices for " $n$ " are varied by selections made in the Format mode.

## Data Display Format

Since the PM 101 is not specific to any particular system, it does not include any mnemonic display capability. The Mnemonic Mode, if selected, is the same as the Absolute Mode and produces an identical display. In both modes, if all radices are non-binary, the header inthe display field is:

LOC ADDRESS DATA CONTROL

In the LOCation column, " 000 " is the oldest stored data and " 255 " is the most recent. Inthe CONTROL column, C $\emptyset$ is on the right and C 3 is on the left.

Radix Selection. After the FORMAT key on the 7D02 Logic Analyzer is pressed and the cursor is appropriately positioned, the display offers the following choices:

```
ADDRESS FIELD DISPLAY
2 HEX
    O BINARY
    1 \text { OCTAL}
    2 HEX
    3 ASCII
```

indicating that if the user wishes to select an alternative radix to the default hexadecimal, the " 0 ", " 1 " or " 3 " key should be depressed.

When the cursor is moved down, the display becomes:

```
DATA FIELD DISPLAY
2 HEX
    O BINARY
    1 \text { OCTAL}
    2 HEX
    3 ASCII
```

If the user chooses anything other than a binary output for the Address Field Display and Data Field Display radices, and the Expansion Option is not present, the data in the Acquisition Memory is displayed in the following format:

| ddd <br> dddT | nnnnnn |  |
| :---: | :---: | :---: |
| nnnnnn | nnn | bbbb |
| where | " $b$ " is a binary digit, |  |
|  | " $n$ " is a binary, hex, octal, or ASCII digit |  |
| (default hex is shown), |  |  |
|  | " $d$ " is a decimal digit, and |  |
|  | " $T$ " indicates where the trigger occurred. |  |

Note: While the user may define the radices for the Address and Data fields, the Location and Control fields' radices are fixed.

Binary Address-Binary Data. If binary is chosen for the output radix for the Data and Address display fields, and the Expansion Option is not present, no header as such appears and the format is:

LOC:ddd CNTL:bbbb DATA:bbbbbbbb ADDRESS:bbbbbbbbbbbbbbbbb LOC:ddd CNTL:bbbb DATA:bbbbbbbb ADDRESS:bbbbbbbbbbbbbbbb TRIG
where " $b$ " is a binary digit, " $d$ " is a decimal digit, and "TRIG" indicates the trigger value.

Expansion Option. If the user chooses non-binary output radices for the Address and Data fields, but the Expansion Option is present, the data is output in the following format:

| ddd | nnnnnnnnnn | nnnnnn | $b b b b$ |
| :--- | :--- | :--- | :--- |
| dddT | nnnnnnnnn | nnnnnn | $b b b b$ |

where " $b$ " is a binary digit, " $n$ " is a binary, hex, octal, or ASCII digit (default hex is shown),
" $d$ " is a decimal digit, and
" T " indicates where the trigger occurred.

If both the Data Field Display and Address Field Display radices are selected to be binary and the Expansion Option is present, the output is in the following format:

LOC:ddd CONTROL:bbbb
AD:bbbbbbbbbbbbbbbbbbbbbbbb
DATA:bbbbbbbbbbbbbbbb
LOC:dddT CONTROL:bbbb
AD:bbbbbbbbbbbbbbbbbbbbbbbbb
DATA:bbbbbbbbbbbbbbbbb
where " d " is a decimal digit, " b " is a binary digit, and " $T$ " indicates where the trigger occurred.

## SPECIFICATIONS

TABLE 3-1
ELECTRICAL SPECIFICATIONS


TABLE 3-1 (cont)

| Characteristics | Performance Requirements | Supplemental Information |
| :---: | :---: | :---: |
| Current in high limits ( V in high $=7.0 \mathrm{~V}$ ) |  | +0.1 mA maximum |
| Current in high limits $(\mathrm{V}$ in high $=+2.7 \mathrm{~V}$ ) |  | +0.02 mA maximum |
| Maximum voltage in Non-operating, Nondestructive |  | -7 to +15 continuous. <br> Limited to any two inputs simultaneously on negative voltages. |
| Threshold voltage |  | Fixed +1.4 V , nominal. TTL compatible |
| Halt Output Drive |  |  |
| $\mathrm{V}_{\text {OH }}$ |  | $2.4 \mathrm{~V}, \mathrm{I}_{0}=1 \mathrm{~mA}$ |
| $\mathrm{V}_{\text {oL }}$ |  | $0.5 \mathrm{~V}, \mathrm{I}_{0}=-2 \mathrm{~mA}$ |
| Clock Input |  |  |
| Input resistance |  | $50 \mathrm{k} \Omega$ typical |
| Input capacitance |  | 15 pF nominal |
| Clock period | 100 ns minimum |  |
| Clock pulse width minimum | 25 ns high, 25 ns low |  |
| Voltage in low limits (operating) | 0.0 V minimum, 0.5 V maximum |  |
| Voltage in high limits | $2.4 \mathrm{~V}, 7.0 \mathrm{~V}$ minimum |  |
| Hysteresis |  | 0.4 V nominal |
| Threshold voltage |  | Fixed 1.4 V nominal |
| Maximum voltage in, Non-operating, nondestructive |  | -15 V to +15 V |
| Propagation delays through Personality Module |  |  |
| Delay through ECL clock |  | 10.5 ns minimum, 14.5 ns maximum |
| Data channel delay (Address and Control) |  | 21.5 ns minimum, <br> 31 ns maximum |
| Test Clock |  |  |
| Clock Period |  | $100 \mathrm{~ns} \pm 10 \mathrm{~ns}$ |
| Clock Pulse Width, minimum |  | $25 \mathrm{~ns}$ |

Table 3-1 (cont)

| Characteristics | Performance Requirements | Supplemental Information |
| :---: | :---: | :---: |
| General Purpose System Specification with Logic Analyzer |  |  |
| Clock/Qualifier Data (Channels C4-C9) | Setup time $=55 \mathrm{~ns}$ maximum <br> Hold time $=0.0$ ns maximum | 35 ns typical measured according to manual performance check |
| Data (Channels A0-A23, $\mathrm{D} \emptyset-\mathrm{D} 15, \mathrm{C} \emptyset-\mathrm{C} 3)$ | Setup time $=45$ ns maximum <br> Hold time $=0.0 \mathrm{~ns}$ maximum | 25 ns typical |
| C6-C9, when used to generate /ESYNC and /WAIT | Setup time $=55 \mathrm{~ns}$ maximum <br> Hold time $=0.0$ ns maximum | 35 ns typical |
| Data acquisition period between qualified clocks | 100 ns minimum |  |
| Data pulse width | 50 ns minimum |  |

TABLE 3-2
MECHANICAL SPECIFICATIONS

| Characteristics | Performance Requirements | Supplemental Information |
| :--- | :--- | :--- |
| Size |  | $4.7^{\prime \prime} \times 8^{\prime \prime} \times 1.7^{\prime \prime}$ |
|  |  | $(12 \mathrm{~cm} \times 20.3 \mathrm{~cm} \times 4.3 \mathrm{~cm})$ |
| Weight |  | Approx. $2 \mathrm{lbs} . \mathrm{w} / \mathrm{cables}$ <br> (Approx. $1 \mathrm{~kg} \mathrm{w} / \mathrm{cables})$ |
|  |  | $4 \mathrm{ft}. \pm 1.0 \mathrm{in)}$. |
| Cable length |  | $(122 \mathrm{~cm} \pm 2.5 \mathrm{~cm})$ |
| Logic Analyzer to Pod |  |  |

TABLE 3-3
ENVIRONMENTAL SPECIFICATIONS

| Characteristics | Performance Requirements | Supplemental Information |
| :--- | :--- | :--- |
| Temperature |  | Operating: $+15^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$ |
|  |  | Non-operating: $-62^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ |
| Relative Humidity |  | $95 \%$ to $97 \%$, non-condensing |
| Altitude |  | Operating: 4.5 km ( 15,000 feet) |
|  |  | Non-operating: 15 km (50,000 feet) |

TABLE 3-4
LOGIC ANALYZER CONNECTOR INTERFACE

| Pin | Signal | Electrical Description |
| :---: | :---: | :---: |
| 1 | Al1 | STTL output, back terminated into $68 \Omega$ |
| 2 | CLK | Differential ECL: $\mathrm{HI}=-0.8 \mathrm{~V}$, $\mathrm{LO}=-1.7 \mathrm{~V}$; differentially terminated into $124 \Omega$ |
| 3 | /CLK | Differential ECL: HI $=-0.8 \mathrm{~V}$, $\mathrm{LO}=-1.7 \mathrm{~V}$; differentially terminated into $124 \Omega$ |
| 4 | Al3 | STTL output, back terminated into $68 \Omega$ |
| 5 | AlO | STTL output, back terminated into $68 \Omega$ |
| 6 | Al5 | STTL output, back terminated into $68 \Omega$ |
| 7 | Al2 | STTL output, back terminated into $68 \Omega$ |
| 8 | Al6 | STTL output, back terminated into $68 \Omega$ |
| 9 | Al4 | STTL output, back terminated into $68 \Omega$ |
| 10 | GND | Ground |
| 11 | Al7 | STTL output, back terminated into $68 \Omega$ |
| 12 | Al8 | STTL output, back terminated into $68 \Omega$ |
| 13 | Al9 | STTL output, back terminated into $68 \Omega$ |
| 14 | Al11 | STTL output, back terminated into $68 \Omega$ |
| 15 | Al10 | STTL output, back terminated into $68 \Omega$ |
| 16 | Al13 | STTL output, back terminated into $68 \Omega$ |
| 17 | Al12 | STTL output, back terminated into $68 \Omega$ |
| 18 | Al15 | STTL output, back terminated into $68 \Omega$ |
| 19 | Al14 | STTL output, back terminated into $68 \Omega$ |
| 20 | GND | Ground |
| 21 | Al16 | STTL output, back terminated into $68 \Omega$ |
| 22 | Al17 | STTL output, back terminated into $68 \Omega$ |
| 23 | Al18 | STTL output, back terminated into $68 \Omega$ |
| 24 | Al19 | STTL output, back terminated into $68 \Omega$ |
| 25 | Al21 | STTL output, back terminated into $68 \Omega$ |
| 26 | Al20 | STTL output, back terminated into $68 \Omega$ |
| 27 | Al23 | STTL output, back terminated into $68 \Omega$ |
| 28 | Al22 | STTL output, back terminated into $68 \Omega$ |
| 29 | D11 | STTL output, back terminated into $68 \Omega$ |
| 30 | GND | Ground |
| 31 | DI3 | STTL output, back terminated into $68 \Omega$ |
| 32 | DIO | STTL output, back terminated into $68 \Omega$ |
| 33 | DI4 | STTL output, back terminated into $68 \Omega$ |
| 34 | D12 | STTL output, back terminated into $68 \Omega$ |
| 35 | D16 | STTL output, back terminated into $68 \Omega$ |
| 36 | DI5 | STTL output, back terminated into $68 \Omega$ |
| 37 | DI9 | STTL output, back terminated into $68 \Omega$ |
| 38 | D17 | STTL output, back terminated into $68 \Omega$ |
| 39 | DI10 | STTL output, back terminated into $68 \Omega$ |
| 40 | GND | Ground |
| 41 | DI12 | STTL output, back terminated into $68 \Omega$ |
| 42 | D18 | STTL output, back terminated into $68 \Omega$ |
| 43 | DI14 | STTL output, back terminated into $68 \Omega$ |
| 44 | DI11 | STTL output, back terminated into $68 \Omega$ |
| 45 | +5 V | STTL output, back terminated into $68 \Omega$ |
| 46 | DI13 | STTL output, back terminated into $68 \Omega$ |
| 47 | C0 | STTL output, back terminated into $68 \Omega$ |
| 48 | DI15 | STTL output, back terminated into $68 \Omega$ |
| 49 | C2 | STTL output, back terminated into $68 \Omega$ |

TABLE 3-4 (cont)

| Pin | Signal | Electrical Description |
| :---: | ---: | :--- |
| 50 | GND | Ground |
| 51 | C5 | STTL output, back terminated into $68 \Omega$ |
| 52 | C1 | STTL output, back terminated into $68 \Omega$ |
| 53 | C7 | STTL output, back terminated into $68 \Omega$ |
| 54 | C3 | STTL output, back terminated into $68 \Omega$ |
| 55 | C9 | STTL output, back terminated into $68 \Omega$ |
| 56 | C4 | STTL output, back terminated into $68 \Omega$ |
| 57 | +5 V | STTL output, back terminated into $68 \Omega$ |
| 58 | +15 V | Power Supply |
| 59 | -15 V | Power Supply |
| 60 | C6 | STTL output, back terminated into $68 \Omega$ |
| 61 | /HALTS.U.T. | 1/2 LSTTL input load |
| 62 | C8 | STTL output, back terminated into $68 \Omega$ |
| 63 | ISEL 2 | 4 LSTTL input loads |
| 64 | LOOK | 4 LSTTL input loads |

## WARNING

THE FOLLOWING SERVICING INSTRUCTIONS ARE FOR USE BY QUALIFIED PERSONNEL ONLY. TO AVOID PERSONAL INJURY, DO NOT PERFORM ANY SERVICING OTHER THAN THAT CONTAINED IN OPERATING INSTRUCTIONS UNLESS YOU ARE QUALIFIED TO DO SO.


## THEORY OF OPERATION

## General Theory of Operation

The primary function of a Personality Module is to collect data from the System-Under-Test andtransferit to the Logic Analyzer along with appropriate format and display information.

In the PM 101 General Purpose Personality Module this result is achieved by circuitry in one of five functional areas:

- Data Transfer Circuitry, including data, address, and control lines,
- Clock Transmission Circuitry, which converts the TTL "CLK $\mathbb{N N}^{\prime}$ to ECL for rapid and buffered differential transmission to the Logic Analyzer,
- ROM Circuitry, which consists of $2 k$ of Personality ROM with provision for a $2 k, 4 k$, or $8 k$ Custom ROM developed for custom disassembly,
- Control Circuitry, which interprets the status of the LOOK and /SEL P lines and buffers /HALT S.U.T. into /STOP S.U.T.,
- Self Test Stimulus Circuitry, which generates signals for the module-analyzer system diagnostics.


## NOTE

A "/"in front of a signal name or part of a signal name indicates that the signal is active whenlow. E.g., R/W implies

$$
\begin{aligned}
& 0-\text { Write } \\
& 1-\text { Read }
\end{aligned}
$$

Figure $4-1$ is a Circuit Block Diagram which organizes the circuitry and shows the signal flow. It should be useful in gaining an overview of circuit operation, in troubleshooting certain problems, and understanding the Detailed Circuit Descriptions which follow.

## DETAILED CIRCUIT DESCRIPTION

## Data Transfer Circuitry

The data transfer circuitry is on board A1 and appears on schematic 1 A .

All Data (DIØ—DI15), Address (AlØ—Al23), and Control (CIØ-CI9) lines are protected against static discharge, which could damage the Personality Module or Logic Analyzer circuitry, by hybrid ICs containing spark-gaps, series resistors, and clamp diodes. Each hybrid protects four input lines. The Control lines pass through A1 U5045, A1U4050, and A1U4043. The Data lines pass through A1U2033, A1U1052, A1U2043, and A1U1041. The Address lines are protected by A1U4036, A1U4032, A1U3034, A1U3042, A1U3044 and A1U3040.

After passing through the protection hybrids, the Data, Address, and Control inputs are buffered by 74LS244 Octal Buffer ICs, so that the System-Under-Test is only subjected to a small amount of loading. The Control lines are buffered by A1U5041 and A1U4041. The Datalines are buffered by A1U2031 and A1U2041. The Addresslines are buffered by A1U5031, A1U3031, A1U3041, and A1U4041.

When these buffers are in a " 0 " state and the voltage is increasing, they require approximately 1.6 V of input to switch them to a " 1 " state. However, whenthey areina"1" state and the input voltage is decreasing, it must go as low as approximately 1.2 V before being interpreted as a " 0 ". This hysteresis effect provides enhanced protection against noise and glitches on the line.

The buffers are matched to the impedance of the lines they drive by $68 \Omega$ series terminating resistors.

## Clock Transmission Circuitry

The clock transmission circuitry is on board A1 and appears on schematic 1 B .


Fig. 4-1. PM 101 Circuit Block Diagram.

The CLK IN signal is protected against static discharge by a spark gap, a series resistor (A1R6049) and clamping diodes (A1CR6041 and A1CR6044). The series RC network (A1R6045 and A1C6048) and the RC network to ground (A1R6043 and A1C6045) attenuate this signal (4:1), while presenting a high impedance to the system under test.

The circuitry between pin 8 and pin 3 of differential amplifier A1U6040 provides hysteresis for enhanced noise immunity. Resistors A1R6037, A1R6034, and A1R6036 comprise a voltage divider which couples part of the differential amplifier's negative output signal on pin 8 back to its negative input on pin 3. The voltage output of A1U6040 varies a total of 800 mV between a logical "1" and a logical " 0 ". Only 120 mV of this variation reachesthe series input resistor A1R6038 and pin 3 of A1U6040. This voltage swing is multiplied by a factor of four as a result of the effect of A1R6045 and A1R6043 in attenuating the input voltage. The result is about 500 mV of effective DC hysteresis on pin 2 of A1U6040.

The capacitors parallel to these resistors provide frequency compensation so that rapid transitions are subject to a similar hysteresis effect.

Delay through the Clock Transmission Circuitry is less than the delay through the Data Transfer Circuitry, ensuring that the Logic Analyzer has clock information in advance of changes on the Data, Address and Control lines.

## ROM Circuitry

The Read-Only-Memory is on board A1 and appears on schematic 1B.

The Read-Only-Memory, A1U1021, contains information with which the Logic Analyzer will format data displays and set up the word recognizer formats for different radix selections, decode the data from the system-under-test and interpret the personality module diagnostics.

The ROM is first read by the Logic Analyzer before actual data acquisition to help format the Logic Analyzer's word recognizer, set up the acquisition hardware, and determine whether the user will be able to define clock qualifications. Then it is read again, after data acquisition, to format the data for disassembly and display

The standard 2 k version of this ROM is accessed by eleven Address lines (AlØ through AI1Ø), although two additional Address lines (Al11 and Al12) may be strapped in for use with 4 k or 8 k custom ROMs. Refer to Table 4-1
for specific strapping configurations, and to the page in front of schematic 1B for a component location diagram.

TABLE 4-1
ROM Straps-A1 Board

| ROM | P3032 | P3034 | P3036 |
| :--- | :---: | :---: | :---: |
| G.P. 2k | $3-4$ | $3-4$ | $4-5$ |
| G.P. 4k | $3-4$ | $2-3$ | $2-3$ |
| G.P. 8k | $4-5$ | $1-2$ | $1-2$ |
| Custom 2k | $2-3$ | $3-4$ | $4-5$ |
| Custom 4k | $2-3$ | $2-3$ | $2-3$ |
| Custom 8k | $1-2$ | $1-2$ | $1-2$ |

## Control Circuitry

The control circuitry is on board A1. Refer to schematic 1 A and 1 B .

Normally the Address and Data lines carry information originating in the System-Under-Test. But, before and after data acquisition, the Logic Analyzer shuts off part of this information in the Personality Module and reads the Personality Module ROM over these lines instead. When the Logic Analyzer wants data from the Personality Module ROM, it first causes LOOK to go to its "1" state, which forces Address buffers Al0 through Al15 (A1U3041, A1U3031, and A15031) and Data buffers DIO through DI7 (A1U2031) in the Data Transfer Circuitry of the Personality Module to go to their ''High-Z"' state (neither '" 1 '' nor ' '0' asserted). Refer to Fig. 4-2.

## NOTE

A "/"in front of a signal name or part of a signal name indicates that the signal is active when low. E.g., R/W implies

$$
\begin{aligned}
& 0 \text { - Write } \\
& 1 \text { - Read }
\end{aligned}
$$

The Logic Analyzer next causes /SEL P to go low and applies the address of the information it wants to the Address lines. When the resulting data has settled, the Logic Analyzer reads the Data lines and simultaneously returns /SEL P to its high ("1") state. The Address lines from the Logic Analyzer are also returned to their "High$Z^{\prime \prime}$ state at this time.

Last, LOOK goes back to " 0 " and the Address and Data buffers are no longer inhibited. The information going to the Logic Analyzer is again the information from the system-under-test rather than the Personality Module ROM.


Fig. 4-2. How the Logic Analyzer reads the ROM.
/STOP S.U.T. is a buffered (A1U5031) output version of the input /HALT S.U.T. from the Logic Analyzer. It is protected by a spark-gap, a $100 \Omega$ series resistor (A1R6050), and clamping diodes (A1CR6052 and A1CR6050). (This signal is labeled "HALT" on the Personality Module cover.)

## Self Test Stimulus Circuitry

The Self Test Stimulus Circuitry is located on board A2 and appears on schematic 2.

The Self Test Stimulus Circuitry consists of a free running 16-bit counter (A2U5020, A2U4020, A2U2020, and A2U1020) whose input, T1 (A2U3020-4) is oscillating at a frequency of approximately 10 MHz .

T1 through T17 are the free-running counter outputs. T 1 is the approximately 10 MHz clock rate generated by the A2Q3015 circuitry and buffered by A2U3020, while T17 is the slowest bit, running at about 76 Hz . T2 through T17 and T21 are buffered by A2U4030 and A2U1030.

T18, T19 and T20 are ripple carry outputs from A2U5020, A2U4020, and A2U2020, the first three ICs in the four-IC counter. These outputs are buffered by A2U3020.

See Sections 5 and 6 for information on how to use the Self Test Stimulus outputs.

## PERFORMANCE CHECK

## Introduction

This section provides a procedure for verifying that the PM 101 General Purpose Personality Module is operating correctly. It is assumed that the Logic Analyzer has already passed its performance check. If it has not, it should be checked first; refer to Section 3 of the 7D02 Service manual.

Atechnicianfamiliar with runningthistest will probably be able to run it in about two hours. Someone using this procedure for the first time should expect it to take approximately twice that long. When a module passes this check, it is meeting all of the electrical performance specifications listed in Section 3 of this manual.

## Test Equipment Required

The test equipment listed in Table 5-1 is required for a complete performance check of the PM 101. Detailed operating instructions for use of the test equipment are not included in the Performance Check Procedure. Refer to the appropriate test equipment manuals for more information.

## Test Fixtures

Refer to Fig. 5-1 and assemble two test fixtures as follows: loosen the binding post screws on a BNC to binding post adapter, insert a separate piece of 22-gauge wire through each post, tighten the screws, and bend the wires in opposite directions. (For most effective use, insert the wires so that all of the excess length is to one side.)


Fig. 5-1. An Assembled Test Fixture.

TABLE 5-1
TEST EQUIPMENT REQUIRED

| Item (w/ Tek. Number) | Familiar Name | Purpose |
| :---: | :---: | :---: |
| Logic Analyzer (7D02) w/Opt. 3 (Expansion) | 7D02 | To provide a system for the PM 101 to be a part of. |
| Oscilloscope mainframe (7603, 7704A, or other appropriate mainframe) | Mainframe | To provide the facilities necessary to operate the 7D02. |
| Oscilloscope, 200 MHz bandwidth, dual-trace, calibrated 1 ns/div resolution | Test oscilloscope | Examination of pulse generator signals. |
| $\begin{aligned} & \text { P6106 Passive probe } 250 \mathrm{MHz} \text {, } \\ & 10 \mathrm{X}, 10 \mathrm{M} \Omega \\ & \text { (Tektronix Part No. } \\ & \text { 010-6106-03) } \end{aligned}$ | Oscilloscope probe | Oscilloscope input (2 required) |
| Pulse Generator (PG 502) | PG 502 | To provide clock pulses to the PM 101. |
| Pulse Generator (PG 508) | PG 508 | To provide data pulses to the PM 101 and triggering for the PG 502. |
| Test Equipment Mainframe (TM 504) | TM 504 | To provide facilities necessary to operate the above two items. |
| Coaxial cable, $50 \Omega$ | Coax cable | Signal connection. |
| Bnc male to dual binding post adapter (Tektronix Part No. 103-0035-00) | Bnc to Binding Post Adapter | To make test fixtures (2 required) |
| $50 \Omega$ Feedthrough termination (Tektronix Part No. 011-0049-01) | $50 \Omega$ Termination | Signal termination |
| Test lead, black (Tektronix Part No. 012-0426-01) | Black test lead | Signal connection |
| Test lead, red (Tektronix Part No. 012-0426-00) | Red test lead | Signal connection. |

## Connecting the Self-Test Stimulus

a. Turn off power to the Logic Analyzer at the oscilloscope mainframe.
b. Remove the plastic cover on the back of the Personality Module using a small screwdriver or Allen wrench.
c. Move the strapping connector from the power-off position to the power-on position as shown in Fig. 5-2.
d. Connect the Data, Address, Control and Clock leads on the PM 101 to the Self-Test Stimulus pins, as indicated in Table 5-2 and shown in Fig. 5-3.

TABLE 5-2
SELF-TEST STIMULUS CONNECTION

| Connector | PM 101 Individual Test Leads |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Data | Address | Address | Qualifiers | Timing | Other |
| T2 | DØ | A $\emptyset$ |  |  | Black |  |
| T3 | D1 | A1 |  |  | Brown |  |
| T4 | D2 | A2 |  |  | Red |  |
| T5 | D3 | A3 |  |  | Orange |  |
| T6 | D4 | A4 |  |  | Yellow |  |
| T7 | D5 | A5 |  |  | Green |  |
| T8 | D6 | A6 |  |  | Blue |  |
| T9 | D7 | A7 |  |  | Violet |  |
| T10 | D8 | A8 | A16 | Qø |  |  |
| T11 | D9 | A9 | A17 | Q1 |  |  |
| T12 | D10 | A10 | A18 | Q2 |  |  |
| T13 | D11 | A11 | A19 | Q3 |  |  |
| T14 | D12 | A12 | A2ø | Q4 |  |  |
| T15 | D13 | A13 | A21 | Q5 |  |  |
| T16 | D14 | A14 | A22 |  |  |  |
| T17 | D15 | A15 | A23 |  |  |  |
| T18 |  |  |  | Q6 |  |  |
| T19 |  |  |  | Q7 |  |  |
| T20 |  |  |  | Q8 |  |  |
| T21 |  |  |  | Q9 |  |  |
| Clock |  |  |  |  |  | Grey |
| TS |  |  |  |  |  | Red |
| GND |  |  |  |  | White | Black |




ON
2917-08

Fig. 5-2. Power Strapping-Self Test Stimulus Circuitry.


2917-09

Fig. 5-3. Self Test Stimulus Connection.

## PERFORMANCE CHECK

1. Diagnostics. Run the "PER. MOD. - SYSTEM" Diagnostic Module with LOOPING ENABLED for at least five seconds for each of the eight individual tests using the following procedure:


Always be certain to turn off the mainframe (logic analyzer) power before connecting or disconnecting any Personality Module.
a. Turn off the mainframe power and insert the ribbon cable connector "PERSONALITY MODULE - PM 100 SERIES" into the receptacle labeled "PERSONALITY MODULE - PM 100 SERIES" on the front of the Logic Analyzer.
b. Turn on the mainframe power and depress any front panel key within two seconds. Keep the key depressed for at least five seconds to simulate a keyboard failure, bring up the POWER-UP VERIFICATION display and allow entry into the DIAGNOSTIC MONITOR.
c. Press " $X$ " to get a menu of the Diagnostic Monitor.
d. Press "9" to run the "PER. MOD. - SYSTEM" Diagnostic Monitor.
e. Press "E" to ENABLE LOOPING. (The Self-Test Stimulus was connected in an earlier procedure.)
f. Press the START/STOP key to run the first test. Wait five seconds. A number such as 0853-XX associated with a "PASS" of Test \#1 is normal. The number is the part number of the ROM package.
g. Press the START/STOP key to run the next test. Wait five seconds.
h. Repeat step " $g$ " until all eight tests have been completed.
i. Check to verify that all tests passed. Note the messages associated with any errors. A number associated with any test other than Test \#1 is an error indication. A number associated with a "PASS" indicates that the error was transient. Record these numbers and refer to Section 6, Maintenance and Troubleshooting.
j. Press the START/STOP key and the "X" keytoreturn to the Diagnostic Monitor menu.
k. Press "B" to run the TIMING OPTION test.
I. Press "E" to ENABLE LOOPING.
m. Press the START/STOP button three times to enter test \#3.
n. Wait five seconds and press the START/STOP button.
o. Check to verify that Test B3 passes. Record any error messages. A number associated with a PASS indicates a transient error. (Failures of sub-tests other than sub-test 3 probably are not Personality Module failures; refer to the 7D02 Logic Analyzer Service manual, Maintenance and Troubleshooting section, for the "Pers. Mod.-Sys." diagnostic flowchart.)
p. Press the START/STOP key and the " $X$ " key to RETURN TO MENU.
q. Press the "X" key again to return to normal"operation.

## 2. HALT Circuit Functional Check

a. Press the IMMEDIATE, DISPLAY, and PROGRAM keys.
b. Move the CURSOR to the end of any existing program and hold the DELETE key until the entire program is deleted.
c. Press the TRIGGER key.
d. Move the CURSOR to the Trigger Delay Field and enter a " 3 " to select ZERO DELAY.
e. Enter a " 1 " to select SYSTEM UNDER TEST HALT.
f. Move the CURSOR to the bottom of the program and press the WD RECOGNIZER key.
g. Enter all " 0 "s in the Data Field.
h. Press the TRIGGER and END keys. Check that the program is as shown in Fig. 5-4.


Fig. 5-4. HALT Check Program.
i. Press the IMMEDIATE, GO TO, and " 2 " keys, and then move the CURSOR to the right (EXECUTE).
j. Check that the trigger occurs on DATA 0000.
k. Press the START/STOP key.
I. Check that the trigger occurs on DATA 0003.
m. Press the START/STOP key at least four more times.
n. Verify that the DATA increments by 3 on each occasion.
3. Clock Checks. This procedure checks minimum clock pulse width ( 25 ns ), minimum clock period ( 100 ns ), minimum data acquisition period ( 100 ns ) and minimum interval between qualified clocks.
a. Move the Self-Test Circuitry power jumper from its power-on to its power-off position. Refer to Fig. 5-2.
b. Turn on power to the mainframe oscilloscope, the test oscilloscope, and the TM 504. Allow 20 minutes for the equipment to warm up.
c. Set the PG 508 TRANSITION TIME and DELAY controls fully counterclockwise to their minimum positions.
d. Set the PG 508 LEADING and TRAILING edge controls fully counterclockwise to their minimum, "X1" position.
e. Set all three PG 508 TRIGGERING switches to their out positions.
f. Set the PG 508 MODE switches for the DELAYed mode by pushing the lower switch to its latched-in position.
g. Connect a $50 \Omega$ feed-thrutermination to the PG 508 OUTPUT connector. Refer to Fig. 5-5.
h. Connect a test fixture to the $50 \Omega$ feed-thrutermination on the PG 508 OUTPUT connector.
i. Connect the test oscilloscope Channel 1 probe to the test fixture; ground to black, tip to red. See Fig. 5-5.
j. Set the PG 508's PERIOD control to 20 ns and adjust the PERIOD-CAL control for a 100 ns period as measured on the test oscilloscope, Channel 1. (It may be necessary to set the DURATION control to its minimum position.)
k. Set the test oscilloscope Channel 1 POSITION controls so that the center graticule line represents +1.4 V , by setting the VOLTS/DIV switch to 1 VOLT/DIV, switching the AC-GND-DC switch to its GND position, and positioning the trace 1.4 divisions below the center graticule line. Return the AC-GND-DC switch to its DC position.
I. Using Channel 1 on the test oscilloscopeto measure the signal voltage, adjust the PG 508 OUTPUT (VOLTS) control for a pulse with a high level of 2.4 V and a low level of +0.5 V .
m. Adjust the PG 508 DURATION-CAL control for 45 ns with the DURATION switch in the "10 ns" position.
n. Connect one of the PM 101 ground leads to the PG 508 Test Fixture's black terminal.
o. Connect Data lines 3 through 0 from the PM 101 to the Test Fixture's red terminal using the Grabber Tips which are standard accessories to the PM 101. Refer to Fig. 5-5.
p. Using coaxial cable, connect the PG 508 + TRIG OUT connector to the + TRIG/DURATION INPUT connector on the PG 502.
q. Connect the other Test Fixture to the PG 502 OUTPUT connector.
r. Connect the test oscilloscope Channel 2 probe ground to the PG 502 Test Fixture's black terminal.
s. Connect the test oscilloscope's Channel 2 probe tip to the red side of the PG 502 Test Fixture.
t. Pull out the BACK TERM switch on the PG 502.
u. Press the NORM/COMPLEMENT switch on the PG 502 to invert its output.
v. Turn the PG 502 PERIOD control fully clockwise to the EXT TRIG position.
w. Set the PULSE DURATION control on the PG 502 to the " 5 ns " position and adjust the PULSE DURATIONVARIABLE control for a 25 ns pulse on Channel 2 of the Test Oscilloscope.
x. Using Channel 1 on the test oscilloscopeto measure the signal voltage, set the PG 502 output pulse for a high level of 2.4 V and a low level of +0.5 V .
y. Connect one of the PM 101 ground leads to the PG 502 Test Fixture's black terminal.


Fig. 5-5. Equipment Set-up-Clock Checks.

## Performance Check-PM 101

z. Connect the PM 101 Clock line (single grey lead) to the PG 502 Test Fixture's red terminal.
aa. Adjust the PG 508 DELAY controls so that trailing edge of the inverted PG 502 pulse is coincident with the trailing edge of the non-inverted PG 508 pulse at the center graticule line of the test oscilloscope. (Trigger on channel 2.)
ab. Press the IMMEDIATE, DISPLAY, and PROGRAM keys.
ac. Move the CURSOR to the end of any existing program
ad. Press and hold the DELETE key until the entire program is deleted.
ae. Press the COUNTER key and enter 10,000 events
af. Press the [ ] (brackets) key.
ag. Press the COUNTER key, move the CURSOR to the left, and enter 2 to select Counter \#2.
ah. Enter "1" twice to select " $\mu \mathrm{s}$ " and the STOP command.
ai. Press the GOTO key
aj. Press the [ ] (brackets) key twice.
ak. Press the NOT key and the WD RECO GNIZERkey.
al. Enter a hexadecimal " $F$ " in the rightmost Word Recognizer Data position.
am. Press the [ ] (brackets) key twice.
an. Press the TRIGGER key.
ao. Move the CURSOR down once to the Trigger Position field and enter a " 3 " to select ZERO DELAY and another " 0 " to select SYSTEM UNDER TEST CONTinue.
ap. Enter a " 0 " to select STANDARD CLOCK QUALification.
aq. Press the GOTO key and enter a " 3 ".
ar. Press the [ ] (brackets) key.
as. Press the ELSE key.
at. Press the [ ] (brackets) key.
au. Press the COUNTER key.
av. Press the COUNTER key, move the CURSOR to the left, and enter " 2 " to select Counter \#2.
aw. Press the [ ] (brackets) key twice.
ax. Press the COUNTER key, move the CURSOR to the left, and enter " 2 " to select Counter \#2.
ay. Enter $01050 \mu \mathrm{~s}$.
az. Press the OR key.
ba. Press the NOT key.
bb. Press the WD RECOGNIZER key, move the CURSOR up and enter " 1 " as its number.
bc. Move the CURSOR to the bottom of the program and press the [ ] (brackets) key.
bd. Press the GOTO key. (Default " 3 " is correct.)
be. Press the ELSE key.
bf. Press the [ ] (brackets) key.
bg. Press the COUNTER Key.
bh. Move the CURSOR down and enter " 1 " to select the RESET command.
bi. Press the COUNTER key, move the CURSOR tothe left and enter a " 2 " to select Counter \#2.
bj. Move the CURSOR down and enter " 2 " to select the RESET AND RUN command.
bk. Press the GOTO key and enter " 1 ".
bl. Press the [] (brackets) key.
bm. Press the END key twice to end Test 2 and to create and end Test 3.
bn. Check that the program is as shown in Fig. 5-6.
bo. Press START/STOP key to run program.

bp. Check that the program runs continuously with no trigger.
bq. Wait approximately 15 seconds and press the START/STOP key.
br. The display should show LOCation 254, indicating that 255 data groups were stored.
bs. Press the IMMEDIATE, DISPLAY, and PROGRAM keys.
bt. Move the CURSOR to the Clock Qualification field in Test 1 and enter " 1 " to select USER CLOCK QUALification.
bu. Enter " 1 " to select FALLING EDGE OF CLOCK.


Fig. 5-6. Clock Checks Program.
bv. Set the PG 502 COMPLEMENT/NORM switch to its out position to return the output to its normal, noninverted form.
bw. Check that the PG 502 output pulse on the Test Oscilloscope display is positive-going and of 25 ns duration and that the trailing edges of the pulses are coincident.
bx. If the pulse duration is not 25 ns , adjust the PG 502 PULSE DURATION-VARIABLE control. Adjust the PG 508 DELAY-CAL control if the trailing edges are not coincident.
by. Press the START/STOP key to run the program.
bz. Check that the program runs continuously for at least 15 seconds.
ca. Press the START/STOP key to stop the program and verify that the last LOCation stored was 254.
cb. Press the IMMEDIATE, DISPLAY, and PROGRAM keys.
cc. Move the CURSOR to the Word Recognizer Data field and enter a hexadecimal " 0 " in the least significant digit.
cd. Set the PG 508 COMPLEMENT/NORM switch to its in position to invert the output.
ce. Check that the PG 508 output pulse on Test Oscilloscope display is negative-going and of 45 ns duration and that its trailing edge is coincident with the trailing edge of the positive-going PG 502 output pulse.
cf. If the pulse duration is not 45 ns , adjust the PG 508 DURATION-CAL control. Adjust the PG 508 DELAY-CAL control if the trailing edges are not coincident.
cg. Press the START/STOP key to run the program.
ch. Check that the program runs continuously for at least 15 seconds.

[^0]cj. Press the IMMEDIATE, DISPLAY, and PROGRAM keys.
ck. Move the CURSOR to the Clock Edge field and enter " 0 " to select RISING EDGE OF CLOCK.
cl. Set the PG 502 COMPLEMENT/NORM switch to its in position to invert its output.
cm. Check that the PG 502 output pulse on the Test Oscilloscope display is negative-going and of 25 ns duration and that its trailing edge is coincident with the trailing edge of the negative-going pulse from the PG 508.
cn. If the pulse duration is not 25 ns , adjust the PG 502 PULSE DURATION-VARIABLE control. Adjust the PG 508 DELAY-CAL control to make the trailing edges coincident.
co. Press the START/STOP key to run the program.
cp . Check that the program runs continuously for at least 15 seconds.
cq. Press the START/STOP key and verify that the last LOCation stored is 254.
4. Setup and Hold Check-Main Section. This routine checks all of the Data channels, all of the Address channels, and Control channels C through C3.
a. The PG 502 will not be used again. Use the same setup as in Check 3 above for the PG 508 with the following changes:
b. Connect the PM 101 Clock line and the test oscilloscope Channel 1 probetip, as well as the first four data channels from the PM 101, to the red terminal of the Test Fixture connected to the PG 508.
c. Set the PG 508 PERIOD control to $.2 \mu \mathrm{~s}$ and the center CAL control fully counterclockwise.
d. Press the PG 508 COMPLEMENT/NORM switch to its out position for a normal output.
e. Set the PG 508 DURATION control to 10 ns and adjust the DURATION-CAL control for a positive-going 45 ns pulse as displayed on the test oscilloscope.
f. Press the IMMEDIATE, DISPLAY, and PROGRAM keys.
g. Move the CURSOR to the end of the existing program.
h. Press and hold the DELETE key until the entire program is deleted.
i. Press the NOT key.
j. Press the WD RECOGNIZER key.
k. Move the CURSOR to the Word Recognizer Data field and enter a hexadecimal " $F$ " in the location corresponding to the channels connected to the PG 508 in part "b" above or part "ad" below.
I. Press the [ ] (brackets) key.
m. Press the TRIGGER key.
n. Move the CURSOR to the Clock Qualification field and enter " 1 " to select USER CLOCK QUALification.
o. Enter " 1 " to select FALLING EDGE OF CLOCK.
p. Check that the display of the program is as shown in Fig. 5-7.


Fig. 5-7. Main Section Setup and Hold Program.
q. Press the START/STOP key to run the program
r. Check that the program continues to run for at least 15 seconds
s. Press START/STOP key to stop the program.
t. Press the IMMEDIATE, DISPLAY, and PROGRAM keys.
u. Move the CURSOR to the Clock Qualification field and enter " 0 " to select RISING EDGE OF CLOCK.
v. Move the CURSOR to the appropriate Word Recognizer field and enter a " 0 " in the position corresponding to the channels being checked.
w. Set the PG 508 COMPLEMENT/NORM switch to the in position to invert the output
$x$. Check that the pulse on the test oscilloscope display is negative-going and of 45 ns duration.
y. If the pulse duration is not 45 ns , adjust the PG 508 DURATION-CAL control.
z. Move the CURSOR to the Word Recognizer Data field and enter a hexadecimal " 0 " in the position of the lines being checked.
aa. Press the START/STOP key to run the program.
ab. Check that the program continues to run.
ac. Wait approximately 15 seconds, then press the START/STOP key.
ad. Press the IMMEDIATE, DISPLAY, and PROGRAM keys.
ae. Connect four different PM 101 channels to the Test Fixture and repeat parts "d", "e", "k", "n", "o", and "q" through "ad". Do this for the rest of the Data channels, all of the Address channels, and the four Control channels, C0 through C3.

## Performance Check-PM 101

## 5. Setup and Hold Check-ANDed Clocks

a. Perform parts "a" through " i " of Check 4 except parts " $b$ ", " $d$ ", and " e ". Instead of those parts, connect Control lines C4, C5, and C6 and the test oscilloscope probe to the Test Fixture's red terminal and set the PG 508 PERIOD switch to $20 \mu \mathrm{~s}$ with the center CAL control fully counterclockwise. Adjust the DURATION-CAL control for a 55 ns pulse.
b. Press the ELSE and [ ] (brackets) keys.
c. Press the COUNTER key.
d. Enter a " 1 " to select $\mu \mathrm{s}$.
e. Press the GOTO key.
f. Press the [ ] (brackets) key.
g. Press the ELSE key.
h. Press the GOTO key.
i. Press the [ ] (brackets) key.
j. Press the NOT and COUNTER keys.
k. Enter $00050 \mu \mathrm{~s}$.
I. Press the [ ] (brackets) key twice.
m. Press the COUNTER key.
n. Move the CURSOR down to the Counter command field and enter a " 2 " to select the RESET AND RUN command.
o. Press the GOTO key and enter a " 2 ".
p. Press the [ ] (brackets) key, then the ELSE key, and then the [ ] key again.
q. Press the TRIGGER key.
r. Move the CURSOR to the Trigger Delay field and enter a " 3 " to select ZERO DELAY.
s. Move the CURSOR to the Clock Qualification field, enter a" 1 " to select USER CLOCK QUALIFICATION, then another " 1 " to select FALLING EDGE OF CLOCK.
t. Move the CURSOR to the C9-C4 ANDed Clocks field and enter " 1 "s in the rightmost bit positions C6, C5, and C4 (the rest are "don't care").
u. Press the GOTO key and enter a " 4 ".
v. Press the [] (brackets) key.
w. Press the END key to end Test 3, then again to end Test 4.
x. Check that the program is as shown in Fig. 5-8, Part A.


Fig. 5-8. Part A. ANDed Clocks Setup and Hold Program.
y. Press the START/STOP key to run the program.
z. Check that the program continues to run, with no trigger and no SLOW CLOCK indication.
aa. Wait approximately 15 seconds and press the START/STOP key to stop the program.
ab. Check that 255 data words were stored in memory. (The last LOCation shown should be 254.)
ac. Press the IMMEDIATE, DISPLAY, and PROGRAM keys.
ad. Move the CURSOR to the Clock Edge Selection field and enter a "0" to select RISING EDGE OF CLOCK.
ae. Move the CURSOR to the C9-C4 ANDed Clocks field and enter 0's in bit positions C6, C5, and C4.
af. Check ${ }^{\text {显hat the program is as shownin Fig. 5-8, Part }}$ B.


Fig. 5-8. Part B. ANDed Clocks Setup and Hold Program.
ag. Set the PG 508 COMPLEMENT/NORM switch to its in position to invert the signal output.
ah. Check that the pulse on the test oscilloscope display is negative-going and of 55 ns duration.
ai. If the pulse duration is not 55 ns , adjust the PG 508 DURATION-CAL control.
aj. Press the START/STOP key to run the program.
ak. Check that the program continues to run with no trigger and no SLOW CLOCK indication.
al. Wait approximately 15 seconds and press the START/STOP key to stop the program.
am. Check that 255 data words were stored in memory. (The last LOCation shown should be 254.)
an. Press the IMMEDIATE, DISPLAY, and PROGRAM keys.
ao. Move the CURSOR to the C9-C4 ANDed Clocks field and enter " 0 "'s in the leftmost bit positions C9, C8, and C 7 ; enter " X "s in bit positions C6, C5, and C4.
ap. Check that the program is as shown in Fig. 5-8, Part C.


Fig. 5-8. Part C. ANDed Clocks Setup and Hold Program.
aq. Disconnect PM 101 Control lines C6, C5, and C4 from the Test Fixture's red terminal and connect PM 101 control lines C9, C8, and C7 instead.
ar. Press the START/STOP key to start the program.
as. Check that the program continues to run with no trigger and no SLOW CLOCK indication.
at. Wait approximately 15 seconds and press the START/STOP key to stop the program.
au. Check that 255 data words were stored in memory. (The last LOCation stored should be 254.)
av. Press the IMMEDIATE, DISPLAY, and PROGRAM keys.
aw. Move the CURSOR to the Clock Qualification field and enter " 1 " to select FALLING EDGE OF CLOCK.
ax. Enter "1"s in C9-C4 ANDed Clocks field bit positions C9, C8, and C7.
ay. Check that the program is as shownin Fig. 5-8, Part D.


Fig. 5-8. Part D. ANDed Clocks Setup and Hold Program.
az. Set the PG 508 COMPLEMENT/NORM switch to its out position for a non-inverted output.
ba. Check that the pulse on the test oscilloscope display is positive-going and of 55 ns duration.
bb. If the pulse duration is not 55 ns , adjust the PG 508 DURATION-CAL control
bc. Press the START/STOP key to start the program.
bd. Check that the program continues to run with no trigger and no SLOW CLOCK indication.
be. Wait approximately 15 seconds and press the START/STOP key to stop the program.
bf. Check that 255 data words were stored in memory. (The last LOCation stored should be 254.)

## 6. Setup and Hold Check-ESYNC and WAIT

## ESYNC Section

a. Leave the test setup as it was at the end of the preceding check except Control lines C6 and C8 (ESYNC) and the test oscilloscope probe are connected to the Test Fixture's red terminal.
b. Press the IMMEDIATE, DISPLAY, and PROGRAM keys.
c. Move the CURSOR to the end of any existing program and DELETE it.
d. Press the COUNTER key, move the OURSOR to the left, and enter a " 2 " for the counter \#.
e. Enter "00999" and a " 0 " to select EVENTS.
f. Press the [ ] (brackets) key and the TRIGGER key.
g. Move the CURSOR down and enter " 3 " to select ZERO DELAY.


#### Abstract

h. Move the CURSOR down once to the Clock Qualification field and enter a " 1 " to select USER CLOCK QUALIFICATION.


i. Enter a " 1 " to select FALLING EDGE OF CLOCK.
j. Enter "X"s (don't cares) in C4 through C9.
k. Move the CURSOR to the Clock Synthesis field and enter a " 1 " to select USER CLOCK SYNTHESIS.
I. Enter " 1 " to select DIVIDE CLOCK BY 2 and a" 2 " as the divisor.
m. Enter a " 1 " in the ESYNC bit 6 position and press the COUNTER key.
n. Move the CURSOR down and enter a " 1 " to select the STOP mode for Counter \#1.
o. Press the GOTO key.
p. Press the [ ] (brackets) key.
q. Press the ELSE key.
r. Press the [ ] (brackets) key.
s. Press the COUNTER key.
t. Press the COUNTER key and enter a " 2 " for the Counter \#.
u. Press the [ ] (brackets) key.
v. Press the END key twice to end Tests 1 and 2.
w. Check that the program is as shown in Fig. 5-9.
x. Press the START/STOP key to run the program.
y. Check that the count stored in Counter \#1 is between 19,000 and $21,000 \mu \mathrm{~s}$.
z. Repeat parts $x$ and $y$ three or more times.
aa. Press the IMMEDIATE, DISPLAY, and PROGRAM keys.
ab. Move the CURSOR to the Divide Clock field and enter " 3 " to select DIVIDE CLOCK BY 3.
ac. Press the START/STOP key.
ad. Check that the program runs continuously with a SLOW CLOCK indication.
ae. Wait approximately 15 seconds and press the START/STOP key to stop the program.
af. Check that the display reads "NO DATA ACQUIRED".
ag. Press the IMMEDIATE, DISPLAY, and PROGRAM keys.
ah. Move the CURSOR to the Clock Qualification field and enter a "0" to select RISING EDGE OF CLOCK.
ai. Move the CURSOR to the ESYNC C6 bit position and enter a " 0 ".
aj. Set the PG 508 COMPLEMENT/NORM switch to its in position to invert the signal output.
ak. Check that the pulse on the test oscilloscope display is negative-going and of 55 ns duration.


Fig. 5-9. ESYNC Setup and Hold Program.

## Performance Check—PM 101

al. If the pulse duration is not 55 ns , adjust the PG 508 DURATION-CAL control
am. Press the START/STOP key to run the program.
an. Check that the program runs continuously with a SLOW CLOCK indication.
ao. Wait approximately 15 seconds and press the START/STOP key to stop the program.
ap. Check that the display reads "NO DATA ACQUIRED".
aq. Press the IMMEDIATE, DISPLAY, and PROGRAM keys.
ar. Move the CURSOR to the Divide Clock field and enter a "2" to select DIVIDE CLOCK BY 2.
as. Press the START/STOP key to run the program.
at. Check that the count stored in Counter \#1 is between 19,000 and $21,000 \mu \mathrm{~s}$.
au. Repeat parts as and at three or more times.
av. Press the IMMEDIATE, DISPLAY, and PROGRAM keys.
aw. Enter an " X " in the C 6 bit position and a " 0 " in the C8 bit position.
ax. Press the START/STOP key to run the program.
ay. Check that the count stored in Counter \#1 is between 19,000 and $21,000 \mu$ s.
az. Repeat parts ax and ay three or more times.
ba. Press the IMMEDIATE, DISPLAY, and PROGRAM keys.
bb. Move the CURSOR to the Divide Ciock field and enter a " 3 " to select DIVIDE CLOCK BY 3.
bc. Press the START/STOP key to run the program.
bd. Check that the program runs continuously with a SLOW CLOCK indication.
be. Wait approximately 15 seconds and press the START/STOP key to stop the program.
bf. Check that the display indicates "NO DATA ACQUIRED".
bg. Press the IMMEDIATE, DISPLAY, and PROGRAM keys.
bh. Move the CURSOR to the Clock Qualification field and enter a " 1 " to select FALLING EDGE OF CLOCK.
bi. Move the CURSOR to the ESYNC C8 bit position and enter a " 1 ".
bj. Set the PG 508 COMPLEMENT/NORM switch to its out position to make the output non-inverted.
bk. Check that the pulse on the test oscilloscope display is positive-going and of 55 ns duration.
bl. If the pulse duration is not 55 ns , adjust the PG 508 DURATION-CAL contro!.
bm. Press the START/STOP key to run the program.
bn. Check that the program runs continuously with a SLOW CLOCK indication.
bo. Wait approximately 15 seconds and press the START/STOP key to stop the program.
bp. Check that the display reads "NO DATA ACQUIRED".
bq. Press the IMMEDIATE, DISPLAY, and PROGRAM keys.
br. Move the CURSOR to the Divide Clock field and enter " 2 " to select DIVIDE CLOCK BY 2.
bs. Press the START/STOP key to run the program.
bt. Check that the count stored in Counter \#1 is between 19,000 and $21,000 \mu \mathrm{~s}$.
bu. Repeat parts bs to bt three or more times.

## WAIT Section

bv. Disconnect PM 101 Control lines C6 and C8 (ESYNC) from the Test Fixture's red terminal and connect Control lines C7 and C9 (WAIT) to the red terminal.
bw. Press the IMMEDIATE, DISPLAY, and PROGRAM keys.
bx. Move the CURSOR to the ESYNC C8 bit position and enter an " X "; then enter a " 1 " in the WAIT C 7 bit position.
by. Check that the program is as shown in Fig. 5-10.
bz. Check that the pulse in the test oscilloscope display is positive-going and of 55 ns duration.
ca. If the pulse duration is not 55 ns , adjust the PG 508 DURATION-CAL control.
cb. Press the START/STOP key to run the program.
cc. Check that the program runs continuously with a SLOW CLOCK indication.
cd. Wait approximately 15 seconds and press the START/STOP key to stop the program.
ce. Check that the display reads "NO DATA ACQUIRED".
cf. Press the IMMEDIATE, DISPLAY, and PROGRAM keys.
cg. Move the CURSOR to the ESYNC C7 bit position and enter an " X "; then enter a " 1 " in the C 9 bit position.
ch. Press the START/STOP key to run the program.
ci. Check that the program runs continuously with a SLOW CLOCK indication.
cj. Wait approximately 15 seconds and press the START/STOP switch to stop the program.
ck. Check that the display reads "NO DATA ACQUIRED".
cl. Press the IMMEDIATE, DISPLAY, and PROGRAM keys.
cm . Move the CURSOR to the Clock Qualification field and enter a " 0 " to select RISING EDGE OF CLOCK.
cn. Move the CURSOR to the WAIT C9 bit position and enter a " 0 ".


Fig. 5-10. WAIT Setup and Hold Program.
co. Set the PG 508 COMPLEMENT/NORM switch to its in position to invert the signal output.
cp . Check that the pulse on the test oscilloscope display is negative-going and of 55 ns duration.
cq. If the pulse duration is not 55 ns , adjust the PG 508 DURATION-CAL control.
cr. Press the START/STOP key to run the program.
cs. Check that the program runs continuously with a SLOW CLOCK indication.
ct. Wait approximately 15 seconds and press the START/STOP key to stop the program.
cu. Check that the display reads "NO DATA ACQUIRED".
cv. Press the IMMEDIATE, DISPLAY, and PROGRAM keys.
cw. Move the CURSOR to the WAIT C7 bit position and enter a " 0 ".
cx. Enter an " X " in the C9 bit position.
cy. Press the START/STOP key to run the program.
cz. Check that the program runs continuously with a SLOW CLOCK indication.
da. Wait approximately 15 seconds and press the START/STOP key to stop the program.
db. Check that the display reads "NO DATA ACQUIRED"

This completes the PM 101 Performance Check.

## MAINTENANCE AND TROUBLESHOOTING

## Cleaning and Periodic Maintenance

The PM 101 requires no periodic maintenance. Refer to Section 5 of this manual for a Performance Check if performance is in doubt. Operating circumstances will determine when the following cleaning procedure should be followed.

Exterior. Dust the Personality Module with a soft brush or cloth. Dirt should be removed with a cloth dampened in a mild solution of detergent and water.


DO NOT use chemical cleaning agents on the pod covers as they may damage the plastic. In particular, avoid solutions containing acetone, benzene, xylene or other organic solvents.

DO NOT use a cloth which is too damp or touch the connectors with the cloth.

Interior. Use a jet of Iow pressure air to remove dust from the interior of the pod and the circuit boards. A soft brush may be required. After soldering, or when otherwise required, use isopropyl alcohol with a soft cloth or cotton swab to remove flux, resin or dirt.

## Service

The PM 101 Personality Module is a complex electronic instrument containing static sensitive components. It should only be serviced by qualified service personnel.

Tektronix, Inc. provides completeinstrument service at local Field Service Centers and at the Factory Service Center in Beaverton, Oregon. Contact your local Tektronix representative or Field Office for additional information.

## Ordering Parts

Most electrical and mechanical parts can be ordered through your local Tektronix Field Office or representative. However, you should be able to obtain many of the standard electronic components from a local commercial
source in your area. Before you purchase or order a part from a source otherthan Tektronix, Inc., please checkthe Replaceable Mechanical Parts list, Section 9, for the proper value, rating, tolerance, and description.

When ordering parts from Tektronix, Inc. it is important to include the following information for each part ordered to ensure receipt of the correct parts:

1. Instrument type (including modification and option numbers).
2. Serial number of the instrument.
3. A descriptive name or number; especially circuit and assembly numbers if it is an electrical part.
4. Tektronix part number.

## Disassembly

Remove the four middle screws from the top cover and lift it off. The top board (A1) is now accessible.

To gain access to the bottom board (A2), completely remove the two screws on the 64-pin connector end of the pod. Loosen, but do not remove, the two screws on the other end of the pod.

Gently lift the top board part way out of the pod at the free end. Grasp the bottom board and lift it gently out from under the top board. Refer to Fig. 6-1.

Turn the bottom board (A2) over and plug A2J1015into A1P1015. Protect A2 from shorting and static discharge by placing appropriate materials between it and the environment. Figure 6-2 shows a PM 101 Personality Module in the accessible position with the Self Test Stimulus connected.

## Self Test Stimulus

While the Logic Analyzer Power-Up Verification tests do not require any Self Test Stimulus, Tests 0,9 , and B of the more extensive Diagnostic Monitor do require that the operator make these connections.


Fig. 6-1. Removing Board A2.

Connect the Self Test Stimulus as indicated in Table 6-1 and the following procedure:
a. Turn off power to the Logic Analyzer and Personality Module with the mainframe power switch.
b. Remove the access cover on the bottom of the pod by inserting a small screwdriver into the slot and prying gently.
c. Connect all of the individual test leads to the Self Test Stimulus connectors as indicated in Table 6-1 and shown in Fig. 6-2.
e. Apply power to the Logic Analyzer and Personality Module by turning on the mainframe power switch.
d. Move the Self Test Circuitry power strap, A2J5050, from its power-off position (2-3) to its power-on position (1-2) as shown in Fig. 6-3.
f. To disconnect the Self Test Stimulus, perform steps a, c (in reverse), d (in reverse), b (in reverse), and e.


Fig. 6-2. Accessible Position-Self Test Stimulus Connected.


Fig. 6-3. Power Strapping-Self Test Stimulus Circuitry.

TABLE 6-1
SELF-TEST STIMULUS CONNECTION

| Connector | PM 101 Individual Test Leads |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Data | Address | Address | Qualifiers | Timing | Other |
| T2 | DØ | Aø |  |  | Black |  |
| T3 | D1 | A1 |  |  | Brown |  |
| T4 | D2 | A2 |  |  | Red |  |
| T5 | D3 | A3 |  |  | Orange |  |
| T6 | D4 | A4 |  |  | Yellow |  |
| T7 | D5 | A5 |  |  | Green |  |
| T8 | D6 | A6 |  |  | Blue |  |
| T9 | D7 | A7 |  |  | Violet |  |
| T10 | D8 | A8 | A16 | Qø |  |  |
| T11 | D9 | A9 | A17 | Q1 |  |  |
| T12 | D10 | A10 | A18 | Q2 |  |  |
| T13 | D11 | A11 | A19 | Q3 |  |  |
| T14 | D12 | A12 | A20 | Q4 |  |  |
| T15 | D13 | A13 | A21 | Q5 |  |  |
| T16 | D14 | A14 | A22 |  |  |  |
| T17 | D15 | A15 | A23 |  |  |  |
| T18 |  |  |  | Q6 |  |  |
| T19 |  |  |  | Q7 |  |  |
| T20 |  |  |  | Q8 |  |  |
| T21 |  |  |  | Q9 |  |  |
| Clock |  |  |  |  |  | Grey |
| TS |  |  |  |  |  | Red |
| GND |  |  |  |  | White | Black |

Timing Option. The Self Test Stimulus Circuitry also provides stimulus for the Timing Option probe, P6451. This stimulus is the reference for the TIMING OPTION test (Test B) on the Diagnostic Monitor menu. Sub-test 1 is internal to the 7D02 and runs even without the Timing Option Probe connected.

## Troubleshooting

While the Logic Analyzer-Personality Module system is quite complex, it has built in diagnostic routines which simplify troubleshooting. Power-up Diagnostics, which are a limited version of the full diagnostic program, run every time the instrument is turned on. If a failure is detected, the "Power-up Verification" test results are displayed. This display offers the operator the choice between beginning operation or displaying the Diagnostic Monitor menu. That menu in turn offers the operator the choices of running any or all of the Module Tests, or of exiting the Diagnostic Monitor, or displaying the Signature Exerciser menu within the Diagnostic Monitor.

Depressing and holding any keyboard button within approximately three seconds of pulling the POWER switch on will simulate a failure and allow the operator to access the Diagnostic Monitor.

## NOTE

Some problems may only occur when the instrument is fully warmed up. Allow 20 minutes for this purpose.

Diagnostic Flow Charts. When the diagnostic routines detect a failure these flow charts will help the technician isolate a particular IC or group of IC's for signature analysis or conventional troubleshooting. Refer to Figs. 64 through 6-9.

Substitution-the easiest test. If other Logic Analyzers or Personality Modules are available, try substituting them and running the diagnostics again.


Exercise caution with power supply problems, since a seriously out of tolerance power supply could cause secondary damage in more than one unit.
"Check...". The word "check" as used in the Diagnostic Flow Chart means:

A VISUAL INSPECTION for damage, connection continuity, or shorts.

SIGNATURE ANALYSIS-See the signature analysis subsection below.

VOLTAGE CHECK of local power supply line(s).

WAVEFORM ANALYSIS of the signal quality. For example, rise and fall times, amplitude, ringing, noise or glitches, as applicable.

Intermittent Problems. A whole section of the flow chart deals with intermittent failures. If the problem is known to occur infrequently, skip ahead in the Flow Chart and begin LOOPING the test most likely to exercise the affected area.

Setup and Hold Performance Checks. The Diagnostic Flow Chart sometimes directs the reader to PM 101 or 7D02 Setup and Hold Performance Checks. These tests check the response speed of portions of the system and may be useful in finding some intermittent problems. Performing them requires additional equipment and considerable time, however. Refer to Section 5 of this manual.


Fig. 6-4. PM 101 Start-1.


Fig. 6-5. PM 101 Start-2.


Fig. 6-6. PM 101 C6-C9.


2917-22

Fig. 6-7. PM 101 Clock Circuits.


Fig. 6-8. PM 101 Intermittent-1.


Fig. 6-9. PM 101 Intermittent-2.

## Maintenance and Troubleshooting-PM 101

## Test Notes

Test Note 1. Turn the 7D02 off and on to initialize default conditions. After the Powerup Diagnostics have run, press the TRIGGER key and the START/STOP button. Check that the two leftmost DATA and ADDRESS characters and the center pair of ADDRESS characters are all the same, and that the two rightmost characters in the DATA and ADDRESS columns are the same, e.g.:

| LOC | ADDRESS | DATA | CONTROL |
| :--- | :---: | :---: | :---: |
|  |  |  |  |
| $000 T$ | $3636 F E$ | $36 F E$ | 0110 |
| 001 | 3636 FF | 36 FF | 0110 |
| 002 | 373700 | 3700 | 0111 |
| 003 | 373701 | 3701 | 0111 |
| 004 | 373702 | 3702 | 0111 |

Test Note 2. Change the default program to all " 0 "s as follows: Press the IMMEDIATE, DISPLAY, and PROGRAM keys. Move the CURSOR to the Word Recognizer Data field and enter sixteen "0"s. Press the START/STOP button and press the DATA SCROLLING (up) key. The display should look like this:

| LOC | ADDRESS | DATA | CONTROL |
| :--- | :--- | :--- | :---: |
|  |  |  |  |
| 013 | FFFFFE | FFFE | 1111 |
| 014 | FFFFFF | FFFF | 1111 |
| $015 T$ | 000000 | 0000 | 1111 |
| 016 | 000001 | 0001 | 0000 |
| 017 | 000002 | 0002 | 0000 |

Test Note 3. Change the default program as follows: Press the IMMEDIATE, DISPLAY, and PROGRAM keys. Move the CURSOR to the Word Recognizer Data field and enter a hexadecimal " 2 " in the rightmost place. Also enter a hexadecimal " 2 " in the rightmost place of the Address field. Leave Cø through C5 all "0"s. Move the CURSOR down and enter a " 1 " in the Clock Qualification field to select USER CLOCK QUALification. Move the CURSOR down again and enter four ones in the leftmost places of the ANDED CLOCKS field. Press the START/STOP button to run this program. A trigger should occur and the data should look like this:

| LOC | ADDRESS | DATA | CONTROL |
| :--- | :--- | :--- | :---: |
| 013 | FFFFFB | FFFB | 1111 |
| 014 | FFFFFE | FFFE | 1111 |
| $015 T$ | 000002 | 0002 | 1111 |
| 016 | 000003 | 0003 | 0000 |
| 017 | 000006 | 0006 | 0000 |
| 018 | 000007 | 0007 | 0000 |
| 019 | 00000 A | $000 A$ | 0000 |
| 020 | $00000 B$ | $000 B$ | 0000 |
| 021 | $00000 E$ | $000 E$ | 0000 |
| 022 | 000012 | 0012 | 0000 |

## Diagnostic Monitor-Test Modules

Module Test 9-1. This sub-test reads a byte at 3: E010 in the Personality Module ROM to read the ROM length. Using this, it locates the ROM trailer and reads the value at 3:YYFC (where YY is the value read from 3:E010). The value read at $3: Y Y F C$ is compared with the value at $3:$ YYFD, which should be its complement. If the two bytes are not complementary, an error message is printed as follows:

| 1 | FAIL | $3 E 7 F D-X$ | $;$ | $2 K R O M$ |
| :--- | :--- | :--- | :--- | :--- |
| 1 | FAIL | 3 YYFD-X | $;$ |  |
| $3:$ E010 |  |  |  |  |

Where: $X$ signifies the first non-complementary data bit when the two bytes are compared on a bit-by-bit basis (starting with the LSB).

If the ROM part number is correct the following message is printed:

1 PASS 0853-XX

Note that this is the only time that any data follows a true PASS indication. In other cases where a number follows a PASS signal, there was actually an intermittent failure.

Module Test 9-2. This sub-test calculates a 16 -bit checksum on the Personality Module ROM. If the calculated value does not match the expected value, the calculated value is reported as an error as follows:

2 FAIL F113

If the first part of sub-test 9-1 failed, it is likely that this test will also fail. However, if the first part of sub-test 9-1 failed and the second part also failed, this test still might pass since the checksum is location independent.

## NOTE

The Self Test Stimulus Circuitry on the Personality Module must be connected for the remaining subtests in Module Test 9.

Module Test 9-3. Before this test is run, the four Word Recognizers are programmed according to data stored in the Personality Module ROM:

|  | D15-D | A23-A0 | C5 | C4 | C3 | C2 | C1 | CØ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| WR1 | 0000 | 000000 | 0 | 0 | 0 | 0 | 0 | 0 |
| WR2 | 55555 | 555555 | 0 | 1 | 0 | 1 | 0 | 1 |
| WR3 | AAAA | AAAAAA | 1 | 0 | 1 | 0 | 1 | 0 |
| WR4 | FFFF | FFFFFF | 1 | 1 | 1 | 1 | 1 | 1 |

If the Expansion Option is not present, Address lines A16-A23 and Data lines D8-D15 are set to " X " (don't care). The External Trigger is always set to " X " (don't care).

The State Machine in the 7D02 is programmed to execute a test sequence:

## 1 IF WR1, THEN TRIGGER MAIN AND TIMING <br> 1 IFWR2 OR WR3OR WR4, THEN DON'T TRIGGER <br> 1 ELSE GOTO 1

The Acquisition Memory board in the 7D02 is set for Zero Delay. The Front End Qualifiers and the Clock Shifter/Divider are programmed to default values of all " X "s (don't cares) according to data stored in the Personality Module ROM. After all setups are complete, a Display command is sent and the Slow Clock Detector is checked. A slow clock indication results in the following error:

3 FAIL OFF60-1 ; SLOW OR NO CLOCK

This error can be caused by an erratic or missing PM 101 clock.

If the clock appears to be running, the Personality Module ROM is read to determine how long to wait for a trigger to occur. A Store command in the 7D02 is sent next. After waiting the specified length of time, the Activity Monitor on the Acquisition Memory board is examined to see if the Main Section has triggered and returned to the Display mode. (All of this is occurring in the 7D02.) If the Main Section is still in the Store mode, the following error is generated:

3 FAIL 2E803-7 ; MAIN SECTION FAILED TO TRIGGER

Failure to trigger can be caused by a failure of the Personality Module to generate the WR1 value.

Module Test 9-4. This test involves all four Word Recognizers, both Counters, the State Machine, and the Acquisition Memory. The Word Recognizers remain programmed as in sub-test 3. The State Machine is programmed with the following test program:

The State Machine begins in state 1 and advances to the next state as each of the four Word Recognizers occur in order. While in state 1 , the two Countersarereset. Whilein state 2, Counter 1 is incremented, and while in state 3, Counter 2 is incremented. While all of this is going on, the Acquisition Memory is acquiring data. When Word Recognizer 4 occurs, that single data sample is not stored and the Main Section and the Timing Option are both
triggered. At that point, the Acquisition Memory contains the last 16 words generated before Word Recognizer 4 and the 240 words generated immediately after Word Recognizer 4. If the Qualify RAM works correctly, the Word Recognizer 4 value was not stored. Counter 1 contains the number of clocks that occurred between Word Recognizer 1 and Word Recognizer 2, and Counter 2 contains the number of clocks that occurred between Word Recognizer 1 and Word Recongizer 3.

The Acquisition Memory board is set for a delay of 240 clocks and the Memory Address Counter is pre-set to OFDH. The Front End Qualifiers and the Clock Shifter/Divider are programmed with default values according to data stored in the Personality Module ROM. After all steps are completed, a Display command is sent and the Slow Clock Detector is checked. A Slow Clock indication results in the following error message:

4 FAIL OFF60-1 ; SLOW OR NO CLOCK

If the clock appears to be running, the Personality Module ROM is read to determine how long to wait for a trigger. Then, a Store command is sent. After waiting 2 ms , the Activity Monitor on the Acquisition Memory board is examined to see if the Main Section has triggered and returned to the Display mode. If stillin the Store mode, the following error message is generated:

4 FAIL 2E803-7 ; MAIN SECTION FAILED TO TRIGGER

Failure to trigger can be caused by a failure of the Personality Module to generate any one of the Four Word Recognizer values.

Another part of sub-test 4 checksums the Acquisition Memory. All bytes between 2:E000 and 2:E3FF are summed and the result stored. The Expansion Option Acquisition Memory is then checksummed by summing all bytes between 2:E400 and 2:E7FF. The results of these checksums are compared with the expected values stored in the Personality Module ROM, and one of the following error messages is displayed if they do not compare correctly:

```
4 FAIL 3E035-X ; MAIN ACQ. MEM. FAILS
CHECKSUM
```

```
4 FAIL 3E036-X ; EXP. OPT. ACQ. MEM.
```

4 FAIL 3E036-X ; EXP. OPT. ACQ. MEM.
FAILS CHECKSUM

```
FAILS CHECKSUM
```

These messages may indicate that the PM 101 is not always generating the correct data pattern, i.e., that one or more channels are intermittent.

Module Test 9-5. Failure of this test indicates that the problem is in the 7D02; consult that Service manual.

## Maintenance and Troubleshooting-PM 101

Module Test 9-6. Failure of this sub-test indicates that the problem is in the 7D02; consult that Service manual.

Module Test 9-7. This test checks the Control (Qualifier) lines C4 to C9 on the 7D02 Front End board. The State Machine is programmed with the test sequence:

1 IF WR1, THEN TRIGGER MAIN
1 ELSE GOTO 1

Word Recognizer 1 was programmed to all " 0 "s in subtest 3 . This sub-test checks the operation of control lines C 4 through C 9 by qualifying out the value to which Word Recognizer 1 has been programmed. This is accomplished by placing, one at a time, the requirement for a " 1 " on $\mathrm{C} 4, \mathrm{C} 5$, and C 9 , and the requirement for a" 0 " on C 6 , C7, and C8. In each case theselines are used to qualify out the value in Word Recognizer 1. If a particular control line works correctly, the State Clock that occurs with WR1 is inhibited because the State Clocks never occur when the Word Recognizer value is present, so the State Machine will not see the Word Recognizer output. A PASS is indicated by a failure of the Main Section to trigger. A byte in the Personality Module ROM specifies that the Processor wait 2 ms for the trigger to occur.

Six bytes in the Personality Module ROM specify what value to send to the Front End board for each of the control lines. The following sequence is repeated six times, once for each control line or until a failure occurs:

Read value from Personality Module ROM
Write value to Front End Latch
Send Store command
Wait a specified length of time
Check Activity Monitor on Acquisition Memory board If in Display mode, print FAIL and stop

The test results are interpreted as follows:

| 7 | FAIL | 3E039; C4 DID NOT INHIBIT TRIGGER |
| :--- | :--- | :--- |
| 7 | FAIL | 3E03A; C5 DID NOT INHIBIT TRIGGER |
| 7 | FAIL | 3E03B; C6 DID NOT INHIBIT TRIGGER |
| 7 | FAIL | 3E03C; C7 DID NOT INHIBIT TRIGGER |
| 7 | FAIL | 3E03D; C8 DID NOT INHIBIT TRIGGER |
| 7 | FAIL | 3E03E; C9 DID NOT INHIBIT TRIGGER |

Module Test 9-8. This test exercises the Programmable Shifter/Divider on the 7D02 Front End Board in the delay-by-one and divide-by-two modes. A byte in the General Purpose Personality Module tells the 7D02 that this test can be run using this Module.

For this test the State Machine is programmed with the following test sequence:

1 IF WR1
1 THEN
1 GOTO 4
4 IF WR1
4 THEN
4 TRIG MAIN

The PM 101 ROM sets the 7D02 Front End to its default status, except that it is set to divide-by-two and the low state of C6 is used to generate ESYNC. A Display command is sent and the Slow Clock Detector is checked. If no clock is present, the following error message is displayed:

8 FAIL OFF60-1 ; SLOW OR NO CLOCK

This error can be caused by an erratic PM 101 Clock Signal or a C6 problem.

If the clock is determined to be running, a Store command is sent and the Processor waits 2 ms . At the end of that delay, the Acquisition Memory Activity Monitor is checked and, if the Main Section has not returned to the Display mode (triggered), the following error message is displayed:

8 FAIL 2E803-7 ; MAIN SECTION FAILED TO TRIGGER

This failure could be caused by a failure of the Personality Module to generate the all "0"s pattern of Word Recognizer 1 or by a C6 problem.

If the Main Section did trigger, the Acquisition Memory should now be full. All of the bytes between 2:EOOO and 2:E3FF are checksummed and the result is compared to the expected value stored in the Personality Module ROM. If the values do not match, the following error message is displayed:

8 FAIL 3E037-X ; DIVIDE BY 2 CHECKSUM FAILED

This error message may indicate an intermittent PM 101 channel, since the pattern being generated is not perfect.

If the divide-by-two test passes, the entire test is repeated with the Front End set to delay-by-one instead of divide-by-two. (C6 generates ESYNC as before.) If the test fails under these conditions, the following error is displayed:

8 FAIL 3E038-X ; SHIFT BY 1 CHECKSUM FAILED

This test also may indicate that a PM 101 channel is intermittent.

Module Test B-3. In this sub-test, the Timing Option Word Recognizer is set to trigger on the occurrence of a hexadecimal 55 (specified by the Personality Module ROM) and the State Machine is programmed with the following test program:

```
1 IF TIM OPT WR=55 (WR1=TIM.OPT.WR)
    AND WR2,3,4=DON'T CARE
1 THEN
1 GOTO 4
    END
4 IF TIM OPT WR=55 (TIM.OPT.WR.=WR1)
    AND WR2,3,4=DON'T CARE
4 \text { THEN}
4 \text { TRIG MAIN AND TIMING}
    END
```

Also, the Timing Option Memory Address Counter is set to " 0 ". All Word Recognizers except the Timing Option Word Recongizer are set to all "X" (don't care).

The Slow Clock Indicator is checked for the presence of a clock. If none is detected, the following error is reported:

3 FAIL OFF60-1 ; SLOW OR NO CLOCK DETECTED

If the clock appears to be running, a byte is read from the Personality Module ROM which specifies that the Processor wait 2 ms for a trigger. Then a Store command is sent. After waiting the specified 2 ms , the Acquisition Memory Activity Monitor is examined to see if the Main Section has triggered. If it has not, the following error message is displayed:

3 FAIL 2E803-7 ; MAIN SECTION FAILED TO TRIGGER

This error may be caused by a failure of the Personality Module to generate a hexadecimal 55 on the Timing Option pins of the Self Test Stimulus Circuitry.

If the trigger did occur, the Timing Option Memory Address Counter is examined to determine the last data location, and the trigger location is calculated. This value is then compared to a value stored in the Personality Module ROM. If the two are not complementary, the following error message is displayed:

```
3 FAIL 3E03F-X ; TRIGGER VALUE IN-
CORRECT
```

This error may indicate an improper timing relationship between the Clock signal from the PM 101 and the data from the Self Test Stimulus Circuitry of the PM 101.

If the trigger test passes, the Timing Option Acquisition Memory at address 2:F000-2:FOFF is checksummed and the result compared with the expected value stored in the Personality Module ROM. If the values are not the same, the following error message is displayed:

```
3 FAIL 3E040-X ; CHECKSUM ERROR
2:FOOO-2:FOFF
```

Where:" $X$ " indicates the bit that didn't match.

This error may be caused by a failure of the Self Test Stimulus Circuitry to consistently generate the correct pattern or an intermittent Timing Option Probe.

## Signature Tables-Boards A1 and A2

All signatures in the following tables were taken with a SONY/TEKTRONIX 308 Data Analyzer.

Configuration: Invalid signatures occur if the configuration is not as specified. The PM 101 Self Test Stimulus Circuitry provides stimulus for Test 7, the "PER. MOD. - SYSTEM" test, of the DIAGNOSTIC MONITOR SIGNATURE EXERCISER routine. The probe must be connected to the 7D02. The Self Test Stimulus is connected normally except the Control lines (Q6, Q7, and Q8) on T18, T19, and T20 must be moved to the T2, T3, and T4 connections used by the Timing Option. Refer to Table 6-1.

Software: 160-0361-00 Diagnostic ROM

Analyzer: SONY/TEK 308

Table 6-2
SIGNATURES

|  | Location | S/W | SIG |
| :--- | :--- | :---: | :---: |
| Clock | CLK | 4 | N/A |
| Start | T17 | + | 0000 |
| Stop | T17 | 4 | 0000 |
| Power | SIG |  |  |
| +5 | $755 U$ |  |  |
| Gnd | 0000 |  |  |

TABLE 6-2 (cont)
SIGNATURES

| A1U1021 | SIG | A1U2041 | SIG | A1U3041 | SIG | A1U5041 | SIG |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | A3C1 | 2 | 89F1 | 2 | 0000 | 3 | HH86 |
| 2 | 7211 | 3 | 1180 | 3 | AC99 | 5 | 89F1 |
| 3 | AA08 | 4 | HH86 | 4 | 1180 | 6 | 7707 |
| 4 | C4C3 | 5 | 0000 | 5 | PCF3 | 7 | AC99 |
| 5 | 0772 | 6 | 7707 | 6 | PCF3 | 8 | 577A |
| 6 | 7050 | 7 | 7050 | 7 | 1180 | 9 | PCF3 |
| 7 | C113 | 8 | 577A | 8 | AC99 | 11 | PCF3 |
| 8 | H335 | 9 | AC99 | 9 | 0000 | 12 | 577A |
| 18 | 755 U | 11 | AC99 | 11 | 0000 | 13 | AC99 |
| 19 | HH86 | 12 | 577A | 12 | AC99 | 14 | 7707 |
| 20 | 0000 | 13 | PCF3 | 13 | 1180 | 15 | 89F1 |
| 21 | 755U | 14 | 7707 | 14 | PCF3 | 17 | HH86 |
| 22 | 577A | 15 | 0000 | 15 | PCF3 |  |  |
| 23 | 7707 | 16 | HH86 | 16 | 1180 | A2U1020 | SIG |
| A1U1031 | SIG | 17 | 1180 | 17 | AC99 | 7 | HHH4 |
| A1U1031 |  | 18 | 89F1 | 18 | 0000 | 10 | UFAA |
| 3 | AA08 | A1U3021 | SIG | 19 | 0000 | 11 | 0000 |
| 5 | C4C3 |  |  |  |  | 12 | 1180 |
| 7 | A3C1 | 1 | A3C1 | A1U4041 | SIG | 13 | PCF3 |
| 9 | 7211 | 2 | 7211 | 2 | H335 | 14 | ACC9 |
| 12 | 7050 | 3 | AA08 | 3 | 89F1 | A2U1030 | SIG |
| 14 | 0772 | 4 | C4C3 | 4 | C113 | A2U1030 |  |
| 16 | C113 | 5 | 0772 | 5 | HH86 | 2 | 7707 |
| 18 | H335 | 6 | 7050 | 6 | 7050 | 3 | 7707 |
| A1U2031 | SIG | 7 | C113 | 7 | 7707 | 4 | 577A |
|  |  | 8 | H335 | 8 | C113 | 5 | 577A |
| 2 | H335 | 18 | 755 U | 9 | 577A | 6 | HH86 |
| 3 | AA08 | 19 | HH86 | 11 | 577A | 7 | HH86 |
| 4 | C113 | 20 | 0000 | 12 | C113 | 8 | 89FC |
| 5 | C4C3 | 21 | 755 U | 13 | 7707 | 9 | 89FC |
| 6 | 0772 | 22 | 577A | 14 | 7050 | 11 | AC99 |
| 7 | A3C1 | 23 | 7707 | 15 | HH86 | 12 | AC99 |
| 8 | 7050 | A1U3031 | SIG | 16 | C113 | 13 | PCF3 |
| 9 | 7211 | A1U3031 | SIG | 17 | 89F1 | 14 | PCF3 |
| 11 | 7211 | 2 | AA08 | 18 | H335 | 15 | 1180 |
| 12 | 7050 | 3 | 89F1 |  |  | 16 | 1180 |
| 13 | A3C1 | 4 | 7211 | A1U5031 | SIG | 17 | 0000 |
| 14 | 0772 | 5 | HH86 | 3 | 0772 | 18 | 0000 |
| 15 | C4C3 | 6 | A3C1 | 5 | H335 | A2U2020 | SIG |
| 16 | C113 | 7 | 7707 | 7 | 7050 |  |  |
| 17 | AA08 | 8 | C4C3 | 9 | C113 | 7 | HHH4 |
| 18 | H335 | 9 | 577A | 11 | C113 | 10 | 9908 |
| 19 | 0000 | 11 | 577A | 13 | 7050 | 11 | 89F1 |
|  |  | 12 | C4C3 | 15 | H335 | 12 | 0000 |
|  |  | 13 | 7707 | 17 | 0772 | 13 | 57AA |
|  |  | 14 | A3C1 | 19 | 0000 | 14 | 7707 |
|  |  | 15 | HH86 |  |  | 15 | UFAA |
|  |  | 16 | 7211 |  |  |  |  |
|  |  | 17 | 89F1 |  |  |  |  |
|  |  | 18 | AA08 |  |  |  |  |
|  |  | 19 | 0000 |  |  |  |  |

TABLE 6-2 (cont)
SIGNATURES

| A2U3020 | SIG | A2U4030 | SIG |
| :---: | :---: | :---: | :---: |
| 5 | HHH4 | 2 | H335 |
| 6 | A88C | 3 | H335 |
| 8 | PF57 | 4 | C113 |
| 9 | 9908 | 5 | C113 |
| 10 | 89U5 | 6 | 7050 |
| 11 | UFAA | 7 | 7050 |
| A2U4020 | SIG | 8 | 0772 |
|  | HHH4 | 9 | 0772 |
| 10 | HHH4 | 11 | C4C3 |
| 11 | A3C1 | 12 | C4C3 |
| 12 | 7211 | 13 | AA08 |
| 13 | AA08 | 14 | AA08 |
| 14 | C4C3 | 15 | 7211 |
| 15 | 9908 | 16 | 7211 |
|  |  | 17 | A3C1 |
|  |  | 18 | A3C1 |
|  |  | A2U5020 | SIG |
|  |  | 7 | $755 U$ |
|  |  | 10 | $755 U$ |
|  |  | 11 | 0772 |
|  |  | 12 | 7050 |
|  |  | 13 | C113 |
|  |  | 14 | H335 |
|  |  | 15 | HHH4 |

## REPLACEABLE ELECTRICAL PARTS

## PARTS ORDERING INFORMATION

Replacement parts are available from or through your local Tektronix, Inc. Field Office or representative.

Changes to Tektronix instruments are sometimes made to accommodate improved components as they become available, and to give you the benefit of the latest circuit improvements developed in our engineering department. It is therefore important, when ordering parts, to include the following information in your order: Part number, instrument type or number, serial number, and modification number if applicable

If a part you have ordered has been replaced with a new or improved part, your local Tektronix, Inc. Field Office or representative will contact you concerning any change in part number.

Change information, if any, is located at the rear of this manual.

## LIST OF ASSEMBLIES

A list of assemblies can be found at the beginning of the Electrical Parts List. The assemblies are listed in numerical order. When the complete component number of a part is known, this list will identify the assembly in which the part is located.

## CROSS INDEX-MFR. CODE NUMBER TO MANUFACTURER

The Mfr. Code Number to Manufacturer index for the Electrical Parts List is located immediately after this page. The Cross Index provides codes, names and addresses of manufacturers of components listed in the Electrical Parts List.

ABBREVIATIONS<br>Abbreviations conform to American National Standard Y1.1.

## COMPONENT NUMBER (column one of the Electrical Parts List)

A numbering method has been used to identify assemblies, subassemblies and parts. Examples of this numbering method and typical expansions are illustrated by the following:


Read: Resistor 1234 of Assembly 23


Read: Resistor 1234 of Subassembly 2 of Assembly 23

Only the circuit number will appear on the diagrams and circuit board illustrations. Each diagram and circuit board illustration is clearly marked with the assembly number. Assembly numbers are also marked on the mechanical exploded views located in the Mechanical Parts List. The component number is obtained by adding the assembly number prefix to the circuit number.

The Electrical Parts List is divided and arranged by assemblies in numerical sequence (e.g., assembly A1 with its subassemblies and parts, precedes assembly A2 with its subassemblies and parts).

Chassis-mounted parts have no assembly number prefix and are located at the end of the Electrical Parts List.

## TEKTRONIX PART NO. (column two of the Electrical Parts List)

Indicates part number to be used when ordering replacement part from Tektronix.

## SERIAL/MODEL NO. (columns three and four of the Electrical Parts List)

Column three (3) indicates the serial number at which the part was first used. Column four (4) indicates the serial number at which the part was removed. No serial number entered indicates part is good for all serial numbers.

## NAME \& DESCRIPTION (column five of the Electrical Parts List)

In the Parts List, an Item Name is separated from the description by a colon (:). Because of space limitations, an Item Name may sometimes appear as incomplete. For further Item Name identification, the U.S. Federal Cataloging Handbook H6-1 can be utilized where possible.

## MFR. CODE (column six of the Electrical Parts List)

Indicates the code number of the actual manufacturer of the part. (Code to name and address cross reference can be found immediately after this page.)

## MFR. PART NUMBER (column seven of the Electrical Parts List)

| Mir. Code | Manufacturer | Address | City, State, Zip |
| :---: | :---: | :---: | :---: |
| 01121 | Allen-Bradley company | 1201 2ND STREET SOUTH | MILWAUKEE, WI 53204 |
| 01295 | TEXAS INSTRUMENTS, INC., SEMICONDUCTOR | P O BOX 5012, 13500 N Central |  |
|  | group | EXPRESSWAY | DALLAS, TX 75222 |
| 04723 | MOTOROLA, INC., SEMICONDUCTOR PROD. DIV. | 5005 E MCDOWELL RD, PO BOX 20923 | PHOENIX, AZ 85036 |
| 07263 | FAIRCHILD SEMICONDUCTOR, A DIV. OF |  |  |
|  | EAIRCHILD CAMERA AND INSTRUMENT CORP. | 464 ELLIS STREET | MOUNTAIN VIEW, CA 94042 |
| 27014 | NATIONAL SEMICONDUCTOR CORP. | 2900 SEMLCONDUCTOR DR. | SANTA CLARA, CA 95051 |
| 51642 | CENTRE ENGINEERING INC. | 2820 E COLLEGE AVENue | STATE COLLEGE, PA 16801 |
| 52.648 | PLESSEY SEMICONDUCTORS | 1641 KAISER | lRVINE, CA 92714 |
| 54473 | MATSUSHITA ELECTRIC, CORP. OF AMERICA | 1 PANASONIC WAY | SECAUCUS, NJ 07094 |
| 55210 | GETTIG ENG. AND MFG. COMPANY | PO BOX 85, OFF ROUTE 45 | SPRING MILLS, PA 16875 |
| 72982 | ERIE TECHNOLOGICAL PRODUCTS, INC. | 644 W. 12 TH ST. | ERIE, PA 16512 |
| 80009 | TEKTRONIX, INC. | P O BOX 500 | BEAVERTON, OR 97077 |
| 91637 | DALE ELECTRONICS, INC. | P. O. BOX 609 | COLUMBUS, NE 68601 |


|  | Tektronix | Serial/Model No. |  | Mfr |
| :---: | :---: | :---: | :---: | :---: |
| Component No. | Part No. | Eff | Dscont | Name $\&$ Description |


| A1 | $670-6154-00$ |
| :--- | :--- |
| A2 | $670-6155-00$ |
| A3 | $670-6149-00$ |
|  | $\ldots$ |

CKT BOARD ASSY:GENERAL PURPOSE CKT BOARD ASSY:GENERAL PURPOSE 2 CKT BOARD ASSY:PROBE CONNECTOR (NO ELECTRICAL PARTS)
$80009670-6154-00$
80009 670-6155-00
80009 670-6149000

AlC6045 283-0186-00
AlC6048 281-0663-00
AlCR6041 152-0141-02

AlCR6044 152-0141-02
AlCR6050 152-0333-00
A1 CR6052
AlR1021 315-0472-00
AlR2010 307-0721-00
AlR2015 307-0721-00
AlR2021 315-0472-00
AlR3010 307-0721-00
AlR3011
Al R3012 AlR3014 AlR4012 AlR4013 A1R5010 AlR5011
A1R6032 315-0271-00
AlR6034 321-0282-00 AlR6036 321-0208-00 AlR6037 321-0268-00 A1R6038 315-0822-00 Al R6043

Al R6045 AlR6049 Al R6050 AlTP6030 AlU1021 AlU103l

AlUl032 155-0230-00 AlU104 $\quad 155-0230-00$

CKT BOARD ASSY:GENERAL PURPOSE 1
CAP., FXD, CER DI:0.1UF, $20 \%$,50V CAP.,FXD, CER DI:0.lUF, $20 \%$,50V CAP.,FXD, CER DI:0.1UF, 20\%, 50V CAP.,FXD, CER DI:0.1UF,20\%,50V CAP, ,FXD, CER DI:0.1UF, $20 \%$, 50V

CAP.,FXD,CER DI:0.1UF, $20 \%$, 50y CAP. ,FXD, CER DI:0.1UF, $20 \%$, 50V CAP.,FXD, CER DI:0.1UF, $20 \%, 50 \mathrm{~V}$ CAP.,FXD,CER DI:0.1UF,20\%,50V CAP., FXD, CER DI:0.1UF, 20\%,50V CAP., FXD, CER DI: $0.47 \mathrm{UF},+80-20 \%, 100 \mathrm{~V}$

CAP. ,FXD, CER DI:0.1UF, $20 \%$, 50V CAP.,FXD, CER DI:0.1UF,20\%,50V CAP.,FXD,CER DI:0.1UF, $20 \%$, 50 V CAP., EXD, CER DI: $10 \mathrm{PF}, 5 \%, 50 \mathrm{~V}$
CAP., FXD, CER DI:3.9PF, $+1-0.5 \mathrm{PF}, 200 \mathrm{~V}$
CAP.,FXD, CER DI:100PF,5\%,50V
CAP.,FXD, CER DI:27PF,5\%,50V
CAP., FXD, CER DI: $10.4 \mathrm{PF}, 1 \%, 500 \mathrm{~V}$ SEMICOND DEVICE:SILICON, $30 \mathrm{~V}, 150 \mathrm{MA}$ SEMICOND DEVICE:SILICON,30V,150MA SEMICOND DEVICE:SILICON,55V, 200MA SEMICOND DEVICE:SILICON, $55 \mathrm{~V}, 200 \mathrm{MA}$

RES.,FXD,CMPSN:4.7K OHM,5\%,0.25W RES., NTWK, FXD, FI:5,68 OHM, 2\%, 1.5W RES., NTWK, FXD, FI:5,68 OHM, $2 \%, 1.5 \mathrm{~W}$ RES.,FXD, CMPSN:4.7K OHM,5\%,0.25W RES., NTWK, FXD, FI: 5,68 OHM , $2 \%, 1.5 \mathrm{~W}$ RES.,NTWK,FXD,FI:5,68 OHM,2\%,1.5W

RES.,NTWK,FXD,FI:5,68 OHM, $2 \%, 1.5 \mathrm{~W}$ RES.,NTWK,FXD,FI:5,68 OHM, $2 \%, 1.5 \mathrm{~W}$ RES., NTWK, FXD, FI: 5,68 OHM, $2 \%, 1.5 \mathrm{~W}$ RES.,NTWK,FXD,FI:5,68 OHM, $2 \%, 1.5 \mathrm{~W}$ RES.,NTWK,FXD,FI:5,68 OHM, 2\%,1.5W RES., NTWK, FXD, FI: 5,68 OHM, $2 \%, 1.5 W$

RES.,FXD,CMPSN: 270 OHM, 5\%, 0.25W RES.,FXD,FILM:8.45K OHM, $1 \%, 0.125 \mathrm{~W}$ RES.,FXD,F[LM:1.43K OHM,1\%,0.125W RES., FXD, FILM: 6.04 K OHM, $1 \%, 0.125 \mathrm{~W}$ RES.,FXD,CMPSN: 8. 2 K OHM, $5 \%, 0.25 \mathrm{~W}$ RES.,FXD,FILM:12.5K OHM,1\%,0.125W

RES.,FXD,FILM: 37.4 K OHM, $1 \%, 0.125 \mathrm{~W}$
RES.,FXD,CMPSN: 330 OHM, $5 \%, 0.25 \mathrm{~W}$ RES., FXD, CMPSN: 100 OHM $, 5 \%, 0.25 \mathrm{~W}$ TERM, TEST POINT:BRS CD PL MICROCIRCUIT,DI:2048 X 8 EPROM MICROCIRCUIT, DI:OCTAL BFR W/3

MICROCIRCUIT,LI:INPUT PROTECTION MICROCIRCUIT,LI: INPUT PROTECTION

| 72982 | 8005D9AS25U104M |
| :---: | :---: |
| 72982 | 8005D9AAB25U104M |
| 72982 | 8005D9AABZ5U104M |
| 72982 | 8005D9AABZ50104M |
| 72982 | 8131-M100F4742 |
| 72982 | 8005D9AABZ5U104M |
| 72982 | 8005D9AAB25U104M |
| 72982 | 8005D9AABZ5U104M |
| 51642 | A100050-NPO-100J |
| 72982 | 3740010010399D |
| 72982 | 8111N068C0c01013 |
| 72982 | 81218070a270J |
| 72982 | 374005C0G01049F |
| 01295 | 1N4152R |
| 01295 | 1N4152R |
| 07263 | FDH-6012 |
| 07263 | FDH--6012 |
| 01121 | CB4725 |
| 91637 | MSP10A03680G |
| 91637 | MSPIOAO.3680G |
| 01121 | CB4725 |
| 91637 | MSP10AO3680G |
| 91637 | MSPIOA03680G |
| 91637 | MSP10A03680G |
| 91637 | MSPIOAO3680G |
| 91637 | MSPLOA03680G |
| 91637 | MSP10A03680G |
| 91637 | MSPLOA03680G |
| 91637 | MSP10A03680G |
| 01121 | C82715 |
| 91637 | MFE1816G84500F |
| 91637 | MFF! 816914300 F |
| 91637 | MEF1816660400F |
| 01121 | CB8225 |
| 91637 | AFP1816G12501E |
| 91637 | MFE1816G37401F |
| 01121 | CB3315 |
| 01121 | CB1015 |
| 80009 | 214-0579-00 |
| 80009 | 160-0853-00 |
| 80009 | 150-0956-04 |
| 80009 | 155-0230-00 |
| 80009 | 155-0230-00 |


| Component No. | Tektronix Part No. | Serial/Model No. Eff Dscont | Name \& Description | Mfr <br> Code | Mfr Part Number |
| :---: | :---: | :---: | :---: | :---: | :---: |
| AlU2031 | 156-0956-04 |  | microcircuit, di:octal bfr w/3 | 80009 | 156-0956-04 |
| AlU2033 | 155-0230-00 |  | microcircuit, Li:InPut protection | 80009 | 155-0230-00 |
| AlU2041 | 156-0956-04 |  | microcircuit, di:octal bfr w/3 | 80009 | 156-0956-04 |
| AlU2043 | 155-0230-00 |  | microcircuit, Li:InPut protection | 80009 | 155-0230-00 |
| AlU3031 | 156-0956-04 |  | microcircuit, di:OCTAL bFr w/3 | 80009 | 156-0956-04 |
| AlU3034 | 155-0230-00 |  | MiCRocircuit, li: input protection | 80009 | 155-0230-00 |
| AlU3040 | 155-0230-00 |  | microcircuit, li: input protection | 80009 | 155-0230-00 |
| AlU3041 | 156-0956-04 |  | microcircuit, di: OCTAL BFR W/3 | 80009 | 156-0956-04 |
| AlU3042 | 155-0230-00 |  | microcircuit, Li: input protection | 80009 | 155-0230-00 |
| AlU3044 | 155-0230-00 |  | microcircuit, Li: input protection | 80009 | 155-0230-00 |
| AlU4032 | 155-0230-00 |  | microcircuit, li: input protection | 80009 | 155-0230-00 |
| AlU4036 | 155-0230-00 |  | microcircuit, li:InPut protection | 80009 | 155-0230-00 |
| AlU4041 | 156-0956-04 |  | microcirluit, di: Octal bFr W/3 | 80009 | 156-0956-04 |
| AlU4043 | 155-0230-00 |  | MiCRoCircuit, li:input Protection | 80009 | 155-0230-00 |
| AlU4045 | 155-0230-00 |  | microcircuit, Li:INPUT PROTECTION | 80009 | 155-0230-00 |
| AlU5031 | 156-0956-04 |  | microcircuit, di:octal bFr w/3 | 80009 | 156-0956-04 |
| AlU5041 | 156-0956-04 |  | microcircuit, di:octal ber w/3 | 80009 | 156-0956-04 |
| AlU5045 | 155-0230-00 |  | microcircuit, Li: input protection | 80009 | 155-0230-00 |
| AlU6040 | 156-1344-00 |  | microcircuit, Li:COMPARATOR ECL | 52648 | SP9685CM |
| AlVR6031 | 152-0195-00 |  | SEMICOND DEVICE:ZENER, $0.4 \mathrm{~W}, 5.1 \mathrm{~V}, 5 \%$ | 04713 | S211755 |


| A2 | $--\ldots-\ldots$ |
| :--- | :--- |
| A2C1020 | $281-0775-00$ |
| A2C1030 | $281-0775-00$ |
| A2C2020 | $281-0775-00$ |
| A2C3020 | $281-0775-00$ |
| A2C4015 | $283-0193-00$ |
|  |  |
| A2C4020 | $281-0775-00$ |
| A2C4030 | $281-0775-00$ |
| A2C5015 | $283-0193-00$ |
| A2C5020 | $281-0775-00$ |
| A2C6015 | $290-0847-00$ |
| A2L4015 | $108-0683-00$ |
|  |  |
| A2Q3015 | $151-0190-00$ |
| A2R2015 | $315-0472-00$ |
| A2R3015 | $315-0332-00$ |
| A2R3020 | $131-0566-00$ |
| A2R5015 | $315-0123-00$ |
| A2U1020 | $156-0844-02$ |
|  |  |
| A2U1030 | $156-0916-02$ |
| A2U2020 | $156-0844-02$ |
| A2U3020 | $156-0645-02$ |
| A2UU020 | $156-0844-02$ |
| A2U4030 | $156-0916-02$ |
| A2U5020 | $156-0844-02$ |

## SECTION 8-PM101

## DIAGRAMS AND CIRCUIT BOARD ILLUSTRATIONS

## Symbols

Graphic symbols and class designation letters are based on ANSI Standard Y32.2-1975.

Logic symbology is based on ANSI Y32.14-1973 in terms of positive logic. Logic symbols depict the logic function performed and may differ from the manufacturer's data.

The overline on a signal name indicates that the signal performs its intended function when it is in the low state.

Abbreviations are based on ANSI Y1.1-1972.
Other ANSI standards that are used in the preparation of diagrams by Tektronix, Inc. are:

Y14.15, 1966 Drafting Practices.
Y14.2, 1973 Line Conventions and Lettering.
Y10.5, 1968 Letter Symbols for Quantities Used in Electrical Science and Electrical Engineering.
American National Standard Institute
1430 Broadway
New York, New York 10018

## Component Values

Electrical components shown on the diagrams are in the following units unless noted otherwise:
Capacitors $=$ Values one or greater are in picofarads ( pF ) . Values less than one are in microfarads ( $\mu \mathrm{F}$ ).
Resistors $=$ Ohms $(\Omega)$.

## The information and special symbols below may appear in this manual.

## Assembly Numbers and Grid Coordinates

Each assembly in the instrument is assigned an assembly number (e.g., A20). The assembly number appears on the circuit board outline on the diagram, in the title for the circuit board component location illustration, and in the lookup table for the schematic diagram and corresponding component locator illustration. The Replaceable Electrical Parts list is arranged by assemblies in numerical sequence; the components are listed by component number *(see following illustration for constructing a component number).

The schematic diagram and circuit board component location illustration have grids. A lookup table with the grid coordinates is provided for ease of locating the component. Only the components illustrated on the facing diagram are listed in the lookup table. When more than one schematic diagram is used to illustrate the circuitry on a circuit board, the circuit board illustration may only appear opposite the first diagram on which it was illustrated; the lookup table will list the diagram number of other diagrams that the circuitry of the circuit board appears on.

@

Table 8-1
IC Pin Information

| Device Type | VCC | GND |
| :--- | :--- | :--- |
| 2716 | 24 | 12 |
| 7414 | 14 | 7 |
| 74LS161 | 16 | 8 |
| 74LS244 | 20 | 10 |
| 81LS97 | 20 | 10 |
| H1023 | 1 | 2 |

Table 8-2

| ASSEMBLY A1 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| CIRCUIT <br> NUMBER | SCHEM LOCATION | $\begin{aligned} & \text { BOARD } \\ & \text { LOCATION } \end{aligned}$ | CIRCUIT <br> NUMBER | $\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$ | $\begin{aligned} & \text { BOARD } \\ & \text { LOCATION } \end{aligned}$ |
| P1001 | A3 | A1 | U1041 | C5 | C1 |
| P1001 | F1 | A1 | U2031 | B4 | C1 |
| P1051 | A4 | D1 | U2033 | B4 | C1 |
| P1053 | A4 | D1 | U2041 | D4 | C1 |
| P3051 | A3 | D2 | U2043 | C4 | C1 |
| P3053 | A2 | D2 | U3031 | B2 | C2 |
| P4053 | A1 | D2 | U3034 | B3 | C2 |
| P4054 | A5 | D2 | U3040 | E3 | C2 |
|  |  |  | U3041 | D1 | C2 |
| R2010 | F5 | A1 | U3041 | F3 | C2 |
| R2015 | F5 | A1 | U3042 | C1 | C2 |
| R3010 | F4 | A2 | U3044 | C2 | C2 |
| R3011 | F4 | A2 | U4032 | B2 | C2 |
| R3012 | F4 | A2 | U4036 | B1 | C2 |
| R3014 | F3 | A2 | U4041 | D2 | C2 |
| R4012 | F2 | A2 | U4041 | F5 | C2 |
| R4013 | F2 | A2 | U4043 | E5 | C2 |
| R5010 | F1 | A2 | U4045 | E4 | C2 |
| R5011 | F1 | A2 | U5031 | B1 | C2 |
|  |  |  | U5041 | F4 | C2 |
| U1032 | B5 | C1 | U5045 | E4 | C3 |
| Partial A1 also shown on diagram 1B. |  |  |  |  |  |



Table 8-3




Figure 8-2. A2 Lower Board Component Locations.

Table 8-4

| ASSEMBLY A2 |  |  |
| :--- | :--- | :--- |
| CIRCUIT | SCHEM |  |
| NUMBER | LOCATION | LOCARD |
| C1020 | B3 | A1 |
| C1030 | B3 | A1 |
| C2020 | B3 | A1 |
| C3020 | B3 | A2 |
| C4015 | A2 | A2 |
| C4020 | B3 | A2 |
| C4030 | B3 | A2 |
| C5015 | A2 | A2 |
| C5020 | B3 | A2 |
| C6015 | A3 | A2 |
| J1012 | A3 | A3 |
| J5050 | B2 | B2 |
| L4015 | A2 | A2 |
| O3015 | B2 | A2 |
| R2015 | B2 | A1 |
| R3015 | B1 | A2 |
| R3020 | B1 | B2 |
| R5015 | B2 | A2 |
| U1020 | D1 | A1 |
| U1030 | F2 | B1 |
| U2020 | D1 | A1 |
| U3020 | D2 | A2 |
| U3020A | B1 | A2 |
| U3020B | B1 | A2 |
| U4020 | C1 | A2 |
| U4030 | E1 | B2 |
| U5020 | C1 | A2 |
|  |  |  |
|  |  |  |




Figure 8-3. A3 Connector Board Component Locations.

# REPLACEABLE <br> MECHANICAL PARTS 

## PARTS ORDERING INFORMATION

Replacement parts are available from or through your local Tektronix, Inc. Field Office or representative.

Changes to Tektronix instruments are sometimes made to accommodate improved components as they become available, and to give you the benefit of the latest circuit improvements developed in our engineering department. It is therefore important, when ordering parts, to include the following information in your order: Part number, instrument type or number, serial number, and modification number if applicable.

If a part you have ordered has been replaced with a new or improved part, your local Tektronix, Inc. Field Office or representative will contact you concerning any change in part number.

Change information, if any, is located at the rear of this manual.

## SPECIAL NOTES AND SYMBOLS

X000 Part first added at this serial number
00X Part removed after this serial number

## FIGURE AND INDEX NUMBERS

liems in this section are referenced by figure and index numbers to the illustrations.

## INDENTATION SYSTEM

This mechanical parts list is indented to indicate item relationships. Following is an example of the indentation system used in the description column.

```
12345
Name \& Description
```

Assembly and/or Component
Attaching parts for Assembly and/or Component
. . . . . .

Detail Part of Assembly and/or Component
Attaching parts for Detail Part
. . . * . .

Parts of Detail Part
Attaching parts for Parts of Detail Part
... • . .

Attaching Parts always appear in the same indentation as the item it mounts, while the detail parts are indented to the right. Indented items are part of, and included with, the next higher indentation. The separation symbol -- * - - indicates the end of attaching parts.

Attaching parts must be purchased separately, unless otherwise specified.

## ITEM NAME

In the Parts List, an Item Name is separated from the description by a colon (:). Because of space limitations, an Item Name may sometimes appear as incomplete. For further Item Name identification, the U.S. Federal Cataloging Handbook H6-1 can be utilized where possible.

|  | ABBREVATIOS |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 NCH | ELCTRN | ELECTRON | IN | INCH | SE | SINGLE END |
| \# | NUMBER SIZE | ELEC | ELECTRICAL | INCAND | INCANDESCENT | SECT | SECTION |
| ACTR | ACTUATOR | ELCTLT | ELECTROLYTIC | INSUL | INSULATOR | SEMICOND | SEMICONDUCTOR |
| ADPTR | ADAPTER | ELEM | ELEMENT | INTL | INTERNAL | SHLD | SHIELD |
| ALIGN | ALIGNMENT | EPL | ELECTRICAL PARTS LIST | LPHLDR | LAMPHOLDER | SHLDR | SHOULDERED |
| AL | ALUMINUM | EQPT | EQUIPMENT | MACH | MACHINE | SKT | SOCKET |
| ASSEM | ASSEMBLED | EXT | EXTERNAL | MECH | MECHANICAL | SL | SLIDE |
| ASSY | ASSEMBLY | FIL | FILLISTER HEAD | MTG | MOUNTING | SLFLKG | SELF-LOCKING |
| ATTEN | ATTENUATOR | FLEX | FLEXIBLE | NIP | NIPPLE | SLVG | SLEEVING |
| AWG | AMERICAN WIRE GAGE | FLH | FLAT HEAD | NON WIRE | NOT WIRE WOUND | SPR | SPRING |
| BD | BOARD | FLTR | FILTER | OBD | ORDER BY DESCRIPTION | SQ | SQUARE |
| BRKT | BRACKET | FR | FRAME or FRONT | OD | OUTSIDE DIAMETER | SST | STAINLESS STEEL |
| BRS | BRASS | FSTNR | FASTENER | OVH | OVAL HEAD | STL | STEEL |
| BRZ | BRONZE | FT | FOOT | PH BRZ | PHOSPHOR BRONZE | SW | SWITCH |
| BSHG | BUSHING | FXD | FIXED | PL | PLAIN or PLATE | T | TUBE |
| CAB | CABINET | GSKT | GASKET | PLSTC | PLASTIC | TERM | TERMINAL |
| CAP | CAPACITOR | HDL | HANDLE | PN | PART NUMBER | THD | THREAD |
| CER | CERAMIC | HEX | HEXAGON | PNH | PAN HEAD | THK | THICK |
| CHAS | CHASSIS | HEX HD | HEXAGONAL HEAD | PWR | POWER | TNSN | TENSION |
| CKT | CIRCUIT | HEX SOC | HEXAGONAL SOCKET | RCPT | RECEPTACLE | TPG | TAPPING |
| COMP | COMPOSITION | HLCPS | HELICAL COMPRESSION | RES | RESISTOR | TRH | TRUSS HEAD |
| CONN | CONNECTOR | HLEXT | HELICAL EXTENSION | RGD | RIGID | $\checkmark$ | voltage |
| cov | COVER | HV | HIGH VOLTAGE | RLF | RELIEF | VAR | VARIABLE |
| CPLG | COUPLING | IC | INTEGRATED CIRCUIT | RTNR | RETAINER | W/ | WITH |
| CRT | CATHODE RAY TUBE | ID | INSIDE DIAMETER | SCH | SOCKET HEAD | WSHR | WASHER |
| DEG | DEGREE | IDENT | IDENTIFICATION | SCOPE | OSCILLOSCOPE | XFMR | TRANSFORMER |
| DWR | DRAWER | IMPLR | IMPELLER | SCR | SCREW | XSTR | TRANSISTOR |

## Replaceable Mechanical Parts-PM 101 General Purpose Personality Module

CROSS INDEX—MFR. CODE NUMBER TO MANUFACTURER

| Mfr. Code | Manufacturer | Address | City, State, Zip |
| :---: | :---: | :---: | :---: |
| 000AH | Standard pressed steel co., unbrako div. | 8535 DICE ROAD | SANTA FE SPRINGS, CA 90670 |
| 000BK | STAUFFER SUPPLY | 105 SE TAYLOR | PORTLAND, OR 97214 |
| 00779 | AMP, INC. | P O BOX 3608 | HARRISBURG, PA 17105 |
| 22526 | BERG ELECTRONICS, INC. | YOUK EXPRESSWAY | NEW CUMBERLAND, PA 17070 |
| 73803 | TEXAS INSTRUMENTS, INC., METALLURGICAL |  |  |
|  | MATERIALS DIV. | 34 FOREST STREET | ATTLEBORO, MA 02703 |
| 80009 | TEKTRONIX, INC. | P O BOX 500 | BEAVERTON, OR 97077 |
| 83385 | CENTRAL SCREW CO. | 2530 CRESCENT DR. | BROADVIEW, IL 60153 |
| 93907 | CAMCAR SCREW AND MFG. CO. | 600 18TH AVE. | ROCKFORD, IL 61101 |

Fig. \&

## Index

| Index | Tektronix | Serial/Model No. |  |  | Mfr |  | Name \& Description | Code |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | Mfr Part Number


| -1 | -3727-00 |
| :---: | :---: |
| -2 | 380-0608-00 |
| -3 | 211-0093-00 |
| -4 | 200-2415-00 |
| -5 | 380-0594-00 |
| -6 | 211-0093-00 |
| -7 | 210-0586-00 |
| -8 | 343-0836-00 |
| -9 | 361-0998-00 |
|  | 131-2613-00 |
| -10 | 334-3722-00 |
| -11 | 380-0591-00 |
| -12 | 211-0225-00 |
| -13 | 210-0551-00 |
| -14 | 211-0093-00 |
| -15 | 380-0590-01 |
| -16 | 343-0836-00 |
| -17 | 200-2412-00 |
| -18 | 175-3537-01 |
| -19 | 213-0055-00 |
| -20 | ----- |
| -21 | 131-0608-00 |
| -22 | 213-0055-00 |
| 23 |  |
| -24 | 131-0590-00 |
| -25 | 131-1857-00 |
| -26 | ----- -- |
| -27 | 131-0608-00 |
| -28 | 136-0252-07 |
| -29 | 131-0589-00 |
| -30 | 136-0634-00 |
| -31 | 136-0578-00 |
| -32 |  |
| -33 | 136-0263-04 |
| -34 | 131-0993-00 |
| -35 | 131-0608-00 |
| -36 | 337-2722-00 |
| -37 | 175-2736-00 |
|  | 352-0169-02 |
| -38 | 175-2737-00 |
|  | 352-0166-07 |
| -39 | 175-2738-00 |
|  | 352-0166-04 |
| -40 | 175-2739-00 |
|  | 352-0166-08 |
| -41 | 175-2740-00 |
|  | 352-0166-05 |
| -42 | 175-2741-00 |
|  | 352-0166-06 |
| -43 | 175-2742-00 |
|  | 352-0168-03 |
|  | 195-0957-01 |
| -44 | 200-2412-00 |
| -45 | 334-3797-00 |
| -46 | 334-3798-00 |
| -47 | 334-3799-00 |
| -48 | 334-3800-00 |
| -49 | 334-3801-00 |
| -50 | 334-3802-00 |

```
PLATE,IDENT:MKD GENERAL PURPOSE PROBE 80009 334-3727-00
1 HSG HALF,CKT BD:TOP
    (ATTACHING PARTS)
SCR,CAP,SOC HD:4-40 X 0.75 INCH L,STL
                _ _ - * _ _ -
DOOR,ACCESS: PLASTIC
HSG HALF,CKT BD:BOTTOM
    (ATTACHING PARTS)
SCR,CAP,SOC HD:4-40 X 0.75 INCH L,STL
NUT,PL,ASSEM WA:4-40 X 0.25,STL CD PL
                                    * *
CLAMP,CABLE:3.72 L,ALUMINUM
SPACER,CKT BD:0.245 ID X 0.38 OD X 0.23
CONN,RCPT ELEC:CABLE
. SLEEVE,MKR,CA:MKD-15
. HSG HALF,CKT BD:TOP
(ATTACHING PARTS)
. SCR,CAP,SOC HD:4-40 X 0.312 INCH,STL
. NUT,PLAIN,HEX.:4-40 X 0.25 INCH,STL
. SCR,CAP,SOC HD:4-40 X 0.75 INCH L,STL
                                    -- - * - - -
. HSG HALF,CKT BD:TOP
. CLAMP,CABLE:3.72 L,ALUMINUM
. CABLE NIP,ELEC:3.45 L X 0.05 ID
. CA ASSY,SP,ELEC:64,28 AWG,48.0 L
. SCR,TPG,THD FOR:2-32 X 0.188 INCH,PNH STL
. CKT BOARD ASSY:PROBE CONNECTOR(SEE A3 EPL)
. . TERMINAL,PIN:0.365 L X 0.025 PH BRZ GOLD
SCR,TPG,THD FOR:2-32 X 0.188 INCH,PNH STL
CKT BOARD ASSY:GENERAL PURPOSE l(SEE Al EPL)
. CONTACT,ELEC:0.71 INCH LONG
. TERM. SET,PIN:36/0.025 SQ PIN,ON 0.1 CTRS
. TERM,TEST POINT:SEE AlTP6030 EPL)
. TERMINAL,PIN:0.365 L X 0.025 PH BRZ GOLD
. SOCKET,PIN CONN:W/O DIMPLE
. TERM,PIN:0.46 L X 0.025 SQ.PH BRZ GL
. SOCKET,PLUG-IN:20 LEAD DIP,CKT BD MTG
. SKT,PL-IN ELEK:MICROCKT,24 PIN,LOW PROFILE
CKT BOARD ASSY:GENERAL PURPOSE 2(SEE A2 EPL)
. SOCKET,PIN TERM:FOR 0.025 INCH SQUARE PIN
. BUS,CONDUCTOR:2 WIRE BLACK
. TERMINAL,PIN:0.365 L X 0.025 PH BRZ GOLD
. SHIELD,ELEC:ACCESS DOOR,BRASS
LEAD ASSY,ELEC:2,23 AWG,14.0 L
. CONN BODY,PL,EL:2 WIRE RED
LEAD ASSY,ELEC:8,23 AWG,14.0 L
. CONN BODY,PL,EL:8 WIRE VIOLET
LEAD ASSY,ELEC:8,23 AWG,14.0 L
. CONN BODY,PL,EL:8 WIRE YELLOW
LEAD ASSY,ELEC:8,23 AWG,14.0 L
. CONN BODY,PL,EL:8 WIRE GRAY
LEAD ASSY,ELEC:8,23 AWG,14.0 L
. CONN BODY,PL,EL:8 WIRE GREEN
LEAD ASSY,ELEC:8,23 AWG,14.0 L
. CONN BODY,PL,EL:8 WIRE BLUE
LEAD ASSY, ELEC:10,23 AWG,14.0 L
. CONN BODY,PL,EL:10 WIRE ORANGE
LEAD ELECTRICAL:18 AWG,9.0 L,0-N
CABLE NIP, ELEC:3.45 L X 0.05 ID
SLEEVE,MKR,CA:MKD ADDRESS 7-0
SLEEVE,MKR,CA:MKD ADDRESS 23-16
SLEEVE,MKR,CA:MKD ADDRESS 15-8
SLEEVE,MKR,CA:MKD DATA 7-0
SLEEVE,MKR,CA:MKD DATA 15-8
SLEEVE,MKR,CA:MKD CONTROL 9-0
\begin{tabular}{|c|c|}
\hline 80009 & 334-3727-00 \\
\hline 80009 & 380-0608-00 \\
\hline 000BK & OBD \\
\hline 80009 & 200-2415-00 \\
\hline 80009 & 380-0594-00 \\
\hline 000BK & OBD \\
\hline 83385 & OBD \\
\hline 80009 & 343-0836-00 \\
\hline 80009 & 361-0998-00 \\
\hline 80009 & 131-2613-00 \\
\hline 80009 & 334-3722-00 \\
\hline 80009 & 380-0591-00 \\
\hline 000AH & OBD \\
\hline 83385 & OBD \\
\hline 000BK & OBD \\
\hline 80009 & 380-0590-01 \\
\hline 80009 & 343-0836-00 \\
\hline 80009 & 200-2412-00 \\
\hline 80009 & 175-3537-01 \\
\hline 93907 & OBD \\
\hline 22526 & 47357 \\
\hline 93907 & OBD \\
\hline 22526 & 47351 \\
\hline 22526 & 65500136 \\
\hline 22526 & 47357 \\
\hline 22526 & 75060-012 \\
\hline 22526 & 47350 \\
\hline 73803 & CS9002-20 \\
\hline 73803 & C S9002-24 \\
\hline 22526 & 75377-001 \\
\hline 00779 & 530153-2 \\
\hline 22526 & 47357 \\
\hline 80009 & 337-2722-00 \\
\hline 80009 & 175-2736-00 \\
\hline 80009 & 352-0169-00 \\
\hline 80009 & 175-2737-00 \\
\hline 80009 & 352-0166-07 \\
\hline 80009 & 175-2738-00 \\
\hline 80009 & 352-0166-04 \\
\hline 80009 & 175-2739-00 \\
\hline 80009 & 352-0166-08 \\
\hline 80009 & 175-2740-00 \\
\hline 80009 & 352-0166-05 \\
\hline 80009 & 175-741-00 \\
\hline 80009 & 352-0166-06 \\
\hline 80009 & 175-2742-00 \\
\hline 80009 & 352-0168-03 \\
\hline 80009 & 195-0957-01 \\
\hline 80009 & 200-2412-00 \\
\hline 80009 & 334-3797-00 \\
\hline 80009 & 334-3798-00 \\
\hline 80009 & 334-3799-00 \\
\hline 80009 & 334-3800-00 \\
\hline 80009 & 334-3801-00 \\
\hline 80009 & 334-3802-00 \\
\hline
\end{tabular}
```

Fig. \&
Index Tektronix Serial/Model No Part No. Eff Dscont

Qty 12345
Mfr Mtr Code Mfr Part Number

## SIGNAL GLOSSARY

This section contains an alphabetical listing of all the signals which go to or from the PM 101 General Purpose Personality Module as well as a brief explanation of what each signal does.

| Signal | Description | Signal | Description |
| :---: | :---: | :---: | :---: |
| AID-AI23 | Address lines from the Personality Module to the Logic Analyzer, except $\emptyset$ thru 7 which are bidirectional. | DID—DI15 | Data lines going from the Personality Module to the Logic Analyzer. |
| CIØ-Cl3 | Control lines from the Personality Module to the Logic Analyzer. These lines are stored and are available for event recognition in the Word Recognizer. | /HALT S.U.T. | A low-going halt command from the Logic Analyzer to the Personality Module. After buffering, this signal becomes /STOP S.U.T. which goes to the System-Under-Test. |
| $\mathrm{Cl} 4-\mathrm{Cl} 5$ | Control lines from the Personality Module to the Logic Analyzer. These lines are available for event definition in the Word Recognizer. | PAIO—PAI23 | Address lines from the System-UnderTest to the Personality Module. (See AID-AI23.) |
| CLK | Non-inverted ECL clock signal from the Personality Module to the Logic Analyzer. This signal is generated by CLK IN from the S.U.T. | РCIØ-CPI9 | Control lines from the System-UnderTest to the Personality Module. (See CID-CI9.) |
| /CLK | Inverted ECL clock signal from the Personality Module to the Logic Analyzer. This signal is derived from CLK IN from the S.U.T. | PDIO—DPI15 | Data lines from the System-Under-Test to the Personality Module. (See DIDDI15.) |
|  | NOTE | Qø-Q9 | The same as PCIØ-PCI9. |
| A "/" in front of a signal name or part of a signal name indicates that the signal is active when low. E.g., R/W implies <br> 0 - Write <br> 1 - Read |  | /STOP S.U.T. | A low-going halt command from the Personality Module to the System-Under-Test. This signal is a buffered version of /HALT S.U.T. from the Logic Analyzer. |

## MANUAL CHANGE INFORMATION

At Tektronix, we continually strive to keep up with latest electronic developments by adding circuit and component improvements to our instruments as soon as they are developed and tested.

Sometimes, due to printing and shipping requirements, we can't get these changes immediately into printed manuals. Hence, your manual may contain new change information on following pages.

A single change may affect several sections. Since the change information sheets are carried in the manual until all changes are permanently entered, some duplication may occur. If no such change pages appear following this page, your manual is correct as printed.

# Tektronix <br> COMNTTED TO EXCELLENCE 

MANUAL CHANGE INFORMATION
Date: $10-31-80$
Change Reference: $\qquad$
Product: PM101 GENERAL PURPOSE PERSONALITY MODULE Manual Part No.: 070-2917-00

## DESCRIPTION

REPLACEABLE ELECTRICAL PARTS LIST CORRECTION
CHANGE TO:

## A2U3020 156-0462-00 MICROCIRCUIT,DI:HEX SCHMITT TRIGGER

The above part is located on the A2 GENERAL PURPOSE 2 circuit board assembly and shown on the A2 SELF TEST STIMULUS CIRCUITRY diagrm 2.

# Tektronix 

Date: 9-21-81
Change Reference: C2/981
Product: PM 101 GENERAL PURPOSE PERSONALITY MODULE Manual Part No. 070-2917-00

## DESCRIPTION

TEXT CHANGES

## SECTION 3 SPECIFICATIONS

Table 3-1 page 3-2
Delay through ECL clock specification under Supplemental Information CHANGE TO:
$12.0 \mathrm{~ns} \min$
$15.5 \mathrm{~ns} \max$

Table 3-3 page 3-3
Temperature specification under Supplemental Information CHANGE TO:

```
    Operating: - 15 % to 55 % C
```


## DIAGRAM CHANGE

Diagram 1B ROM, CLOCK, AND CONTROL CIRCUITRY
R6049
CHANGE TO: 330 ohm
R6034
CHANGE TÖ: 8.45 kohm


[^0]:    ci. Press the START/STOP key to stop the program and verify that the last LOCation stored is 254.

