93427 / ISOPLANAR SCHOTTKY TTL MEMORY 256×4-BIT PROGRAMMABLE READ ONLY MEMORY

DESCRIPTION - The 93427 is a fully decoded high-speed 1024-bit field Programmable ROM organized 256 words by four bits per word. The 93427 has 3-state outputs. The outputs are disabled when either $\overline{\text{CS}}_1$ or $\overline{\text{CS}}_2$ are in the HIGH state. The 93427 is supplied with all bits stored as logic "1"s and can be programmed to logic "0"s by following the field programming procedure.

- FULL MIL AND COMMERCIAL RANGES
- FIELD PROGRAMMABLE
- ORGANIZED 256 X 4 BITS PER WORD
- 3-STATE OUTPUTS
- FULLY DECODED ON-CHIP ADDRESS DECODER AND BUFFER
- CHIP SELECT INPUTS PROVIDE EASY MEMORY EXPANSION
- WIRED-OR CAPABILITY
- STANDARD 16-PIN DUAL IN-LINE PACKAGE
- NICHROME FUSE LINKS FOR HIGH RELIABILITY

PIN NAMES

A ₀ - A ₇	Address Inputs			
$\overline{\text{CS}}_1, \overline{\text{CS}}_2$	Chip Select Inputs			
$O_1 - O_4$	Data Outputs			

7-123

FAIRCHILD ISOPLANAR SCHOTTKY TTL MEMORY • 93427

FUNCTIONAL DESCRIPTION – The 93427 is a bipolar field Programmable Read Only Memory (PROM) organized 256 words by four bits per word. The 93427 has 3-state outputs which provide active pull-ups when enabled and high output impedance when disabled. Chip Selects are active LOW; conversely, a HIGH (logic "1") on the $\overline{\text{CS}}_1$ or $\overline{\text{CS}}_2$ will disable all outputs.

The read function is identical to that of a conventional bipolar ROM. That is, a binary address is applied to the A_0 through A_7 inputs, the chip is selected, and data is valid at the outputs after t_{AA} nanoseconds.

Programming (selectively opening nichrome fuse links) is accomplished by following the sequence outlined below.

PROGRAMMING – The 93427 is manufactured with all bits in the logic "1" state. Any desired bit (output) can be programmed to a logic "0" state by following the procedure shown in Chapter 6, page 6-14.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature
Temperature (Ambient) Under Bias
VCC
Input Voltages
Current into Output Terminal
Output Voltages

-65°C to +150°C -55°C to +125°C -0.5 V to +7.0 V -0.5 V to +5.5 V 100 mA -0.5 V to +5.5 V

GUARANTEED OPERATING RANGES

PART NUMBER		SUPPLY VOLTAGE (VCC	AMBIENT TEMPERATURE		
PART NUMBER	MIN	TYP	MAX	AMBIENT TEMPERATURE	
93427XC	4.75 V	5.0 V	5.25 V	0°C to +75°C	
93427XM	4.50 V	5.0 V	5.50 V	−55°C to +125°C	

X = package type; F for Flatpak, D for Ceramic DIP, P for Plastic DIP. See Package Information on this data sheet.

DC CHARACTERISTICS: Over quaranteed operating ranges unless otherwise noted.

SYMBOL CHARACTERISTIC		1	LIMITS					
		MIN	MIN TYP		UNITS	CONDITIONS		
			(Note 1)					
VOL	Output LOW Voltage		0.30	0.45	v	V_{CC} = MIN, I_{OL} = 16 mA, A_0 = +10.8 MA1 through A_7 = HIGH		
VOH	Output HIGH Voltage	2.4			V	V _{CC} = MIN, i _{OH} = -2.0 mA		
	Output Leakage Current for			50	μА	V _{OH} = 2.4 V	0°C to +75°C	
loff	HIGH Impedance State			-50	μΑ	V _{OL} = 0.4 V	0 C 10 +/5 C	
	Output Leakage Current for			100	μА	V _{OH} = 2.4 V	-55°C to +125°C	
loff	HIGH Impedance State			-50	μΑ	V _{OL} = 0.4 V	-95 C 10 +125 C	
VIH	Input HIGH Voltage	2.0			V	Guaranteed Input HIGH Voltage for All Inputs		
VIL	Input LOW Voltage			8.0	V	Guaranteed Ing	out LOW Voltage for All Inputs	
	Input LOW Current							
1 _F	IFA (Address Inputs)		-160	-250	μА	V _{CC} = MAX, V _F = 0.45 V		
	IFCS (Chip Select Inputs)		-160	-250	μА			
	Input HIGH Current							
IR	IRA (Address Inputs)			40	μΑ	V _{CC} = MAX, V _R = 2.4 V		
	IRCS (Chip Select Input)			40	μА			
(cc	Power Supply Current		85	(110) mA	V _{CC} = MAX, Outputs open Inputs Grounded and Chip Selected		
6	Output Capacitance		7		рF	V _{CC} = 5.0 V, V _O = 4.0 V, f = 1.0 MHz		
CIN	Input Capacitance		4		pF	V _{CC} = 5.0 V, V	V _O = 4.0 V, f = 1.0 MHz	
v _C	Input Clamp Diode Voltage			-1.2	V	VCC = MIN, IA	₁ = −18 mA	

FAIRCHILD ISOPLANAR SCHOTTKY TTL MEMORY •93427

SYMBOL CHARACTERISTIC	CHARACTERISTIC		LIMITS			
	CHARACTERISTIC	MIN	TYP (Note 1)	MAX	UNITS	CONDITIONS
tAA-	Address to Output Access Time		25	45	ns	
t _{AA+}	- Address to Output Access Time		25	45	ns	
tACS-	Chip Select Access Time		12	20	ns	See Figure 1
tACS+			12	20	ns	

AC CHARACTERISTICS: $T_A = -55^{\circ}C$ to +125 °C, $V_{CC} = 5.0 \text{ V} \pm 10\%$.

SYMBOL CHARACTERISTIC		LIMITS				
	MIN	TYP (Note 1)	MAX	UNITS	CONDITIONS	
t _{AA} _			25	60	ns	*.*
[†] AA+	Address to Output Access Time	1	25	60 /	ns	0 %
tACS-			12	30	ns	See Figure 1
tACS+	Chip Select Access Time		12	30	ns	

Note 1: Typical values are at $V_{CC} = 5.0 \text{ V}$, $+25^{\circ}\text{C}$ and max loading.

AC WAVEFORMS

AC TEST OUTPUT LOAD

Fig. 1

7-125