TEKTRONIX

T932A/T935A 35 MHz

PORTABLE
 OSGILLOSGOPE

INSTRUCTION MANUAL

Tektronix, Inc.
P.O. Box 500

WARRANTY

This Tektronix instrument is warranted against defective materials and workmanship for one year. Any questions with respect to the warranty should be taken up with your Tektronix Field Engineer or representative.

All requests for repairs and replacement parts should be directed to the Tektronix Field Office or representative in your area. This will assure you the fastest possible service. Please include the instrument type number or part number and serial number with all requests for parts or service.

Copyright © 1977 by Tektronix, Inc. All rights reserved. Contents of this publication may not be reproduced in any form without the permission of Tektronix, Inc.

Products of Tektronix, Inc. and its subsidiaries are covered by U.S. and foreign patents and/or pending patents.

TEKTRONIX, TEK, SCOPE-MOBILE, TELEQUIPMENT, and are registered trademarks of Tektronix, Inc. Printed in U.S.A. Specification and price change privileges are reserved.

TABLE OF CONTENTS

LIST OF ILLUSTRATIONS iii
LIST OF TABLES
LIST OF TABLESii
SECTION 1 SPECIFICATIONS
Standard Accessories 1-3
Recommended Accessories 1-4
SECTION 2 OPERATING INSTRUCTIONS
Operating Voltage 2-1
Safety Information 2-1
Functions of Controls, Connectors and Indicators 2-1
A. Display 2-1
B. Vertical Amplifier 2-5
C. Time Base 2-6
First Time Operation 2-8
Probe Compensation 2-10
Applications 2-12
Peak-to-Peak Amplitude Measurements 2-12
Instantaneous Amplitude Measurements 2-12
Dual Trace Phase Difference Measurement 2-12
Time Duration and Frequency Measurements 2-13
Risetime Measurements 2-14
A Intensified Differential Time Measurements 2-14
Delayed Sweep Magnification 2-15
SECTION 3 PERFORMANCE CHECK
Limits and Tolerances 3-1
Test Equipment Required 3-1
Preliminary Procedure 3-2
Performance Check Procedure 3-3
WARNING
the following servicing instruc-TIONS ARE FOR USE BY QUALIFIED PER-SONNEL ONLY. TO AVOID PERSONAL IN-JURY, DO NOT PERFORM ANY SERVICINGOTHER THAN THAT CONTAINED INOPERATING INSTRUCTIONS UNLESS YOUARE QUALIFIED TO DO SO.

SECTION 4 ADJUSTMENTS

Limits and Tolerances 4-1
Test Equipment Required 4-1
Preliminary Procedure 4-3
Page SECTION 4 ADJUSTMENTS (cont) Page
A. Display and Power Supply 4-4
B. Vertical Amplifier 4-6
C. Time Base 4-10
D. Triggers 4-12
SECTION 5 SERVICE INFORMATION
Cabinet Removal 5-1
Preventive Maintenance 5-1
Cleaning 5-1
Switch Contacts 5-1
Visual Inspection 5-2
Lubrication 5-2
Semiconductor Checks 5-2
Re-adjustment 5-2
Troubleshooting 5-2
Troubleshooting Aids 5-2
Troubleshooting Equipment 5-3
Troubleshooting Techniques 5-3
Troubleshooting Hints 5-9
Corrective Maintenance 5-11
Soldering Techniques 5-11
Replacement Parts 5-11
Component Replacement 5-11
Semiconductors 5-11
Fuse Replacement 5-12
Thick Film Resistor Replacement 5-12
Interconnecting Cable and Pin
Connector Replacement 5-12
Shaft-Knob Removal 5-12
Vertical Amplifier Replacement 5-13
Attenuator Replacement 5-14
Cam Switch Repair and Replacement 5-14
Delay Line Replacement 5-15
Time Base (Horizontal Board) Replacement 5-15
Trigger Board Replacement 5-15
Power Supply Board Replacement 5-16
Interface Board Replacement 5-16
Cathode Ray Tube (CRT)Replacement5-17
Repackaging for Shipment 5-18
SECTION 6 REPLACEABLE ELECTRICAL PARTS
SECTION 7 CIRCUIT DESCRIPTIONS ANDDIAGRAMS
SECTION 8 REPLACEABLE MECHANICAL PARTS
ACCESSORIESCHANGE INFORMATION

LIST OF ILLUSTRATIONS

Fig.
No.
1-1 T932A/T935A 35 MHz Oscilloscopes iv
1-2 T932A/T935A dimensional drawing 1-3
2-1 Display front panel and controls connectors 2-2
2-2 Rear panel controls and connectors 2-3
2-3 Left side of cabinet 2-3
2-4 Bottom of cabinet 2-4
2-5 Vertical Amplifier front panel controls and connectors 2-5
2-6 Time Base front panel controls and connectors 2-7
2-7 Probe compensation 2-11
2-8 Effects of probe compensation 2-11
2-9 Peak-to-peak voltage measurement 2-12
2-10 Instantaneous voltage measurement 2-12
2-11 Phase difference 2-13
2-12 Time duration 2-13
2-13 Risetime 2-14
2-14 Time duration between points on a waveform 2-14
2-15 Delayed sweep magnification 2-15
3-1 Deflection accuracy check test setup 3-3
3-2 Bandwidth check test setup 3-4
3-3 X Gain, Triggering, and Z-axis input check test setup 3-5
3-4 Timing accuracy and delay time check test setup 3-7
Fig.
No. Page
3-5 TV trigger check test setup 3-9
4-1 Power supply adjustment locations (on bottom of chassis) 4-4
4-2 Interface board adjustment locations (on left side of crt) 4-5
4-3 Vertical Amplifier adjustment locations (bottom view of instrument) 4-7
4-4 Display of correct attenuator compensation (idealized) 4-8
4-5 Time Base adjustment locations (on right side of instrument) 4-11
4-6 Trigger board adjustment locations (on left side of crt) 4-13
5-1 Troubleshooting chart 5-4
5-2 Color code for resistors and capacitors 5-6
5-3 Lead configurations for semiconductor devices 5-7
5-4 Multi-connector holder orientation 5-8
5-5 Pin connector replacement 5-12
5-6 Shaft-knob removal 5-13
5-7 Circuit board locations (on left side of crt) 5-13
5-8 Circuit board locations (on right side of crt) 5-16

LIST OF TABLES

TABLE		
No.		Page
1-1	Electrical	1-1
1-2	Environmental	1-3
1-3	Physical	1-3
3-1	Test Equipment	3-1
3-2	Deflection Accuracy	3-3
3-3	A and B Sweep Timing Accuracy	3-8
3-4	Magnified Sweep Timing Accuracy	3-8
4-1	Test Equipment	4-2

Fig. 1-1. T932A/T935A 35 MHz Oscilloscopes.

SPECIFICATIONS

This manual includes instructions for both the T932A and the T935A portable oscilloscopes. The T932A is a 35 MHz , dual trace oscilloscope and the T935A is a 35 MHz , dual trace oscilloscope capable of delayed sweep operation. The Vertical Amplifier provides calibrated deflection factors from 2 mV to $10 \mathrm{~V} / \mathrm{div}$. The Time Base provides stable triggering over the full bandwidth of the Vertical Amplifier and provides calibrated sweep rates from $0.5 \mathrm{~s} / \mathrm{div}$ to $0.1 \mu \mathrm{~s} / \mathrm{div}$. A variable X1 to X 10 magnifier extends the maximum sweep rate to $10 \mathrm{~ns} / \mathrm{div}$.

The following instrument specifications apply over an ambient temperature range of 0 to $+45^{\circ} \mathrm{C}$ unless otherwise indicated. The adjustment procedures in Section 4, when performed completely, allow the T932A and the T935A to meet the electrical specifications listed in Table 1-1.

TABLE 1-1

Electrical

Characteristic	Performance Requirement
A. DISPLAY	
Probe Adjust Output Voltage $\left(0^{\circ} \mathrm{C}\right.$ to $+40^{\circ} \mathrm{C}$)	Approximately 0.5 V .
Repetition Rate	Approximately 1 kHz .
Z-Axis Input Sensitivity	5 volt signal causes a noticeable decrease in intensity. Positive amplitude decreases intensity.
Usable Frequency Range	Dc to 5 MHz .
Maximum Input Voltage	30 V (dc + peak ac), 30 V p-p at 1 kHz or less.
Input Impedance	Approximately $10 \mathrm{k} \Omega$.
Power Source	
Line Voltage Ranges (ac,rms)	
120 V Range	$\begin{aligned} & \mathrm{HI}-108 \text { to } 132 \mathrm{~V} . \\ & \text { LO-90 to } 110 \mathrm{~V} . \end{aligned}$
240 V Range	$\begin{aligned} & \mathrm{HI}-216 \text { to } 250 \mathrm{~V} \text {. } \\ & \mathrm{LO}-198 \text { to } 242 \mathrm{~V} \text {. } \end{aligned}$
Line Frequency	50 to 60 Hz .
Maximum Power Consumption	$36 \mathrm{~W}, 0.35 \mathrm{~A}$ at $60 \mathrm{~Hz}, 120 \mathrm{~V}$ line.
CRT Display	
Display Area	$8 \times 10 \mathrm{~cm}$.
Trace Rotation	Adequate to align trace with
Range	horizontal center line.
Standard Phosophor	P31.
Nominal Accelerating Potential	12,400 V.

Characteristics	Performance Requirements
B. VERTICAL AMPLIFIER	
Deflection Factor Range	$2 \mathrm{mV} / \mathrm{div}$ to $10 \mathrm{~V} / \mathrm{div}$; 12 steps in a 1-2-5 sequence.
Accuracy $\begin{aligned} & +20^{\circ} \mathrm{C} \text { to } \\ & +30^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \text { to }+45^{\circ} \mathrm{C} \end{aligned}$	Within 3\%. Within 4\%.
Uncalibrated (VAR) Range	Continuously variable between settings. Extends deflection factor to at least $25 \mathrm{~V} / \mathrm{div}$ (at least 2.5:1).
Frequency Response Bandwidth	DC to at least 35 MHz .
Chopped Mode	Approximately 250 kHz .
Repetition Rate	
Input Resistance	Approximately $1 \mathrm{M} \Omega$.
Input Capacitance	Approximately 30 pF .
Maximum Input Voltage	
DC Coupled	$\begin{aligned} & 250 \mathrm{~V}(\mathrm{dc}+\text { peak ac }) . \\ & 500 \mathrm{~V}(\mathrm{p}-\mathrm{p} \mathrm{ac}) \text { at } 1 \mathrm{kHz} \text { or less. } \end{aligned}$
AC Coupled	250 V (dc + peak ac). 500 V (p-p ac) at 1 kHz or less.
CMRR (DIFF Mode)	At least $10: 1$ at 1 MHz in $10 \mathrm{mV} / \mathrm{div}$ position for common mode signals of 8 div or less with gain adj. for both CMRR at 50 kHz .

TABLE 1-1 (cont)

Characteristic	Performance Requirement
C. TIME BASE	
Sweep Rate	
Calibrated Range (T932A)	$0.5 \mathrm{~s} / \mathrm{div}$ to $0.1 \mu \mathrm{~s} / \mathrm{div}$; 21 steps in a 1-2-5 sequence. Variable X 1 to X10 magnifier extends maximum sweep rate to $10 \mathrm{~ns} /$ div.
Calibrated Range (T935A) A Sweep	0.5 s to $0.1 \mu \mathrm{~s} / \mathrm{div} ; 21$ steps in a 1-2-5 sequence. Variable X 1 to X10 magnifier extends maximum sweep rate to $10 \mathrm{~ns} / \mathrm{div}$.
B Sweep	50 ms to $0.1 \mu \mathrm{~s} / \mathrm{div}$; 18 steps in a 1-2-5 sequence. Variable X1 to X10 magnifier extends maximum sweep rate to $10 \mathrm{~ns} /$ div.
Accuracy	Accuracy specification applies over center 8 divisions. Exclude first 50 ns of sweep for both magnified and unmagnified sweep rates and anything beyond the 100th magnified division.
$\begin{aligned} & +20^{\circ} \mathrm{C} \text { to } \\ & +30^{\circ} \mathrm{C} \end{aligned}$	
Unmagnified	Within 3\%.
Magnified	Within 5\%.
$0^{\circ} \mathrm{C}$ to $+45^{\circ} \mathrm{C}$	
Unmagnified	Within 4\%.
Magnified	Within 6\%.
Variable Magnifier	10:1 (In the X10 position, the sweep speed is one tenth of the SEC/DIV switch setting.).
Delay Time Position Range (T935A)	0.5 to 10 div.
Delay Time Jitter (T935A)	One part or less in 10,000 (0.01%) of one tenth of the SEC/DIV switch setting.

Characteristic	Performance Requirement
C. TIME BASE (cont)	
X-Y Operation Sensitivity	Same as Ch 1 and Ch 2 with magnifier in X 1 position. (Not specified with use of magnifier to X10 position.)
X-Axis Bandwidth	Dc to at least 2 MHz with 10 div reference signal.
Input Resistance	Approximately $1 \mathrm{M} \Omega$.
Input Capacitance	Approximately 30 pF .
Deflection Accuracy	$\begin{aligned} & +20^{\circ} \mathrm{C} \text { to } 30^{\circ} \mathrm{C} \pm 5 \% \\ & \text { (magnifier in } \mathrm{X} 1 \text { only) } \\ & 0 \text { to } 45^{\circ} \mathrm{C} \pm 6 \% \\ & \text { (magnifier in } \mathrm{X} 1 \text { only) } \end{aligned}$
Triggering AC Sensitivity	0.5 div internal or 100 mV external from 60 Hz to 2 MHz , increasing to 1.5 div internal or 150 mV external at 35 MHz .
$\overline{\text { DC Sensitivity }}$.5 div int or 100 mV ext from dc to 2 MHz increasing to 1.5 div int or 150 mV ext at 35 MHz .
TV Sync	Composite sync 1 div internal or
Sensitivity	100 mV external (approximately 2.3 div or 230 mV of composite video).
External Trigger Input	
Maximum Input Voltage	$\begin{aligned} & 250 \mathrm{~V}(\mathrm{dc}+\text { peak } \mathrm{ac}) . \\ & 500 \mathrm{~V}(\mathrm{p}-\mathrm{p} \mathrm{ac})(1 \mathrm{kHz} \text { or less }) . \end{aligned}$
Input Resistance	Approximately $1 \mathrm{M} \Omega$.
Input Capacitance	Approximately 30 pF .
Level Range EXT	+0.5 V to -0.5 V .
$\frac{\overline{E X T}}{10}$	+5 V to -5 V .

Fig. 1-2. T932A/T935A dimensional drawing.

TABLE 1-2
Environmental

Characteristic	Performance Requirement
Temperature	
Storage	$-55^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$.
Operating	$0^{\circ} \mathrm{C}$ to $+45^{\circ} \mathrm{C}$.
Altitude	
Storage	To 50,000 ft.
Operating	To $15,000 \mathrm{ft}$. Maximum operating temperature decreases $1^{\circ} \mathrm{C} / 1,000$ ft . above $5,000 \mathrm{ft}$.

TABLE 1-3
Physical

Characteristic	Performance Requirement
Weight	
With Panel Cover, Acces- sories and Ac- cessory Pouch	$15.5 \mathrm{Ibs} .(7.0 \mathrm{~kg})$.
Without Panel Cover, Acces- sories and Ac- cessory Pouch	$15.0 \mathrm{Ibs} .(6.8 \mathrm{~kg})$.
Overall Dimensions	Refer to Fig. $1-2$.

STANDARD ACCESSORIES

1 Instruction Manual
2 Probes (P6108)

RECOMMENDED ACCESSORIES

NOTE

The following accessories have been selected from our catalog specifically for your instrument. They are listed as a convenience to help you meet your measurement needs. For detailed information and prices, refer to a Tektronix Products Catalog or contact your local Tektronix Field Representative.

COVERS

FRONT COVER: Protects the instrument front panel during transport or storage and provides storage for small accessories (probes, cables, etc.). Made of blue plastic to match the instrument case.

Order
016-0340-00

PROTECTIVE WATERPROOF COVER: Blue vinyl cover provides protection for the entire oscilloscope during transport or storage.

Order

016-0361-00

PROBES

P6101 GENERAL PURPOSE 1X VOLTAGE PROBE: Input capacitance is 54 picofarads (plus input capacitance of oscilloscope).

Order
010-6101-03

P6062A SWITCHABLE 1X-10X VOLTAGE PROBE: Provides full bandwidth capabilities of T900-series instruments. Can be compensated to match the vertical input capacitance.

Order
010-6062-13

P6009 GENERAL PURPOSE 100X VOLTAGE PROBE: Provides full bandwidth capabilities of T900-series instruments. Can be compensated to match the vertical input capacitance.

Order
010-0264-01

P6015 GENERAL PURPOSE 1000X VOLTAGE PROBE: Provides full bandwidth capabilities of T900-series instruments. Can be compensated to match the vertical input capacitance.

Order
010-0172-00

P6021 AC CURRENT PROBE: Provides a bandwidth from 120 Hz to the upper bandwidth of T900-series instruments. Spring-loaded slide opens (up to 0.150 inches) to allow measurement of current without breaking the circuit under test.

Order
015-0140-02

CAMERAS

C-5A Option 3 Camera: Provides graticule illumination with xenon flash lamp powered by two AA penlight batteries. Recommended for, and molded to fit all bench version T900-series instruments. Fixed focus, fixed aperture $f 16$ lens with 0.67 or 0.85 user adjustable magnification. Mechanical shutter with speeds of $1 / 5$ to $1 / 25 \mathrm{~s}$, plus bulb and time.

Order
C-5A Option 3

OPERATING INSTRUCTIONS

To prevent electric shock, do not remove cover. Refer servicing to qualified personnel.

OPERATING VOLTAGE

The T932A and T935A will operate from either a 120 V or 240 V ac, 50 to 60 Hz nominal power input source. To avoid equipment damage, the power input range selector switch (120 V or 240 V) and $\mathrm{HI} / \mathrm{LO}$ switch on the bottom of the instrument must be set to positions which include the value of the applied power input voltage. The POWER indicator LED will blink when the applied power input voltage varies more than about 10\% from the value for which the switches are set.

Refer 120/140 voltage selection to qualified service personnel. (Setting of this switch is visible, and Hi-Low switch is operable, at bottom of instrument.)

SAFETY INFORMATION

The T932A and T935A operate from a single-phase power source with one of the current-carrying conductors (the neutral conductor) at ground (earth) potential. Operation from power sources where both currentcarrying conductors are live with respect to ground (such as phase-to-phase on a 3-wire system) is not recommended, since only the line conductor has over-current (fuse) protection within the instrument.

The T932A and T935A each have a 3-wire cord with a 3terminal polarized plug for connection to the power source and safety-earth. The ground terminal of the plug is directly connected to the metal parts of the instrument. For electric-shock protection, insert this plug in a mating outlet with a safety-earth contact.

FUNCTIONS OF CONTROLS, CONNECTORS, AND INDICATORS

Before you turn the instrument on, read this portion of the manual to familiarize yourself with the controls, connectors, and indicators.

A. DISPLAY

Front Panel (Fig. 2-1)

(1) INTENSITY-Adjusts the brightness of the crt display. Set for the lowest visible display to prolong crt life.

FOCUS-Adjusts for optimum spot size and definition.

BEAM FINDER-Locates off-screen displays. Compresses the crt display to within the graticule area independently of the position control or applied signals.

To locate an off-screen display:
a. Set the vertical POSITION and INTENSITY controls to midrange and rotate the horizontal POSITION control clockwise.
b. If a display or dot still is not visible, press BEAM FINDER and hold in. A compressed display or dot should appear. If not, increase the INTENSITY until a display appears.

If a dot or vertical line appears, the sweep is not triggered. Set the trigger MODE switch to AUTO to obtain a display. Use the vertical and horizontal POSITION controls to move the display near the center of the graticule. Release the BEAM FINDER button and adjust the trigger level control for a stable display.

If a compressed display appears, adjust the VOLTS/DIV switch and the horizontal and vertical POSITION controls for a stable display.

Fig. 2-1. Display front panel controls and connectors.
(4) PROBE COMP-Provides a square-wave output of approximately 0.5 V (negative-going with respect to ground) at approximately 1 kHz , for compensating voltage probes.
(5)

ON-OFF-Push-push switch turns the instrument power on (button in) and off (button out).
(6) POWER-Indicator LED lights when ON-OFF button is depressed to $O N$ (in) position and applied power input voltage does not vary more than about 10% from the value indicated by the $120 \mathrm{~V} / 240 \mathrm{~V}$ and $\mathrm{HI} / \mathrm{LO}$ voltage selector switch settings. When applied power input voltage varies more than about 10% (either high or low) from the selected value, the LED will blink.
(7) Internal Graticule-Eliminates parallax. Risetime, amplitude, and measurement points are indicated at the left edge of the graticule.

Rear Panel (Fig. 2-2)

(8) EXT Z-AXIS IN-BNC connector for applying signals to intensity modulate the crt display. Signals must be time-related to the display for a stable display.

Left Side of Cabinet (Fig. 2-3)

(9) ASTIG-Screwdriver adjustment used with FOCUS control to obtain a well-defined display. Requires little or no adjustment once set.
(10) TR ROT-Trace rotation screwdriver adjustment. Aligns trace with the horizontal graticule lines.

Fig. 2-2. Rear panel controls and connectors.

Fig. 2-3. Left side of cabinet.

Fig. 2-4. Bottom of cabinet.

Bottom of Cabinet (Fig. 2-4)

(11) $120 \mathrm{~V} / 240 \mathrm{~V}-$ Switch selects either 120 V or 240 V nominal power input voltage (is visible, but not adjustable from outside cabinet).
(12) HI/LO-Screwdriver actuated switch selects either high or low nominal line-voltage regulating range: LO selects 100 V or 220 V and HI selects 120 V or 240 V.
(13) $\mathbf{C H} 1 \mathbf{D C}$ BAL-Screwdriver adjustment. When properly adjusted, prevents trace shift when switching between adjacent positions of the CH 1 VOLTS/DIV switch.
(14) CH 2 DC BAL-Screwdriver adjustment. When properly adjusted, prevents trace shift when switching between adjacent positions of the CH 2 VOLTS/DIV switch.

B. VERTICAL AMPLIFIER

Front Panel (Fig. 2-5)

(1)VOLTS/DIV-Selects the vertical deflection factor in a 1-2-5 sequence (VAR control must be in detent position to obtain the indicated deflection factors). Read the correct deflection factor for a 1 X probe from the 1X position and a 10X probe from the 10X position.
(2) VAR-Provides continuously variable uncalibrated deflection factors between the calibrated steps of the VOLTS/DIV switches. Extends the maximum deflection factor to $25 \mathrm{~V} / \mathrm{div}$ in the 10 V position. Detent position provides calibrated VOLTS/DIV deflection factors.

GND: Grounds the input of the vertical amplifier to provide a ground reference display. Connects the input signal to ground through the input coupling capacitor and a $1 \mathrm{M} \Omega$ resistor to allow the input coupling capacitor to be precharged by the input signal.

DC: All components of the input signal are passed to the vertical amplifier.
(4) Channel 1 or X Input-BNC connector for applying an external signal to the vertical deflection system. In X-Y operation, CH 1 or X is horizontal input. Display mode is selected by Vertical Mode switches.

NOTE
$\mathrm{CH} 1(X)$ is horizontal input and $\mathrm{CH} 2(Y)$ is vertical input when instrument is used in SOURCE X-Y.
(5) Channel 2 or Y Input-BNC connector for applying an external signal to the vertical deflection system. In X-Y operation, CH 2 or Y is vertical input. Display mode is selected by Vertical Mode switches.

Fig. 2-5. Vertical Amplifier front panel controls and connectors.
(6) POSITION-Controls the vertical position of the crt display.
(7) Vertical Mode-Vertical amplifier operating mode is selected by a series five pushbutton switches (CHOP-ALT switch placed below four in line). Triggering signals are derived from channel 1 input except when CH 2 and one of DIFF or DUAL are engaged simultaneously.

CH 1 : Displays only signals applied to CH 1 input connector.

DIFF: Provides a display of the algebraic difference between CH 1 and CH 2 input signals. Trigger signal is automatically derived from CH 1 unless CH 2 and DIFF pushbuttons are depressed simultaneously.

DUAL: with CHOP: Provides a display of signals from both channels switched from CH 1 to CH 2 at a frequency of approximately 250 kHz . Trigger signal is automatically derived from CH 1 input signal unless CH 2 and DUAL pushbuttons are depressed simultaneously.

DUAL: with ALT: Provides a display of CH 1 and CH 2 inputs alternately. Display is switched between channels at the end of each sweep. Trigger signal is automatically derived from CH 1 input signal unless CH 2 and DUAL (with ALT) pushbuttons are depressed simultaneously.

CH 2: Displays only signals applied to the CH 2 input connector. CH 2 pushbutton must be engaged for $X-Y$ operation. Trigger signal is derived from CH 2.

C. TIME BASE

Front Panel (Fig. 2-6)

(1) SOURCE-The source of the signal supplied to trigger input amplifier is determined by six-position SOURCE switch and associated circuitry.

COMP (Composite Triggering): In this position the trigger signal is obtained from signal(s) displayed on crt. Does not show the time relationship of CH 1 and CH 2 in ALTernate vertical mode. Do not use composite triggering in CHOP vertical mode because display will trigger on switching transients, not on desired signal.

CH 1/CH 2 (Internal Triggering): In this position the trigger signal is a sample of channel signal displayed on crt - CH 1 or CH 2 in single trace. In DUAL, CHOP or ALT, and DIFF mode, the trigger signal is a sample of CH 1 input unless CH 2 is depressed simultaneously with DUAL or DIFF.

LINE: In this position the trigger signal is a sample of the line voltage applied to instrument.

EXT (External Triggering): This position permits triggering on signals applied to the external triggering input connector (item 5).

EXT/10: External trigger signals are attenuated by a factor of 10 .
$X-Y$: This position permits $X-Y$ displays. X input is through CH 1 and Y input is through CH 2.
(2) MODE-Selects the operating mode for the trigger circuit.

AUTO: With the proper LEVEL control setting, the sweep can be triggered by trigger signals with repetition rates above about 20 Hz . In the absence of an adequate trigger signal, or when the LEVEL control is misadjusted, the sweep free runs to provide a reference display.

NORM: Permits triggering on displayed signal. In the absence of an adequate trigger signal, or when the LEVEL control is misadjusted, the sweep does not run and no display is visible.

TV: Permits triggering on television signals. Triggers on TV field when SEC/DIV switch is set at .1 ms or slower. Triggers on TV line when SEC/DIV switch is set at $50 \mu \mathrm{~s}$ or faster. Set the SLOPE switch to +OUT for sync-positive input signals and to -IN for sync-negative input signals.
3) CPLG (Coupling)—Push-button switch allows choice of capacitive or direct coupling to trigger input circuits.
(4) SLOPE-Selects the positive- or negative-going slope of the trigger waveform.
$+($ out $)$: The sweep can be triggered from the positive-going portion of a trigger signal.
-(in): The sweep can be triggered from the negative-going portion of a trigger signal.
(5) LEVEL-Selects the amplitude point on the trigger signal at which the sweep is triggered. Usually adjusted for the desired display after trigger SOURCE and SLOPE have been selected.

Fig. 2-6. Time Base front panel controls and connectors.
(6) EXT (External Trigger)—Provides input for external trigger signals.
(7) A SEC/DIV AND DELAY TIME (clear plastic skirt)Selects calibrated sweep rates in a 1-2-5 sequence for the A Sweep Generator and the basic delay time for delayed sweep operation. The X1-X10 variable control must be in the X 1 detent position (fully counterclockwise) to read calibrated sweep rates directly from the A SEC/DIV knob. Knob numerals with μ underneath indicates sweep rates in microseconds/division, numerals with \mathbf{m} underneath indicate sweep rates in milliseconds/division, positions with no symbol under the numerals indicate sweep rates in seconds/division.

NOTE

Item 8 applies only to the T935A.

B SEC/DIV (black inner knob, pull out and turn to unlock)-Selects calibrated sweep rates in a 1-2-5 sequence for the B Sweep (delayed sweep) Generator. (B sweep runs at 50 ms in the $0.1,0.2$, and 0.5 positions of the B SEC/DIV switch.)

X1-X10—Provides calibrated sweep rates when in X1 (fully ccw) detent position. Increases the horizontal gain by a factor of 10 , providing $10 \mathrm{~ns} /$ div sweep rate in the X10 detent position (fully cw) with the SEC/DIV knob set to $1 \mu \mathrm{~s}$.
(10)

POSITION-Controls the horizontal position of the crt display.

NOTE
Items 11 and 12 apply only to the T935A.
(11) delay time position-Provides variable sweep delay from 0.5 to 10.0 times the setting of the A SEC/DIV switch. To find the delay time, multiply the number of divisions between the start of the sweep and the start of the intensified zone times the A SEC/DIV switch setting.
(12) DISPLAY MODE-Determines the mode of operation for the horizontal deflection system.

A: The A Sweep Generator provides the horizontal deflection. The A SEC/DIV switch determines the sweep rate, and the B Sweep Generator is inoperative.

A INTEN BY B: The A Sweep Generator provides the horizontal deflection and the B Sweep Generator produces an intensified zone after the delay time. The DELAY TIME POSITION control determines the location of the intensified zone. The duration of the intensified zone is determined by the B SEC/DIV switch.

B (delayed): The B Sweep Generator provides the horizontal deflection and the B SEC/DIV switch determines the sweep rate. The A Sweep Generator continues to run, and the start of the B sweep is delayed by a time determined by the A SEC/DIV switch.
(13) HOLD-OFF-Varies the hold-off time between sweeps. Allows triggering on aperiodic signals (such as complex digital words). Turn the control fully counterclockwise for the shortest sweep holdoff time and fully clockwise for the longest sweep hold-off time.

FIRST TIME OPERATION

Use this procedure when you turn the instrument on for the first time. It checks that most functions of the instrument are operational. This procedure requires a probe. (10X probes are supplied as standard accessories.) Read the descriptions of the controls and connectors to familiarize yourself with them before you turn your instrument on.

A complete performance check is given in Section 3.

Only the control settings that affect the check being performed are given. Do not move the control settings unless instructed to do so. Start at the beginning and follow the sequence of steps through to the end. If you skip a step or start in the middle of a check, you won't be able to tell whether a particular function is operational.

First, check that the Power Input Voltage Selector switch and the HI/LO Range Selector switch on the bottom of the cabinet are set for your power input voltage. In the United States the Power Input Voltage Selector switch is normally set for 120 V and the HI/LO Range Selector switch is normally set for HI at the factory. In Europe the Power Input Voltage Selector switch is normally set for 240 V and the $\mathrm{HI} /$ LO Range Selector is normally set for LO.

Your instrument may be damaged if it is operated from a 240 V power input voltage source with the Power Input Voltage Selector switch set for 120 V. Only qualified service personnel should change the Power Input Voltage Selector switch to a different range.

The POWER indicator LED will blink when the applied power input voltage varies more than about 10% (either high or low) from the value selected by the $120 \mathrm{~V} / 240 \mathrm{~V}$ and $\mathrm{HI} / \mathrm{LO}$ selector switches.

If the $120 \mathrm{~V} / 240 \mathrm{~V}$ and $\mathrm{HI} / \mathrm{LO}$ switches are properly set, connect the power cord plug to the power source and turn the instrument on. Set the trigger MODE to AUTO, and SOURCE to CH 1/CH 2.

You should get a trace on the crt screen. If you don't, push the BEAM FINDER button and hold it in while increasing the INTENSITY (clockwise). A trace, or one or two bright dots, indicates that the instrument is operating. You may also have to adjust the FOCUS and POSITION controls: then adjust POSITION controls until they have effect on trace or dots.

Vertical Positioning and Horizontal Operation

1. Set: LEVEL

A SEC/DIV
X1-X10
Vertical Mode
DISPLAY MODE

Mid-range 1 ms X1 (fully ccw detent) CH 1
A
2. Check that the CH 1 POSITION control moves the trace off the top and bottom of the screen. Leave the trace between one and two divisions above the center line. If the trace does not extend across the screen, move the horizontal POSITION control until it does.
3. Set the vertical mode switch for CH 2 . Check that the CH 2 POSITION control moves the trace off the top and bottom of the screen. Leave the trace between one and two divisions below the center line.
4. Set the vertical mode switch for DUAL. You should have two traces on the crt screen-one above the center line and one below.

NOTE
Set to CHOP for slower than $1 \mathrm{~ms} /$ div; set to $A L T$ at $.5 \mu \mathrm{~s} / \mathrm{div}$ and faster.
5. Check that there are two traces at every setting of the SEC/DIV switch from $.1 \mu \mathrm{~s}$ to .5 s .
6. Set the SEC/DIV switch to 1 ms and the Vertical Mode switch to CH 1.

FOCUS and INTENSITY Operation

Adjust the FOCUS and the INTENSITY controls for a fine line at a comfortable brightness level.

Trace Rotation and Vertical Input Operation

Most of the remaining checks require applying the PROBE COMP signal to the inputs.

NOTE

In the following steps, if you use a $1 X$ probe or coaxial cable, use the $1 X$ PROBE window for VOLTS/DIV settings. If you use a 10X probe (as supplied), use the 10X probe window.

The PROBE COMP output is a square wave. An incorrectly commpensated probe will distort the top and bottom of the signal but will not affect the checks.

If you want to compensate a probe, refer to the Probe Compensation information after this procedure.

1. Set: CH 1 VOLTS/DIV

CH 1 VAR CH 1 AC-GND-DC
. 2 V (10X window for X10 probe, 1X window for 1X probe) Detent (fully cw) GND
2. Using the CH 1 POSITION control, align the trace with the center graticule line. If the trace is tilted, adjust the trace rotation (control marked TR ROT on the left-cabinet side) for the best alignment of the trace with the center graticule line.
3. Connect the probe to the CH 1 input and hold the probe tip against the PROBE COMP connector. Set the CH 1 AC-GND-DC switch to DC. You should have approximately 2.5 divisions of display. The square wave will be below the center line. This display may or may not be stable.
4. Set the CH 1 AC-GND-DC switch to $A C$. The display should be approximately equidistant above and below the center line.

NOTE

> If you cannot obtain a display, remove the probe tip from the PROBE COMP connector. Touch the tip to your hand. Change the vOLTS/DIV setting if necessary to get a display. The display should be a thick (vertically) trace. A thickening trace indicates that the probe is picking up the power line radiation that your body normally picks up. If this occurs, the vertical is usable but the PROBE COMP output isn't. If the thickening does not occur, you have a defective probe or other instrument malfunction.
5. Rotate the CH 1 VAR control through its range. The display amplitude will decrease. Leave the VAR control fully clockwise (detent)-maximum display amplitude.
6. Set: Vertical Mode CH 2

CH 2 VOLTS/DIV . 2 V
CH 2 VAR
CH 2 AC-GND-DC
Detent (fully cw)
GND
CH 2 POSITION To align trace
with center graticule line
7. Connect the probe to the CH 2 input and hold the probe tip against the PROBE COMP connector.
8. Set the $\mathrm{CH} 2 \mathrm{AC}-\mathrm{GND}-\mathrm{DC}$ switch to DC . The square wave will be below the center line.
9. Set the $\mathrm{CH} 2 \mathrm{AC}-\mathrm{GND}-\mathrm{DC}$ switch to AC . The square wave will be approximately equidistant above and below the center line.
10. Rotate the CH 2 VAR control through its range. The display amplitude will decrease. Leave the VAR control fully clockwise (in detent).
11. Return the vertical mode switch to CH 1 .

X-Axis Operation

1. Connect the probe to the X input $(\mathrm{CH} 1)$ and hold the probe tip against the PROBE COMP connector.
2. Set the SOURCE switch to $X-Y$, and reduce INTENSITY as necessary. Adjust the horizontal POSITION control as needed to locate the display. You should see 2 dots separated by a distance dependent on the CH 1 VAR control setting. Return VAR to cal (fully counterclockwise detent).

Astigmatism Operation

1. Set: SOURCE
 $\mathrm{CH} 1 / \mathrm{CH} 2$

2. Connect the probe to the CH 1 input and hold the probe tip against the PROBE COMP connector. Rotate the LEVEL control for the most stable display. Adjust the FOCUS control for a display with the sharpest edges both horizontally and vertically over the entire screen. Vertical trace thickness is typically more than the horizontal but the edges should be equally sharp. This is easier to observe at the "corners" of the signal.
3. Set the INTENSITY and FOCUS controls for the best defined display. If the display still appears out of focus, use a small screwdriver to adjust the ASTIG control (through left cabinet side) for the best defined display.

Operating Instructions-T932A/T935A

4. Rotate the INTENSITY control fully clockwise. The display will get brighter and defocus (get thicker). Return the INTENISTY control to the preferred brightness level.

Ext \mathbf{Z} Axis Input Operation

A positive-going signal will cause a decrease in intensity, and a negative-going signal will increase the intensity level of a low-intensity trace.

X1-X10 and Trigger Operation

1. Note a display with about 10 cycles of the PROBE COMP waveform. Rotate the X1-X10 control fully clockwise to X 10 and note that only one cycle is visible. Return control to X 1 .
2. Set the SEC/DIV to .1 ms . Position the start of the display (left edge) on the screen. Set the SLOPE button to the + (in) position. Rotate the LEVEL control through its range. The start of the display will move along the positive (rising) slope of the signal until the display becomes unstable.
3. Set the LEVEL control for a stable display that starts at about the middle of the slope.

Now set the SLOPE button to -(out) position. Rotate the LEVEL control through its range. The start of the display will move along the negative (falling) slope of the signal until the display becomes unstable.
4. Set the LEVEL control for a stable display that starts at about the middle of the slope.
5. Set the MODE switch to NORM. The display should start on the negative slope. In the NORM mode the display will disappear if the LEVEL control is improperly adjusted.
6. Set the SLOPE button to + (out) position. The display should start on the positive slope.
7. Disconnect the probe from the instrument. Set the CH 1 AC-GND-DC switch to GND. The trace should disappear.
8. Set the SOURCE switch to LINE. If a trace doesn't appear, adjust the LEVEL control until a trace appears.
9. Set: SOURCE
$\mathrm{CH} 1 / \mathrm{CH} 2$
MODE CH 1 AC-GND-DC

AUTO

AC

Delay Time Position and Delayed Sweep Operation (T935A only)

1. Set: DISPLAY MOD

A INTEN BY B DELAY TIME POSITION

Fully cow
2. The start of the intensified portion of the sweep should be within 0.5 div of the start of the sweep.
3. Rotate the DELAY TIME POSITION control until it is fully clockwise. The start of the intensified portion of the sweep will move until it is at least 10 divisions from the start of the sweep.
4. Set DISPLAY MODE to B. The display will consist of only the intensified portion or delayed (B Sweep) portion.
5. Return the DISPLAY MODE to A INTEN BY B and turn the DELAY TIME POSITION control fully counterclockwise.
6. Set the B SEC/DIV switch to $.1 \mu \mathrm{~s}$. The intensified portion will reduce to a dot. Rotating the DELAY TIME POSITION control will move the dot across the screen.

```
7. Set: SOURCE
    CH 1/CH }
```

 MODE
    ```
    MODE
    AUTO
    AUTO
    CH 1 AC-GND-DC
    CH 1 AC-GND-DC
AC
```

```
AC
```

```

Your instrument is now ready to operate when you apply a signal to the CH 1 input.

\section*{PROBE COMPENSATION}

An incorrectly-compensated probe is one of the greatest sources of operator error. Most attenuator probes are equipped with adjustments to ensure optimum measurement accuracy.

Some probes are compensated by using a small, insulated screwdriver through an access hole to the compensation adjustment. Other probes may have an adjustment system similar to that shown in Fig. 2-7.

Probe compensation is accomplished as follows:
Set the appropriate VOLTS/DIV switch to .1 V , the Set the appropriate VOLTS/DIV switch to 1 V , the
AC-GND-DC switch to DC, and the SEC/DIV switch to 2 ms .

Connect the probe to the vertical input and touch the probe tip to the PROBE COMP connector. Notice a display similar to those shown in Fig. 2-8. Adjust the probe for the correct compensation. The effects of incorrect probe compensation on three types of signals are illustrated in Fig. 2-8.


Fig. 2-7. Probe compensation.


Fig. 2-8. Effects of probe compensation.

\section*{APPLICATIONS}

\section*{Peak-to-Peak Amplitude Measurements}

To measure the amplitude of a signal, mulitply the vertical deflection (in divisions) by the VOLTS/DIV switch setting. (Use VOLTS/DIV window to match attenuation factor of probe used.)

\section*{Example:}

The display amplitude is three divisions (see Fig. 2-9) and the VOLTS/DIV switch is set to .5 V . Substituting the given values:
Amplitude \(=3\) divisions \(\times 0.5\) volt/division \(=1.5 \vee \mathrm{p}-\mathrm{p}\)

\section*{Instantaneous Amplitude Measurement}

The following procedure explains how to measure the amplitude of any point on a waveform with respect to ground.
1. Set the AC-GND-DC switch to DC.
2. Apply the signal to be measured to one of the vertical input connectors. Set the Vertical Mode switch to select the channel used.
3. Obtain a stable display, centered vertically.
4. Set the AC-GND-DC switch to GND. Adjust the trace to some reference line (see Fig. 2-10).
5. Set the AC-GND-DC switch to DC. If the waveform appears above the reference line, the voltage is positive. If the waveform appears below the reference line, the voltage is negative.


Fig. 2-9. Peak-to-peak voltage measurement.
6. Measure the vertical difference (in divisions) between the reference line and the desired point on the waveform and multiply by the VOLTS/DIV switch setting.

\section*{Example:}

The vertical difference is 5 divisions (see Fig. 2-10). The VOLTS/DIV switch is set to 10 mV . The waveform appears above the reference line.

Substituting the given values:
\[
\begin{gathered}
\begin{array}{l}
\text { Instantaneous } \\
\text { Voltage }
\end{array} \frac{5}{\text { divisions }} \times \frac{10 \mathrm{mV}}{\text { divisions }}=50 \mathrm{mV} \\
\text { Instantaneous } \\
\text { Voltage }
\end{gathered}
\]

\section*{Dual Trace Phase Difference Measurement}

Phase comparison between two signals of the same frequency can be accomplished using the dual-trace feature. This method of phase difference measurement can be used up to the frequency limit of the vertical system. To make the comparison, use the following procedure:
1. Set the AC-GND-DC switches to AC.
2. Set the Vertical Mode switch to DUAL and select ALT or CHOP. Position both traces to the graticule horizontal centerline.
3. Connect the reference signal to the Channel 1 input connector and the comparison signal to the Channel 2 input connector. Use coaxial cables or probes which have equal time delay to connect the signals to the input connectors.


Fig. 2-10. Instantaneous voltage measurement.
4. Set the Channel 1 and Channel 2 VOLT/DIV switches and the Channel 1 and Channel 2 VAR controls so that the displays are equal and about five divisions in amplitude.
5. Set the SEC/DIV switch to a sweep rate which displays about one cycle of the reference waveform.
6. Turn the variable (X1-X10) SEC/DIV control until one cycle of the reference signal (Channel 1) occupies exactly eight divisions between the first and ninth graticule lines (see Fig. 2-11). Each division of the graticule represents \(45^{\circ}\) of the cycle ( \(360^{\circ} \div 8\) divisions \(=\) \(45^{\circ} /\) division).
7. Measure the horizontal difference between corresponding points on the waveforms.
8. Multiply the measured distance (in divisions) by \(45^{\circ}\) /division (sweep rate) to obtain the exact amount of phase difference.

\section*{Example:}

Assume a horizontal difference of 0.6 division with a sweep rate of \(45^{\circ}\) /division as shown in Fig. 2-11.

Substituting the given values:
\[
\begin{aligned}
& \text { Phase } \\
& \text { Difference }
\end{aligned}=0.6 \text { division } \times 45^{\circ} / \text { division }
\]
\[
\text { Phase Difference }=27^{\circ}
\]


Fig. 2-11. Phase difference.

\section*{Time Duration and Frequency Measurements}

To find the time duration between two points on a waveform, multiply the horizontal distance (in divisions) between the two points by the SEC/DIV switch setting. Frequency (in hertz) is the reciprocal of the time duration of one cycle (in seconds).

\section*{Example:}

The horizontal distance measured is 8.3 divisions (see Fig. 2-12).

The SEC/DIV switch is set to 2 ms .

Substituting the given values:
\[
\begin{aligned}
& \underset{\text { Time }}{\text { Duration }}=\begin{array}{c}
\text { Horizontal } \\
\text { distance } \\
\text { (divisions) }
\end{array} \times \begin{array}{c}
\text { SEC/DIV } \\
\text { setting }
\end{array} \\
& \begin{array}{c}
\text { Time } \\
\text { Duration }
\end{array}=\begin{array}{c}
8.3 \\
\text { divisions }
\end{array} \times \begin{array}{c}
2 \mathrm{~ms} / \\
\text { division }
\end{array} \\
& \underset{\text { Duration }}{\text { Time }}=16.6 \mathrm{~ms} \text { (milliseconds) }
\end{aligned}
\]
and
Frequency \(=\frac{1}{\text { time duration }}\)
\[
\text { Frequency }=\frac{1}{16.6 \mathrm{~ms}^{\mathrm{a}}}=60 \mathrm{~Hz}
\]
\({ }^{4} 16.6 \mathrm{~ms}=.0166\) second.


Fig. 2-12. Time duration.

\section*{Risetime Measurements}

Risetime measurements are made in the same manner as time duration measurements, except the measurements are made between the \(10 \%\) and \(90 \%\) points of the waveform's amplitude (see percentage markings on the left edge of the graticule).

Use the following procedure to measure risetime:
1. Adjust the VOLTS/DIV and VAR controls for a display amplitude of exactly five divisions.
2. Adjust the vertical POSITION control so that the display bottom just touches the \(0 \%\) graticule line and the display top just touches the 100\% graticule line (see Fig. 213).
3. Measure the horizontal distance (divisions) between the \(10 \%\) and \(90 \%\) points on the waveform (point A to point B, Fig. 2-13).
4. Use the following formula to find risetime:
\[
\text { Risetime }=\begin{gathered}
\text { horizontal } \\
\text { distance } \\
\text { (divisions) }
\end{gathered} \quad \times \begin{gathered}
\text { SEC/DIV } \\
\text { setting }
\end{gathered}
\]

\section*{Examples:}

The horizontal distance between the \(10 \%\) and \(90 \%\) point on the waveform is five divisions with a SEC/DIV switch setting of \(1 \mu \mathrm{~s}\).

Substituting the given values:
\[
\text { Risetime }=5 \text { divisions } \times 1 \mu \mathrm{~s} / \text { division }
\]
\[
\text { Risetime }=5 \mu \mathrm{~s}
\]


Fig. 2-13. Risetime.

\section*{A Intensified Differential Time Measurements}
1. Set the A SEC/DIV switch and the horizontal POSITION control to locate both time measurement points within the graticule area (see Fig. 2-14).
2. Set the DISPLAY MODE switch to A INTEN BY B.
3. Unlock the B SEC/DIV switch and rotate clockwise to obtain the shortest usable intensified zone.
4. Use the DELAY TIME POSITION (DTP) control to move the left edge of the intensified zone to just touch the first time measurement point (see Fig. 2-14, point A). Note the number of divisions between the start of the sweep and the start of the intensified zone.
5. Use the DTP control to move the left edge of the intensified zone to just touch the second time measurement point (see Fig. 2-14, point B). Note the number of divisions between the start of the sweep and the start of the intensified zone. Also note the number of divisions between point \(A\) and point \(B\).
6. To find the Time Difference, multiply the number of divisions between point \(A\) and point \(B\) by the \(A\) SEC/DIV switch setting.

\section*{Example:}

The A SEC/DIV switch was set to 2 ms and the \(B\) SEC/DIV switch was set to 0.1 ms . Point \(A\) is 8.4 divisions from point \(B\). So the time difference is \(8.4 \times 2 \mathrm{~ms}=\) 16.8 ms .


Fig. 2-14. Time duration between points on a waveform.

\section*{Delayed Sweep Magnification}

The B Delayed mode can provide higher apparent sweep rate magnification than that provided by the \(\mathrm{X} 1-\mathrm{X} 10\) control.

Magnified Sweep Starts After Delay. To determine the apparent magnification factor, proceed as follows:
1. Set the DISPLAY MODE switch to A INTEN BY B.
2. With the DELAY TIME POSITION control, move the left edge of the intensified zone to the left side of the portion of the A sweep display to be magnified.
3. Set the B SEC/DIV switch so just the portion of the \(A\) sweep display to be magnified is intensified (see Fig. 215A).
4. Set the DISPLAY MODE switch to B. The portion of the A sweep display that was intensified in step 3 is now displayed in magnified form (see Fig. 2-15B). The displayed sweep rate is determined by the BSEC/DIV switch. To calculate the apparent magnification factor, use the formula:
\(\underset{\text { Magnification }}{\text { Apparent }}=\frac{\text { A SEC/DIV switch setting }}{\text { B SEC/DIV switch setting }}\)

(A) A INTENSIFIED DISPLAY

(B) B DELAYED DISPLAY

Fig. 2-15. Delayed sweep magnification.

\section*{PERFORMANCE CHECK}

This procedure allows the basic performance specifications to be checked without removing the instrument covers. It is intended for use in incoming inspection to determine acceptability of newly purchased or recently calibrated instruments.

\section*{LIMITS AND TOLERANCES}

Tolerances given are for the instrument under test and do not include test equipment error. Limits and tolerances in this check, are instrument specifications only if they are called out as performance requirements in the Specifications section.

\section*{TEST EQUIPMENT REQUIRED}

You will need the test equipment listed in Table 3-1, or equivalent, to perform a complete Performance Check of the T932A or T935A. The Specifications given for the equipment are the minimum necessary for accurate results.

TABLE 3-1
Test Equipment
\begin{tabular}{|c|c|c|c|}
\hline Description & Minimum Specifications & Usage & Examples of Applicable Test Equipment \\
\hline 1. Amplitude Calibrator & Amplitude accuracy, within \(0.5 \%\); signal amplitude, 10 mV to 10 V ; output signal, 1 kHz square wave. & Vertical Gain checks, X gain check. & \begin{tabular}{l}
a. Tektronix PG 506 Calibration Generator \({ }^{3}\). \\
b. Tektronix 067-0502-01 Calibration Fixture.
\end{tabular} \\
\hline 2. Sine-Wave Generator & Frequency, 50 kHz to above 35 MHz ; output amplitude, variable from 0.5 to \(5 \mathrm{~V} \mathrm{p}-\mathrm{p}\); output impedance, \(50 \Omega\); reference frequency, 50 kHz ; amplitude accuracy, constant within \(3 \%\) of reference frequency as output frequency changes. & Vertical Amplifier bandwidth checks, X bandwidth check. Triggering checks. Z axis input check. & \begin{tabular}{l}
a. Tektronix SG 503 Leveled Sine-Wave Generator \({ }^{2}\) (with included precision cable). \\
b. Tektronix Type 191 Constant Amplitude Signal Generator.
\end{tabular} \\
\hline 3. Time-Mark Generator & Marker outputs, 10 ns to 0.5 s ; marker accuracy within 0.5\%; trigger output, 1 ms to \(0.1 \mu \mathrm{~s}\), time coincident with markers. & Timing checks. & \begin{tabular}{l}
a. Tektronix TG 501 TimeMark Generator. \({ }^{\text {a }}\) \\
b. Tektronix 2901 Time-Mark Generator.
\end{tabular} \\
\hline 4. Termination & Impedance, \(50 \Omega\); bnc connectors. & Signal termination. & a. Tektronix Part 011-0049-01. \\
\hline 5. Cable (3) & \(50 \Omega\) impedance; bnc connectors. & Signal interconnection. & a. Tektronix Part 012-0057-01 \\
\hline 6. Dual Input Coupler & Connectors, bnc female to 2 bnc male. & Signal interconnection. & a. Tektronix Part 067-0525-00. \\
\hline
\end{tabular}

\section*{\({ }^{2}\) Requires a TM 500 Series Power Module.}

Scan by Zenith

TABLE 3-1 (cont)
\begin{tabular}{l|l|l|l}
\hline \multicolumn{1}{c|}{ Description } & \multicolumn{1}{c|}{ Minimum Specifications } & \multicolumn{1}{c}{ Usage } & \multicolumn{1}{c}{\begin{tabular}{c} 
Examples of Applicable \\
Test Equipment
\end{tabular}} \\
\hline \hline 7. T Connector & Connectors, bnc. & Signal interconnection. & a. Tektronix Part 103-0030-00.
\end{tabular}
\({ }^{9}\) Requires a TM 500 Series Power Module.

\section*{PRELIMINARY PROCEDURE}

Use the following steps to put your instrument into a basic operating mode before proceeding with the Performance Check. This procedure is the same for both the T932A and the T935A, except where noted.
1. Check that the Power Input Voltage Selector switch and the \(\mathrm{HI} /\) LO Range Selector switch on the bottom of the cabinet are set for your power input voltage. In the United States, the Power Input Voltage Selector switch is normally set for 120 V and the \(\mathrm{HI} / \mathrm{LO}\) Range Selector switch is normally set for HI at the factory. In Europe, the Power Input Voltage Selector switch is normally set for 240 V and the \(\mathrm{HI} / \mathrm{LO}\) Range Selector switch is normally set for LO. Only qualified service personnel should change the Power Input Voltage Selector switch to a different voltage range setting.
2. If the \(120 \mathrm{~V} / 240 \mathrm{~V}\) and \(\mathrm{HI} / \mathrm{LO}\) switches are properly set, connect the power cord plug to the power source and turn the instrument on. Connect test equipment to an appropriate power source and turn it on. Set the trigger MODE to AUTO, and SOURCE to \(\mathrm{CH} 1 / \mathrm{CH} 2\).

\section*{NOTE}

Allow a 20 minute warmup before starting the Performance Check Procedure. This instrument must have been adjusted at an ambient temperature of \(+25^{\circ} \mathrm{C}\) within \(5^{\circ} \mathrm{C}\) to ensure that checks in this procedure will meet the specifications listed in Section 1.
3. Set the controls as follows:
\begin{tabular}{ll}
\multicolumn{2}{c}{ Vertical Amplifier } \\
Vertical Mode & CH 1 \\
POSITION (both) & Midrange \\
VOLTS/DIV (both) & \(2 \mathrm{mV}^{1}\) \\
VAR (both) & Detent (cw) \\
CH 1 AC-GND-DC & DC \\
CH 2 AC-GND-DC & GND
\end{tabular}

\section*{Time Base}
SEC/DIV
X1-X10 (variable)
SOURCE
MODE
CPLG
POSITION
SLOPE
LEVEL
HOLD-OFF
DELAY TIME
POSITION
DISPLAY MODE
4. The POWER ON light should be on and a baseline trace should be visible on the graticule. Adjust INTENSITY, FOCUS, and ASTIG controls for low intensity, welldefined trace.

The baseline should be parallel with horizontal graticule lines. If not, adjust R472, TR ROT (trace rotation), in the left side panel until the trace aligns with the horizontal graticule lines.

This ends the preliminary procedure.

\footnotetext{
'Unless otherwise stated, use the 1X PROBE window for VOLTS/DIV settings throughout the Performance Check Procedure.
}

\section*{PERFORMANCE CHECK PROCEDURE}

\section*{1. CH 1 and CH 2 Deflection Accuracy}
a. Connect test equipment as shown in Fig. 3-1 (use appropriate POSITION control as needed to center the display within the graticule area).
b. CHECK—Deflection accuracy for CH 1 according to Table 3-2 within \(3 \%\left(+20^{\circ} \mathrm{C}\right.\) to \(+30^{\circ} \mathrm{C}\) ).
c. Set: CH 1 AC-GND-DC

GND
CH 2 AC-GND-DC
Vertical Mode
CH 2 POSITION
DC
CH 2
As needed
d. CHECK—Deflection accuracy for CH 2 according to Table 3-2 within \(3 \%\left(+20^{\circ} \mathrm{C}\right.\) to \(\left.+30^{\circ} \mathrm{C}\right)\).
e. Set amplitude calibrator to 0.1 volt.

\section*{2. CH 1 and CH 2 VAR (Variable) Volts/Div Range}
a. Set CH 1 and CH 2 VOLTS/DIV to 20 mV .

TABLE 3-2

Deflection Accuracy
\begin{tabular}{c|c|c|c}
\hline \begin{tabular}{c} 
VOLTS/DIV \\
(1X PROBE \\
WINDOW)
\end{tabular} & \begin{tabular}{c} 
Amplitude \\
Calibrator \\
Output
\end{tabular} & \begin{tabular}{c} 
Vertical \\
Deflection \\
(divisions)
\end{tabular} & \begin{tabular}{c}
\(\pm 3 \%\) \\
Tolerance \\
(divisions)
\end{tabular} \\
\hline \hline 2 mV & 10 mV & 5 & 4.85 to 5.15 \\
5 mV & 20 mV & 4 & 3.88 to 4.12 \\
10 mV & 50 mV & 5 & 4.85 to 5.15 \\
20 mV & .1 V & 5 & 4.85 to 5.15 \\
50 mV & .2 V & 4 & 3.88 to 4.12 \\
.2 V & 1 V & 5 & 4.85 to 5.15 \\
2 V & 10 V & 5 & 4.85 to 5.15 \\
5 V & 20 V & 4 & 3.88 to 4.12 \\
10 V & 100 V & 5 & 4.85 to 5.15 \\
\hline
\end{tabular}
b. CHECK-Display amplitude reduces from five divisions to less than two divisions with CH 2 VAR control turned fully counterclockwise.
c. Set: Vertical Mode CH 1 CH 1 AC-GND-DC DC CH 2 AC-GND-DC GND


Fig. 3-1. Deflection accuracy check test setup.
d. CHECK—Display amplitude reduces from 5 divisions to less than 2 divisions with CH 1 VAR control turned fully counterclockwise.
e. Return both VAR controls to detent position.

\section*{3. X -Axis Gain}
```

a. Set: Vertical Mode VOLTS/DIV (CH 1) SOURCE X1-X10 INTENSITY SEC/DIV
CH 2
.1 V $X-Y$ X1 For visible display 0.1 ms

```
b. CHECK-Horizontal deflection between 3.5 and 6.5 divisions (set horizontal POSITION as needed to view start and end of display).
c. Disconnect test equipment.

\section*{4. Channel 1 Bandwidth}
a. Connect test equipment as shown in Fig. 3-2.
b. Set: VOLTS/DIV (both) 2 mV

AC-GND-DC (both) DC
LEVEL
POSITION (all)
Fully cw
As required
c. Set generator frequency to 50 kHz (reference) and adjust output amplitude for a 5 division display.
d. Set generator frequency to 35 MHz .
e. CHECK—Display amplitude is at least 3.5 divisions.


Fig. 3-2. Bandwidth check test setup.

\section*{5. Channel 2 Bandwidth}
a. Set: Vertical Mode

CH 2
b. Move the sine-wave generator output (through \(50 \Omega\) cable and \(50 \Omega\) termination) from CH 1 input connector to CH 2 input connector.
c. Set generator frequency to 50 kHz (reference) and adjust output amplitude for a 5 division display.
d. Set generator frequency to 35 MHz .
e. CHECK—Display amplitude is at least 3.5 divisions.
f. Disconnect test equipment.
6. X-Axis Bandwidth
a. Set: SOURCE
Vertical Mode
CH 1 AC-GND-DC
\(X-Y\)
CH 2
CH 2 AC-GND-DC
AC
GND
b. Connect sine-wave generator though \(50 \Omega\) cable, without \(50 \Omega\) termination, to \(X(\mathrm{CH} 1)\) input.
c. Set generator frequency to 50 kHz (reference) and adjust output amplitude for 10 divisions (about 1 volt) of horizontal deflection.
d. Set generator frequency to 2 MHz .
e. CHECK—Display amplitude is at least seven divisions.
f. Disconnect test equipment.
g. Set SOURCE to \(\mathrm{CH} 1 / \mathrm{CH} 2\); MODE to NORM.

\section*{NOTE}

When making trigger checks, adjust the LEVEL control, POSITION controls, and INTENSITY as needed for a stable visible display, unless instructed otherwise.


Fig. 3-3. X Gain, Triggering, and Z -axis input check test setup.

\section*{7. \(\mathbf{2} \mathbf{M H z}\) Internal Triggering}
a. Connect test equipment as shown in Fig. 3-3.
b. Set: CH 1 VOLTS/DIV 1 V SEC/DIV \(\quad .1 \mu \mathrm{~s}\) \(\mathrm{X} 1-\mathrm{X} 10 \quad \mathrm{X} 1\) (fully ccw detent) SOURCE \(\quad \mathrm{CH} 1 / \mathrm{CH} 2\)
c. Set sine-wave generator frequency for 2 MHz and adjust output amplitude for a 0.5 -division display.
d. CHECK-Stable display can be obtained in both the +OUT and -IN positions of the SLOPE switch for both AUTO and NORM.
e. CHECK-Stable display can be obtained in DC as well as AC CPLG.

\section*{8. \(\mathbf{2} \mathbf{M H z}\) External Triggering}
a. Set: CH 1 VOLTS/DIV .1 V
b. Adjust sine-wave generator output amplitude for 100 mV (one division on crt ).
c. Set: SOURCE

EXT
d. CHECK-Stable display can be obtained in both the + (out) and -(in) positions of the SLOPE switch for both AUTO and NORM.

\section*{9. 35 MHz Internal Triggering}
a. Set: SOURCE
\(\mathrm{CH} 1 / \mathrm{CH} 2\)
CH 1 VOLTS/DIV
X1-X10 (variable)
50 mV X10 (fully cw detent)
b. Set sine-wave generator frequency for 35 MHz and output amplitude for a 3-division display; then set CH 1 VOLTS/DIV to .1 V .
c. CHECK-Stable display can be obtained in both the +OUT and -IN positions of the SLOPE switch for both AUTO and NORM modes.
d. CHECK-Stable display can be obtained in DC as well as AC CPLG.

\section*{10. 35 MHz External Triggering}
a. Set: SOURCE
EXT
b. CHECK-Stable display can be obtained in both the + OUT and -IN positions of the SLOPE switch for both AUTO and NORM.
e. CHECK-Stable display can be obtained in DC as well as AC CPLG.

\section*{11. Z-Axis Input}
\begin{tabular}{ll} 
a. Set: & CH 1 VOLTS/DIV \\
SEC/DIV & 1 V \\
SOURCE & .1 ms \\
MODE & \(\mathrm{CH} 1 / \mathrm{CH} 2\) \\
& AUTO \\
& X1-X10 (variable) \\
& X1 (fully ccw \\
&
\end{tabular}
b. Set sine-wave generator frequency to 50 kHz and adjust output amplitude for a 5-division display.
c. Disconnect \(50 \Omega\) cable from EXT (external trigger) input, and connect it to EXT Z AXIS connector at rear of instrument.
d. CHECK-Trace modulation is noticeable at normal intensity. (Adjust LEVEL control as required to obtain stable display).
e. Disconnect test setup.

\section*{12. Low Frequency Triggering}
a. Set: SEC/DIV
10 ms VOLTS/DIV (CH 1) 2 mV
CH 1 AC-GND-DC DC
MODE
NORM
b. Connect 10 X probe to CH 1 input.
c. Lay probe near ac line voltage source and adjust CH 1 VOLTS/DIV switch and VAR control for a 0.4division display.
d. CHECK-Stable display can be obtained in both the + (out) and -(in) positions of the SLOPE switch for AUTO and NORM modes, and LINE and CH 1/CH 2 SOURCE positions.
e. Remove probe.
f. Return VAR to detent; MODE to NORM; and SOURCE to INT.

\section*{13. A and B Sweep Rate Accuracy}

\section*{NOTE}

For T932A, use the procedure for the A sweep only.
a. Connect test setup as shown in Fig. 3-4.
b. Set: CH 1 VOLTS/DIV . 2 V SOURCE MODE
X1-X10
SLOPE
LEVEL
POSITION (all)

CH 1/CH 2
NORM
X1 (fully cow)
As needed
As needed
As needed
c. CHECK-A sweep SEC/DIV accuracy according to Table 3-3; one or two time marks, as indicated, within 3\% ( 0.24 div) over center eight divisions. Accuracy specifications apply for a temperature range of \(+20^{\circ} \mathrm{C}\) to \(+30^{\circ} \mathrm{C}\).
d. Set: DISPLAY MODE B
e. CHECK—B sweep accuracy according to Table 3-3. Display one or two time marks as indicated within \(3 \%\) (within 0.24 div ) over the center 8 divisions \(\left(+20^{\circ} \mathrm{C}\right.\) to \(+30^{\circ} \mathrm{C}\) ).


Fig. 3-4. Timing accuracy and delay time check test setup.

TABLE 3-3
A and B Sweep Timing Accuracy
\begin{tabular}{c|c|c}
\hline \begin{tabular}{c} 
SEC/DIV \\
Setting
\end{tabular} & \begin{tabular}{c} 
Time-Mark \\
Generator \\
Output
\end{tabular} & \begin{tabular}{c} 
CRT Display \\
(Markers/ \\
Divisions)
\end{tabular} \\
\hline \hline \(.1 \mu \mathrm{~s}\) & 0.1 microsecond & \(1^{\mathrm{a}}\) \\
\(.2 \mu \mathrm{~s}\) & 0.1 microsecond & 2 \\
\(.5 \mu \mathrm{~s}\) & 0.5 microsecond & 1 \\
\(1 \mu \mathrm{~s}\) & 1 microsecond & 1 \\
\(2 \mu \mathrm{~s}\) & 1 microsecond & 2 \\
\(5 \mu \mathrm{~s}\) & 5 microseconds & 1 \\
\(10 \mu \mathrm{~s}\) & 10 microseconds & 1 \\
\(20 \mu \mathrm{~s}\) & 10 microseconds & 2 \\
\(50 \mu \mathrm{~s}\) & 50 microseconds & 1 \\
.1 ms & 0.1 millisecond & 1 \\
.2 ms & 0.1 millisecond & 2 \\
.5 ms & 0.5 millisecond & 1 \\
1 ms & 1 millisecond & 1 \\
2 ms & 1 millisecond & 2 \\
5 ms & 5 milliseconds & 1 \\
10 ms & 10 milliseconds & 1 \\
20 ms & 10 milliseconds & 2 \\
50 ms & 50 milliseconds & 1 \\
& & \\
& A Sweep Only & \\
.1 s & 0.1 s & 1 \\
.2 s & 0.1 s & 2 \\
.5 s & 0.5 s & 1 \\
\hline
\end{tabular}
\({ }^{2}\) Exclude the first \(\mathbf{. 5}\) div ( \(\mathbf{5 0} \mathbf{~ n s}\) ) at this sweep speed.

\section*{14. MAGNIFIED SWEEP ACCURACY}
a. Set: \(\mathrm{X} 1-\mathrm{X} 10\)

SEC/DIV
X10 (fully cw)
DISPLAY MODE
SOURCE
\(0.1 \mu \mathrm{~s}\)
A
CH 1/CH 2 (see note)
b. Set time-mark generator to 10 ns (adjust CH 1 VOLTS/DIV as necessary for a visible display).

\section*{NOTE}

If you cannot obtain a stable display, connect the time-mark generator trigger output to the EXT (external trigger) connector via a \(50 \Omega\) cable and \(50 \Omega\) termination. Set MODE to EXT and adjust LEVEL control for a stable display.
c. CHECK-Magnified sweep accuracy according to Table 3-4: One or two time marks as indicated, within \(5 \%\) ( 0.4 div ) over center 8 divisions. Exclude the first 50 ns after the start of the sweep ( 5 divisions for the \(0.1 \mu \mathrm{~s}\) setting; 2.5 divisions for the \(0.2 \mu\) s setting; one division for \(0.5 \mu \mathrm{~s}\) and \(1 \mu \mathrm{~s}\) settings), and anything beyond the 100th magnified division. Accuracy specifications apply for a temperature range of \(+20^{\circ} \mathrm{C}\) to \(+30^{\circ} \mathrm{C}\).
d. Set: DISPLAY MODE B
e. Repeat part c .
f. Return \(\mathrm{X} 1-\mathrm{X10}\) control to X 1 (fully counterclockwise).

TABLE 3-4
Magnified Sweep Timing Accuracy
\begin{tabular}{c|c|c}
\hline \begin{tabular}{c} 
SEC/DIV \\
Setting
\end{tabular} & \begin{tabular}{c} 
Time-Mark \\
Generator \\
Output
\end{tabular} & \begin{tabular}{c} 
CRT Display \\
(Markers/ \\
Division)
\end{tabular} \\
\hline \hline \(.1 \mu \mathrm{~s}\) & 10 nanosecond & 1 \\
\(.2 \mu \mathrm{~s}\) & 10 nanosecond & 2 \\
\(.5 \mu \mathrm{~s}\) & 50 nanosecond & 1 \\
\(1 \mu \mathrm{~s}\) & .1 microsecond & 1 \\
.5 ms & 50 microsecond & 1 \\
\hline
\end{tabular}
15. Delay Time Position (T935A only)
a. Set:
\begin{tabular}{ll} 
A SEC/DIV & .5 ms \\
B SEC/DIV (pull & \\
out to separate) & \(5 \mu \mathrm{~s}\) \\
VOLTS/DIV & 5 V
\end{tabular}
DISPLAY MODE .5 V
SOURCE
A INTEN BY B
SOURCE
X1-X10
\(\mathrm{CH} 1 / \mathrm{CH} 2\)
X 1 (fully ccw )
b. Adjust the time-mark generator for .5 ms .
c. Move the trace horizontally so you can see the start of the sweep at the left edge of the graticule.
d. CHECK-With the DELAY TIME POSITION control fully counterclockwise, the intensified portion of the sweep should be less than 0.5 div from the start of the sweep. With the DELAY TIME POSITION control fully clockwise, the dot should be at least 10 div from the start of the sweep (to the right of the graticule area).
16. Delay Time Jitter (T935A only)
a. Position the start of the intensified portion of the sweep on the tenth time marker.
b. Set: MODE DISPLAY MODE

AUTO
B
c. Adjust the Horizonal POSITION control so the display is in the center of the screen.
d. Set: INTENSITY
e. CHECK—Horizontal jitter is 1 division or less.
f. Disconnect test equipment.

\section*{17. TV TRIGGER}

\section*{NOTE}

We recommend that you only check the TV Trigger if you are going to be using it. Any TV signal source will do for the check-such as a TV set.

The amplitude settings given in this procedure are to check both the \(\mathrm{CH} 1 / \mathrm{CH} 2\) and EXT trigger requirements. You can check just the \(\mathrm{CH} 1 / \mathrm{CH} 2\) trigger by using the VOLTS/DIV settings to attenuate the signal to 1 div of composite sync or 2.3 div of composite video.
a. Connect test setup as shown in Fig. 3-5.


Fig. 3-5. TV trigger check test setup.
h. Set: SOURCE EXT
i. Adjust LEVEL and SLOPE as needed to trigger display.
j. CHECK—Stable display is present (display triggers on TV line).
\[
\text { k. Set: SEC/DIV } \quad .1 \mathrm{~ms}
\]
I. CHECK—Stable display is present (display triggers on TV field).
m. Disconnect test setup.

END OF PROCEDURE

\section*{WARNING}

THE FOLLOWING SERVICING INSTRUCTIONS ARE FOR USE BY QUALIFIED PERSONNEL ONLY. TO AVOID PERSONAL INJURY, DO NOT PERFORM ANY SERVICING OTHER THAN THAT CONTAINED IN OPERATING INSTRUCTIONS UNLESS YOU ARE QUALIFIED TO DO SO.

\section*{ADJUSTMENTS}

\section*{WARNING}

SERVICING INFORMATION IN THE FOLLOWING SECTIONS IS INTENDED FOR USE BY QUALIFIED SERVICE PERSONNEL ONLY. TO AVOID ELECTRIC SHOCK, DO NOT REMOVE INSTRUMENT COVERS OR PERFORM ANY SERVICING UNLESS QUALIFIED TO DO SO.

\section*{IMPORTANT—PLEASE READ BEFORE USING THIS PROCEDURE}

When done properly, this procedure allows you to adjust the instrument to its original performance specifications. The Adjustment Procedure is not intended as a troubleshooting guide. Any trouble you find during the procedure should be corrected before continuing. Refer to the Service Information section for further information.

\section*{LIMITS AND TOLERANCES}

Limits and tolerances are instrument specifications only if they are called out as performance requirements in the Specification section. Tolerances given are for the oscilloscope under test and do not include test equipment error.

\section*{ADJUSTMENT INTERACTION}

Some adjustments interact with others. These are identified with an INTERACTION step.

\section*{PARTIAL PROCEDURES}

You can perform part of the adjustment procedure after replacing components or just to touch up the performance between major re-adjustments. Do not change the setting of the -8 V supply unless you intend to re-adjust the entire instrument.

To adjust only part of the instrument, set the controls according to the nearest preceding Control Settings and use the test setup given in the step you intend to perform or the setup in a preceding step. To prevent unnecessary re-adjustment only if the tolerance given for that step is not met. If it is necessary to reset an adjustment, also check any steps listed in the INTERACTION-part of the step.

\section*{TEST EQUIPMENT REQUIRED}

The test equipment listed in Table 4-1, or equivalent is required for complete calibration of the oscilloscope. Specifications given for the equipment are the minimum necessary for accurate calibration.

Scan by Zenith

TABLE 4-1
Test Equipment
\begin{tabular}{|c|c|c|c|}
\hline Description & Minimum Specifications & Usage & Examples of Applicable Test Equipment \\
\hline 1. Digital Voltmeter & Range, 0 to 9 V dc; accuracy within 0.3\%. & Power supply adjustment. & a. Tektronix DM 501 Digital Multimeter. \({ }^{\text {a }}\) \\
\hline 2. Time-Mark Generator & Markers, \(0.5 \mu \mathrm{~s}\) to 0.5 s ; accuracy, within \(0.3 \%\). & Y-axis alignment, geometry adjustment, sweep and timing adjustments. & \begin{tabular}{l}
a. Tektronix TG 501 Time-Mark Generator. \({ }^{\text {a }}\) \\
b. Tektronix 2901 TimeMark Generator.
\end{tabular} \\
\hline 3. Amplitude Calibrator & Signal Amplitude, 10 mV to 50 V square wave; frequency, 1 kHz ; amplitude accuracy, within \(0.3 \%\). & Vertical gain adjustment. & a. Tektronix PG 506 Calibration Generator. \({ }^{\text {a }}\) \\
\hline 4. Square-Wave Generator & Frequency, 1 kHz and 100 kHz ; risetime, 2 ns or less. & High frequency compensation and vertical attenuator adjustments. & \begin{tabular}{l}
a. Tektronix PG 506 Calibration Generator. \({ }^{\text {a }}\) \\
b. Tektronix Type 106 Square-Wave Generator.
\end{tabular} \\
\hline 5. Cable & Length, 42 in.; impedance, \(50 \Omega\); connectors, bnc. & Signal interconnection. & a. Tektronix Part 012-0057-01. \\
\hline 6. Termination & Impedance, \(50 \Omega\); connectors bnc. & Signal termination. & a. Tektronix Part 011-0049-01. \\
\hline 7. Low-Capacitance Alignment Tool & & Variable capacitor adjustments. Vertical attenuator and highfrequency compensation adjustment. & a. General Cement adjustment tool G.C. 8722. \\
\hline 8. Screwdriver & Length, 3 in. shaft; bit size, 3/32 in. & Variable resistor adjustments. & a. Xcelite R-3323. \\
\hline 9. 10X Attenuator & Ratio, 10X; impedance, \(50 \Omega\); connectors, bnc. & Vertical attenuator adjustments. & a. Tektronix Part 011-0059-02. \\
\hline 10. Probe, \(10 x\) & Attenuation, 10X; Probe can be compensated for input characteristics of T932A/T935A. & Vertical attenuator compensation. & \begin{tabular}{l}
a. P6108, Tektronix \\
Part 010-6108-03 \\
(Standard accessory for T932A and T935A.)
\end{tabular} \\
\hline 11. Adapter & Probe-tip-to-bnc. & Vertical attenuator. compensation. & a. Tektronix Part 013-0084-02. \\
\hline
\end{tabular}

\footnotetext{
\({ }^{\text {a }}\) Requires TM 500 Series Power Module
}

\section*{PRELIMINARY PROCEDURE}

\section*{WARNING}

Dangerous potentials exist at several points inside your instrument. To prevent electrical shock, do not touch exposed connections or components when the instrument is operated with the cover removed. Disconnect power cord plug from power input voltage source while disassembling or repairing this instrument.
1. Remove the cabinet from the instrument. To remove the cabinet, remove the six retaining screws (three on the top and three on the bottom) and slide the halves apart.
2. Check the \(120 \mathrm{~V} / 240 \mathrm{~V}\) range selector switch, S 701 , and the High/Low selector switch, S705, for correct settings. Both switches are located on the bottom of the instrument. If you change the setting of the range selector switch, change the line fuse. Refer to the Replaceable Electrical Parts list for correct fuse values.
3. Connect the T932A or T935A and test equipment to an appropriate power input source. Turn them on and allow at least 20 minutes warmup before starting the adjustment procedure.

For best overall accuracy, make adjustments at an ambient temperature of \(+20^{\circ} \mathrm{C}\) to \(+30^{\circ} \mathrm{C}\).

\section*{A. DISPLAY AND POWER SUPPLY}

\section*{Equipment Required}
1. Digital Voltmeter
2. Time-Mark Generator
3. \(50 \Omega \mathrm{BNC}\) Cable
4. \(50 \Omega\) Termination
5. Screwdriver
6. Low-Capacitance Alignment Tool

\section*{PRELIMINARY CONTROL SETTINGS}

Preset front panel controls as follows:
note
Do not preset internal controls.

INTENSITY
Vertical Mode
CH 1 VOLTS/DIV
VOLTS/DIV VAR (both)
AC-GND-DC (both)
A \& B SEC/DIV
X1-X10
SOURCE
MODE
SLOPE
LEVEL
CH 1 POSITION
Horizontal POSITION
HOLD-OFF
DISPLAY mode

Midrange
CH 1
\(1 \mathrm{~V}(1 \mathrm{X})^{1}\)
Detent (cw)
GND
.1 ms
X1 (fully cow)
CH 1/CH 2
AUTO
+ (out)
Midrange
Midrange
Midrange
Fully cew
A

Set all other controls as desired. The oscilloscope should produce a baseline trace with the controls set as above. Adjust the INTENSITY and FOCUS controls (on front panel), and ASTIG control (left side of cabinet) as needed to maintain a well-defined display.

\section*{1. -8 V Power Supply}

\section*{note}

Do not change the setting of the -8 V adjustment unless you intend to re-adjust the entire instrument.
a. Connect digital voltmeter between the -8 V side of R775 and ground (see Fig. 4-1). If meter does not read between -7.96 V and -8.04 V , proceed to part b .
b. ADJUST—R773, -8 V Adj (see Fig. 4-1) for -8.00 V dc.
c. Disconnect digital voltmeter.


Fig. 4-1. Power supply adjustment locations (on bottom of chassis).

\footnotetext{
'Reters to window on VOLTS/DIV switch knob. Use 1X probe window unless otherwise specified in individual steps of the procedure.
}

\section*{2. Trace Rotation}
a. Position trace vertically to the center horizontal graticule line.
b. ADJUST-Trace Rot, R472 (see Fig. 4-2), to align trace with center horizontal graticule line.

\section*{3. \(\mathbf{Y}\)-Axis Alignment}
a. Set \(\mathrm{CH} 1 \mathrm{AC}-\mathrm{GND}-\mathrm{DC}\) to DC .
b. Connect .1 ms markers from time-mark generator to CH 1 input via \(50 \Omega \mathrm{BNC}\) termination and \(50 \Omega \mathrm{BNC}\) cable.
c. Set CH 1 VOLTS/DIV and VAR to obtain slightly more than 8 divisions of vertical deflection and position display baseline below bottom graticule line (off screen).
d. Set SEC/DIV to obtain about one marker/division and rotate horizontal POSITION to align a marker with center graticule line.
e. ADJUST-Y-axis, R474, (see Fig. 4-2) to align center marker with center vertical graticule line.
f. INTERACTION-Position display baseline to center horizontal graticule line and check that baseline aligns with horizontal graticule line. If not, re-adjust trace rotation. Then re-check \(Y\)-Axis alignment.

\section*{4. Geometry}
a. Move display baseline slightly below bottom graticule line.
b. ADJUST-Geom, R473 (see Fig. 4-2) for best alignment of markers with the vertical graticule lines, i.e.: minimum bowing of markers.
c. INTERACTION-Between Geom and Y-Axis. Repeat both adjustments for best alignment of markers with vertical graticule lines.
d. Disconnect time-mark generator.


Fig. 4-2. Interface board adjustment locations (on left side of crt).

\section*{B. VERTICAL AMPLIFIER}
\begin{tabular}{ll} 
Equipment Required & \\
\begin{tabular}{ll} 
1. Digital Voltmeter & 6. Low Capacitance Alignment Tool \\
2. Amplitude Calibrator & 7. Screwdriver \\
3. Square-Wave Generator & 8. \(10 X\) Probe \\
4. \(50 \Omega\) BNC Termination & 9. 10X Attenuator \\
5. \(50 \Omega\) BNC Cable & 10. Probe-tip-to-BNC Adapter \\
& 11. Dual Input Coupler (optional)
\end{tabular}
\end{tabular}

\section*{PRELIMINARY CONTROL SETTINGS}

Preset front panel controls as follows:
\begin{tabular}{ll} 
INTENSITY & \begin{tabular}{l} 
Midrange (for visible \\
trace)
\end{tabular} \\
HOLD-OFF & Fully ccw \\
FOCUS & Midrange \\
Vertical Mode & CH 1 \\
VOLTS/DIV (both) & \(2 \mathrm{mV}(1 \mathrm{X})^{1}\) \\
AC-GND-DC (both) & GND \\
VAR (both) & Detent (cw) \\
A SEC/DIV & .5 ms \\
X1-X10 & X1 (fully ccw detent) \\
SOURCE & CH 1/CH 2 \\
MODE & AUTO \\
SLOPE & + (out) \\
LEVEL & Midrange \\
POSITION (all) & Midrange \\
DISPLAY MODE & A
\end{tabular}

Set all other controls as desired.

The oscilloscope should produce a baseline trace with the controls set as above. Adjust INTENSITY and FOCUS controls as needed to maintain a well-defined display while making adjustments.

\section*{PROCEDURE}

\section*{1. Vertical Preamplifier Balance}
a. ADJUST-CH 1 DC BAL, R4130 (see Fig. 4-3), for no trace shift while switching CH 1 VOLTS/DIV control between 2 mV and 10 mV .
c. ADJUST-CH 2 DC BAL, R4232 (see Fig. 4-3), for no trace shift while switching CH 2 VOLTS/DIV control between 2 mV and 10 V .

\section*{2. Vertical Output Amplfier Gain}

NOTE
You should not have to re-adjust the vertical output gain unless you have replaced the crt or other components, or adjustments have accidentally been altered.
a. Set VOLTS/DIV (both) to \(5 \mathrm{mV} / \mathrm{div}\) and Vertical Mode to CH 1.
b. Set Gain, R126 (see Fig. 4-2), to physical midrange.
c. Connect digital voltmeter between P4-9 and P4-11 (see Fig. 4-3). Select range on meter for at least 500 mV reading.
d. Set vertical POSITION control so trace is aligned with center horizontal graticule line. Note meter reading.
e. Rotate vertical POSITION control until meter reading has changed 150 mV positive from reading in part d (trace moved toward top of screen).
f. Adjust Gain, R126 (see Fig. 4-2), so trace aligns with third graticule line above center horizontal graticule line.
g. Disconnect digital voltmeter.
b. Set: Vertical Mode

CH 2

\footnotetext{
\({ }^{1}\) Refers to window on VOLTS/DIV switch knob. Use 1X probe window unless otherwise specified in individual steps of the procedure.
}


Fig. 4-3. Vertical Amplifier adjustment locations (bottom view of instrument).

\section*{3. Vertical Preamplifier Gain}
a. Set: VOLTS/DIV (both) \(5 \mathrm{mV}^{1}\)

AC-GND-DC (both) DC
Vertical Mode CH 1
b. Connect a \(1 \mathrm{kHz}, 20 \mathrm{mV}\) amplitude calibrator (standard output) signal to CH 1 input via a \(50 \Omega\) unterminated cable. Set CH 1 POSITION to center the display vertically.
c. ADJUST-Gain, R4151 (see Fig. 4-3), for a 4division display.
d. Move 20 mV amplitude calibrator signal to CH 2 input and set Vertical Mode to CH 2. Set CH 2 POSITION to center the display vertically.
e. ADJUST-Gain, R4351 (see Fig. 4-3), for 4-division display.
f. INTERACTION-If you cannot adjust CH 1 and CH 2 Preamplifier Gain for 4-division display, repeat steps 2 and 3.
g. Disconnect test equipment.

\section*{NOTE}

For convenience in the following steps, set the TIME BASE to 1 ms (SEC/DIV to 1 ms and X1-X10 to X1) while adjusting the generator for a 5-division display. Then set TIME BASE TO \(50 \mu\) (SEC/DIV to \(5 \mu\) and \(\times 1-\times 10\) to \(\times 10\) ) when observing or adjusting leading edge detail.

\section*{4. High Frequency Compensation}
a. Set: VOLTS/DIV (both)
\(2 \mathrm{mV}^{1}\)
Vertical Mode CH 2
AC-GND-DC (both)
A SEC/DIV
DC 1 ms
b. Connect square-wave generator (fast rise, +transition) to Channel 2 input connector via \(50 \Omega\) cable, 10X attenuator, and \(50 \Omega\) termination.
c. Set square-wave generator for 100 kHz , fast rise, and amplitude for 5 -division display. Set SEC/DIV to \(.5 \mu \mathrm{~s}\), and INTENSITY as necessary to view the display.
d. Set POSITION and LEVEL controls to position the leading edge of the signal on screen.
e. ADJUST-C4397, R4397, C4396, R4396 (see Fig. 43), C114, R114, C118 (see Fig. 4-2), for best front corner of waveform using a low-capacitance alignment tool.

\footnotetext{
'Refers to window on VOLTS/DIV switch knob. Use 1X probe window unless otherwise specified in individual steps of procedure.
}
f. Set: Vertical Mode

CH 1
g. Connect square-wave generator to Channel 1 input connector via \(50 \Omega\) cable, 10 X attenuator, and \(50 \Omega\) termination.
h. ADJUST-C4154 (see Fig. 4-3), for best square front corner of waveform using low-capacitance alignment tool.
i. INTERACTION-If you cannot obtain square front corner, re-adjust C4396, R4396, C4397, R4397, C114, C 118 , and R114 for best square front corner in both CH 1 and CH 2 .
j. Disconnect test equipment.

\section*{5. Channel 1 Attenuator Compensation}
\[
\text { a. Set: } \begin{array}{cl}
\text { CH } 1 \text { VOLTS/DIV } & 20 \mathrm{mV}^{1} \\
\text { CH 1 AC-GND-DC } & \text { DC } \\
\text { Vertical Mode } & \text { CH } 1 \\
\text { A SEC/DIV } & 1 \mathrm{~ms} \\
\text { X1-X10 } & \text { X10 (fully } \mathrm{cw} \text { ) }
\end{array}
\]
b. Connect a \(50 \Omega\) cable from the high-amplitude output of the square-wave generator, through a 10 X attenuator and a \(50 \Omega\) termination to the CH 1 input connector. Set generator to 1 kHz and adjust for a 5division display.
c. ADJUST-C4114 (see Fig. 4-3) for best square front corner (see Fig. 4-4 for example).
d. Remove 10X attenuator and set CH 1 VOLTS/DIV to . 2 V . Set generator output for a 5 -division display.
e. ADJUST-C4105 (see Fig. 4-3) for best square front corner (see Fig. 4-4 for example). Disconnect test equipment.
f. Set CH 1 VOLTS/DIV to 10 mV and \(\mathrm{X} 1-\mathrm{X} 10\) to X 1 (fully ccw).
g. Connect a 10 X probe to the CH 1 input. Connect the probe tip to a probe tip-to-bnc adapter, the adapter to a \(50 \Omega\) bnc termination, and the termination to a \(50 \Omega\) bnc 10X attenuator attached to the square-wave generator high-amplitude output connector. Set generator for a 5division, 1 kHz display.
h. Compensate probe for best front corner of waveform.
i. Set CH 1 VOLTS/DIV to 20 mV and set generator for a 5-divison display (remove 10X attenuator if necessary).
j. ADJUST-C4113 for flat top on square wave.
k. Set CH 1 VOLTS/DIV to .2 V , and square-wave generator output for a 5-division display (remove 10X attenuator, and also \(50 \Omega\) termination if necessary).
I. ADJUST-C4104 for a flat top on square wave.
m. Disconnect test equipment.


Fig. 4-4. Display of correct attenuator compensation (idealized).
'Refers to window on VOLTS/DIV switch knob. Use 1X probe window unless otherwise specified in individual steps of the procedure.

\section*{6. CH 2 Attenuator Compensation}
a. Set: CH 2 VOLTS/DIV \(20 \mathrm{mV}^{1}\)
Ch 2 AC-GND-DC DC
Vertical Mode \(\quad \mathrm{CH} 2\)
A SEC/DIV 1 ms
\(\mathrm{X} 1-\mathrm{X} 10 \quad \mathrm{X} 10\) (fully cw )
POSITION (all) As required
b. Connect a \(50 \Omega\) cable from the high-amplitude output of the square-wave generator, through a 10 X attenuator, and a \(50 \Omega\) termination to the CH 2 input connector. Set generator to 1 kHz and adjust for 5-division display.
c. ADJUST-C4214 (see Fig. 4-3) for best square front corner (see Fig. 4-4 for example).
d. Remove 10X attenuator and set CH 2 VOLTS/DIV to . 2 V . Set generator output for a 5 -division display.
e. ADJUST-C4205 (see Fig. 4-3) for best square front corner (see Fig. 4-4 for example). Disconnect test equipment.
f. Set CH 2 VOLTS/DIV to 10 mV and \(\mathrm{X} 1-\mathrm{X} 10\) to X 1 (fully ccw).
g. Connect a 10 X probe to the CH 1 input. Connect the probe tip to a probe tip-to-bnc adapter, the adapter to a \(50 \Omega\) bnc termination, and the termination to a \(50 \Omega\) bnc 10X attenuator attached to the square-wave generator high-amplitude output connector. Set generator for a 5division, 1 kHz display.
h. Compensate probe for best front corner of waveform.
i. Set CH 2 VOLTS/DIV to 20 mV and set generator for a 5-division display (remove 10X attenuator if necessary).
j. ADJUST-C4213 for flat top on square wave.
k. Set CH 2 VOLTS/DIV to .2 V , and square-wave generator output for a 5-division display (remove 10X attenuator, and also \(50 \Omega\) termination if necessary).
I. ADJUST-C4204 for a flat top on square wave.
m. Disconnect test equipment.

\footnotetext{
\({ }^{\prime}\) Refers to window on VOLTS/DIV switch knob. Use 1X probe window unless otherwise specified in individual steps of the procedure.
}

\section*{C. TIME BASE}

\section*{Equipment Required}
1. Time-Mark Generator
2. \(50 \Omega\) Termination

\section*{PRELIMINARY CONTROL SETTINGS}

Preset front panel controls as follows:
INTENSITY
FOCUS
Vertical Mode
CH 1 VOLTS/DIV
CH 1 VAR
CH 1 AC-GND-DC
CH 2 AC-GND-DC
A SEC/DIV
X1-X10
SOURCE
MODE
SLOPE
HOLD-OFF
LEVEL
DISPLAY MODE
POSITION (aII)
DELAY TIME
\(\quad\) POSITION

\section*{Midrange}

Midrange
CH 1
\(.5 \mathrm{~V}^{1}\)
Detent
DC
GND
.5 ms
X1 (fully cew)
CH 1/CH 2
AUTO
+ (out)
Fully cew
Midrange
A
Midrange

Fully ccw
Set all other controls as desired.

The oscilloscope should produce a baseline trace with the controls set as above. Adjust INTENSITY and FOCUS controls as needed to maintain a well-defined display while making adjustments.

\section*{PROCEDURE}

\section*{1. Horizontal Gain}
a. Connect a \(50 \Omega\) cable from the time-mark generator to a \(50 \Omega\) termination at the CH 1 input. Set generator for .5 ms markers.
b. ADJUST-Horiz Cal, R2332 (see Fig. 4-5), and horizontal POSITION control for 1 marker per division over center 8 divisions.

\section*{2. A and B Sweep Timing}

NOTE
For T932A, use steps \(2 a\) and \(2 b\) only.
a. Set SEC/DIV to \(.5 \mu\) s and the generator for \(.5 \mu\) s time marks.
b. ADJUST-C2235 (see Fig. 4-5), and horizontal POSITION control for 1 marker per division over center 8 divisions.
c. Set: DISPLAY MODE B
d. ADJUST-C2535 and horizontal POSITION control for 1 marker per division over center 8 divisions.
e. Disconnect test equipment.

\section*{3. X10 Gain}
a. Set: MAGNIFIER
X10 (cw)
A SEC/DIV
1 ms
b. Set time mark generator for .1 m .
c. ADJUST-R2321 (see Fig. 4-5) for one marker per division over 8 divisions. Use POSITION control.
d. Move MAGNIFIER control through X10 to X 1 and note there are 10 markers per division.

\footnotetext{
'Refers to window on VOLTS/DIV switch knob. Use 1X probe window unless otherwise specified in individual steps of the procedure.
}


Fig. 4-5. Time Base adjustment locations (on right side of instrument).

\section*{D. TRIGGERS}

\section*{Equipment Required}
1. Sine-Wave Generator
2. Square-Wave Generator
3. \(50 \Omega\) Termination (2)
4. \(50 \Omega\) BNC Cable
5. Dual Input Coupler
6. Alignment Tool
1. Trigger Slope and Level Centering

NOTE
Re-check Vertical Preamplifier Balance (B. 1., this section) before making trigger adjustments. See that SOURCE is \(\mathrm{CH} 1 / \mathrm{CH} 2\).
a. Connect sine wave generator to both channels through \(50 \Omega\) cables, dual input coupler, and \(50 \Omega\) terminators.
\[
\begin{array}{lll}
\text { b. Set: } & \text { A SEC/DIV } & 10 \mu \\
& \text { VOLTS/DIV (both) } & 10 \mathrm{~m} \\
& \text { AC-GND-DC (both) } & \text { DC } \\
& \text { Vertical Mode } & \text { CH } 1
\end{array}
\]
c. Set sine wave generator to 50 kHz and adjust amplitude for 4 divisions on crt screen. Center display with Channel 1 POSITION control.
d. ADJUST-Horizontal POSITION so sweep start is visible.
e. ADJUST-LEVEL so sweep starts at center line.

DC
g. ADJUST-Internal Trigger DC Level, R2027, (see Fig. 4-9) to bring sweep to center line.
h. Set: SOURCE

COMP
i. ADJUST-Composite DC Level, R2006 (see Fig. 46 ), to bring sweep to center line.
j. INTERACTION-Between CPLG AC and DC. Then leave CPLG in \(A C\) and return SOURCE to \(\mathrm{CH} 1 / \mathrm{CH} 2\).
k. Set: Vertical Mode

CH 2
I. ADJUST-LEVEL so sweep starts at center line.
m. Set: CPLG

DC
n. ADJUST-Channel 2 DC Trigger Level adjust, R4336 (see Fig. 4-3), so sweep starts at center line.
o. INTERACTION-Between CPLG AC and DC; SOURCE CH 1/CH 2 and COMP; and VERT MODE CH 1 and CH 2. Sweep should stay as close to center line as possible while switching in all positions. Adjust related components to minimize interaction.
p. Disconnect test equipment.

\section*{2. \(X\) Centering}
a. Set: SOURCE
CPLG
\(\mathrm{CH} 1 / \mathrm{CH} 2\)
AC
A SEC/DIV
Vertical Mode
1 m
CH 2
b. ADJUST-Horizontal POSITION so sweep starts at left graticule line.


Fig. 4-6. Trigger board adjustment locations (on left side of crt).
c. Set SOURCE to \(X-Y\).
d. ADJUST-X Centering, R2051 (see Fig. 4-6), so sweep start is at center line.

\section*{3. \(6 \mathrm{X}-\mathrm{Y}\) Gain}
a. Set: Vertical Mode
VOLTS/DIV (both) Channel 1
AC-GND-DC
Channel 2
AC-GND-DC

CH 2
5 m
\(A C\)

GND
d. Set Channel 1 AC-GND-DC to DC.
e. Set generator for 20 mV output.
f. CHECK-4 divisions of deflection in AC CPLG.
b. Connect square-wave generator to Channel 1 input. Adjust generator for \(1 \mathrm{kHz}, 50 \mathrm{mV}\) signal.
c. ADJUST-X Gain R2062 (see Fig. 4-6), for 10 divisions of horizontal deflection.

\section*{SERVICE INFORMATION}

The following information is provided to help you keep your T932A and T935A in good operating condition. We recommend that servicing be done by qualified service personnel only. You can, if you like, send your instrument to a Tektronix Service Center for re-adjustment and repair. Contact your local Tektronix representative for information about the Service Centers in your area.

\section*{CABINET REMOVAL}

\section*{WARNING}

Dangerous potentials exist at several points throughout the T932A and T935A. When operating the instrument with the covers off, avoid touching connections and components. Some transistors have elevated cases. Disconnect the power before cleaning the instrument or replacing parts.

To remove the cover, take out the six screws (top and bottom) holding the two halves together. Pull the two halves apart.

To replace the cover, line up the slots on the cover with the front panel and the rear subpanel and slide together. Replace screws.

\section*{PREVENTIVE MAINTENANCE}

Preventive maintenance consists of cleaning the instrument regularly and inspecting it occasionally for broken or damaged parts. Regular maintenance will improve the reliability of your instrument and prevent breakdowns.

\section*{Cleaning}

Accumulations of dirt and dust on components act as an insulating blanket preventing efficient heat dissipation. Dust on circuit boards and wires can cause arcing and short circuits, resulting in damage to components or even instrument failure. Your instrument should be cleaned before this happens!

The cabinet provides protection from dust and dirt and should be in place during normal operation of the instrument.
\(\{\) CAUTION \(\}\)
Avoid the use of chemical cleaning agents containing benzene, toluene, xylene, acetone or similar solvents. These chemicals may damage the plastics used in this instrument. Recommended cleaning agents are isopropyl alcohol or Kelite (1 part Kelite, 20 parts water).

Exterior. Dust the cabinet with a soft cloth. Dust the front panel controls with a small soft paint brush. Dirt clinging to the surface of the cabinet may be removed with a soft cloth dampened with a mild detergent and water solution. Avoid using abrasive cleaners. They will scratch the cabinet and front panel.

Interior. Dust in the interior of the instruments should be removed before it builds up enough to cause arcing and short circuits during periods of high humidity. Dust is best removed from the interior by dry (approximately \(9 \mathrm{lb} / \mathrm{in}^{2}\) ), low-pressure air. Dirt clinging to surfaces may be removed with a soft paint brush or cloth dampened with a mild detergent and water solution. Use a cotton-tipped applicator for cleaning in narrow spaces and on the circuit boards.

\section*{Switch Contacts}


Do not use acetone, MEK, MIBK, benzene, toluene, carbon tetrachloride, trichloroethylene, methyl alcohol, methylene chloride, sulphuric acid, or Freon TC, TE, TF, TA, 12, 22, to clean the switch contacts. Check the contents of spray coolants and cleaners before using.

Most of the switches are cam-actuated assemblies which do not require frequent maintenance. When maintenance is necessary due to accumulated dirt and dust on the contacts, observe the following precautions: Clean the switch contacts with isopropyl alcohol or a solution of one part Kelite to 20 parts water. If these are not available, petroleum ether, white kerosene, or a solution of \(1 \%\) Joy detergent and \(99 \%\) water may be used.

Recommended circuit coolants are dry ice and isopropyl alcohol.

The cam switch contacts are designed to operate without lubrication. They do require cleaning periodically to remove accumulations of dust and dirt. The use of lubricants, or cleaners that leave a residue, increase dust attraction and should be avoided.

\section*{Visual Inspection}

Inspect the interior occasionally for broken connections, improperly seated semiconductors, damaged or improperly installed circuit boards, heat damaged components, etc. If heat damaged components are found, care must be taken to find the cause of the excessive heat and measures must be taken to prevent recurrence of the damage.

\section*{Lubrication}

Most of the potentiometers are permanently sealed. Both the cam- and lever-type switches are installed with proper lubrication where necessary. Therefore, periodic lubrication is not recommended and only rarely should lubrication even be necessary.

\section*{Semiconductor Checks}

Periodic checks of the semiconductor devices in this instrument are not recommended. The best check of semiconductor performance is actual operation in the instrument.

\section*{Re-adjustment}

Re-adjust the instrument whenever the Performance Check indicates the instrument is not meeting specifications. The Performance Check should be performed on a regular basis; for example, every 1000 hours of operation or every six months.

\section*{TROUBLESHOOTING}

If you perform preventive maintenance on a regular basis, you should correct most problems before your instrument breaks down. Occasionally, you may have to troubleshoot. In addition to the following information, you may find information in the Circuit Description and Diagrams section useful.

\section*{Troubleshooting Aids}

Troubleshooting Chart. Use the troubleshooting chart (Fig. 5-1) to locate problem areas.

Diagrams. Complete circuit diagrams are located on the foldout pages in the Circuit Description and Diagrams section. The component number and electrical value of each component in the instrument are shown on the diagrams (see the first page of the Diagrams section for the definitions of the reference designators used to identify components). Each main circuit is assigned a series of component numbers to assist in identifying their circuit location. Important voltages and waveforms are also shown on the diagrams. Also, a heavy line encloses the portion of the circuit mounted on a circuit board.

Color Codes. The resistors used in this instrument are either brown composition or precision metal-film resistors. The resistors are color-coded with the EIA colorcode. (Some metal-film resistors may have the value printed on the body.) Refer to Fig. 5-2. For the values of the thick film resistors refer to the parts list.

The capacitance values of common disc and some small electrolytic capacitors are marked on the side of the component body. The white ceramic capacitors are colorcoded, using a modified EIA code. (See Fig. 5-2).

The cathode end of each glass-encased diode is indicated by a stripe, a series of stripes, or a dot.

Power Cord Conductor Identification
\begin{tabular}{l|l|l}
\hline Conductor & Color & Alternate Color \\
\hline \hline Ungrounded (Line) & Brown & Black \\
\hline Grounded (Neutral) & Blue & White \\
\hline Grounding (Earthing) & Green-Yellow & Green-Yellow \\
\hline
\end{tabular}

Semiconductor Lead Configuration. Fig. 5-3 shows the lead configuration of the semiconductor devices used in this instrument.

Multi-Connector Holders. The multi-connector holder is keyed with two triangles, one on the holder and one on the circuit board. When a connection is made perpendicular to a circuit board surface, the orientation of the triangle and the slot numbers on the connector holder are determined by the direction of the nomenclature marking (see Fig. 5-4).

TABLE 5-1
Power Supply Tolerance
\begin{tabular}{c|c}
\hline Supply & Tolerance \\
\hline \hline\(-8 \overline{\mathrm{~V}}\) & Set within \(0.5 \%\) \\
\hline+8 V & Within \(3 \%\) \\
\hline+100 V & Within \(5 \%\) \\
\hline
\end{tabular}

\section*{Troubleshooting Equipment}

The following equipment is useful for troubleshooting.
1. Semiconductor Tester

Description: Dynamic-type tester. Must be capable of measuring reverse breakdown voltages of at least 400 V .

Purpose: To test semiconductors.

Example: Tektronix Type 576 Curve Tracer or Tektronix 577 (D1 or D2) Curve Tracer with 177 Test Fixture.

\section*{2. Test Oscilloscope}

Description: Frequency response, dc to at least 15 MHz . A 10X, \(10 \mathrm{M} \Omega\) voltage probe should be used to reduce circuit loading for voltage measurements.

Purpose: To check operating waveforms.

\section*{3. Multimeter}

Description: Non-loading digital multimeter. Voltmeter, \(10 \mathrm{M} \Omega\) input impedance and 0 to 150 V range; dc voltage accuracy, within \(0.15 \%\); display, 4-1/2 digits. Ohmmeter, 0 to \(20 \mathrm{M} \Omega\). ( 2 kV rating required for high voltage supply measurement.)

Purpose: To check voltages and for general troubleshooting.

\section*{4. Variable Autotransformer}

Description: Output variable from 0 to \(140 \mathrm{~V}, 1.2 \mathrm{~A}\) minimum rating. Must have a three-wire power cord, plug and receptacle.

Purpose: To vary the input line voltage when troubleshooting in the power supply.

Example: General Radio W8MT3VM or W10MT3W Metered Variac Autotransformer.
5. Vertical Amplifier Extender Troubleshooting Fixture

Description: 18 inch ribbon cable with an interface connector at each end (Tektronix part 067-0773-00).

Purpose: To operate the vertical amplifier outside the instrument. Useful for troubleshooting the time base which is inaccessible with the vertical amplifier installed.

\section*{Troubleshooting Techniques}

The following checklist is arranged so that you check the simple things before you get the instrument taken apart. Start at the beginning.
1. Check the Control Settings. See the Operating Instructions for the correct control settings.
2. Check Associated Equipment and Connectors. Check to see that the signal source is properly connected and that the interconnecting cables are not defective. Also check the power cord and plug and the power source for defects.
3. Check the Performance of the instrument. If the instrument does not meet specifications, the trouble may be corrected by readjusting the instrument. See the Adjustment Procedure, Section 4, for instructions.
4. Visual Check. A visual check may reveal broken connections, damaged components, semiconductors not firmly mounted, damaged circuit boards, etc.



\section*{Service Information-T932A/T935A}

(A) COLORS IDENTIFY SIGNIFICANT DIGITS IN TEKTRONIX PART NUMBER (E.G. BROWN, GRAY, GREEN STRIPES INDICATE PART NUMBER 152-0185-00)
(1) 2 and 3 1ST, 2ND, AND 3RD SIGNIFICANT FIGS.
(M)

MULTIPLIER

tolerance;
(TC) TEMPERATURE COEFFICIENT.
(B) TOLERANCE; \(\mathrm{F}= \pm \mathbf{1} \%, \mathrm{~J}=5 \%, \mathrm{~K}=10 \%, \mathrm{M}=20 \%\)
(T) AND/OR TC COLOR CODE MAY NOt bE PRESENT ON SOME CAPACITORS;
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{COLOR} & \multirow[t]{3}{*}{SIGNIFICANT FIGURES} & \multicolumn{2}{|l|}{RESISTORS ( \(\Omega\) )} & \multicolumn{3}{|c|}{CAPACITORS (pF)} \\
\hline & & \multirow[t]{2}{*}{MULTIPLIER} & \multirow[t]{2}{*}{TOLERANCE} & \multirow[t]{2}{*}{MULTIPLIER} & \multicolumn{2}{|c|}{TOLERANCE} \\
\hline & & & & & over 10 pF & under 10 pF \\
\hline BLACK & 0 & 1 & --- & 1 & \(\pm 20 \%\) & \(\pm 2 \mathrm{pF}\) \\
\hline BROWN & 1 & 10 & \(\pm 1 \%\) & 10 & \(\pm 1 \%\) & \(\pm 0.1 \mathrm{pF}\) \\
\hline RED & 2 & \(10^{2}\) or 100 & \(\pm 2 \%\) & \(10^{2}\) or 100 & \(\pm 2 \%\) & --- \\
\hline ORANGE & 3 & \(10^{3}\) or 1 K & \(\pm 3 \%\) & \(10^{3}\) or 1000 & \(\pm 3 \%\) & --- \\
\hline YELLOW & 4 & \(10^{4}\) or 10 K & \(\pm 4 \%\) & \(10^{4}\) or 10,000 & +100\% -9\% & --- \\
\hline GREEN & 5 & \(10^{5}\) or 100 K & \(\pm 1 / 2 \%\) & \(10^{5}\) or 100,000 & \(\pm 5 \%\) & \(\pm 0.5 \mathrm{pF}\) \\
\hline BLUE & 6 & \(10^{6}\) or 1 M & \(\pm 1 / 4 \%\) & \(10^{6}\) or 1,000,000 & --- & --- \\
\hline VIOLET & 7 & --- & \(\pm 1 / 10 \%\) & --- & --- & --- \\
\hline GRAY & 8 & --- & --- & \(10^{-2}\) or 0.01 & +80\% - \(20 \%\) & \(\pm 0.25 \mathrm{pF}\) \\
\hline WHITE & 9 & --- & --- & \(10^{-1}\) or 0.1 & \(\pm 10 \%\) & \(\pm 1 \mathrm{pF}\) \\
\hline GOLD & - & \(10^{-1}\) or 0.1 & \(\pm 5 \%\) & --- & --- & --- \\
\hline SILVER & - & \(10^{-2}\) or 0.01 & \(\pm 10 \%\) & --- & - & -- \\
\hline NONE & - & --- & \(\pm 20 \%\) & --- & \(\pm 10 \%\) & \(\pm 1 \mathrm{pF}\) \\
\hline
\end{tabular}

Fig. 5-2. Color code for resistors and capacitors.


TRANSISTORS

\(\qquad\) INTEGRATED \(\qquad\)

Fig. 5-3. Lead configuration for semiconductor devices.


Fig. 5-4. Multi-connector holder orientation.
5. Isolate the Trouble to a Circuit. To isolate trouble to a particular circuit, note the trouble symptom. The symptom often identifies the circuit where the trouble is located. For example, poor focus indicates that the crt circuit (including the high-voltage supply) is probably at fault. When trouble symptoms appear in more than one circuit, check affected circuits by taking voltage and waveform readings.

Incorrect operation of all circuits often indicates trouble in the power supply. Check first for correct voltage of the individual supplies. However, a defective component elsewhere in the instrument can appear as a power supply trouble and may also affect the operation of other circuits. Table 5-1 lists the tolerances of the power supplies. Voltages are measured between the power supply test points and ground. If a power supply voltage is within the listed tolerance, assume the supply is working correctly.

Use the troubleshooting chart to locate trouble. Not all problems appear on the chart. Continue with this checklist in those cases.
6. Check Voltages and Waveforms. Often a defective component can be located by checking for the correct voltages and waveforms in a circuit.

\section*{NOTE}

Voltages and waveforms given on the diagrams are not absolute and therefore may vary slightly between instruments. To obtain operating conditions similar to those used to take these readings, see the voltage and waveform setup procedures in the Diagrams section. Individual deviations should be noted on the schematics for future reference.
7. Check the individual components. Remember that the best check of semiconductors-transistors, diodes, IC's-and thick film resistors is actual operation in a circuit. If you suspect that a semiconductor is bad, substitute a new one for it. Before you start checking IC's, read the part of the Circuit Description that covers the circuit.

\section*{WARNING}

The power switch must be turned off before removing or replacing components to prevent electrical shock or circuit damage.

To check other components, resistors, capacitors, and inductors, clip one lead and lift it. You may have to add a piece of wire when you resolder the connection, however.

Resistors: Check the resistors for discoloration. Then check the resistors with an ohmmeter after disconnecting one end from the circuit. Check the Replaceable Electrical Parts list for the tolerance of the resistors used in this instrument. Resistors normally do not need to be replaced unless the measured value varies widely from the specified value.

Inductors: Check for open inductors by checking continuity with an ohmmeter. (It may be helpful to disconnect one end of the inductor when checking continuity.) Shorted or partially shorted inductors can also be found by checking the waveform response when high-frequency signals are passed through the circuit. Partial shorting often reduces high-frequency response (increases roll-off).

Capacitors: A leaky or shorted capacitor can be detected by checking resistance with an ohmmeter on the highest scale, after disconnecting one end from the circuit. Do not exceed the voltage rating of the capacitor (some ohmmeters use 30 volts as source voltage). The resistance reading should be high after inital charge of the capacitor. An open capacitor can also be detected with a capacitance meter or by checking whether the capacitor passes ac signals.

Switches: The most common cause of switch failure is dust between the contact and the pad. Check the suspected contact for continuity with an ohmmeter. If open and not obviously damaged, try cleaning (see Cam Switch Repair and Replacement).

Another frequent cause of switch failure is solder smoke residue. This can occur when replacing a component near the switch. This problem is usually indicated by reduced high-frequency response. Flushing the contact with isopropyl alcohol usually fixes this problem.

If the contact is physically damaged, replace the contact strip. Bending the contact is only a temporary repair. See Cam Switch Repair and Replacement.
8. After repairing a circuit or replacing components, check the performance of the instrument. If the Performance Check is within specifications, it is not necessary to re-adjust the instrument. If the instrument does not meet the specifications, perform the Adjustment Procedure in Section 4.

\section*{Troubleshooting Hints}

Power. SYMPTOM-No visible trace and no display when the BEAM FINDER button is pushed (Power ON lamp is lit).
a. Does beam appear on screen? If not, rotate INTENSITY control clockwise while holding BEAM FINDER button in until beam appears or control is fully clockwise. If beam does not appear, the trouble may be in the power supplies (see Power Supply schematic).
b. Check all low voltage power supplies, starting with \(-8 \mathrm{~V}(-8 \mathrm{~V}\) is reference supply), the +8 V , and +100 V at appropriate test points.
(1) If no voltage is present, check F700.
(2) If -8 V is low (or zero), check Q772, Q774, Q776, or U742.
(3) If -8 V is correct but +8 V is low (or zero), check Q752, Q754, Q756, and U742 (U742 is used for both -8 and +8 V supplies).
c. Check high-voltage supplies (see CRT and Vertical Amplifier schematic).
(1) Check for -2 kV at pin 1, P465, or pin 2, crt base socket.
(2) If no -2 kV , check for 50 kHz sine wave (approximately 200 V , peak-to-peak) at pin 5 of T460 (high-voltage transformer primary).
(3) If neither -2 kV or 50 kHz sine wave is present, check Q454, Q458, and Q446.


Do not unload the secondary of the high-voltage transformer, T460; the transformer may be damaged.

Z-Axis. SYMPTOM—No intensity or no control over intensity (BEAM FINDER button pushed).
a. Does beam come on screen? If not, and low and high-voltage supplies are correct, trouble may be in ZAxis circuit (see CRT and Vertical Amplifier schematic).
(1) Check for approximately 60 V swing between crtsocket pins 2 and 3 . If no voltage swing, trouble may be in unblanking.
(2) Check for pulse at Q416 emitter. This pulse amplitude should vary from 20 to 80 mV with change (fully cw to fully ccw) in INTENSITY control position.
(3) Check for 0-40 V, peak-to-peak unblanking pulse (varies with INTENSITY control position) at Q426 collector.
(4) If no unblanking pulse, check Q426, Q424, Q416, or Q434.

VERTICAL: SYMPTOM 1.-No trace on crt or vertical POSITION control does not center display (see Vertical Switching and CRT and Vertical Amplifier schematics).
a. If trace is on screen, but about 2 cm above graticule center, it indicates trouble in vertical amplifier.
b. Short P4-9 to P4-11 (A8, Vertical board). If trace does not center, trouble is in output circuits. Check Q112, Q122, Q134, Q144, Q136, and Q146.
c. If trace centers with pins 9 and 11 short-circuited, trouble is ahead of P4.
d. Short Q4376 collector to Q4386 collector. If trace centers, trouble is ahead of delay-line drivers, Q4376Q4386.
e. Check voltage at Q4344 and Q4346 emitters. Each should read approximately +5 V above ground. If emitter voltage is okay, trouble is either in Q4344 or Q4346, or in switching circuit.

SYMPTOM 2.-With 50 mV signal ac coupled to CH 1 input and VOLTS/DIV set to 10 mV , crt display position is low and does not position above graticule center.
a. If trace does not appear on screen, rotate vertical POSITION control.
b. If trace appears, but decreases in amplitude at graticule center, suspect vertical output circuit.
c. Short Q136 collector to Q146 collector. If trace centers, short Q112 collector to Q122 collector. Trace should center. If not, suspect Q112, Q134, or Q136 and associated circuitry.

Triggering: SYMPTOM 1.-Trace free runs, does not trigger in AUTO or NORM (see Trigger schematic).
a. Set TRIGGERING MODE to AUTO. Turn LEVEL control cw and ccw to both limits. Does the trace flicker? If not, triggering signal is not reaching sweep circuit.
b. Check voltage at junction of R2151, R2152, and R2143. Does voltage vary from -2 to +3 V while turning LEVEL control throughout its range? If yes, check U2156B output. Does U2156 output level change while turning LEVEL control as above?
c. Connect a signal to CH 1. Check for trigger pulse at U2156B output. If no signal, suspect U2156A or B, or related circuits.

SYMPTOM 2.-Does not trigger in AUTO.
a. Check for trigger pulse at pin 6 of U2212B. If none, check for HI at U2212B, pin 4, while varying the LEVEL control. If pin 4 does not go HI , check for defective U2212B, U2224B, or CR2227.

A Sweep: SYMPTOM 1.-No A Sweep on crt (see A Sweep and Horizontal Amplifier schematic).
a. Push BEAM FINDER button. If trace or dot is right of center, check at R2243 (end of resistor toward board center) for a 12 V (approximately) ramp.
b. If ramp is not present, check for approximately 0.7 V at Q2274 base.
c. If voltage at Q2274 base is high (approximately 8.0 volts) check Q2274, Q2242, Q2244, or Q2246.

SYMPTOM 2.-No trace on crt.
a. Repeat sweep symptom 1, parts a and b.
b. Check for a HI at U 2234 C , pin 8 . If not HI , check U2234C.

B Sweep SYMPTOM 1.-No B Sweep on crt (see B Sweep schematic) but A Sweep is present.
a. Check for 12 V ramp at collector of Q2546.
b. If ramp is not present, check for LO at pin 3 of U2524B. If pin 3 is HI, check DISPLAY MODE switch S2510 and for HI at pins 1 and 2 of U2524B.
c. If pin 1 is not HI , check Q2548.
d. If pin 2 is not HI , check for a LO at pin 5 of U2524A. If pin 5 is not LO, check Q2514, Q2516, and Q2522.
e. If pin 3 of U2524B is LO, check Q2542, Q2544, and Q2546.

SYMPTOM 2.-No intensified portion of sweep in the A INTEN BY B mode.
a. Check DISPLAY MODE switch S2510.

\section*{note}

When troubleshooting the sweep or horizontal circuits, the Vertical AMPLIFIER may be removed from the instrument.

Sweep may lock up while troubleshooting. If in doubt, switch instrument power off and back on. If there are no problems, trace should free run.

Horizontal. SYMPTOM 1.-No trace on screen (see Sweep and Horizontal Amplifier schematic).
a. Check output (Q2334-Q2344 collectors) for approximately 40 V ramp. If okay, check for possibly defective crt leads.

SYMPTOM 2.-Trace on screen, but is short.
a. Check horizontal output (Q2334-Q2344 collectors) for approximately 40 V ramp.
b. If no ramp at output, check for 12 V ramp at junction of R2243-R2311, C2246-R2245.
c. If ramp is present, check Q2314, Q2326, Q2332, Q2334, or Q2344.

\section*{CORRECTIVE MAINTENANCE}

Corrective maintenance consists of repair and parts replacement. This section contains general information, troubleshooting information, and component replacement information.

\section*{NOTE}

Be sure you are familiar with soldering techniques and parts replacement procedures before replacing any components.

\section*{Soldering Techniques}

\section*{WARNING}

To prevent electrical shock, or damage to the instrument, always disconnect the instrument from the power source before soldering.

For soldering, use ordinary 60/40 solder and a 15-watt soldering iron. Excessive heat can cause the etched circuit wiring to separate from the board base material. Use caution if using a higher wattage-rated soldering iron on the circuit boards.

\section*{Replacement Parts}

All parts for the T932A and T935A can be ordered from your local Tektronix Field Office, but many of the components are standard items that may be more readily available locally. Check the parts list for value, tolerance, ratings, and description before you replace any components.

When ordering parts from Tektronix, include the following information:
(1) Instrument type.
(2) Instrument serial number.
(3) A description of part (if electrical, include the circuit number).
(4) Tektronix part number.

\section*{Component Replacement}

\section*{WARNING}

Disconnect the instrument from the power source before replacing components.

Since the components are located on one side of the circuit boards, it is necessary to remove the circuit boards before replacing some components. Refer to the paragraphs on circuit board replacement for instructions in removal and installation of each circuit board. Also be sure you're familiar with soldering techniques used on single-sided circuit boards:

\section*{Semiconductors}

Replacement of semiconductors may affect the adjustment of this instrument. After replacing semiconductors, especially if using parts other than those listed in the parts list, check the performance of the instrument to be sure that the performance has not been degraded.

\section*{WARNING}

Handle silicone grease with care. Avoid getting silicone grease in the eyes. Wash hands thoroughly after use.

Replacement semiconductors should be of the original type or a direct replacement. Lead configuration of the semiconductors used in this instrument are shown in this section. Some plastic case transistors have lead configurations which do not agree with those shown there. If a replacement transistor is made by a different manufacturer than the original, check the manufacturer's basing diagram for correct basing. Most transistors are soldered directly onto the circuit boards. Transistors having heat radiators or those mounted on the chassis use silicone grease to increase heat transfer. Replace the silicone grease when replacing these transistors. Those transistors mounted on the chassis are held in place by a metal clip.

\section*{NOTE}

After replacing a power transistor, check that the collector is not shorted to ground before applying power.

\section*{Fuse Replacement}

The line-voltage fuse, F 700 , is located next to the POWER ON switch, S700, on the Interface board. The high voltage fuse, F722, is located on the Power Supply board. Refer to the Replaceable Electrical Parts list for correct fuse values.

Low voltage - 8 Vdc supply - is fused in two legs of transformer secondary. Fuses F742 and F743 are easily seen on Power Supply board. These fuses are soldered in circuit but should not blow unless transformer secondary is physically shorted.

\section*{Thick Film Resistor Replacement}

To remove the thick film resistors, first remove the solder from the pins and then remove the resistors.


Fig. 5-5. Pin connector replacement.

To install the thick film resistors, R444 or R118, match the pins on the resistor with the holes in the circuit board. Resolder all of the pins to the circuit board.

\section*{Interconnecting Cable and Pin Connector Replacement}

The interconnecting cable assemblies are factory assembled. They consist of machine installed pin connectors mounted in plastic holders. The plastic holders are easily replaced as individual items, but if the connectors are faulty, the entire cable should be replaced.

It is possible for the pin connectors to become dislodged from the plastic holders. If this happens, the connector can be re-installed as follows (see Fig. 5-5).
1. Bend grooved portion of holder away from cable as shown.
2. Re-insert connector into its hole in plug-in portion of holder.

\section*{NOTE}

Holder positions are numbered (number one is identified with a triangle).
3. Bend grooved part of holder so that connector is inserted into grocve.

When plugging connector holders onto board pins, be sure to match triangle mark on holder with triangle mark on circuit board.

\section*{Shaft-Knob Removal}
1. Grip knob end with one hand and shaft end with other hand.
2. Pull on knob, while pushing on shaft, to free recessed portion of shaft from retainer bushing (see Fig. 56 ). Some shaft-knobs may require considerable force to remove.


The bushing and shaft may separate abruptly. To avoid damage to the potentiometer and circuit board, or personal injury, grip both pieces firmly during shaft-knob removal. It may be helpful to grip the shaft with the tip of a long-nose pliers and use a gentle rocking motion to separate the shaft from the bushing.


\section*{Vertical Amplifier Replacement}

To remove the vertical amplifier (see Fig. 5-7) from the instrument:
1. Support the vertical amplifier, while removing the retaining screws. One is between the attenuators, one is near C4307, and one is near R4373.
2. Disconnect P4 (see Fig. 5-7) from J4 on the Interface board by lifting the entire vertical amplifier. Be careful not to bend the pins.

To reinstall the vertical amplifier, reverse the above procedure.

\section*{NOTE}

The front panel, switches, delay line, and attenuators are attached to the Vertical board.

Fig. 5-6. Shaft-knob removal.


Fig. 5-7. Circuit board locations (on left side of crt).

\section*{Service Information-T932A/T935A}

\section*{Attenuator Replacement}

To remove the attenuator from the instrument:
1. Remove the POSITION control knob and shaft.
2. Remove the VOLTS/DIV VAR knob and shaft. To remove the shaft, loosen the set screws holding the shaft to the potentiometer and pull the shaft out (observe knob orientation for re-assembly reference).
3. Pull the VOLTS/DIV knob and shaft out of the front panel.
4. Remove the three retaining screws from the attenuator shield and the hex nut behind the front panel near the bnc connector.
5. Pull the attenuator assembly off the Vertical Amplifier board. Be careful not to bend the connector pins.
6. To remove the attenuator shield, first unsolder the leads to the bnc connector. Take care not to touch the body of the capacitor with a hot soldering iron. Then remove one retaining screw from the board side. Be careful not to remove the screws holding the cam switch against the attenuator board. Lift the shield off the attenuator.

To reinstall the attenuator:
1. Attach the attenuator shield to the board with one screw, and resolder the lead to the bnc connector. Avoid touching the capacitor with a hot soldering iron.
2. Slide the bnc connector and coupling switch into the front panel.
3. Make sure the connecting pins and holders on the bottom of the attenuator board align properly.
4. Press the attenuator board down on the Vertical Amplifier board and secure it with the three retaining screws.

\section*{NOTE}

The VOLTS/DIV shaft end is molded to form a key that fits into the cam. Attempting to force the shaft into the cam when it is not properly lined up, will damage the cam switch.
5. Line the VOLTS/DIV knob and shaft up with the cam and slide into place. When the shaft and cam are lined up, the shaft slides into the cam easily.
6. Reinstall the VOLTS/DIV VAR knob and shaft, and tighten the set screws.

\section*{Cam Switch Repair and Replacement}

A cam switch is actually an assembly consisting of a cam rotated by a front panel control and a set of contacts on an adjacent circuit board.


Repair of cam switches should be undertaken only by experienced repair personnel. Switch alignment and spring tension of the contacts must be carefully maintained for proper operation of the switch. For assistance in repair of the cam switches, contact your local Tektronix Field Office or representative.

Cleaning. If the contact is not obviously damaged, try cleaning it before replacing. Follow the cleaning procedures in the order given; the first ones are the easiest.


When cleaning cam switch contacts:
1. Don't use cleaners, detergents, or lubricants which leave a residue. The residue can interfere with the high-frequency response of the contact. Also, the residue will attract dust and cause the contact to require frequent cleaning.
2. Don't use any cleaners which contain fluorocarbons. These will damage the cam portion of the switch. Fluorocarbons also damage the circuit board material used in some instruments.
3. Don't use anything that could snag the contact, like a cotton swab.
4. Don't scrape the pad. If the gold is removed from the pad, the pad will oxidize and cause future problems.
5. Don't bend the contacts. This may temporarily fix the problem. However, bending the contact damages its self-cleaning action and causes problems in the future.

Use the following procedures to clean the contacts:
1. Operate the switch several times. The wiping action may clean the contacts.
2. Blow low pressure air in the area of the contact while operating the switch.
3. Flush the contact with isopropyl alcohol and blow dry with low-pressure air. Isopropyl alcohol is flammable; avoid its use near open flame or other potential sources of ignition.

If the above procedures don't work, replace the contact strip. If cleaning the switch restores continuity, check to ensure that the contact wipes across the pad. If the contact does not wipe, replace the contact strip.

Contact Replacement. Cam Switch contacts in this instrument are part of a contact strip assembly. Refer to the mechanical parts list for ordering information.

If you do not have a replacement contact strip assembly, bend the contact for a temporary repair. If you do bend the contact, make note of its location and the symptom it causes. This will speed repair if the contact fails before you can make permanent repairs.

\section*{Delay Line Replacement}

To remove the delay line from the instrument:
1. Remove the vertical amplifier. See Vertical Amplifier Replacement for instructions.
2. Remove the three cable wrap ends from the back of the vertical chassis by unfastening the three nuts.
3. Unsolder the two wires at each end of the delay line where they connect to the board. The darker colored wires go to the solder connections nearest the index marks on the board.
4. Remove the two screws holding the cable end clamps to the board.
5. To reinstall the delay line, reverse the above procedure.

\section*{Time Base (Horizontal Board) Replacement}

To remove the Time Base from the instrument:
1. Remove the Vertical Amplifier. See Vertical Amplifier Replacement for instructions.
2. Support the Time Base (horizontal board) while removing the retaining screw in the upper right corner (near the POSITION control), the post by the LEVEL potentiometer, and the post in the lower right corner.
3. Carefully remove the leads from P2344 (a red on white crt lead to the - side of P2344 and a green on white crt lead to the + side of P2344).
4. Remove P2 (see Fig. 5-7) from J2 on the Interface board by pulling the entire Time Base toward the right side of the instrument. Be careful not to bend the pins.

To reinstall the TIME BASE (HORIZONTAL BOARD), reverse the above procedure.

To remove the Trigger board, unsolder the coaxial cable from the \(X\) connector and unplug the board from the Horizontal board by pulling out and toward the back of the instrument.

To remove the Timing board, first remove the SEC/DIV knob and the POSITION control knob and shaft assembly. Then unplug the Timing board from the Horizontal board and pull the SEC/DIV shaft out of the front panel. To reinstall the timing board, reverse the procedure.

\section*{Trigger Board Replacement}

To remove the trigger board from the instrument:
1. Remove INTENSITY, FOCUS, and BEAM FINDER shafts.
2. Remove P2100 (see Fig. 5-7) from trigger board.
3. Remove four screws to take board from chassis.

To replace trigger board, reverse the above procedure.


Fig. 5-8. Circuit board locations (on right side of \(\mathbf{c r t}\) ).

\section*{Power Supply Board Replacement}

To remove the Low Voltage Power Supply from the instrument:
1. Remove the two retaining screws holding the heat sink to the rear subpanel.
2. Remove the bolts near \(C 743\) and \(C 722\) (the ones holding the Power Supply board to the crt shield). The other two bolts hold the transformer to the Power Supply board.
3. Disconnect P7 from J7 on the Interface board by lifting the Power Supply board and transformer out. (See Fig. 5-7).

To reinstall the Power Supply board, reverse the above procedure.

\section*{Interface Board Replacement}

To remove the Interface board from the instrument:
1. Remove the Vertical Amplifier and Time Base.
2. Use a small screwdriver to remove the clip holding Q458 to the rear subpanel.
3. Remove the front-panel FOCUS and INTENSITY knobs and shafts.
4. Remove the high-voltage shield (two screws) and the two posts underneath the shield.
5. Disconnect the following plugs from the Interface board:
a. Cal Out (P24, unmarked on some boards), a brown on white wire that goes to PROBE ADJ on front panel.
b. P419 from J419 (a red on white wire from pin marked \(Z\) Axis that goes to EXT Z AXIS INPUT connector on back panel). Push wire through hole in board.
c. P470 from J470, (two plugs, each containing a red wire and a black wire that goes through hole in crt shield).

\section*{NOTE}

To disconnect J475, J466, and J465, lift the cable retainers with a screwdriver until you can remove the cable.
d. Unplug P465 from J465 (a 4-pin plug); P466 from J466 (yellow on white single wire); and P475 from J475 (a 4-pin plug).
e. Unplug P138 from J138 (a blue on white wire); P148 from J148 (a brown on white wire); pull wires down through holes in board.

\section*{WARNING}

The crt anode and the output terminal of highvoltage multiplier U460 may retain a 10,000 volt charge after the instrument is turned off. To avoid electrical shock, ground both the output terminal of U460 and the crt high-voltage anode lead to chassis ground.
f. Remove the high voltage lead from U460 (large white lead that goes the crt).
6. Remove the five retaining screws.
7. Disconnect J7 from P7 on Power Supply board by lifting the Interface board toward the top and back of the instrument so that the POWER (ON) light pipe disengages from DS796 housing, and the BEAM FINDER and OFF/ON (POWER) buttons slide back out of the front panel as J 7 and P7 separate.
8. Unsolder the power cord conductors (a blue wire and a brown wire) from the back of the board.

To replace the Interface board, reverse the above procedure.

\section*{Cathode Ray Tube (CRT) Replacement}


Use care when handling a crt. Protective clothing and safety glasses should be worn. Avoid striking it on any object which might cause it to crack or implode. When storing a crt, place it in a protective carton or set it face down on a smooth surface in a protective location with a soft mat under the faceplate to protect it from scratches.

To remove the crt from the instrument, disconnect power cord plug from power input source and remove cabinet halves. Turn the front of the instrument toward you, and perform the following steps.
1. Remove the two screws holding the high-voltage shield over the Interface board, and remove the shield.

\section*{WARNING}

The crt anode and the output terminal of highvoltage multiplier 4460 may retain a 10,000 volt charge after the instrument is turned off. To avoid electrical shock, ground both the output terminal of U460 and the crt high-voltage anode lead to chassis ground.
2. Grip the insulated portion of the anode lead and disconnect it from the U460 output terminal, and ground both terminals to chassis. Pull the free end of the anode lead out through the chassis holes. This lead is part of the crt and is supplied with the new crt.
3. Grip the 14-pin crt base socket, and pull it backward off the base of the crt.
4. Disconnect the four-pin plug from J470 on the Interface board. This terminates two black wires and two red wires from the trace rotation (TR ROT) and Y AXIS controls.
5. Remove the three screws holding the Vertical Amplifier to the chassis, and separate the amplifier from the Interface board by pulling downward to disconnect the P4 connector.
6. Disconnect the two connectors from the pins on the left side of the crt neck. These are the vertical deflection plate leads, the upper wire color is blue on white and the lower wire color is brown on white.
7. Disconnect the two connectors from the pins on the bottom of the crt neck. These are the Horizontal Deflection Plate leads; the left wire color is red on white and the right wire color is green on white.
8. Carefully raise the plastic crt front support ring upward and to the right to disengage the two buttons on the bottom and the two buttons on the left side from the instrument chassis.

\section*{NOTE}

Although it may be convenient, it is not necessary to remove any front panel or subpanel controls or parts. The foregoing steps will allow the front of the crt to be moved to the right of its normal position while slightly bending the plastic subpanel to allow clearance for the crt to be pulled forward out of its shield.
9. Gently press forward on the crtbase, supporting the front of the crt, until the front extends far enough forward to grasp. Pull the crt the rest of the way out of its shield.
10. To install a new crt, reverse the above procedure.

\section*{REPACKAGING FOR SHIPMENT}

If the Tektronix instrument is to be shipped to a Tektronix Service Center for service or repair, attach a tag showing: owner (with address) and the name of an individual at your firm that can be contacted. Include complete instrument serial number and a description of the service required.

Save and re-use the package in which your instrument was shipped. If the original packaging is unfit for use or not available, repackage the instrument as follows:

Surround the instrument with polyethylene sheeting to protect the finish of the instrument. Obtain a carton of corrugated cardboard of the correct carton strength and having inside dimensions of no less than six inches more than the instrument dimensions. Cushion the instrument by tightly packing three inches of dunnage or urethane foam between carton and instrument, on all sides. Seal carton with shipping tape or industrial stapler.

The carton test strength for your instrument is 275 pounds.

\title{
REPLACEABLE \\ ELECTRICAL PARTS
}

\section*{PARTS ORDERING INFORMATION}

Replacement parts are available from or through your local Tektronix, Inc. Field Office or representative.

Changes to Tektronix instruments are sometimes made to accommodate improved components as they become available, and to give you the benefit of the latest circuit improvements developed in our engineering department. It is therefore important, when ordering parts, to include the following information in your order: Part number, instrument type or number, serial number, and modification number if applicable.

If a part you have ordered has been replaced with a new or improved part, your local Tektronix, Inc. Field Office or representative will contact you concerning any change in part number.

Change information, if any, is located at the rear of this manual.

\section*{SPECIAL NOTES AND SYMBOLS}

X000 Part first added at this serial number
00X Part removed after this serial number

\section*{ITEM NAME}

In the Parts List, an Item Name is separated from the description by a colon (:). Because of space limitations, an Item Name may sometimes appear as incomplete. For further Item Name identification, the U.S. Federal Cataloging Handbook H6-1 can be utilized where possible.

\section*{ABBREVIATIONS}
\begin{tabular}{llll} 
ACTR & ACTUATOR & PLSTC & PLASTIC \\
ASSY & ASSEMBLY & QTZ & QUARTZ \\
CAP & CAPACITOR & RECP & RECEPTACLE \\
CER & CERAMIC & RES & RESISTOR \\
CKT & CIRCUIT & RF & RADIO FREQUENCY \\
COMP & COMPOSITION & SEL & SELECTED \\
CONN & CONNECTOR & SEMICOND & SEMICONDUCTOR \\
ELCTLT & ELECTROLYTIC & SENS & SENSITIVE \\
ELEC & ELECTRICAL & VAR & VARIABLE \\
INCAND & INCANDESCENT & WW & WIREWOUND \\
LED & LIGHT EMITTING DIODE & XFMR & TRANSFORMER \\
NONWIR & NON WIREWOUND & XTAL & CRYSTAL
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Mfr. Code & Manufacturer & Address & City, State, Zip \\
\hline 00853 & SANGAMO ELECTRIC CO., S. CAROLINA DIV. & P O box 128 & PICKENS, sC 29671 \\
\hline 01121 & ALLEN-BRADLEY COMPANY & 1201 2ND STREET SOUTH & \\
\hline 01295 & TEXAS INSTRUMENTS, INC., SEMICONDUCTOR GROUP & P O box 5012, 13500 N CENTRAL & \\
\hline & & EXPRESSWAY & DALLAS, TX 75222 \\
\hline 02111 & SPECTROL ELECTRONICS CORPORATION & 17070 EAST GALE AVENUE & CITY OF INDUSTRY, CA 91745 \\
\hline 03614 & BUSSMAN MFG. DIV. MCGRAW EDISON CO. & \begin{tabular}{l}
502 EARTH CITY PLAZA \\
P O BOX 867, 19TH AVE. SOUTH
\end{tabular} & EARTH CITY, MO 63045
MURTIE BEACH, SC 29577 \\
\hline 04222 & AVX CERAMICS, DIVISION OF AVX CORP.
MOTOROLA, INC., SEMICONDUCTOR PROD. DIV. & 5005 E MCDOWELL RD, PO BOX 20923 & PHOENIX, AZ 85036 \\
\hline 05091 & TRI-ORDINATE CORPORATION & 343 SNYDER AVENUE & berkeley heights, nJ 07922 \\
\hline 05574 & VIKING INDUSTRIES, INC. & 21001 NORDHOFF STREET & TH, CA 91311 \\
\hline 07263 & FAIRCHILD SEMICONDUCTOR, A DIV. OF & & \\
\hline & FAIRCHILD CAMERA AND INSTRUMENT CORP. & 464 ELLIS STREET &  \\
\hline 07910 & TELEDYNE SEMICONDUCTOR & 12515 Chadron ave. & \\
\hline 08806 & GENERAL ELECTRIC CO., & NELA PARK & CLEVELAND, OH 44112 \\
\hline & LAMP PRODUCTS DEFARTMENT & 3230 RIVERSIDE AVE. & paso robles, CA 93446 \\
\hline 112697 & CTS KeEne, inc. \({ }^{\text {ctastat MFG. }}\) CO. INC. & LOWER WASHINGTON STREET & DOVER, NH 03820 \\
\hline 14099 & SEMTECH CORP. & 652 MITCHELL RD. & NEWBURY PARK, CA 91320 \\
\hline 14193 & CAL-R, INC. & 1601 OLYMPIC BLVD. & SANTA MONICA, CA 90404 \\
\hline 19396 & IILINOIS TOOL WORKS, INC. PAKTRON D & 900 FOLLIN LANE, SE & DOWNERS GROVE, IL 60515 \\
\hline 27264 & MOLEX PRODUCTS CO. & 5224 KATPINE AVE. & \\
\hline 50157 & N. L. INDUSTRIES, INC. & P. О. BOX 787 & MUSKEGON, MI 49445 \\
\hline 51406 & DEPT. & 2 WESTCHESTER PLAZA & ELMSFORD, NY 10523 \\
\hline 56289 & SPRAGUE ELECTRIC CO. & & NORTH ADAMS, MA 01247 \\
\hline 71400 & BUSSMAN MFG., DIVISION OF MCGRAWEDISON CO. & 2536 W. UNIVERSITY ST. & ST. LOUIS, MO 63107 \\
\hline 71590 & CENTRALAB ELECTRONICS, DIV. OF GLOBE-UNION, INC. & P O box 858 & FORT DODGE, IA 50501 \\
\hline 72982 & ERIE TECHNOLOGICAL PRODUCTS, INC. & 644 W .12 TH ST . & ERIE, PA 16512 \\
\hline 73138 & beckman instruments, inc., helipot div. & 2500 HARBOR BLVD & FULLERTON, CA 92634 \\
\hline 75042 & TRW ELECTRONIC COMPONENTS, IRC FIXED RESISTORS, PHILADELPHIA DIVISION & 401 N. BROAD ST. & PHILADELPHIA, PA 19108 BEAVERTON, OR 97077 \\
\hline 80009 & TEKTRONIX, INC. & P 22 COLUMBIA ROAD & MORRISTOWN, NJ 07960 \\
\hline 80031 & ELECTRA-MIDLAND CORP., MEPCO DIV. & 9220 SUNSET BLVD. & LOS ANGELES, CA 90069 \\
\hline 81483 & INTERNATIONAL RECTIFIER CORP. &  & CHICAGO, IL 60630 \\
\hline 82389 & SWITCHCRAFT, INC. & 5555 N. ELSTON AVE. & \\
\hline 90201 & MALLORY CAPACITOR CO., DIV. OF & 3029 E WASHINGTON STREET & \\
\hline & & \[
\text { Р О box } 372
\] & INDIANAPOLIS, IN 46206 \\
\hline 91637 & dale electronics, inc. & P. O. B0X 609 & COLUMBUS, NE 68601 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Ckt No. & Tektronix Part No. & \begin{tabular}{l}
Serial/Model No. \\
Eff Dscont
\end{tabular} & Name \& Description & Mfr Code & Mfr Part Number \\
\hline Al & 670-5446-00 & & CIRCUIT BD ASSY:INTERFACE & 80009 & 670-5446-00 \\
\hline A2 & 670-5473-00 & & CIRCUIT BD ASSY:LOW VOLTAGE POWER SUPPLY & 80009 & 670-5473-00 \\
\hline A6 & 670-3972-04 & & CIRCUIT BD ASSY:ATTENUATOR, CHANNEL 1 & 80009 & 670-3972-00 \\
\hline A7 & 670-3973-04 & & CIRCUIT BD ASSY:ATTENUATOR,CHANNEL 2 & 80009 & 670-3973-04 \\
\hline A8 & 670-5443-00 & & CIRCUIT BD ASSY:VERTICAL & 80009 & 670-5443-00 \\
\hline Al0 & 670-5448-00 & & CIRCUIT BD ASSY:TRIGGER FUNCTION & 80009 & 670-5448-00 \\
\hline All & 670-5447-00 & & CIRCUIT BD ASSY:TRIGGER & 80009 & 670-5447-00 \\
\hline Al2 \({ }^{1}\) & 670-5445-00 & & CIRCUIT BD ASSY:HORIZONTAL & 80009 & 670-5445-00 \\
\hline Al2 \({ }^{2}\) & 670-5444-00 & & CIRCUIT BD ASSY:HORIZONTAL & 80009 & 670-5444-00 \\
\hline A13 \({ }^{1}\) & 672-0551-00 & & CIRCUIT BD ASSY:TIMING W/ROTARY SWITCH & 80009 & 672-0551-00 \\
\hline Al3 \({ }^{2}\) & 672-0533-00 & & CIRCUIT BD ASSY:TIMING W/ROTARY SWITCH & 80009 & 672-0533-00 \\
\hline C24 & 281-0773-00 & & CAP.,FXD, CER DI: \(0.01 \mathrm{UF}, 10 \%\), 100V & 72982 & 8005H9AADW5R103K \\
\hline C114 & 281-0207-00 & & CAP., VAR, PLSTC:2-18PF, 100 V & 80031 & hT10EA/218 \\
\hline Cll5 & 283-0198-00 & & CAP.,FXD,CER DI:0.22UF,20\%,50V & 72982 & 8131N075 E224M \\
\hline Cl18 & 281-0207-00 & & CAP.,VAR, PLSTC:2-18PF,100V & 80031 & hT10EA/218 \\
\hline C119 & 281-0768-00 & & CAP.,FXD, CER DI:470PF, \(20 \%\), 100 V & 72982 & 314022×5P0471M \\
\hline C124 & 281-0762-00 & & CAP.,FXD, CER DI:27PF, 20\%,100V & 72982 & 390-049x5P0270M \\
\hline C129 & 281-0768-00 & & CAP.,FXD,CER DI:470PF,20\%,100V & 72982 & \(314022 \times 5 \mathrm{P} 0471 \mathrm{M}\) \\
\hline C412 & 281-0775-00 & & CAP., FXD, CER DI:0.1UF,20\%,50V & 72982 & 8005H9AAB25U104M \\
\hline C423 & 281-0661-00 & & CAP., FXD, CER DI \(00.8 \mathrm{PF},+/-0.1 \mathrm{PF}, 500 \mathrm{~V}\) & 72982 & 301-000С0к0808в \\
\hline C424 & 281-0775-00 & & CAP., FXD, CER DI:0.1UF, 208 , 50V & 72982 & 8005H9AABZ5U104m \\
\hline C425 & 281-0775-00 & & CAP. ,FXD, CER DI: \(0.1 \mathrm{lUF}, 20 \%\),50V & 72982 & 8005H9AABZ5U104M \\
\hline C433 & 285-1099-00 & & CAP.,FXD, PLSTC:0.047UF, 20\%,200V & 19396 & 473M02PT605 \\
\hline C434 & 285-1099-00 & & CAP.,FXD, PLSTC:0.047UF,20\%,200V & 19396 & 473M02PT605 \\
\hline C435 & 285-1099-00 & & CAP.,FXD, PLSTC:0.047UF,20\%,200V & 19396 & 473M02PT605 \\
\hline C443 & 290-0297-00 & & CAP., FXD, ELCTLT: 39UF,10\%,10V & 56289 & 150D396X9010B2 \\
\hline C445 & 281-0775-00 & & CAP., FXD, CER DI:0.1UF, 20\%,50V & 72982 & 8005H9AABz5U104m \\
\hline C455 & 281-0772-00 & & CAP.,FXD, CER DI:0.0047UF,108,100V & 72982 & 8005H9AADW5R472K \\
\hline C458 & 290-0405-00 & & CAP.,FXD, ELCTLT: \(100 \mathrm{UF},+50-10 \%, 150 \mathrm{~V}\) & 56289 & 30D106F150DD4 \\
\hline C462 & 283-0034-00 & & CAP.,FXD, CER DI:0.005UF,20\%,4000V & 56289 & 41C107A \\
\hline C463 & 283-0034-00 & & CAP., FXD, CER DI:0.005UF, 20\%,4000V & 56289 & 41C107A \\
\hline C464 & 283-0034-00 & & CAP.,FXD, CER DI 0 O.005UF, 20\%,4000V & 56289 & 41C107A \\
\hline C465 & 283-0271-00 & & CAP.,FXD, CER DI:0.001UF,208,4000V & 56289 & 33 C 325 \\
\hline C466 & 283-0404-00 & & CAP.,FXD,CER DI:0.01UF,20\%,4000V & 51406 & ADVISE \\
\hline C469 & 283-0271-00 & & CAP.,FXD, CER DI:0.001UF,20\%,4000V & 56289 & 33 C 325 \\
\hline C476 & 281-0773-00 & & CAP.,FXD, CER DI : \(0.010 \mathrm{~F}, 10 \%\), 100 V & 72982 & 8005H9AADW5R103K \\
\hline C477 & 281-0773-00 & & CAP.,FXD, CER DI:0.01UF,10\%,100V & 72982 & 8005H9AADW5R103K \\
\hline C478 & 281-0773-00 & & CAP.,FXD, CER DI:0.01UF,10\%,100V & 72982 & 8005H9AADW5R103K \\
\hline C722 & 290-0750-00 & & CAP., FXD, ELCTLT: \(1000 \mathrm{~F},+50-108,160 \mathrm{~V}\) & 56289 & D76244 \\
\hline C738 & 290-0744-00 & & CAP., FXD, ELCTLT: 3.3UF,+50-10\%, 160V & 90201 & TT3R3U160B013P \\
\hline C742 & 290-0751-00 & & CAP., FXD, ELCTLT: \(2200 \mathrm{UF},+50-10 \%, 16 \mathrm{~V}\) & 56289 & D76245 \\
\hline C743 & 290-0751-00 & & CAP., FXD, ELCTLT: 2200UF, +50-10\%,16V & 56289 & D76245 \\
\hline C746 & 281-0773-00 & & CAP.,FXD, CER DI:0.01UF,10\%,100V & 72982 & 8005H9AADW5R103K \\
\hline C 756 & 281-0773-00 & & CAP.,FXD, CER DI: \(0.01 \mathrm{UF}, 10 \%\),100V & 72982 & 8005H9AADW5R103K \\
\hline C758 & 290-0107-00 & & CAP.,FXD,ELCTLT: 25UF,+75-10\%,25v & 56289 & 30D256G025DB9 \\
\hline C762 & 290-0301-00 & & CAP.,FXD,ELCTLT:10UF,10\%,20V & 56289 & 150D106x9020B2 \\
\hline C763 & 281-0773-00 & & CAP.,FXD, CER DI: \(0.01 \mathrm{VF}, 10 \%\),100V & 72982 & 8005H9AADW5R103K \\
\hline C774 & 281-0773-00 & & CAP.,FXD,CER DI: \(0.010 \mathrm{~F}, 108.100 \mathrm{~V}\) & 72982 & 8005H9AADW5R103K \\
\hline C778 & 290-0107-00 & & CAP.,FXD, ELCTLT : 25UF,+75-10\%,25v & 56289 & 30D256G025DB9 \\
\hline C807 & 290-0524-00 & & CAP., FXD, ELCTLT:4.7UF,208,10V & 90201 & TDC475M010EL \\
\hline C2001 & 281-0775-00 & & CAP., FXD, CER DI:0.1UF,208,50V & 72982 & 8005H9AABZ5U104M \\
\hline C2005 & 281-0775-00 & & CAP.,FXD, CER DI:0.1UF,20\%,50V & 72982 & 8005H9AABz5U104M \\
\hline
\end{tabular}

\footnotetext{
\(1_{\text {t932A only }}\)
\({ }^{2}\) T935A only
}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Ckt No. & Tektronix Part No. & Serial/Model No. & Name \& Description & \begin{tabular}{l}
Mfr \\
Code
\end{tabular} & Mfr Part Number \\
\hline C2010 & 281-0534-00 & & CAP., FXD, CER DI:3.3PF, +/-0.25PF, 500V & 72982 & 301-000C0J0339C \\
\hline c2011 & 281-0792-00 & & CAP., FXD, CER DI: 82PF, 10\%, 100 V & 72982 & 390049x5P0820K \\
\hline c2013 & 281-0760-00 & & CAP., FXD, CER DI: \(22 \mathrm{PF}, 10 \%\), 500 V & 72982 & 314-011COG220K \\
\hline C2014 & 281-0797-00 & & CAP., FXD, CER DI: \(15 \mathrm{PF}, 10 \%\),100V & 72982 & 8005A9AADC1G150K \\
\hline C2023 & 281-0814-00 & & CAP., FXD, CER DI:100PF,10\%,100v & 72982 & 8005A9AADC1G101K \\
\hline C2030 & 283-0004-00 & & CAP. ,FXD, CER DI: \(0.02 \mathrm{UF},+80-208,150 \mathrm{~V}\) & 72982 & 855-558-z5V0203z \\
\hline C2033 & 281-0775-00 & & CAP., FXD, CER DI:0.1UF,20\%,50V & 72982 & 8005H9AABZ5U104M \\
\hline C2035 & 281-0797-00 & & CAP., FXD, CER DI:15PF,10\%,100V & 72982 & 8005A9AADClG150K \\
\hline C2040 & 290-0517-00 & & CAP., FXD, ELCTLT:6.8UF,20\%,35V & 56289 & 196D685x0035KAl \\
\hline C2063 & 281-0763-00 & & CAP., FXD, CER DI:47PF,10\%,100V & 72982 & 390049x5P0470K \\
\hline C2090 & 281-0775-00 & & CAP., FXD, CER DI:0.1UF,20\%,50V & 72982 & 8005H9AABZ5U104M \\
\hline C2091 & 281-0775-00 & & CAP., FXD, CER DI: \(0.10 \mathrm{~F}, 208,50 \mathrm{~V}\) & 72982 & 8005H9AABZ5U104M \\
\hline C2092 & 290-0517-00 & & CAP., FXD, ELCTLT: 6.8UF, 20\%,35V & 56289 & 196D685×0035KA1 \\
\hline C2102 & 281-0775-00 & & CAP., FXD, CER DI: \(0.1 \mathrm{UF}, 20 \%\),50V & 72982 & 8005H9AABZ5U104M \\
\hline C2124 & 281-0773-00 & & CAP., FXD, CER DI:0.01UF,10\%,100V & 72982 & 8005H9AADW5R103K \\
\hline C2125 & 281-0775-00 & & CAP., FXD, CER DI:0.1UF,20\%,50V & 72982 & 8005H9AABZ5U104M \\
\hline C2128 & 281-0773-00 & & CAP., FXD, CER DI: \(0.01 \mathrm{OF}, 108,100 \mathrm{~V}\) & 72982 & 8005H9AADW5R103K \\
\hline C2144 & 281-0775-00 & & CAP., FXD, CER DI: \(0.10 \mathrm{~F}, 20 \%\),50V & 72982 & 8005H9AABZ5U104M \\
\hline C2149 & 290-0183-00 & & CAP.,FXD,ELCTLT:1UF,10\%,35V & 56289 & 162D105x9035CD2 \\
\hline c2156 & 281-0775-00 & & CAP., FXD, CER DI:0.1UF,20\%,50V & 72982 & 8005H9AABz5U104M \\
\hline C2162 & 290-0135-00 & & CAP., FXD, ELCTLT: \(15 \mathrm{UF}, \mathbf{2 0 \%}\), 20V & 56289 & 150D156X0020B2 \\
\hline C2163 & 281-0763-00 & & CAP., FXD, CER DI:47PF, 108,100V & 72982 & 390049x5P0470K \\
\hline C2166 & 290-0183-00 & & CAP., FXD, ELCTLT:1UF,10\%,35v & 56289 & 162D105x9035CD2 \\
\hline C2171 & 290-0183-00 & & CAP., FXD, ELCTLT:1UF,10\%,35V & 56289 & 162D105X9035CD2 \\
\hline C2174 & 281-0773-00 & & CAP., FXD, CER DI: \(0.010 \mathrm{~F}, 108,100 \mathrm{~V}\) & 72982 & 8005H9AADW5R103K \\
\hline C2175 & 283-0081-00 & & CAP.,FXD,CER DI:0.1UF,+80-20\%,25V & 56289 & \(36 \mathrm{C600}\) \\
\hline c2176 & 281-0774-00 & & CAP., FXD, CER DI: \(0.022 \mathrm{UF}, 20 \%\), 100 V & 72982 & 8045A9ABDZ2U223M \\
\hline C2181 & 281-0775-00 & & CAP., FXD, CER DI:0.1UF,20\%,50V & 72982 & 8005H9AABZ5U104M \\
\hline C2212 & 281-0775-00 & & CAP., FXD, CER DI:0.1UF,20\%,50V & 72982 & 8005H9AABZ5U104M \\
\hline C2226 & 290-0135-00 & & CAP. , FXD, ELCTLT : 15 UF , 20\%, 20V & 56289 & 150D156X0020B2 \\
\hline C2233 & 283-0706-00 & & CAP.,FXD,MICA D:91PF,+/-1PF,500V & 00853 & D15-5E910F0 \\
\hline C2234 & 281-0775-00 & & CAP., FXD, CER DI:O.1UF,20\%,50V & 72982 & 8005H9AABZ5U104M \\
\hline C2235 & 281-0216-00 & & CAP., VAR,CER DI: 0.8 -6.8PF, 400 V & 80031 & 2222-801-96024 \\
\hline C2236 & 290-0135-00 & & CAP., FXD,ELCTLT:15UF,20\%,20V & 56289 & 150D156X0020B2 \\
\hline C2245 & 281-0759-00 & & CAP., FXD, CER DI:22PF,10\%,100V & 72982 & 390-049x5P0220K \\
\hline C2252A-D & 295-0179-00 & & CAP. , SET, MTCHD: \(0.01 \mathrm{UF}, 1.00 \mathrm{~F}, 1 \%\) & 80009 & 295-0179-00 \\
\hline C2274 & 281-0772-00 & & CAP.,FXD, CER DI:0.0047UF,108,100v & 72982 & 8005H9AADW5R472K \\
\hline C2275 & 290-0167-00 & & CAP., FXD, ELCTLT:10UF,20\%,15V & 56289 & 150D106×0015b2 \\
\hline C2276 & 281-0775-00 & & CAP, , FXD, CER DI:0.1UF,20\%,50V & 72982 & 8005H9AABZ5U104M \\
\hline C2278 & 281-0758-00 & & CAP. , FXD, CER DI:15PF, 20\%,100v & 72982 & 314022COG0150M \\
\hline C2317 & 281-0775-00 & & CAP., FXD, CER DI:0.1UF,20\%,50V & 72982 & 8005H9AABZ5U104m \\
\hline C2325 & 281-0775-00 & & CAP., FXD, CER DI:0.1UF,20\%,50V & 72982 & 8005H9AABZ5U104M \\
\hline C2327 & 281-0775-00 & & CAP., FXD, CER DI: \(0.1 \mathrm{lUF}, 208\), 50V & 72982 & 8005H9AAB25U104M \\
\hline \(\mathrm{C} 23371^{1}\) & 290-0480-00 & & CAP.,FXD, ELCTLT: \(0.5 \mathrm{SuF},+50-10 \%\), 200 V & 80009 & 290-0480-00 \\
\hline C2517 \({ }^{1}\) & 290-0135-00 & & CAP. ,FXD, ELCTLT: \(15 \mathrm{UF}, 20 \%\),20V & 56289 & 150D156x0020B2 \\
\hline C2521 \({ }^{1}\) & 281-0758-00 & & CAP., FXD, CER DI: \(15 \mathrm{PF}, 20 \%\), 100 V & 72982 & 314022COG0150M \\
\hline C2525 \({ }^{1}\) & 281-0763-00 & & CAP., FXD, CER DI:47PF, 10\%,100V & 72982 & 390049x5P0470K \\
\hline C2533 \({ }^{1}\) & 281-0759-00 & & CAP., FXD, CER DI:22PF,10\%,100V & 72982 & 390-049x5P0220K \\
\hline C2535 \({ }^{1}\) & 281-0216-00 & & CAP.,VAR,CER DI: 0.8 -6.8PF, 400 V & 80031 & 2222-801-96024 \\
\hline C2536 \({ }^{1}\) & 283-0632-00 & & CAP., FXD, MICA D: \(87 \mathrm{PF}, 18,100 \mathrm{~V}\) & 00853 & D151E870F0 \\
\hline C2539 \({ }_{1}\) & 290-0135-00 & & CAP., FXD,ELCTLT: \(150 \mathrm{~F}, 20 \%\), 20V & 56289 & 150D156x0020B2 \\
\hline C2544 \({ }_{1}^{1}\) & 281-0759-00 & & CAP., FXD, CER DI: \(22 \mathrm{PF}, 108\), 100 V & 72982 & 390-049X5P0220K \\
\hline C2548 \({ }^{1}\) & 281-0763-00 & & CAP.,FXD,CER DI:47PF,10\%,100V & 72982 & 390049x5P0470K \\
\hline
\end{tabular}

\footnotetext{
\(1_{\text {T935A }}\) only
}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Ckt No. & Tektronix Part No. & Serial/Model No. Eff Dscont & Name \& Description & Mfr Code & Mfr Part Number \\
\hline C4101 & 281-0541-00 & & CAP.,FXD, CER DI:6.8PF, \(10 \%\),500V & 72982 & 301-000C0H0689D \\
\hline C4102 & 285-1124-00 & & CAP., FXD, PLSTC: \(0.022 \mathrm{UF}, 208\), 400V & 19396 & PP721E223M \\
\hline C4104 & 281-0207-00 & & CAP, ,VAR, PLSTC:2-18PF,100V & 80031 & HTIOEA/218 \\
\hline C4105 & 281-0214-00 & & CAP., VAR, CER DI: \(0.5-3 \mathrm{PF}, 400 \mathrm{~V}\) & 80031 & 2222-801-96138 \\
\hline C4106 & 283-0213-00 & & CAP., FXD, CER DI:300PF,5\%,100V & 72982 & 8121N130A301J \\
\hline C4113 & 281-0207-00 & & CAP.,VAR,PLSTC:2-18PF,100V & 80031 & HTlOEA/218 \\
\hline C4114 & 281-0214-00 & & CAP., VAR, CER DI:0.5-3PF,400V & 80031 & 2222-801-96138 \\
\hline C4115 & 281-0610-00 & & CAP.,FXD, CER DI:2.2PF, + /-0.1PF,500V & 72982 & 374-001C0J0229B \\
\hline C4116 & 281-0759-00 & & CAP.,FXD, CER DI:22PF,10\%,100V & 72982 & 390-049X5P0220K \\
\hline C4122 & 283-0002-00 & & CAP.,FXD, CER DI:0.01UF, \(+80-20 \%, 500 \mathrm{~V}\) & 72982 & 811-546E103z \\
\hline C4131 & 283-0198-00 & & CAP.,FXD, CER DI:0.22UF,20\%,50V & 72982 & 8131N075 E224M \\
\hline C4143 & 281-0763-00 & & CAP.,FXD, CER DI:47PF, 10\%,100V & 72982 & 390049X5P0470K \\
\hline C4154 & 281-0204-00 & & CAP.,VAR,PLSTC:2-22PF,100V & 80031 & COLOEA-20E \\
\hline C4156 & 281-0546-00 & & CAP.,FXD, CER DI: \(330 \mathrm{PF}, 10 \%\), 500 V & 04222 & 7001-1380 \\
\hline C4158 & 281-0788-00 & & CAP.,FXD, CER DI:470PF,10\%,100V & 72982 & 8005H9AADW5R471K \\
\hline C4166 & 283-0119-00 & & CAP.,FXD, CER DI:2200PF, \(5 \%\),200V & 72982 & 855-535B222J \\
\hline C4168 & 281-0788-00 & & CAP.,FXD, CER DI:470PF, 10\%,100V & 72982 & 8005H9AADW5R471K \\
\hline C4177 & 281-0788-00 & & CAP., FXD, CER DI:470PF,10\%,100V & 72982 & 8005H9AADW5R471K \\
\hline C4187 & 281-0788-00 & & CAP.,FXD, CER DI:470PF,10\%,100V & 72982 & 8005H9AADW5R471K \\
\hline C4196 & 281-0762-00 & & CAP., FXD, CER DI: \(27 \mathrm{PF}, 20 \%, 100 \mathrm{~V}\) & 72982 & 390-049X5P0270M \\
\hline C4201 & 281-0541-00 & & CAP.,FXD, CER DI:6.8PF, 10\%,500V & 72982 & 301-000С0Н0689D \\
\hline C4202 & 285-1124-00 & & CAP.,FXD, PLSTC:0.022UF,20\%,400V & 19396 & PP721E223M \\
\hline C4204 & 281-0207-00 & & CAP.,VAR, PLSTC:2-18PF,100V & 80031 & HTlOEA/218 \\
\hline C4205 & 281-0214-00 & & CAP., VAR, CER DI: \(0.5-3 \mathrm{FF}, 400 \mathrm{~V}\) & 80031 & 2222-801-96138 \\
\hline C4206 & 283-0213-00 & & CAP.,FXD,CER DI: \(300 \mathrm{PF}, 5 \%, 100 \mathrm{~V}\) & 72982 & 8121N130A301J \\
\hline C4213 & 281-0207-00 & & CAP., VAR, PLSTC:2-18PF,100V & 80031 & HTlOEA/218 \\
\hline C4214 & 281-0214-00 & & CAP., VAR, CER DI:0.5-3PF,400V & 80031 & 2222-801-96138 \\
\hline C4215 & 281-0610-00 & & CAP., FXD, CER DI:2.2PF,+/-0.1PF,500V & 72982 & 374-001C0J0229B \\
\hline C4216 & 281-0759-00 & & CAP., FXD, CER DI: \(22 \mathrm{PF}, 10 \%, 100 \mathrm{~V}\) & 72982 & 390-049X5P0220K \\
\hline C 4222 & 283-0002-00 & & CAP.,FXD, CER DI:0.01UF, +80-20\%,500V & 72982 & 811-546E1032 \\
\hline C4231 & 283-0198-00 & & CAP.,FXD, CER DI: \(0.22 \mathrm{UF}, 20 \%\), 50 V & 72982 & 8131N075 E224M \\
\hline C4243 & 281-0792-00 & & CAP., FXD, CER DI: 82PF, 10\%,100V & 72982 & 390049X5P0820K \\
\hline C4256 & 281-0546-00 & & CAP.,FXD, CER DI: \(330 \mathrm{PF}, 10 \%\),500V & 04222 & 7001-1380 \\
\hline C4258 & 281-0788-00 & & CAP.,FXD,CER DI:470PF,10\%,100V & 72982 & 8005H9AADW5R471K \\
\hline C4266 & 283-0119-00 & & CAP.,FXD, CER DI:2200PF,5\%,200V & 72982 & 855-535B222J \\
\hline C4268 & 281-0788-00 & & CAP.,FXD, CER DI:470PF,10\%,100V & 72982 & 8005H9AADW5R471K \\
\hline C4277 & 281-0788-00 & & CAP, FXD, CER DI:470PF, 10\%,100V & 72982 & 8005H9AADW5R471K \\
\hline C 4287 & 281-0788-00 & & CAP. ,FXD, CER DI:470PF, 10\%,100V & 72982 & 8005H9AADW5R471K \\
\hline C4296 & 281-0762-00 & & CAP.,FXD, CER DI: \(27 \mathrm{PF}, 20 \%, 100 \mathrm{~V}\) & 72982 & 390-049X5P0270M \\
\hline C4302 & 281-0763-00 & & CAP.,FXD, CER DI: \(47 \mathrm{PF}, 10 \%, 100 \mathrm{~V}\) & 72982 & \(390049 \times 5 \mathrm{P} 0470 \mathrm{~K}\) \\
\hline C4306 & 281-0775-00 & & CAP., FXD, CER DI:0.1UF,20\%,50V & 72982 & 8005H9AABZ5U104M \\
\hline C4307 & 281-0763-00 & & CAP., FXD, CER DI: \(47 \mathrm{PF}, 10 \%, 100 \mathrm{~V}\) & 72982 & 390049X5P0470K \\
\hline C4308 & 281-0763-00 & & CAP.,FXD, CER DI:47PF, 10\%,100V & 72982 & 390049X5P0470K \\
\hline C4312 & 281-0773-00 & & CAP., FXD, CER DI: \(0.01 \mathrm{UF}, 10 \%\),100V & 72982 & 8005H9AADW5R103K \\
\hline C 4315 & 281-0770-00 & & CAP.,FXD, CER DI: \(0.001 \mathrm{UF}, 20 \%, 100 \mathrm{~V}\) & 72982 & 314022X5P0102M \\
\hline C4324 & 281-0775-00 & & CAP., FXD, CER DI:0.1UF,20\%,50V & 72982 & 8005H9AABZ5U104M \\
\hline C4331 & 281-0773-00 & & CAP.,FXD,CER DI:0.01UF,10\%,100V & 72982 & 8005H9AADW5R103K \\
\hline C4332 & 281-0773-00 & & CAP., FXD, CER DI: \(0.01 \mathrm{UF}, 10 \%, 100 \mathrm{~V}\) & 72982 & 8005H9AADW5R103K \\
\hline C4334 & 281-0773-00 & & CAP., FXD, CER DI:0.01UF,10\%,100V & 72982 & 8005H9AADW5R103K \\
\hline C4339 & 283-0198-00 & & CAP.,FXD, CER DI :0.22UF,20\%,50V & 72982 & 8131N075 E224M \\
\hline C4355 & 281-0786-00 & & CAP., FXD, CER DI: \(150 \mathrm{PF}, 10 \%, 100 \mathrm{~V}\) & 72982 & 390049X5P0151K \\
\hline C4368 & 283-0111-00 & & CAP., FXD, CER DI: \(0.1 \mathrm{l}, 20 \%, 50 \mathrm{~V}\) & 72982 & 8121-N088z5U104M \\
\hline C4375 & 281-0788-00 & & CAP.,FXD, CER DI:470PF,10\%,100V & 72982 & 8005H9AADW5R471K \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Ckt No. & Tektronix Part No. & Serial/Modet No. Eff Dscont & Name \& Description & Mfr Code & Mfr Part Number \\
\hline C4378 & 281-0762-00 & & CAP.,FXD, CER DI: \(27 \mathrm{PF}, 208,100 \mathrm{~V}\) & 72982 & 390-049x5P0270M \\
\hline C4385 & 281-0788-00 & & CAP.,FXD, CER DI:470PF,10\%,100V & 72982 & 8005H9AADW5R471K \\
\hline C4386 & 283-0111-00 & & CAP.,FXD, CER DI:0.1UF,20\%,50V & 72982 & 8121-N088Z5U104M \\
\hline C4388 & 281-0762-00 & & CAP.,FXD, CER DI: \(27 \mathrm{PF}, 20 \%\),100V & 72982 & 390-049x5P0270M \\
\hline C4395 & 281-0511-00 & & CAP.,FXD, CER DI: \(22 \mathrm{PF},+/-2.2 \mathrm{PF}, 500 \mathrm{~V}\) & 72982 & 301-000C0G0220K \\
\hline C4396 & 281-0207-00 & & CAP.,VAR, PLSTC: \(2-18 \mathrm{PF}\), 100 V & 80031 & ht10ea/218 \\
\hline C4397 & 281-0207-00 & & CAP.,VAR,PLSTC:2-18PF,100V & 80031 & HT10EA/218 \\
\hline C4398 & 281-0786-00 & & CAP.,FXD,CER DI:150PF,10\%,100V & 72982 & 390049x5P0151K \\
\hline C4410 & 283-0177-00 & & CAP.,FXD, CER DI: \(1 \mathrm{UF},+80-20 \%\), 25 V & 72982 & 8131n039 E 105z \\
\hline C4411 & 290-0517-00 & & CAP.,FXD, ELCTLT: \(6.80 \mathrm{~F}, 20 \%\),35V & 56289 & 196D685x0035KAI \\
\hline C4412 & 283-0198-00 & & CAP., FXD, CER DI:0.22UF,208,50V & 72982 & 8131NO75 E224M \\
\hline C4413 & 290-0517-00 & & CAP.,FXD, ELCTLT:6.8UF,20\%,35V & 56289 & 196D685x0035KAl \\
\hline C4416 & 290-0517-00 & & CAP.,FXD, ELCTLT: \(6.8 \mathrm{UF}, 20 \%\),35V & 56289 & 196D685x0035KAl \\
\hline C4417 & 283-0177-00 & & CAP., FXD, CER DI:1UF, +80-20\%, 25V & 72982 & 8131NO39 E 1052 \\
\hline CR26 & 152-0141-02 & & SEMICOND DEVICE:SILICON, 30V,150MA & 07910 & 1N4152 \\
\hline CR27 & 152-0141-02 & & SEMICOND DEVICE:SILICON, 30V,150MA & 07910 & 1N4152 \\
\hline CR416 & 152-0075-00 & & SEMICOND DEVICE:GE, 25V,40MA & 80009 & 152-0075-00 \\
\hline CR418 & 152-0141-02 & & SEMICOND DEVICE:SILICON,30V,150MA & 07910 & 1N4152 \\
\hline CR437 & 152-0061-00 & & SEMICOND DEVICE:SILICON,175v,100MA & 80009 & 152-0061-00 \\
\hline CR443 & 152-0141-02 & & SEMICOND DEVICE:SILICON,30V,150MA & 07910 & 1N4152 \\
\hline CR463 & 152-0639-00 & & SEMICOND DEVICE:RECT,SI,10KV,10MA & 14099 & SEF100 \\
\hline CR465 & 152-0639-00 & & SEMICOND DEVICE:RECT,SI,10KV,10MA & 14099 & SEF100 \\
\hline CR721 & 152-0066-03 & & SEMICOND DEVICE:RECT, SI, \(400 \mathrm{~V}, 1 \mathrm{~A}\) & 80009 & 152-0066-03 \\
\hline CR722 & 152-0066-03 & & SEMICOND DEVICE:RECT, SI, 400V,1A & 80009 & 152-0066-03 \\
\hline CR723 & 152-0066-03 & & SEMICOND DEVICE:RECT, SI, 400v,1A & 80009 & 152-0066-03 \\
\hline CR724 & 152-0066-03 & & SEMICOND DEVICE:RECT,SI,400V,1A & 80009 & 152-0066-03 \\
\hline CR732 & 152-0066-03 & & SEMICOND DEVICE:RECT,SI,400V,1A & 80009 & 152-0066-03 \\
\hline CR734 & 152-0066-03 & & SEMICOND DEVICE:RECT,SI,400V,1A & 80009 & 152-0066-03 \\
\hline CR737 & 152-0141-02 & & SEMICOND DEVICE:SILICON, 30V,150MA & 07910 & 1N4152 \\
\hline CR738 & 152-0066-03 & & SEMICOND DEVICE:RECT, SI,400V,1A & 80009 & 152-0066-03 \\
\hline CR741 & 152-0066-03 & & SEMICOND DEVICE:RECT, SI,400v,1A & 80009 & 152-0066-03 \\
\hline CR742 & 152-0066-03 & & SEMICOND DEVICE:RECT,SI,400V,1A & 80009 & 152-0066-03 \\
\hline CR743 & 152-0066-03 & & SEMICOND DEVICE:RECT,SI,400v,1A & 80009 & 152-0066-03 \\
\hline CR744 & 152-0066-03 & & SEMICOND DEVICE:RECT, SI, 400V,1A & 80009 & 152-0066-03 \\
\hline CR758 & 152-0066-03 & & SEMICOND DEVICE:RECT, SI, 400V,1A & 80009 & 152-0066-03 \\
\hline CR764 & 152-0141-02 & & SEMICOND DEVICE:SILICON, 30V,150MA & 07910 & 1N4152 \\
\hline CR765 & 152-0141-02 & & SEMICOND DEVICE:SILICON, 30V,150MA & 07910 & 1N4152 \\
\hline CR766 & 152-0141-02 & & SEMICOND DEVICE:SILICON, 30V,150MA & 07910 & 1N4152 \\
\hline CR767 & 152-0141-02 & & SEMICOND DEVICE:SILICON, 30V,150MA & 07910 & 1N4152 \\
\hline CR778 & 152-0066-03 & & SEMICOND DEVICE: RECT, SI, 400V,1A & 80009 & 152-0066-03 \\
\hline CR2001 & 152-0141-02 & & SEMICOND DEVICE:SILICON, 30V,150MA & 07910 & 1N4152 \\
\hline CR2002 & 152-0141-02 & & SEMICOND DEVICE:SILICON, 30V,150MA & 07910 & 1N4152 \\
\hline CR2005 & 152-0141-02 & & SEMICOND DEVICE:SILICON, 30V,150MA & 07910 & 1N4152 \\
\hline CR2006 & 152-0141-02 & & SEMICOND DEVICE:SILICON, \(30 \mathrm{~V}, 150 \mathrm{MA}\) & 07910 & IN4152 \\
\hline CR2024 & 152-0141-02 & & SEMICOND DEVICE:SILICON, 30V,150MA & 07910 & 1N4152 \\
\hline CR2032 & 152-0141-02 & & SEMICOND DEVICE:SILICON, 30V,150MA & 07910 & 1N4152 \\
\hline CR2036 & 152-0141-02 & & SEMICOND DEVICE:SILICON, 30V,150MA & 07910 & 1N4152 \\
\hline CR2063 & 152-0141-02 & & SEMICOND DEVICE:SILICON,30V,150MA & 07910 & 1N4152 \\
\hline CR2181 & 152-0141-02 & & SEMICOND DEVICE:SILICON, 30V,150MA & 07910 & 1N4152 \\
\hline CR2182 & 152-0141-02 & & SEMICOND DEVICE:SILICON, 30V,150MA & 07910 & 1N4152 \\
\hline CR2183 & 152-0141-02 & & SEMICOND DEVICE:SILICON, 30V,150MA & 07910 & 1N4152 \\
\hline CR2185 & 152-0141-02 & & SEMICOND DEVICE:SILICON, 30V,150MA & 07910 & 1N4152 \\
\hline CR2227 & 152-0141-02 & & SEMICOND DEVICE:SILICON, 30V,150MA & 07910 & 1N4152 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Ckt No. & Tektronix Part No. & Serial/Model No.
Eff \(\quad\) Dscont & Name \& Description & Mfr Code & Mfr Part Number \\
\hline CR2233 & 152-0141-02 & & SEMICOND DEVICE:SILICON,30V,150MA & 07910 & 1N4152 \\
\hline CR2234 & 152-0245-00 & & SEMICOND DEVICE:SILICON,10NA AT 5V & 80009 & 152-0245-00 \\
\hline CR2317 & 152-0141-02 & & SEMICOND DEVICE:SILICON,30V,150MA & 07910 & 1N4152 \\
\hline CR2326 & 152-0141-02 & & SEMICOND DEVICE:SILICON,30V,150MA & 07910 & 1N4152 \\
\hline CR2331 & 152-0075-00 & & SEMICOND DEVICE:GE,25V,40MA & 80009 & 152-0075-00 \\
\hline CR2332 & 152-0075-00 & & SEMICOND DEVICE:GE, 25V,40MA & 80009 & 152-0075-00 \\
\hline CR2334 & 152-0574-00 & & SEMICOND DEVICE:SILICON,120V,0.15A & 80009 & 152-0574-00 \\
\hline CR2342 & 152-0141-02 & & SEMICOND DEVICE:SILICON,30V,150MA & 07910 & 1N4152 \\
\hline CR2356 & 152-0141-02 & & SEMICOND DEVICE:SILICON, 30V,150MA & 07910 & 1N4152 \\
\hline \[
\text { CR2514 }{ }^{1}
\] & 152-0141-02 & & SEMICOND DEVICE:SILICON,30V,150MA & 07910 & 1N4152 \\
\hline CR2516 \({ }^{1}\) & 152-0141-02 & & SEMICOND DEVICE:SILICON,30V,150MA & 07910 & 1N4152 \\
\hline CR2535 \({ }^{1}\) & 152-0141-02 & & SEMICOND DEVICE:SILICON,30V,150MA & 07910 & 1N4152 \\
\hline CR2536 \({ }^{1}\) & 152-0141-02 & & SEMICOND DEVICE:SILICON, 30V,150MA & 07910 & 1N4152 \\
\hline CR4122 & 152-0246-00 & & SEMICOND DEVICE:SILICON, 400PIV,200MA & 80009 & 152-0246-00 \\
\hline CR4222 & 152-0246-00 & & SEMICOND DEVICE:SILICON,400PIV,200MA & 80009 & 152-0246-00 \\
\hline CR4323 & 152-0141-02 & & SEMICOND DEVICE:SILICON; 30V,150MA & 07910 & 1N4152 \\
\hline CR4324 & 152-0141-02 & & SEMICOND DEVICE:SILICON,30V,150MA & 07910 & 1N4152 \\
\hline CR4326 & 152-0141-02 & & SEMICOND DEVICE:SILICON,30V,150MA & 07910 & 1N4152 \\
\hline CR4328 & 152-0141-02 & & SEMICOND DEVICE:SILICON,30V,150MA & 07910 & 1N4152 \\
\hline CR4331 & 152-0141-02 & & SEMICOND DEVICE:SILICON,30V,150MA & 07910 & IN4152 \\
\hline CR4332 & 152-0141-02 & & SEMICOND DEVICE:SILICON,30V,150MA & 07910 & 1N4152 \\
\hline CR4335 & 152-0141-02 & & SEMICOND DEVICE:SILICON,30V,150MA & 07910 & 1N4152 \\
\hline CR4336 & 152-0141-02 & & SEMICOND DEVICE:SILICON,30V,150MA & 07910 & 1N4152 \\
\hline CR4346 & 152-0141-02 & & SEMICOND DEVICE:SILICON,30V,150MA & 07910 & 1N4152 \\
\hline CR4347 & 152-0141-02 & & SEMICOND DEVICE:SILICON,30V,150MA & 07910 & 1N4152 \\
\hline CR4348 & 152-0141-02 & & SEMICOND DEVICE:SILICON, 30V,150MA & 07910 & 1N4152 \\
\hline CR4349 & 152-0141-02 & & SEMICOND DEVICE:SILICON,30V,150MA & 07910 & 1N4152 \\
\hline CR4356 & 152-0141-02 & & SEMICOND DEVICE:SILICON, 30V,150MA & 07910 & 1N4152 \\
\hline CR4357 & 152-0141-02 & & SEMICOND DEVICE:SILICON,30V,150MA & 07910 & 1N4152 \\
\hline CR4358 & 152-0141-02 & & SEMICOND DEVICE:SILICON, 30V,150MA & 07910 & 1N4152 \\
\hline CR4359 & 152-0141-02 & & SEMICOND DEVICE:SILICON, 30V,150MA & 07910 & 1N4152 \\
\hline DL4380 & 119-0703-00 & & DELAY LINE,ELEC: 120 NANOSEC & 80009 & 119-0703-00 \\
\hline DS463 & 150-0002-00 & & LAMP,GLOW:0.5 MA 60/125V & 08806 & NE2T-AlAT \\
\hline DS465 & 150-0002-00 & & LAMP, GLOW:0.5 MA 60/125V & 08806 & NE2T-A1AT \\
\hline DS811 & 198-3853-00 & & WIRE SET,ELEC: & 80009 & 198-3853-00 \\
\hline F700 & 159-0042-00 & & FUSE, CARTRIDGE:3AG, 0.75A,250V,FAST-BLOW & 71400 & AGC 3/4 \\
\hline F722 & 159-0051-00 & & FUSE, CARTRIDGE:3AG,0.062A,250V,20 SEC & 71400 & MDL1-16 \\
\hline F742 & 159-0153-00 & & FUSE,WIRE LEAD:1.5A,125V,FAST-BLOW & 03614 & GSA \(11 / 2\) \\
\hline F743 & 159-0153-00 & & FUSE,WIRE LEAD:1.5A,125V,FAST-BLOW & 03614 & GSA \(11 / 2\) \\
\hline J4 & 131-1795-00 & & CONNECTOR,RCPT, 12 FEMALE CONTACT,RT-ANGLE & 27264 & 09-62-3121 \\
\hline J7 & 131-1749-01 & & CONN,RCPT,ELEC:CKT BD, 8 CONTACTS & 27264 & 09-52-3101 \\
\hline J138 & 131-0955-00 & & CONN,RCPT, ELEC : BNC,FEMALE & 05091 & 31-279 \\
\hline J148 & 131-0955-00 & & CONN, RCPT, ELEC: BNC, FEMALE & 05091 & 31-279 \\
\hline J419 & 131-0955-00 & & CONNECTOR, RCPT, :BNC,FEMALE, W/HARDWARE & 05091 & 31-279 \\
\hline J2100 & 131-1802-00 & & CONNECTOR,RCPT,:15 CONTACTS & 80009 & 131-1802-00 \\
\hline J25501 & 131-1801-00 & & CONN,RCPT,ELEC:CKT BD,9 CONTACTS & 05574 & 0002,01-4832 \\
\hline J2250 & 131-1801-00 & & CONN,RCPT,ELEC:CKT BD,9 CONTACTS & 05574 & 0002,01-4832 \\
\hline J2260 & 131-1802-00 & & CONNECTOR,RCPT,:15 CONTACTS & 80009 & 131-1802-00 \\
\hline J4200 & 131-1792-00 & & CONTACT ASSY, EL: 12 MALE CONTACT, FLAT WAFER & 27264 & 09-70-2121 \\
\hline L470 & 108-0819-00 & & COIL, TUBE DEFLE: \(\mathrm{X}-\mathrm{Y}\) ALIGNMENT & 80009 & 108-0819-00 \\
\hline L472 & 108-0818-00 & & COIL, TUBE DEFLE:TRACE ROTATION & 80009 & 108-0818-00 \\
\hline
\end{tabular}

\footnotetext{
\(1_{\text {T935A }}\) only
}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Ckt No. & Tektronix Part No. & Serial/Model No. Eff Dscont & Name \& Description & Mfr Code & Mfr Part Number \\
\hline Q112 & 151-0199-02 & & TRANSISTOR:NPN,SI (SEL FROM 151-0199-00) & 80009 & 151-0199-02 \\
\hline Q122 & 151-0199-02 & & TRANSISTOR:NPN,SI (SEL FROM 151-0199-00) & 80009 & 151-0199-02 \\
\hline Q134 & 151-0127-04 & & TRANSISTOR:NPN,SI (SEL FROM 2N2369) & 80009 & 151-01.27-04 \\
\hline Q136 & 151-0127-04 & & TRANSISTOR:NPN, SI (SEL FROM 2N2369) & 80009 & 151-0127-04 \\
\hline Q144 & 151-0127-04 & & TRANSISTOR:NPN,SI (SEL FROM 2N2369) & 80009 & 151-0127-04 \\
\hline Q146 & 151-0127-04 & & TRANSISTOR:NPN,SI (SEL FROM 2N2369) & 80009 & 151-0127-04 \\
\hline Q416 & 151-0190-05 & & TRANSISTOR:SILICON,NPN, (SEL FROM 2N3904) & 80009 & 151-0190-05 \\
\hline Q424 & 151-0190-05 & & TRANSISTOR:SILICON,NPN, (SEL FROM 2N3904) & 80009 & 151-0190-05 \\
\hline Q426 & 151-0347-01 & & TRANSISTOR:SILICON,NPN, (SEL FROM 2N5551) & 80009 & 151-0347-01 \\
\hline Q434 & 151-0350-01 & & TRANSISTOR:SILICON, PNP, (SEL FROM 2N5401) & 80009 & 151-0350-01 \\
\hline Q446 & 151-0126-01 & & TRANSISTOR:SILICON, NPN, (SEL FROM 151-0126-00) & 80009 & 151-0126-01 \\
\hline Q454 & 151-0188-03 & & TRANSISTOR:SILICON, PNP, (SEL FROM 151-0188-00) & 80009 & 151-0188-03 \\
\hline Q458 & 151-0358-00 & & TRANSISTOR:SILICON,NPN, (SEL FROM D44R4) & 80009 & 151-0358-00 \\
\hline Q722 & 151-0347-01 & & TRANSISTOR:SILICON,NPN, (SEL FROM 151-0347-01) & 80009 & 151-0347-00 \\
\hline Q 726 & 151-0347-01 & & TRANSISTOR:SILICON,NPN, (SEL FROM 151-0347-01) & 80009 & 151-0347-00 \\
\hline Q734 & 151-0347-01 & & TRANSISTOR:SILICON,NPN, (SEL FROM 151-0347-01) & 80009 & 151-0347-00 \\
\hline \(Q 736\) & 151-0497-01 & & TRANSISTOR:SILICON,NPN, (SEL FROM 151-0497-00) & 80009 & 151-0497-01 \\
\hline \(\bigcirc 752\) & 151-0302-00 & & TRANSISTOR:SILICON,NPN & 04713 & 2N2222A \\
\hline Q754 & 151-0302-00 & & TRANSISTOR:SILICON,NPN & 04713 & 2N2222A \\
\hline Q 756 & 151-0478-01 & & TRANSISTOR:SILICON, NPN, (SEL FROM 151-0478-00) & 80009 & 151-0478-01 \\
\hline Q772 & 151-0301-00 & & TRANSISTOR:SILICON, PNP & 04713 & 2N2907A \\
\hline Q774 & 151-0301-00 & & TRANSISTOR:SILICON, PNP & 04713 & 2N2907A \\
\hline Q776 & 151-0478-01 & & TRANSISTOR:SILICON,NPN, (SEL FROM 151-0478-00) & 80009 & 151-0478-01 \\
\hline \(Q 792\) & 151-0224-02 & & TRANSISTOR:SILICON,NPN, (SEL FROM 2N3692) & 80009 & 151-0224-02 \\
\hline Q796 & 151-0347-01 & & TRANSISTOR:SILICON,NPN, (SEL FROM 2N5551) & 80009 & 151-0347-01 \\
\hline Q810 & 151-0190-05 & & TRANSISTOR:SILICON, NPN, (SEL FROM 151-0190-00) & 80009 & 151-0190-05 \\
\hline 2020 & 151-0188-03 & & TRANSISTOR:SILICON, PNP, (SEL FROM 151-0188-00) & 80009 & 151-0188-03 \\
\hline \(\mathrm{Q}^{2028}\) & 151-0188-03 & & TRANSISTOR:SILICON, PNP, (SEL FROM 151-0188-00) & 80009 & 151-0188-03 \\
\hline Q2032A, B & 151-1042-02 & & TRANSISTOR:MATCHED PAIR FET & 80009 & 151-1042-02 \\
\hline Q2038 & 151-0188-03 & & TRANSISTOR:SILICON, PNP, (SEL FROM 151-0188-00) & 80009 & 151-0188-03 \\
\hline Q2050 & 151-0188-03 & & TRANSISTOR:SILICON, PNP, (SEL FROM 151-0188-00) & 80009 & 151-0188-03 \\
\hline Q2054 & 151-0190-05 & & TRANSISTOR:SILICON,NPN, (SEL FROM 151-0190-00) & 80009 & 151-0190-05 \\
\hline \(\mathrm{Q}^{2058}\) & 151-0188-03 & & TRANSISTOR:SILICON, PNP, (SEL FROM 151-0188-00) & 80009 & 151-0188-03 \\
\hline \(\mathrm{Q}^{2122}\) & 151-0224-02 & & TRANSISTOR:SILICON,NPN, (SEL FROM 2N3962) & 80009 & 151-0224-02 \\
\hline Q2124 & 151-0224-02 & & TRANSISTOR:SILICON,NPN, (SEL FROM 2N3962) & 80009 & 151-0224-02 \\
\hline Q2128 & 151-0188-03 & & TRANSISTOR:SILICON, PNP, (SEL FROM 151-0188-00) & 80009 & 151-0188-03 \\
\hline \(\mathrm{Q}^{2134}\) & 151-0188-03 & & TRANSISTOR:SILICON, PNP, (SEL FROM 151-0188-00) & 80009 & 151-0188-03 \\
\hline Q2136 & 151-0188-03 & & TRANSISTOR:SILICON, PNP, (SEL FROM 151-0188-00) & 80009 & 151-0188-03 \\
\hline Q2142 & 151-0224-02 & & TRANSISTOR:SILICON,NPN, (SEL FROM 2N3962) & 80009 & 151-0224-02 \\
\hline Q2144 & 151-0224-02 & & TRANSISTOR:SILICON,NPN, (SEL FROM 2N3962) & 80009 & 151-0224-02 \\
\hline Q2152 & 151-0188-03 & & TRANSISTOR:SILICON, PNP, (SEL FROM 151-0188-00) & 80009 & 151-0188-03 \\
\hline Q2164 & 151-0190-05 & & TRANSISTOR:SILICON, NPN, (SEL FROM 151-0190-00) & 80009 & 151-0190-05 \\
\hline Q2174 & 151-0188-03 & & TRANSISTOR:SILICON, PNP, (SEL FROM 151-0188-00) & 80009 & 151-0188-03 \\
\hline Q2176 & 151-0216-02 & & TRANSISTOR:SILICON,PNP, (SEL FROM MPS6523) & 80009 & 151-0216-02 \\
\hline \(\mathbf{Q}^{2242}\) & 151-1042-02 & & SEMICOND DVC SE:MATCHED PAIR FET, (SEL FR U252) & 80009 & 151-1042-02 \\
\hline \(\mathrm{Q}^{2244}\) & 151-1042-02 & & SEMICOND DVC SE:MATCHED PAIR FET, (SEL F'R U252) & 80009 & 151-1042-02 \\
\hline Q2246 & 151-0190-05 & & TRANSISTOR:SILICON, NPN, (SEL FROM 151-0190-00) & 80009 & 151-0190-05 \\
\hline Q2274 & 151-0190-05 & & TRANSISTOR:SILICON,NPN, (SEL FROM 151-0190-00) & 80009 & 151-0190-05 \\
\hline \({ }^{2} 2314\) & 151-0192-00 & & TRANSISTOR:SILICON,NPN, (SEL FROM MPS6521) & 80009 & 151-0192-00 \\
\hline Q2326 & 151-0188-03 & & TRANSISTOR:SILICON, PNP, (SEL FROM 151-0188-00) & 80009 & 151-0188-03 \\
\hline Q2332 & 151-0188-03 & & TRANSISTOR:SILICON, PNP, (SEL FROM 151-0188-00) & 80009 & 151-0188-03 \\
\hline Q2334 & 151-0124-02 & & TRANSISTOR:SILICON,NPN, (SEL FROM 2N3501) & 80009 & 151-0124-02 \\
\hline Q2344 & 151-0124-02 & & TRANSISTOR:SILICON,NPN, (SEL FROM 2N3501) & 80009 & 151-0124-02 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Ckt No. & Tektronix Part No. & \begin{tabular}{l}
Serial/Model No. \\
Eff \\
Dscont
\end{tabular} & Name \& Description & Mfr Code & Mfr Part Number \\
\hline Q2354 & 151-0190-05 & & TRANSISTOR:SILICON,NPN(SEL FROM 151-0190-00) & 80009 & 151-0190-05 \\
\hline Q2514 \({ }^{1}\) & 151-0188-03 & & TRANSISTOR:SILICON,PNP, (SEL FROM 151-0188-00 & 80009 & 151-0188-03 \\
\hline Q2516 \({ }^{1}\) & 151-0188-03 & & TRANSISTOR:SILICON,PNP, (SEL FROM 151-0188-00) & 80009 & 151-0188-03 \\
\hline Q2522 \({ }^{1}\) & 151-0190-05 & & TRANSISTOR:SILICON,NPN, (SEL FROM 151-0190-00) & 80009 & 151-0190-05 \\
\hline Q2542 \({ }^{1}\) & 151-1042-02 & & SEMICOND DVC SE:MATCHED PAIR FET, (SEL FR U252) & 80009 & 151-1042-02 \\
\hline \(22544{ }^{1}\) & 151-1042-02 & & SEMICOND DVC SE:MATCHED PAIR FET, (SEL FR U252) & 80009 & 151-1042-02 \\
\hline Q2546 \({ }^{1}\) & 151-0190-05 & & TRANSISTOR:SILICON,NPN, (SEL FROM 151-0190-00) & 80009 & 151-0190-05 \\
\hline Q2548 \({ }^{1}\) & 151-0190-05 & & TRANSISTOR:SILICON,NPN, (SEL FROM 151-0190-00) & 80009 & 151-0190-05 \\
\hline Q4122A-B & 151-1032-02 & & TRANSISTOR:FE,SILICON, (SEL FROM U252) & 80009 & 151-1032-02 \\
\hline Q4132) & 151-0198-03 & & TRANSISTOR:SILICON,NPN,MATCHED & 80009 & 151-0198-03 \\
\hline Q4134 & 151-0198-03 & & TRANSISTOR:SILICON,NPN, MATCHED & 80009 & 151-0198-03 \\
\hline 24158 & 151-0198-03 & & TRANSISTOR:SILICON,NPN,MATCHED & 80009 & 151-0198-03 \\
\hline Q4168 & 151-0198-03 & & TRANSISTOR:SILICON,NPN,MATCHED & 80009 & 151-0198-03 \\
\hline Q4174 & 151-0199-02 & & TRANSISTOR:SILICON,NPN, (SEL FROM 151-0199-00) & 80009 & 151-0199-02 \\
\hline Q4176 & 151-0427-01 & & TRANSISTOR:SILICON,NPN, (SEL FROM 2N3563) & 80009 & 151-0427-01 \\
\hline Q4184 & 151-0199-02 & & TRANSISTOR:SILICON,NPN, (SEL FROM 151-0199-00) & 80009 & 151-0199-02 \\
\hline Q4186 & 151-0427-01 & & TRANSISTOR:SILICON,NPN, (SEL FROM 2N3563) & 80009 & 151-0427-01 \\
\hline Q4194 & 151-0198-02 & & TRANSISTOR:SILICON,NPN, (SEL FROM 151-0198-00) & 80009 & 151-0198-02 \\
\hline Q4196 & 151-0198-02 & & TRANSISTOR:SILICON,NPN, (SEL FROM 151-0198-00) & 80009 & 151-0198-02 \\
\hline Q4222A-B & 151-1032-02 & & TRANSISTOR:FE,SILICON, (SEL FROM U252) & 80009 & 151-1032-02 \\
\hline Q4232 & 151-0198-03 & & TRANSISTOR:SILICON, NPN , MATCHED & 80009 & 151-0198-03 \\
\hline Q4234 & 151-0198-03 & & TRANSISTOR:SILICON,NPN, MATCHED & 80009 & 151-0198-03 \\
\hline Q4258 & 151-0198-03 & & TRANSISTOR:SILICON, NPN, MATCHED & 80009 & 151-0198-03 \\
\hline Q4268 & 151-0198-03 & & TRANSISTOR:SILICON,NPN,MATCHED & 80009 & 151-0198-03 \\
\hline Q4274 & 151-0199-02 & & TRANSISTOR:SILICON,NPN, (SEL FROM 151-0199-00) & 80009 & 151-0199-02 \\
\hline Q4276 & 151-0427-01 & & TRANSISTOR:SILICON,NPN, (SEL FROM 2N3563) & 80009 & 151-0427-01 \\
\hline Q4284 & 151-0199-02 & & TRANSISTOR:SILICON,NPN, (SEL FROM 151-0199-00) & 80009 & 151-0199-02 \\
\hline Q4286 & 151-0427-01 & & TRANSISTOR:SILICON,NPN, (SEL FROM 2N3563) & 80009 & 151-0427-01 \\
\hline Q4294 & 151-0198-02 & & TRANSISTOR:SILICON,NPN, (SEL FROM 151-0198-00) & 80009 & 151-0198-02 \\
\hline Q4296 & 151-0198-02 & & TRANSISTOR:SILICON,NPN, (SEL FROM 151-0198-00) & 80009 & 151-0198-02 \\
\hline Q4302 & 151-0223-03 & & TRANSISTOR:SILICON,NPN, (SEL FROM 2N4275) & 80009 & 151-0223-03 \\
\hline Q4344 & 151-0199-02 & & .TRANSISTOR:SILICON,NPN, (SEL FROM 151-0199-00) & 80009 & 151-0199-02 \\
\hline Q4346 & 151-0199-02 & & TRANSISTOR:SILICON,NPN, (SEL FROM 151-0199-00) & 80009 & 151-0199-02 \\
\hline Q4350 & 151-0199-02 & & TRANSISTOR:SILICON,NPN, (SEL FROM 151-0199-00) & 80009 & 151-0199-02 \\
\hline Q4352 & 151-0199-02 & & TRANSISTOR:SILICON,NPN, (SEL FROM 151-0199-00) & 80009 & 151-0199-02 \\
\hline Q4354 & 151-0199-02 & & TRANSISTOR:SILICON,NPN, (SEL FROM 151-0199-00) & 80009 & 151-0199-02 \\
\hline Q4356 & 151-0199-02 & & TRANSISTOR:SILICON,NRN, (SEL FROM 151-0199-00) & 80009 & 151-0199-02 \\
\hline Q4376 & 151-0434-01 & & TRANSISTOR:SILICON,NPN, (SEL FROM 151-0434-00) & 80009 & 151-0434-01 \\
\hline Q4386 & 151-0434-01 & & TRANSISTOR:SILICON,NPN, (SEL FROM 151-0434-00) & 80009 & 151-0434-01 \\
\hline Q4388 & 151-0190-05 & & TRANSISTOR:SILICON,NPN, (SEL FROM 151-0190-00) & 80009 & 151-0190-05 \\
\hline R22 & 315-0134-00 & & RES. ,FXD, CMPSN:130K OHM, 5\%,0.25W & 01121 & CB1345 \\
\hline R23 & 315-0434-00 & & RES. ,FXD,CMPSN: 430 K OHM, 5\%,0.25W & 01121 & CB4345 \\
\hline R24 & 315-0104-00 & & RES., FXD, CMPSN:100K OHM, 5\%,0.25W & 01121 & CB1045 \\
\hline R25 & 315-0222-00 & & RES. ,FXD, CMPSN:2.2K OHM,5\%,0.25W & 01121 & CB2225 \\
\hline R26 & 321-0235-00 & & RES.,FXD,FILM:2.74K OHM,1\%,0.125W & 91637 & MFF1816G27400F \\
\hline R27 & 321-0126-00 & & RES.,FXD,FILM:200 OHM, 1\%,0.125W & 91637 & MFF1816G200R0F \\
\hline R112 & 321-0085-00 & & RES.,FXD,FILM:75 OHM, 1\%,0.125W & 91637 & MFF1816G75R00F \\
\hline R114 & 311-1563-00 & & RES., VAR,NONWIR:1K OHM, 20\%,0.50W & 73138 & 91A RlK \\
\hline R115 & 315-0153-00 & & RES.,FXD, CMPSN: 15 K OHM, \(5 \%, 0.25 \mathrm{~W}\) & 01121 & CB1535 \\
\hline R116 & 321-0163-00 & & RES.,FXD,FILM:487 OHM, 1\%,0.125W & 91637 & MFFI816G487R0F \\
\hline R117 & 315-0272-00 & & RES.,FXD,CMPSN:2.7K OHM, 5\%,0.25W & 01121 & CB2725 \\
\hline R118A-P & 307-0494-00 & & RES,NTWK,FXD,FI:THICK FILM,VERT OUTPUT & 80009 & 307-0494-00 \\
\hline R122 & 321-0085-00 & & RES.,FXD,FILM:75 OHM, 1\%,0.125W & 91637 & MFF1816G75R00F \\
\hline
\end{tabular}

\footnotetext{
\(1_{\text {T935A }}\) only
}

\begin{tabular}{|c|c|c|c|c|c|}
\hline Ckt No. & Tektronix Part No. & Serial/Model No. Eff Dscont & Name \& Description & Mfr Code & Mfr Part Number \\
\hline R754 & 308-0755-00 & & RES. , FXD, WW:0.75 OHM, 5\%,2W & 75042 & BWH-R7500J \\
\hline R756 & 321-0671-00 & & RES.,FXD,FILM:8.51K OHM, 0.5\%,0.125W & 91637 & MFF1816D85100D \\
\hline R757 & 321-0671-00 & & RES.,FXD,FILM:8.51K OHM, \(0.5 \%, 0.125 \mathrm{~W}\) & 91637 & MFF1816D85100D \\
\hline R762 & 315-0561-00 & & RES.,FXD, CMPSN:560 OHM,5\%,0.25W & 01121 & CB5615 \\
\hline R763 & 315-0182-00 & & RES.,FXD, CMPSN:1.8K OHM,5\%,0.25W & 01121 & CB1825 \\
\hline R764 & 321-0239-00 & & RES.,FXD,FILM:3.01K OHM, 1\%,0.125W & 91637 & MFFI816G30100F \\
\hline R765 & 321-0130-00 & & RES.,FXD,FILM:221 OHM,1\%,0.125W & 91637 & MFF1816G221R0F \\
\hline R766 & 301-0391-00 & & RES., FXD, CMPSN:390 OHM,5\%,0.50W & 01121 & EB3915 \\
\hline R772 & 321-0256-00 & & RES.,FXD,FILM:4.53K OHM,18,0.125W & 91637 & MFF1816G45300F \\
\hline R773 & 311-1563-00 & & RES., VAR, NONWIR:1K OHM, 20\%,0.50W & 73138 & 91A R1K \\
\hline R774 & 321-0232-00 & & RES.,FXD,FILM:2.55K OHM, 1\%,0.125W & 91637 & MFF1816G25500F \\
\hline R775 & 308-0755-00 & & RES., FXD, WW:0.75 OHM, 5\%, 2 W & 75042 & BWH-R7500J \\
\hline R784 & 308-0781-00 & & RES.,FXD, WW:1.34K OHM, \(2 \%, 10 \mathrm{~W}\) & 91637 & HLWlOR1Z-13400G \\
\hline R791 & 315-0435-00 & & RES.,FXD, CMPSN:4.3M OHM, 5\%,0.25W & 01121 & CB4355 \\
\hline R792 & 321-0402-00 & & RES.,FXD,FILM:150K OHM, 1\%,0.125W & 91637 & MFF1816G15002F \\
\hline R793 & 321-0283-00 & & RES.,FXD,FILM:8.66K OHM, 1\%,0.125W & 91637 & MFF \(1816 \mathrm{G86600F}\) \\
\hline R794 & 321-0394-00 & & RES.,FXD,FILM:124K OHM, 1\%,0.125W & 91637 & MFF1816G12402F \\
\hline R795 & 321-0283-00 & & RES.,FXD,FILM:8.66K OHM, 18,0.125W & 91637 & MFF1816G86600F \\
\hline R799 & 315-0305-00 & & RES. , FXD, CMPSN: 3 M OHM, 5\%, 0.25 W & 01121 & CB3055 \\
\hline R805 & 315-0204-00 & & RES.,FXD,CMPSN:200K OHM,5\%,0.25W & 01121 & CB2045 \\
\hline R806 & 315-0304-00 & & RES.,FXD, CMPSN:300K OHM, 5\%,0.25W & 01121 & CB3045 \\
\hline R807 & 315-0104-00 & & RES., FXD, CMPSN:100K OHM,5\%,0.25W & 01121 & CB1045 \\
\hline R808 & 315-0513-00 & & RES.,FXD,CMPSN:51K OHM,5\%,0.25W & 01121 & CB5135 \\
\hline R810 & 315-0472-00 & & RES.,FXD,CMPSN:4.7K OHM,5\%,0.25W & 01121 & CB4725 \\
\hline R811 & 315-0301-00 & & RES. ,FXD, CMPSN: 300 OHM, 5\%,0.25W & 01121 & CB3015 \\
\hline R2000 & 315-0150-00 & & RES.,FXD, CMPSN: 15 OHM, 5\%, 0.25W & 01121 & CB1505 \\
\hline R2001 & 315-0103-00 & & RES.,FXD, CMPSN:10K OHM,5\%,0.25W & 01121 & CBI035 \\
\hline R2005 & 315-0103-00 & & RES., FXD,CMPSN:10K OHM,5\%,0.25W & 01121 & CB1035 \\
\hline R2006 & 321-0175-00 & & RES.,FXD,FILM:649 OHM,18,0.125W & 91637 & MFF1816G649R0F \\
\hline R2007 & 311-1564-00 & & RES.,VAR,NONWIR:500 OHM, 20\%,0.50W & 73138 & 91A R500 \\
\hline R2008 & 315-0150-00 & & RES.,FXD, CMPSN: 15 OHM, 5\%,0.25w & 01121 & CB1505 \\
\hline R2010 & 322-0524-01 & & .RES., FXD,FILM:2.8M ОHM, \(0.5 \%, 0.25 \mathrm{~W}\) & 91637 & MFF1421G28003D \\
\hline R2011 & 321-0389-00 & & RES.,FXD,FILM:110K OHM, 1\%,0.125W & 91637 & MFF1816G11002F \\
\hline R2012 & 317-0150-00 & & RES.,FXD,CMPSN:15 OHM,5\%,0.125W & 01121 & BB1505 \\
\hline R2013 & 322-0481-00 & & RES., FXD,FILM:1M OHM, 1\%,0.25W & 75042 & CEBTO-1004F \\
\hline R2014 & 321-0481-00 & & RES.,FXD,FILM:1M OHM, 1\%,0.125W & 91637 & MFF1816G10003F \\
\hline R2021 & 321-0150-00 & & RES., FXD,FILM:357 OHM,1\%,0.125W & 91637 & MFF1816G357R0F \\
\hline R2022 & 321-0201-00 & & RES.,FXD,FILM:1.21K OHM,1\%,0.125W & 91637 & MFF1816G12100F \\
\hline R2023 & 321-0193-00 & & RES.,FXD,FILM:1K OHM,1\%,0.125W & 91637 & MFF1816G10000F \\
\hline R2024 & 321-0229-00 & & RES.,FXD,FILM:2.37K OHM,1\%,0.125W & 91637 & MFF1816G23700F \\
\hline R2026 & 321-0220-00 & & RES.,FXD,FILM:1.91K OHM,1\%,0.125W & 91637 & MFF1816G19100F \\
\hline R2027 & 311-1563-00 & & RES.,VAR,NONWIR:1K OHM, 20\%,0.50W & 73138 & 91A RIK \\
\hline R2028 & 315-0162-00 & & PES., FXD, CMPSN:1.6K OHM, 5\%, 0.25W & 01121 & CB1625 \\
\hline R2030 & 321-0481-00 & & RES.,FXD,FILM:1M OHM, 1\%,0.125W & 91637 & MFF1816G10003F \\
\hline R2032 & 315-0510-00 & & RES. ,FXD,CMPSN:51 OHM,5\%,0.25W & 01121 & CB5105 \\
\hline R2033 & 315-0510-00 & & RES.,FXD,CMPSN:51 OHM,5\%,0.25W & 01121 & CB5105 \\
\hline R2035 & 315-0202-00 & & RES.,FXD, CMPSN: 2 K ОHM,5\%,0.25W & 01121 & CB2025 \\
\hline R2036 & 315-0242-00 & & RES.,FXD,CMPSN:2.4K OHM,5\%,0.25W & 01121 & CB2425 \\
\hline R2037 & 315-0301-00 & & RES. .FXD, CMPSN: 300 OHM, 5\%,0.25W & 01121 & CB3015 \\
\hline R2038 & 321-0234-00 & & RES.,FXD,FILM:2.67K OHM,1\%,0.125W & 91637 & MFF1816G26700F \\
\hline R2039 & 315-0510-00 & & RES.,FXD,CMPSN:51 OHM, 5\%,0.25W & 01121 & CB5105 \\
\hline R2040 & 315-0270-00 & & RES. ,FXD, CMPSN:27 OHM, 5\%,0.25W & 01121 & CB2705 \\
\hline R2048 & 321-0161-00 & & RES.,FXD,FILM:464 OHM, \(1 \%, 0.125 \mathrm{~W}\) & 91637 & MFF1816G464R0F \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Ckt No. & Tektronix Part No. & Serial/Model No. Eff Dscont & Name \& Description & Mfr Code & Mfr Part Number \\
\hline R2049 & 321-0226-00 & & RES.,FXD,FILM:2.21K OHM, 1\%,0.125W & 91637 & MFF1816G22100F \\
\hline R2050 & 321-0193-00 & & RES.,FXD,FILM:1K OHM, 1\%,0.125W & 91637 & MFF1816Gl0000F \\
\hline R2051 & 311-1566-00 & & RES., VAR, NONWIR:200 OHM, 20\%,0.50W & 73138 & 91A R200 \\
\hline R2052 & 321-0166-00 & & RES.,FXD,FILM:523 OHM,1\%,0.125W & 91637 & MFF1816G523R0F \\
\hline R2053 & 321-0213-00 & & RES.,FXD,FILM:1.62K OHM,1\%,0.125W & 91637 & MFFl816G16200F \\
\hline R2055 & 321-0251-00 & & RES.,FXD,FILM:4.02K OHM, 1\%,0.125W & 91637 & MFF1816G40200F \\
\hline R2057 & 315-0102-00 & & RES. ,FXD, CMPSN: 1 K OHM, 5\%,0.25W & 01121 & CB1025 \\
\hline R2060 & 321-0068-00 & & RES.,FXD,FILM:49.9 OHM, 1\%,0.125W & 91637 & MFF1816G49R90F \\
\hline R2061 & 311-1565-00 & & RES.,VAR,NONWIR:250 OHM, 20\%,0.50W & 73138 & 91A R250 \\
\hline R2062 & 321-0143-00 & & RES.,FXD,FILM:301 OHM,1\%,0.125W & 91637 & MFF 1816G301ROF \\
\hline R2063 & 321-0251-00 & & RES.,FXD,FILM:4.02K OHM, 1\%,0.125W & 91637 & MFF1816G40200F \\
\hline R2065 & 321-0214-00 & & RES.,FXD,FILM:1.65K OHM,1\%,0.125W & 91637 & MFF1816G16500F \\
\hline R2092 & 315-0270-00 & & RES.,FXD,CMPSN:27 OHM,5\%,0.25W & 01121 & CB2705 \\
\hline R2102 & 315-0152-00 & & RES., FXD,CMSPN:1.5K OHM, 5\%,0.25W & 01121 & CB1525 \\
\hline R2116 & 321-0641-00 & & RES.,FXD,FILM:1.8K OHM,1\%,0.125W & 91637 & MFF1816G18000F \\
\hline R2118 & 315-0102-00 & & RES.,FXD,CMPSN:1K OHM,5\%,0.25W & 01121 & CB1025 \\
\hline R2121 & 321-0182-00 & & RES.,FXD,FILM:768 OHM,1\%,0.125W & 91637 & MFF1816G768R0F \\
\hline R2122 & 315-0270-00 & & RES.,FXD, CMPSN: 27 OHM, 5\%, 0.25 W & 01121 & CB2705 \\
\hline R2124 & 321-0249-00 & & RES.,FXD,FILM:3.83K OHM,1\%,0.125W & 91637 & MFFl816G38300F \\
\hline R2125 & 321-0181-00 & & RES.,FXD,FILM:750 OHM,18,0.125W & 91637 & MFF1816G750R0F \\
\hline R2126 & 315-0510-00 & & RES.,FXD,CMPSN:51 OHM,5\%,0.25W & 01121 & CB5105 \\
\hline R2127 & 321-0193-00 & & RES.,FXD,FILM:1K OHM, \(1 \%, 0.125 \mathrm{~W}\) & 91637 & MFF1816G10000F \\
\hline R2128 & 321-0193-00 & & RES.,FXD,FILM:1K OHM, 1\%,0.125W & 91637 & MFF1816G10000F \\
\hline R2131 & 315-0221-00 & & RES., FXD, CMPSN: 220 OHM, 5\%,0.25W & 01121 & CB2215 \\
\hline R2132 & 315-0222-00 & & RES.,FXD, CMPSN:2.2K OHM,5\%,0.25W & 01121 & CB2225 \\
\hline R2133 & 323-0346-00 & & RES. ,FXD,FILM \(: 39.2 \mathrm{~K}\) OHM, \(1 \%, 0.50 \mathrm{~W}\) & 75042 & CECTO-3922F \\
\hline R2135 & 315-0510-00 & & RES., FXD, CMPSN:51 OHM,5\%,0.25W & 01121 & CB5105 \\
\hline R2136 & 315-0751-00 & & RES., FXD, CMPSN:750 OHM,5\%,0.25W & 01121 & CB7515 \\
\hline R2137 & 315-0622-00 & & RES. FXD, CMPSN:6.2K OHM,5\%,0.25W & 01121 & CB6225 \\
\hline R2138 & 311-1787-00 & & RES. ,VAR,NONWIR:20K OHM,10\%,2W & 12697 & 470-CM40947 \\
\hline R2142 & 321-0231-00 & & RES.,FXD,FILM:2.49K OHM,18,0.125W & 91637 & MFF1816G24900F \\
\hline R2143 & 321-0231-00 & & RES.,FXD,FILM:2.49K OHM,1\%,0.125W & 91637 & MFF1816G24900F \\
\hline R2144 & 315-0821-00 & & RES. ,FXD, CMPSN:820 OHM,5\%,0.25W & 01121 & CB8215 \\
\hline R2145 & 321-0231-00 & & RES. FXD,FILM 2.49 K OHM, 1\%,0.125W & 91637 & MFF1816G24900F \\
\hline R2146 & 321-0189-00 & & RES.,FXD,FILM:909 OHM,1\%,0.125W & 91637 & MFFl816G909R0F \\
\hline R2147 & 315-0222-00 & & RES. , FXD, CMPSN:2.2 OHM, 5\%, 0.25W & 01121 & CB2225 \\
\hline R2151 & 315-0102-00 & & RES. ,FXD, CMPSN: 1 K OHM, 5\%,0.25W & 01121 & CB1025 \\
\hline R2152 & 315-0911-00 & & RES., FXD,CMPSN:910 OHM,5\%,0.25W & 01121 & CB9115 \\
\hline R2153 & 315-0682-00 & & RES. ,FXD, CMPSN: 6.8 K OHM, \(5 \%, 0.25 \mathrm{~W}\) & 01121 & CB6825 \\
\hline R2154 & 315-0822-00 & & RES.,FXD, CMPSN: 8. 2 K OHM, 5\%, 0.25 W & 01121 & CB8225 \\
\hline R2156 & 315-0102-00 & & RES.,FXD,CMPSN:1K OHM, 5\%,0.25W & 01121 & CB1025 \\
\hline R2157 & 315-0222-00 & & RES.,FXD,CMPSN:2.2K OHM, 5\%,0.25W & 01121 & CB2225 \\
\hline R2158 & 315-0163-00 & & RES.,FXD,CMPSN:16K OHM,5\%,0.25W & 01121 & CB1635 \\
\hline R2162 & 315-0221-00 & & RES.,FXD, CMPSN: 220 OHM, 5\%,0.25W & 01121 & CB2215 \\
\hline R2163 & 315-0103-00 & & RES.,FXD,CMPSN:10K OHM,5\%,0.25W & 01121 & CB1035 \\
\hline R2164 & 315-0222-00 & & RES. , FXD, CMPSN:2.2 OHM, 5\%,0.25W & 01121 & CB2225 \\
\hline R2166 & 315-0222-00 & & RES. ,FXD, CMPSN: 2.2 K OHM, 5\%,0.25W & 01121 & CB2225 \\
\hline R2167 & 315-0203-00 & & RES.,FXD,CMPSN:20K OHM, 5\%,0.25W & 01121 & CB2035 \\
\hline R2171 & 315-0751-00 & & RES. ,FXD, CMPSN: 750 OHM,5\%,0.25W & 01121 & CB7515 \\
\hline R2172 & 315-0222-00 & & RES.,FXD,CMPSN:2.2K OHM, 5\%,0.25W & 01121 & CB2225 \\
\hline R2174 & 315-0182-00 & & RES.,FXD,CMPSN:1.8K OHM, 5\%,0.25W & 01121 & CB1825 \\
\hline R2175 & 315-0222-00 & & RES., FXD, CMPSN: 2.2 K OHM, 5\%,0.25W & 01121 & CB2225 \\
\hline R2176 & 315-0222-00 & & RES.,FXD, CMPSN:2.2 OHM,5\%,0.25W & 01121 & CB2225 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Ckt No. & Tektronix Part No. & Serial/Model No. Eff Dscont & Name \& Description & Mir Code & Mfr Part Number \\
\hline R2178 & 315-0222-00 & & RES., FXD, CMPSN: 2.2 K OHM, \(5 \%, 0.25 \mathrm{~W}\) & 01121 & CB2225 \\
\hline R2182 & 321-0236-00 & & RES.,FXD,FILM:2.8K OHM, 1\%,0.125W & 91637 & MFF1816G28000F \\
\hline R2185 & 315-0272-00 & & RES.,FXD, CMPSN:2.7K OHM,5\%,0.25W & 01121 & CB2725 \\
\hline R2186 & 315-0272-00 & & RES. .FXD, CMPSN:2.7K OHM, 5\%,0.25W & 01121 & CB2725 \\
\hline R2188 & 315-0752-00 & & RES.,FXD, CMPSN:7.5K OHM,5\%,0.25W & 01121 & CB7525 \\
\hline R2223 & 315-0911-00 & & RES., FXD, CMPSN:910 OHM, 5\%,0.25W & 01121 & CB9115 \\
\hline R2224 & 315-0242-00 & & RES.,FXD,CMPSN:2.4K OHM, 5\%,0.25W & 01121 & CB2425 \\
\hline R2226 & 315-0203-00 & & RES., FXD, CMPSN:20K OHM,5\%,0.25W & 01121 & CB2035 \\
\hline R2227 & 315-0102-00 & & RES.,FXD, CMPSN:1K OHM, 5\%,0.25W & 01121 & CB1025 \\
\hline R2233 & 315-0122-00 & & RES.,FXD, CMPSN:1.2K OHM,5\%,0.25W & 01121 & CB1225 \\
\hline R2235 & 315-0681-00 & & RES., FXD, CMPSN: 680 OHM, 5\%,0.25W & 01121 & CB6815 \\
\hline R2236 & 315-0680-00 & & RES.,FXD, CMPSN: 68 OHM, 5\%, 0.25 W & 01121 & CB6805 \\
\hline R2237 & 315-0512-00 & & RES.,FXD, CMPSN:5.1K OHM, 5\%,0.25W & 01121 & CB5125 \\
\hline R2243 & 308-0212-00 & & RES., FXD, WW:10K OHM, 5\%,3W & 91637 & CW2B-Bl0001J \\
\hline R2245 & 321-0326-00 & & RES.,FXD,FILM:24.3K OHM, 1\%,0.125W & 91637 & MFF1816G24301F \\
\hline R2246 & 315-0510-00 & & RES.,FXD, CMPSN:51 OHM, 5\%, 0.25W & 01121 & CB5105 \\
\hline R2247 & 321-0312-00 & & RES.,FXD,FILM:17.4K OHM,1\%,0.125W & 91637 & MFF1816Gl7401F \\
\hline R2252 & 315-0100-00 & & RES.,FXD, CMPSN: 10 OHM, 5\%, 0.25 W & 01121 & CB1005 \\
\hline R2253 & 321-0444-00 & & RES.,FXD,FILM:412K OHM, 18,0.125W & 91637 & MFF1816G41202F \\
\hline R2254 & 321-0377-01 & & RES.,FXD,FILM:82.5K OHM, \(0.5 \%\), 0.125 W & 91637 & MFF1816G82501D \\
\hline R2255 & 321-0377-01 & & RES. ,FXD, FILM:82.5K OHM, \(0.5 \%, 0.125 \mathrm{~W}\) & 91637 & MFF1816G82501D \\
\hline R2256 & 321-0348-00 & & RES.,FXD,FILM:41.2K OHM, 1\%,0.125 & 91637 & MFF1816G41201F \\
\hline R2257 & 321-0281-00 & & RES.,FXD,FILM:8.25K OHM, 1\%,0.125W & 91637 & MFF1816G82500F \\
\hline R2258 & 321-0281-00 & & RES.,FXD,FILM:8.25K OHM,1\%,0.125W & 91637 & MFF1816G82500F \\
\hline R2262 & 322-0519-01 & & RES.,FXD,FILM:2.49M OHM, 0.5\%,0.25W & 91637 & HFF143G24903D \\
\hline R2263 & 321-0473-01 & & RES.,FXD,FILM:825K OHM, 0.5\%,0.125W & 91637 & MFF1816G82502D \\
\hline R2264 & 321-0473-01 & & RES.,FXD,FILM:825K OHM, \(0.5 \%, 0.125 \mathrm{~W}\) & 91637 & MFF1816G82502D \\
\hline R2269 & 311-1789-00 & & RES.,VAR,NONWIR:100K OHM,10\%,1W & 12697 & 381-CM40949 \\
\hline R2271 & 315-0434-00 & & RES.,FXD, CMPSN: 430 K OHM, \(5 \%, 0.25 \mathrm{~W}\) & 01121 & CB4345 \\
\hline R2272 & 311-0580-00 & & RES., VAR,NONWIR:50K OHM, 20\%,0.50W & 11237 & 300SF-41.695 \\
\hline R2274 & 315-0512-00 & & RES.,FXD, CMPSN:5.1K OHM, 5\%,0.25W & 01121 & CB5125 \\
\hline R2276 & 315-0103-00 & & RES.,FXD, CMPSN: 10 K OHM, 5\%,0.25W & 01121 & CB1035 \\
\hline R2278 & 315-0512-00 & & RES.,FXD, CMPSN:5.1K OHM, 5\%, 0.25 W & 01121 & CB5125 \\
\hline R2310 & 321-0184-00 & & RES.,FXD,FILM:806 OHM, 1\%,0.125W & 91637 & MFF1816G806ROF \\
\hline R2311 & 321-0268-00 & & RES.,FXD,FILM:6.04K OHM,1\%,0.125 & 91637 & MFF1816G60400F \\
\hline R2313 & 321-0279-00 & & RES.,FXD,FILM:7.87K OHM,1\%,0.125W & 91637 & MFF1816G78700F \\
\hline R2314 & 321-0320-00 & & RES.,FXD,FILM:21K OHM, 1\%,0.125W & 91637 & MFF1816G21001F \\
\hline R2315 & 321-0297-00 & & RES.,FXD,FILM:12.1K OHM, 1\%,0.125W & 91637 & MFF1816G12101F \\
\hline R2316 & 311-1974-00 & & RES., VAR, NONWIR:PNL, 50K/20K OHM, 10\%,0.5W & 12697 & CM41730 \\
\hline R2317 & 315-0751-00 & & RES., FXD, CMPSN: 750 OHM, 5\%,0.25W & 01121 & CB7515 \\
\hline R2321 & 311-1918-00 & & RES., VAR, NONWIR: 2 K OHM, 10\%, 0.5 W & 73138 & 72-199-0 \\
\hline R2322 & 321-0293-00 & & RES.,FXD,FILM:11K OHM, 1\%,0.125W & 91637 & MFF1816G11001F \\
\hline R2323 & 321-0197-00 & & RES.,FXD,FILM:1.1K OHM, 1\%,0.125W & 91637 & MFF1816G11000F \\
\hline R2324 & 315-0162-00 & & RES.,FXD, CMPSN:1.6K OHM, 5\%,0.25W & 01121 & CB1625 \\
\hline R2325 & 315-0392-00 & & RES.,FXD, CMPSN:3.9K OHM,5\%,0.25W & 01121 & CB3925 \\
\hline R2326 & 315-0332-00 & & RES.,FXD, CMPSN:3.3K OHM, 5\%,0.25W & 01121 & CB3325 \\
\hline R2327 & 315-0331-00 & & RES., FXD, CMPSN: \(330 \mathrm{OHM}, 5 \%, 0.25 \mathrm{~W}\) & 01121 & CB3315 \\
\hline R2328 & 315-0101-00 & & RES., FXD, CMPSN: 100 OHM,5\%,0.25W & 01121 & CB1015 \\
\hline R2331 & 315-0202-00 & & RES.,FXD, CMPSN: 2 K OHM, 5\%,0.25W & 01121 & CB2025 \\
\hline R2332 & 311-1239-00 & & RES., VAR,NONWIR:2.5K OHM, 10\%,0.50W & 73138 & 72X-76-0252K \\
\hline R2334 & 315-0752-00 & & RES.,FXD, CMPSN:7.5K OHM, 5\%,0.25W & 01121 & CB7525 \\
\hline R2335 & 315-0753-00 & & RES., FXD, CMPSN:75K OHM, 5\%,0.25W & 01121 & CB7535 \\
\hline R2336 & 315-0152-00 & & RES.,FXD, CMPSN:1.5K OHM,5\%,0.25W & 01121 & CB1525 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Ckt No. & Tektronix Part No. & Serial/Model No. Eff Dscont & Name \& Description & Mfr Code & Mfr Part Number \\
\hline R2337 & 308-0329-00 & & RES.,FXD,WW:4K OHM, 2\%,3W & 91637 & RS 2B-B40000G \\
\hline R2342 & 315-0152-00 & & RES. ,FXD, CMPSN:1.5K OHM, 5\%, 0.25W & 01121 & CB1525 \\
\hline R2344 & 308-0329-00 & & RES.,FXD,WW:4K OHM, 2\%,3W & 91637 & RS 2B-B40000G \\
\hline R2345 & 315-0331-00 & & RES. ,FXD, CMPSN: 330 OHM,5\%,0.25W & 01121 & CB3315 \\
\hline R2347 & 315-0753-00 & & RES.,FXD,CMPSN:75K OHM,5\%,0.25W & 01121 & CB7535 \\
\hline R2352 & 315-0104-00 & & RES. ,FXD, CMPSN:100K OHM,5\%,0.25W & 01121 & CB1045 \\
\hline R2353 & 315-0622-00 & & RES., FXD, CMPSN:6.2K OHM,5\%,0.25W & 01121 & CB6225 \\
\hline R2354 & 315-0103-00 & & RES., FXD, CMPSN:10K OHM,5\%,0.25W & 01121 & CB1035 \\
\hline R2355 & 315-0202-00 & & RES.,FXD,CMPSN:2K OHM,5\%,0.25W & 01121 & CB2025 \\
\hline R2355 & 315-0202-00 & & RES.,FXD,CMPSN:2K OHM,5\%,0.25W & 01121 & CB2025 \\
\hline R2356 & 315-0182-00 & & RES.,FXD,CMPSN:1.8K OHM,5\%,0.25W & 01121 & CB1825 \\
\hline R2357 & 315-0752-00 & & RES., FXD, CMPSN:7.5K OHM,5\%,0.25W & 01121 & CB7525 \\
\hline R2392 \({ }_{1}\) & 301-0240-00 & & RES. , FXD, CMPSN: 24 OHM, 5\%,0.50W & 01121 & EB2405 \\
\hline R2511 \({ }^{1}\) & 315-0103-00 & & RES.,FXD, CMPSN:10K OHM,5\%,0.25W & 01121 & CB1035 \\
\hline R2512 \({ }^{1}\) & 315-0223-00 & & RES.,FXD,CMPSN:22K OHM , 5\%,0.25W & 01121 & CB2235 \\
\hline R2514 \({ }^{1}\) & 315-0104-00 & & RES., FXD,CMPSN:100K OHM, 5\%,0.25W & 01121 & CB1045 \\
\hline R2515 \({ }^{1}\) & 315-0201-00 & & RES.,FXD, CMPSN: 200 OHM, 5\%,0.25W & 01121 & CB2015 \\
\hline R2516 \({ }^{1}\) & 311-1531-00 & & RES.,VAR,WW :PNL, 2K OHM & 02111 & 535-9304 \\
\hline R2517 \({ }^{1}\) & 315-0102-00 & & RES., FXD, CMPSN:1K OHM , 5\%,0.25W & 01121 & CB1025 \\
\hline R2519 \({ }^{1}\) & 315-0752-00 & & RES., FXD, CMPSN:7.5K OHM, 5\%,0.25W & 01121 & CB7525 \\
\hline R2521 \({ }^{1}\) & 315-0563-00 & & RES.,FXD,CMPSN:56K OHM,5\%,0.25W & 01121 & CB5635 \\
\hline R2523 \({ }^{1}\) & 315-0562-00 & & RES.,FXD, CMPSN:5.6K OHM,5\%,0.25W & 01121 & CB5625 \\
\hline R2525 \({ }^{1}\) & 315-0392-00 & & RES.,FXD, CMPSN:3.9K OHM,5\%,0.25W & 01121 & CB3925 \\
\hline R2527 \({ }^{1}\) & 315-0622-00 & & RES.,FXD, CMPSN: 6.2 K OHM, \(5 \%, 0.25 \mathrm{~W}\) & 01121 & CB6225 \\
\hline R2531 \({ }^{1}\) & 315-0243-00 & & RES.,FXD, CMPSN: 24 K OHM, 5\%,0.25W & 01121 & CB2435 \\
\hline R2532 \({ }^{1}\) & 315-0512-00 & & RES.,FXD,CMPSN:5.1K OHM,5\%,0.25W & 01121 & CB5125 \\
\hline R25331 & 315-0153-00 & & RES.,FXD,CMPSN:15K OHM, 5\%,0.25W & 01121 & CB1535 \\
\hline R25351 & 315-0122-00 & & RES.,FXD, CMPSN:1.2K OHM,5\%,0.25W & 01121 & CB1225 \\
\hline R2537 \({ }^{1}\) & 315-0681-00 & & RES. , FXD, CMPSN: 680 OHM, 5\%,0.25W & 01121 & CB6815 \\
\hline R2539 \({ }^{1}\) & 315-0680-00 & & RES., FXD, CMPSN: 68 OHM, 5\%,0.25W & 01121 & CB6805 \\
\hline \[
\text { R2541 } \frac{1}{1}
\] & 308-0212-00 & & RES.,FXD,WW:10K OHM,5\%,3W & 91637 & CW2B-Bl0001J \\
\hline R2544 \({ }^{1}\) & 321-0326-00 & & RES., FXD,FILM:24.3K OHM, 1\%,0.125W & 91637 & MFF1816G24301F \\
\hline R25451 & 321-0312-00 & & RES.,FXD,FILM:17.4K OHM, 1\%,0.125W & 91637 & MFF1816G17401F \\
\hline R2546 & 315-0510-00 & & RES., FXD, CMPSN:51 OHM,5\%,0.25W & 01121 & CB5105 \\
\hline R2547 \({ }^{\text {l }}\) & 315-0203-00 & & RES., FXD, CMPSN:20K OHM,5\%,0.25W & 01121 & CB2035 \\
\hline R2548 & 315-0103-00 & & RES.,FXD,CMPSN:10K OHM,5\%,0.25W & 01121 & CB1035 \\
\hline R2552 \({ }^{1}\) & 315-0100-00 & & RES. ,FXD, CMPSN: 10 OHM, 5\%,0.25W & 01121 & CB1005 \\
\hline R25531 & 321-0444-00 & & RES., FXD,FILM:412K OHM, 1\%,0.125W & 91637 & MFF1816G41202F \\
\hline \[
\text { R2554 }{ }_{1}^{1}
\] & 321-0377-01 & & RES. .FXD,FILM:82.5K OHM, 0.5\%,0.125W & 91637 & MFF1816G82501D \\
\hline R2555 \({ }^{1}\) & 321-0377-01 & & RES., FXD,FILM:82.5K OHM, 0.5\%,0.125W & 91637 & MFF1816G82501D \\
\hline \[
\mathrm{R} 2556^{1}
\] & 321-0348-00 & & RES.,FXD,FILM:41.2K OHM,1\%,0.125W & 91637 & MFF1816G41201F \\
\hline R2557 \({ }^{1}\) & 321-0281-00 & & RES.,FXD,FILM:8.25K OHM,1\%,0.125W & 91637 & MFFl816G82500F \\
\hline R2558 \({ }^{1}\) & 321-0281-00 & & RES.,FXD,FILM:8.25K OHM,1\%,0.125W & 91637 & MFF1816G82500F \\
\hline R2590 \({ }^{1}\) & 315-0151-00 & & RES. , FXD, CMPSN: 150 OHM,5\%,0.25W & 01121 & CB1515 \\
\hline R4101 & 317-0150-00 & & RES.,FXD,CMPSN:15 OHM,5\%,0.125W & 01121 & BB1505 \\
\hline R4102 & 315-0105-00 & & RES. ,FXD, CMPSN:IM OHM, 5\%,0.25W & 01121 & CB1055 \\
\hline R4104 & 315-0241-00 & & RES.,FXD,CMPSN:240 OHM, 5\%,0.25W & 01121 & CB2415 \\
\hline R4105 & 321-0790-01 & & RES.,FXD,FILM:990K OHM, 0.5\%,0.125W & 91637 & HFFl104G99002D \\
\hline R4106 & 315-0180-00 & & RES. ,FXD, CMPSN:18 OHM,5\%,0.25W & 01121 & CB1805 \\
\hline R4107 & 321-1289-01 & & RES.,FXD,FILM:10.1K OHM, 0.5\%,0.125W & 91637 & MFF1816G10101D \\
\hline R4108 & 315-0330-00 & & RES.,FXD,CMPSN:33 OHM, 5\%, 0.25W & 01121 & CB3305 \\
\hline R4114 & 321-0807-01 & & RES.,FXD,FIIM:900K OHM, 0.5\%,0.125W & 91637 & HFFl104G90002D \\
\hline R4116 & 321-1389-01 & & RES.,FXD,FILM:111K OHM, 0.5\%,0.125W & 91637 & MFF1816G11102D \\
\hline
\end{tabular}

\footnotetext{
\(1_{\text {T935A }}\) only
}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Ckt No. & Tektronix Part No. & Serial/Model No. Eff Dscont & Name \& Description & Mfr Code & Mfr Part Number \\
\hline R4117 & 315-0100-00 & & RES.,FXD, CMPSN:10 OHM, 5\%, 0.25W & 01121 & CB1005 \\
\hline R4118 & 315-0151-00 & & RES.,FXD, CMPSN:150 OHM,5\%,0.25W & 01121 & CB1515 \\
\hline R4121 & 321-0481-00 & & RES.,FXD,FILM:1M OHM, 1\%,0.125W & 91637 & MFF1816G10003F \\
\hline R4122 & 315-0474-00 & & RES.,FXD, CMPSN:470K OHM, 5\%,0.25W & 01121 & CB4745 \\
\hline R4124 & 321-0030-00 & & RES.,FXD,FILM: 20 OHM, 18,0.125W & 91637 & MFF1816G20R00F \\
\hline R4125 & 321-0030-00 & & RES., FXD,FILM: 20 OHM, 1\%, 0.125W & 91637 & MFFI816G20R00F \\
\hline R4127 & 315-0152-00 & & RES.,FXD,CMPSN:1.5K OHM,5\%,0.25W & 01121 & CB1525 \\
\hline R4130 & 311-1559-00 & & RES.,VAR,NONWIR:10K OHM, 20\%,0.50W & 73138 & 91A-10001M \\
\hline R4131 & 315-0153-00 & & RES.,FXD,CMPSN:15K OHM,5\%,0.25W & 01121 & CB1535 \\
\hline R4133 & 315-0151-00 & & RES., FXD, CMPSN: 150 OHM, 5\%,0.25W & 01121 & CB1515 \\
\hline R4136 & 321-0077-00 & & RES. FXD, FILM: 61.9 OHM, 1\%, 0.125 W & 91637 & MFF1816G61R90F \\
\hline R4137 & 315-0152-00 & & RES.,FXD,CMPSN:1.5K OHM, 5\%,0.25W & 01121 & CB1525 \\
\hline R4143 & 321-0062-00 & & RES.,FXD,FILM:43.2 OHM, 1\%,0.125W & 91637 & MFF1816G43R20F \\
\hline R4144 & 321-0114-00 & & RES.,FXD,FILM:150 OHM, 1\%,0.125W & 91637 & MFFI816G150R0F \\
\hline R4145 & 321-0771-01 & & RES.,FXD,FILM:50 OHM, 0.5\%,0.125W & 91637 & MFF1816G50R00D \\
\hline R4146 & 321-0771-01 & & RES.,FXD,FILM:50 OHM, 0.5\%,0.125W & 91637 & MFF1816G50R00D \\
\hline R4147 & 321-0030-00 & & RES.,FXD,FILM:20 OHM, 1\%,0.125W & 91637 & MFF1816G20R00F \\
\hline R4151 & 311-1563-00 & & RES., VAR,NONWIR:1K OHM, 20\%,0.50W & 73138 & 91A RlK \\
\hline R4152 & 311-1785-00 & & RES.,VAR,NONWIR:1K OHM,5\%,2W & 12697 & 381-CM40945 \\
\hline R4154 & 321-0078-00 & & RES.,FXD,FILM: 63.4 OHM, 1\%,0.125W & 91637 & MFFl816G63R40F \\
\hline R4155 & 315-0241-00 & & RES. , FXD, CMPSN : 240 OHM, 5\%,0.25W & 01121 & CB2415 \\
\hline R4156 & 315-0621-00 & & RES., FXD, CMPSN:620 OHM, 5\%,0.25W & 01121 & CB6215 \\
\hline R4157 & 321-0225-00 & & RES.,FXD,FILM:2.15K OHM,1\%,0.125W & 91637 & MFF1816G21500F \\
\hline R4158 & 315-0751-00 & & RES.,FXD, CMPSN:750 OHM,5\%,0.25W & 01121 & CB7515 \\
\hline R4161 & 321-0154-00 & & RES.,FXD,FILM:392 OHM,1\%,0.125W & 91637 & MFF1816G392R0F \\
\hline R4162 & 321-0070-00 & & RES., FXD, FILM:52.3 OHM, 1\%,0.125W & 91637 & MFF1816G52R30F \\
\hline R4166 & 315-0682-00 & & RES.,FXD, CMPSN: 6.8 K OHM, 5\%,0.25W & 01121 & CB6825 \\
\hline R4167 & 321-0225-00 & & RES.,FXD,FILM:2.15K OHM,1\%,0.125W & 91637 & MFF1816G21500F \\
\hline R4168 & 315-0751-00 & & RES., FXD, CMPSN:750 OHM, 5\%,0.25W & 01121 & CB7515 \\
\hline R4171 & 321-0185-00 & & RES.,FXD,FILM:825 OHM,1\%,0.125W & 91637 & MFF1816G825R0F \\
\hline R4172 & 321-0204-00 & & RES.,FXD,FILM:1.3K OHM, 1\%,0.125W & 91637 & MFF1816G13000F \\
\hline R4173 & 321-0164-00 & & RES., FXD,FILM:499 OHM,1\%,0.125W & 91637 & MFF1816G499R0F \\
\hline R4174 & 321-0080-00 & & RES.,FXD,FILM:66.5 OHM, 1\%,0.125W & 91637 & MFF1816G66R50F \\
\hline R4175 & 315-0201-00 & & RES., FXD, CMPSN: 200 OHM, 5\%,0.25W & 01121 & CB2015 \\
\hline R4176 & 321-0167-00 & & RES.,FXD,FILM:536 OHM,18,0.125W & 91637 & MFF1816G536R0F \\
\hline R4177 & 315-0821-00 & & RES., FXD, CMPSN:820 OHM,5\%,0.25W & 01121 & CB8215 \\
\hline R4178 & 315-0680-00 & & RES.,FXD, CMPSN: 68 OHM, 5\%,0.25W & 01121 & CB6805 \\
\hline R4179 & 321-0131-00 & & RES.,FXD,FILM:226 OHM, 1\%,0.125W & 91637 & MFF1816G226ROF \\
\hline R4181 & 321-0185-00 & & RES.,FXD,FILM:825 OHM, 1\%,0.125W & 91637 & MFF1816G825R0F \\
\hline R4182 & 321-0165-00 & & RES.,FXD,FILM:511 OHM,1\%,0.125W & 91637 & MFF1816G511R0F \\
\hline R4183 & 321-0164-00 & & RES.,FXD,FILM:499 OHM, 18,0.125W & 91637 & MFF1816G499R0F \\
\hline R4184 & 315-0271-00 & & RES., FXD, CMPSN:270 OHM,5\%,0.25W & 01121 & CB2715 \\
\hline R4186 & 321-0167-00 & & RES., FXD,FILM:536 OHM,1\%,0.125W & 91637 & MFF1816G536R0F \\
\hline R4187 & 315-0821-00 & & RES. ,FXD, CMPSN:820 OHM,5\%,0.25W & 01121 & CB8215 \\
\hline R4188 & 315-0680-00 & & RES.,FXD,CMPSN: 68 OHM, 5\%,0.25W & 01121 & CB6805 \\
\hline R4189 & 321-0131-00 & & RES., FXD,FIIM:226 OHM, 18,0.125W & 91637 & MFF1816G226R0F \\
\hline R4193 & 315-0101-00 & & RES., FXD, CMPSN:100 OHM,5\%,0.25W & 01121 & CB1015 \\
\hline R4194 & 315-0101-00 & & RES., FXD, CMPSN:100 OHM, 5\%,0.25W & 01121 & CBl015 \\
\hline R4195 & 321-0117-00 & & RES. ,FXD,FILM:162 OHM,1\%,0.125W & 91637 & MFFl816G162R0F \\
\hline R4196 & 315-0820-00 & & RES. ,FXD, CMPSN: 82 OHM,5\%,0.25W & 01121 & CB8205 \\
\hline R4198 & 321-0177-00 & & RES., FXD,FILM:681 OHM, 1\%,0.125W & 91637 & MFFi816G681ROF \\
\hline R4199 & 321-0177-00 & & RES.,FXD,FILM:681 OHM,1\%,0.125W & 91637 & MFF1816G681ROF \\
\hline R4201 & 317-0150-00 & & RES., FXD, CMPSN: 15 OHM, 5\%,0.125 & 01121 & BB1505 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Ckt No. & Tektronix Part No. & Serial/Model No. & Name \& Description & \begin{tabular}{l}
Mfr \\
Code
\end{tabular} & Mfr Part Number \\
\hline R4202 & 315-0105-00 & & RES. ,FXD,CMPSN:1M OHM, 5\%,0.25W & 01121 & CB1055 \\
\hline R4204 & 315-0271-00 & & RES.,FXD, CMPSN:270 ОHM, 5\%,0.25W & 01121 & CB2715 \\
\hline R4205 & 321-0790-01 & & RES.,FXD,FILM:990K ОНM,0.5\%,0.125W & 91637 & HFFILO4G99002D \\
\hline R4206 & 315-0180-00 & & RES., FXD, CMPSN:18 OHM, 5\%,0.25W & 01121 & CB1805 \\
\hline R4207 & 321-1289-01 & & RES., FXD, FILM:10.1K OHM, \(0.5 \%, 0.125 \mathrm{~W}\) & 91637 & MFF1816G10101D \\
\hline R4208 & 315-0330-00 & & RES. , FXD, CMPSN:33 OHM, 5\%, 0.25W & 01121 & CB3305 \\
\hline R4214 & 321-0807-01 & & RES.,FXD,FILM:900K OHM, \(0.58,0.125 \mathrm{~W}\) & 91637 & HFF1104G90002D \\
\hline R4216 & 321-1389-01 & & RES.,FXD,FILM:111K OHM,0.5\%,0.125W & 91637 & MFF1816G11102D \\
\hline R4217 & 315-0100-00 & & RES.,FXD,CMPSN:10 OHM, 5\%,0.25W & 01121 & CB1005 \\
\hline R4218 & 315-0151-00 & & RES.,FXD,CMPSN:150 ОНM, 5\%,0.25w & 01121 & CB1515 \\
\hline R4221 & 321-0481-00 & & RES. , FXD, FILM: 1 M OHM, 18, 0.125 W & 91637 & MFF1816G10003F \\
\hline R4222 & 315-0474-00 & & RES. ,FXD, CMPSN:470K OHM, 5\%,0.25w & 01121 & CB4745 \\
\hline R4224 & 321-0030-00 & & RES., FXD, FILM:20 OHM,18,0.125W & 91637 & MFF1816G20R00F \\
\hline R4225 & 321-0030-00 & & RES.,FXD,FILM:20 оHM,1\%,0.125W & 91637 & MFF1816G20R00F \\
\hline R4227 & 315-0152-00 & & RES.,FXD, CMPSN:1.5K OHM, 5\%,0.25W & 01121 & CB1525 \\
\hline R4230 & 311-1559-00 & & RES.,VAR,NONWIR:10K ОHM, 20\%,0.50W & 73138 & 91A-10001M \\
\hline R4231 & 315-0153-00 & & RES.,FXD,CMPSN:15K OHM,5\%,0.25w & 01121 & CB1535 \\
\hline R4233 & 315-0151-00 & & RES.,FXD,CMPSN:150 ОНM, 5\%,0.25W & 01121 & CB1515 \\
\hline R4236 & 321-0077-00 & & RES.,FXD,FILM:61.9 ОНM,18,0.125W & 91637 & MFF1816G61R90F \\
\hline R4237 & 315-0152-00 & & RES.,FXD, CMPSN:1.5K OHM, 5\%,0.25W & 01121 & CB1525 \\
\hline R4243 & 321-0062-00 & & RES. ,FXD,FILM:43.2 OHM, 18, 0.125 W & 91637 & MFF1816G43R20F \\
\hline R4244 & 321-0114-00 & & RES.,FXD,FILM:150 OHM, 1\%,0.125w & 91637 & MFF1816G150ROF \\
\hline R4245 & 321-0771-01 & & RES. ,FXD,FILM:50 OHM, 0.5\%,0.125W & 91637 & MFF1816G50R00D \\
\hline R4246 & 321-0771-01 & & RES.,FXD,FILM:50 OHM, 0.5\%,0.125W & 91637 & MFFI816G50R00D \\
\hline R4247 & 321-0030-00 & & RES., FXD, FILM:20 OHM, 1\%,0.125W & 91637 & MFF1816G20R00F \\
\hline R4251 & 311-1563-00 & & RES.,VAR,NONWIR:1K OHM,20\%,0.50W & 73138 & 91A Rlk \\
\hline R4252 & 311-1785-00 & & RES.,VAR, NONWIR: 1 K OHM,5\%,2W & 12697 & 381-CM40945 \\
\hline R4254 & 321-0078-00 & & RES.,FXD,FILM:63.4 OHM,18,0.125w & 91637 & MFF1816G63R40F \\
\hline R4256 & 315-0621-00 & & RES.,FXD, CMPSN: 620 OHM, 5\%,0.25W & 01121 & CB6215 \\
\hline R4257 & 321-0225-00 & & RES. ,FXD,FILM:2.15K OHM, 1\%,0.125W & 91637 & MFF1816G21500F \\
\hline R4258 & 315-0751-00 & & RES., FXD, CMPSN:750 OHM, 5\%, 0.25 W & 01121 & CB7515 \\
\hline R4261 & 321-0154-00 & & RES.,FXD, FILM: 392 OHM, 18,0.125 W & 91637 & MFFI816G392ROF \\
\hline R4262 & 321-0070-00 & & RES.,FXD,FILM:52.3 ОHM, 18, 0.125 W & 91637 & MFF1816G52R30F \\
\hline R4266 & 315-0682-00 & & RES., FXD, CMPSN:6.8K OHM, 5\%,0.25W & 01121 & CB6825 \\
\hline R4267 & 321-0225-00 & & RES.,FXD,FILM:2.15K OHM, 1\%,0.125 & 91637 & MFF1816G21500F \\
\hline R4268 & 315-0751-00 & & ReS., FXD, CMPSN:750 ОНM, 5\%,0.25w & 01121 & CB7515 \\
\hline R4271 & 321-0185-00 & & RES.,FXD,FILM:825 ОHM, 18,0.125w & 91637 & MFF1816G825ROF \\
\hline R4272 & 321-0204-00 & & RES.,FXD,FILM:I.3K OHM,18,0.125W & 91637 & MFF1816G13000F \\
\hline R4273 & 321-0164-00 & & RES., FXD, FILM:499 ОHM, 18,0.125W & 91637 & MFF1816G499R0F \\
\hline R4274 & 321-0080-00 & & RES.,FXD,FILM:66.5 ОНM, 18,0.125W & 91637 & MFF1816G66R50F \\
\hline R4275 & 315-0201-00 & & RES., FXD, CMPSN: 200 OHM , 5\%, 0.25 W & 01121 & CB2015 \\
\hline R4276 & 321-0173-00 & & RES.,FXD,FILM:619 OHM, 18,0.125W & 91637 & MFF1816G619ROF \\
\hline R4277 & 315-0821-00 & & RES. ,FXD,CMPSN:820 OHM,5\%,0.25W & 01121 & CB8215 \\
\hline R4278 & 315-0680-00 & & RES., FXD, CMPSN:68 ОНM, 5\%,0.25w & 01121 & CB6805 \\
\hline R4279 & 321-0133-00 & & RES., FXD, FILM 237 OHM, 18, 0.125 W & 91637 & MFF1816G237ROF \\
\hline R4280 & 311-1568-00 & & RES., VAR, NONWIR:50 ОHM, 20\%,0.50W & 73138 & 91A R50 \\
\hline R4281 & 321-0185-00 & & RES.,FXD,FILM:825 OHM,1\%,0.125W & 91637 & MFFI816G825ROF \\
\hline R4282 & 321-0165-00 & & RES.,FXD,FILM:511 OHM,18,0.125W & 91637 & MFFI816G511ROF \\
\hline R4283 & 321-0164-00 & & RES.,FXD,FILM:499 OHM,18,0.125W & 91637 & MFF1816G499ROF \\
\hline R4284 & 315-0271-00 & & RES.,FXD,CMPSN: 270 OHM, 5\%,0.25w & 01121 & CB2715 \\
\hline R4286 & 321-0173-00 & & RES.,FXD,FILM:619 ОHM, 1\%,0.125 & 91637 & MFFl816G619R0F \\
\hline R4287 & 315-0821-00 & & RES.,FXD,CMPSN:820 OHM, 5\%,0.25W & 01121 & CB8215 \\
\hline R4288 & 315-0680-00 & & RES.,FXD, CMPSN:68 OHM, 5\%,0.25w & 01121 & CB6805 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Ckt No. & Tektronix Part No. & \begin{tabular}{l}
Serial/Model No. \\
Eff Dscont
\end{tabular} & Name \& Description & \begin{tabular}{l}
Mfr \\
Code
\end{tabular} & Mfr Part Number \\
\hline R4289 & 321-0129-00 & & RES.,FXD, FILM 215 OHM, 18,0.125w & 91637 & MFF 1816G215ROF \\
\hline R4293 & 315-0101-00 & & RES.,FXD,CMPSN: 100 OHM,58,0.25W & 01121 & CB1015 \\
\hline R4294 & 315-0101-00 & & RES.,FXD,CMPSN:100 OHM,5\%,0.25w & 01121 & CB1015 \\
\hline R4295 & 315-0161-00 & & RES.,FXD,CMPSN:160 OHM,5\%,0.25W & 01121 & CB1615 \\
\hline R4296 & 315-0820-00 & & RES., FXD, CMPSN: 82 OHM, 5\%, 0.25 W & 01121 & CB8205 \\
\hline R4298 & 321-0185-00 & & RES.,FXD,FILM:825 OHM, 18,0.125W & 91637 & MFF1816G825ROF \\
\hline R4299 & 321-0185-00 & & RES.,FXD,FILM:825 OHM, 18,0.125 & 91637 & MFF1816G825ROF \\
\hline R4301 & 315-0103-00 & & RES.,FXD,CMPSN:10K ОHM,5\%,0.25w & 01121 & CB1035 \\
\hline R4302 & 315-0103-00 & & RES.,FXD,CMPSN:10K OHM,58,0.25W & 01121 & CB1035 \\
\hline R4303 & 315-0103-00 & & RES.,FXD,CMPSN:10K OHM,5\%,0.25W & 01121 & CB1035 \\
\hline R4304 & 315-0103-00 & & RES.,FXD,CMPSN:10K OHM,5\%,0.25W & 01121 & CB1035 \\
\hline R4307 & 315-0203-00 & & RES.,FXD,CMPSN:20K ОНM,5\%,0.25W & 01121 & CB2035 \\
\hline R4308 & 315-0203-00 & & RES., FXD,CMPSN:20K OHM,5\%,0.25W & 01121 & CB2035 \\
\hline R4312 & 315-0472-00 & & RES., FXD, CMPSN:4.7K OHM,5\%,0.25W & 01121 & CB4725 \\
\hline R4314 & 315-0472-00 & & RES., FXD, CMPSN:4.7K OHM,5\%,0.25W & 01121 & CB4725 \\
\hline R4315 & 315-0181-00 & & ReS.,FXD,CMPSN:180 OHM, \(5 \%, 0.25 \mathrm{~W}\) & 01121 & CB1815 \\
\hline R4318 & 315-0103-00 & & RES.,FXD,CMPSN:10K OHM,5\%,0.25W & 01121 & CB1035 \\
\hline R4321 & 315-0472-00 & & RES.,FXD,CMPSN:4.7K OHM,5\%,0.25W & 01121 & CB4725 \\
\hline R4322 & 315-0472-00 & & RES.,FXD,CMPSN:4.7K OHM,5\%,0.25W & 01121 & CB4725 \\
\hline R4324 & 315-0202-00 & & RES. , FXX , CMPSN: 2 K OHM, \(5 \%, 0.25 \mathrm{~W}\) & 01121 & CB2025 \\
\hline R4325 & 315-0103-00 & & RES.,FXD,CMPSN:10K OHM,5\%,0.25W & 01121 & CB1035 \\
\hline R4331 & 315-0103-00 & & RES.,FXD,CMPSN:10K OHM,5\%,0.25W & 01121 & CB1035 \\
\hline R4332 & 315-0103-00 & & RES.,FXD,CMPSN:10K OHM,5\%,0.25 & 01121 & CB1035 \\
\hline R4334 & 321-0158-00 & & RES.,FXD,FILM 432 OHM, 1\%,0.125w & 91637 & MFF1816G432ROF \\
\hline R4335 & 321-0262-00 & & RES.,FXD,FILM:5.23K OHM,1\%,0.125 & 91637 & MFF 1816 G 52300 F \\
\hline R4336 & 311-1559-00 & & RES., VAR,NONWIR: 10 K OHM, 20\%,0.50W & 73138 & 91a-10001M \\
\hline R4339 & 315-0510-00 & & RES., FXD, CMPSN:51 OHM, \(5 \%, 0.25 \mathrm{~W}\) & 01121 & CB5105 \\
\hline R4340 & 321-0207-00 & & RES. .FXD,FILM:1.4K OHM, 18,0.125W & 91637 & MFF1816G14000F \\
\hline R4341 & 315-0510-00 & & RES. , FXD, CMPSN:51 OHM, \(58,0.25 \mathrm{~W}\) & 01121 & CB5105 \\
\hline R4344 & 321-0169-00 & & RES.,FXD, FILM:562 OHM, 1\%,0.125W & 91637 & MFF1816G562ROF \\
\hline R4345 & 321-0139-00 & & RES. FXX, FILM: 274 OHM, 18,0.125 & 91637 & MFF1816G274ROF \\
\hline R4346 & 311-1978-00 & & .RES.,VAR, NONWW:CKT BD,5K OHM, 208,0.5W & 12697 & S-7-03178 \\
\hline R4347 & 321-0139-00 & & RES.,FXD,FILM:274 OHM, \(18,0.125 \mathrm{~W}\) & 91637 & MFF1816G274ROF \\
\hline R4348 & 315-0470-00 & & RES., FXD, CMPSN:47 OHM, 5\% , 0.25 W & 01121 & CB4705 \\
\hline R4349 & 315-0621-00 & & RES.,FXD,CMPSN:620 OHM,5\%,0.25W & 01121 & CB6215 \\
\hline R4350 & 321-0207-00 & & RES.,FXD,FILM:1.4K OHM, \(18,0.125 \mathrm{~W}\) & 91637 & MFF1816G14000F \\
\hline R4351 & 315-0101-00 & & RES.,FXD,CMPSN:100 OHM,5\%,0.25w & 01121 & CB1015 \\
\hline R4352 & 321-0193-00 & & RES.,FXD,FILM:1K OHM, 1\%,0.125w & 91637 & MFF1816G10000F \\
\hline R4353 & 321-0193-00 & & RES.,FXD,FILM:1K OHM, 1\%, 0.125 W & 91637 & MFF1816G10000F \\
\hline R4354 & 315-0101-00 & & RES., FXD, CMPSN: 100 OHM,5\%,0.25w & 01121 & CB1015 \\
\hline R4355 & 321-0139-00 & & RES.,FXD,FILM:274 OHM, 1\%,0.125W & 91637 & MFF1816G274ROF \\
\hline R4356 & 311-1978-00 & & RES.,VAR,NONWW:CKT BD,5K OHM,20\%,0.5W & 12697 & S-7-03178 \\
\hline R4357 & 321-0139-00 & & RES.,FXD,FILM:274 OHM, 1\%,0.125W & 91637 & MFF1816G274ROF \\
\hline R4358 & 315-0470-00 & & RES., FXD, CMPSN:47 OHM, \(5 \%, 0.25 \mathrm{~W}\) & 01121 & CB4705 \\
\hline R4359 & 315-0621-00 & & RES., FXD, CMPSN: 620 OHM, \(58,0.25 \mathrm{~W}\) & 01121 & CB6215 \\
\hline R4360 & 321-0226-00 & & RES.,FXD,FILM:2.21K OHM, 17,0.125 & 91637 & MFF1816G22100F \\
\hline R4362 & 321-0226-00 & & RES.,FXD,FILM:2.21K OHM,18,0.125W & 91637 & MFF1816G22100F \\
\hline R4363 & 315-0470-00 & & RES. , FXD, CMPSN: 47 OHM, 5\%,0.25W & 01121 & CB4705 \\
\hline R4364 & 315-0470-00 & & RES., FXD,CMPSN:47 OHM,5\%,0.25W & 01121 & CB4705 \\
\hline R4368 & 323-0131-00 & & RES., FXD, FILM:226 OHM, 18,0.50W & 75042 & СеСт0-2260F \\
\hline R4373 & 321-0120-00 & & RES.,FXD,FILM:174 OHM, 1\%,0.125W & 91637 & MFF1816G174ROF \\
\hline R4375 & 315-0430-00 & & RES., FXD, CMPSN:43 ОНM, \(54,0.25 \mathrm{~W}\) & 01121 & CB4305 \\
\hline R4376 & 323-0162-00 & & RES.,FXD,FILM:475 OHM,18,0.50W & 75042 & CECT0-4750F \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Ckt No. & Tektronix Part No. & Serial/Model No. Eff Dscont & Name \& Description & Mir Code & Mfr Part Number \\
\hline R4377 & 321-0120-00 & & RES.,FXD,FILM:174 OHM, 1\%, 0.125w & 91637 & mFF1816G174ROF \\
\hline R4378 & 315-0750-00 & & RES., FXD, CMPSN: 75 OHM, \(58,0.25 \mathrm{~W}\) & 01121 & CB7505 \\
\hline R4383 & 321-0120-00 & & RES.,FXD, FILM:174 OHM, 1\%,0.125w & 91637 & MFF1816G174ROF \\
\hline R4384 & 322-0133-00 & & RES.,FXD,FILM:237 OHM, 18,0.25w & 75042 & CEBT0-2370F \\
\hline R4385 & 315-0430-00 & & RES.,FXD, CMPSN:43 OHM, 5\%,0.25W & 01121 & CB4305 \\
\hline R4386 & 322-0133-00 & & RES., FXD, FILM:237 OHM, 1\%, 0.25 W & 75042 & Cebto-2370F \\
\hline R4387 & 321-0120-00 & & RES.,FXD,FILM:174 OHM, 1\%,0.125W & 91637 & MFF1816G174R0F \\
\hline R4388 & 315-0750-00 & & RES.,FXD, CMPSN:75 OHM, 5\%,0.25w & 01121 & CB7505 \\
\hline R4389 & 321-0156-00 & & RES.,FXD,FILM:412 OHM, 1\%,0.125W & 91637 & MFF1816G412ROF \\
\hline R4396 & 311-1563-00 & & RES.,VAR,NONWIR:1K OHM,20\%,0.50W & 73138 & 91A Rlk \\
\hline R4397 & 311-1561-00 & & RES., VAR,NONWIR:2.5K OHM, 20\%,0.50W & 73138 & 91a R2500 \\
\hline R4398 & 315-0103-00 & & RES.,FXD, CMPSN:10K OHM, 5\%,0.25W & 01121 & CB1035 \\
\hline R4411 & 315-0470-00 & & RES.,FXD, CMPSN:47 OHM, 5\%,0.25W & 01121 & CB4705 \\
\hline R4412 & 315-0150-00 & & RES.,FXD, CMPSN:15 OHM, 5\%,0.25w & 01121 & CB1505 \\
\hline R4413 & 315-0270-00 & & RES.,FXD, CMPSN: 27 OHM, 5\%, 0.25 W & 01121 & CB2705 \\
\hline R4415 & 315-0161-00 & & RES.,FXD,CMPSN:160 OHM, 5\%,0.25W & 01121 & CB1615 \\
\hline R4416 & 315-0470-00 & & RES.,FXD,CMPSN:47 OHM, 5\%,0.25w & 01121 & CB4705 \\
\hline RT2060 & 307-0122-00 & & RES.,THERMAL:50 OHM,10\% & 50157 & 3D1515 \\
\hline RT2310 & 307-0477-00 & & RES.,THERMAL: 1 K OHM,10\%,6MW/DEG C & 14193 & 1013-10000K \\
\hline RT4175 & 307-0127-00 & & RES.,THERMAL: 1 K OHM,10\% & 50157 & 2D1596 \\
\hline RT4275 & 307-0127-00 & & RES.,THERMAL:1K OHM,10\% & 50157 & 2D1596 \\
\hline Sl00 & 260-1421-00 & & SWITCH,PUSH: 1 STA, MOMENTARY, NON-SHORT & 80009 & 260-1421-00 \\
\hline S700 & 260-1768-00 & & SWITCH,PUSH:DPDT, 3A, 125VAC & 82389 & 14S-7102C \\
\hline S701 & 260-1776-00 & & SWITCH,SLIDE:DPDT,3A,125VAC & 80009 & 260-1776-00 \\
\hline S705 & 260-1776-00 & & SWITCH,SLIDE:DPDT,3A,125VAC & 80009 & 260-1776-00 \\
\hline S2030 & 260-1445-01 & & SWITCH,PUSH:1 BUTTON & 80009 & 260-1445-01 \\
\hline S2140 & 260-1445-01 & & SWITCH,PUSH:1 BUITON & 80009 & 260-1445-01 \\
\hline S2510 \({ }^{1}\) & 260-1268-00 & & SWITCH, PUSH:3 BUTTON, 2 POLE, INTERLOCK & 80009 & 260-1268-00 \\
\hline S4310 & 260-1666-00 & & SWITCH, PUSH:X-Y LOAD & 71590 & 2KABO10000-674 \\
\hline S4320 & 260-1823-00 & & SWITCH, PUSH:VERTICAL MODE, 2 POLE INTIL & 80009 & 260-1823-00 \\
\hline T460 & 120-0996-00 & & XFMR,PWR,STU:HIGH VOLTAGE & 80009 & 120-0996-00 \\
\hline T700 & 120-0994-02 & & XFMR, PWR,STPDN: & 80009 & 120-0994-02 \\
\hline U24 & 156-0067-12 & & MICROCKT,LINEAR:OPTIONAL AMPLIFIER & 04713 & MC1741CU \\
\hline U460 & 152-0637-00 & & VOLTAGE MULTR:HV MULTR,SI,6.6KV In,10KV OUT & 80009 & 152-0637-00 \\
\hline U742A, B & 156-0158-00 & & MICROCIRCUIT,LI:DUAL OPNL AMPL, & 80009 & 156-0158-00 \\
\hline U805 & 156-0067-12 & & MICROCRT,LINEAR:OPTIONAL AMPLIFIER & 04713 & MC1741CU \\
\hline U2156A-D & 156-0180-00 & & MICROCIRCUIT, DI: QUAD 2-INPUT NAND GATE & 01295 & SN74S00N \\
\hline U2212A-D & 156-0180-00 & & MICROCIRCUIT, DI: QUAD 2-INPUT NAND GATE & 01295 & SN74s00N \\
\hline U2224A, B & 156-0405-00 & & MICROCIRCUIT,DI:DUAL RETRIG MONOSTABLE MV & 07263 & 9602PC \\
\hline U2234A-D & 156-0180-00 & & MICROCIRCUIT, DI: QUAD 2-INPUT NAND GATE & 01295 & SN74S00N \\
\hline U2524 \({ }^{1}\) & 156-0030-00 & & MICROCIRCUIT,DI:QUAD 2-INPUT POS NAND GATE & 01295 & SN7400N \\
\hline U4306 & 156-0113-00 & & MICROCIRCUIT,DI:QUAD 2-INPUT NAND GATE & 80009 & 156-0113-02 \\
\hline U4324 & 156-0388-00 & & MICROCIRCUIT,DI:DUAL D FLIP-FLOP & 80009 & 156-0338-00 \\
\hline v470 & 154-0729-00 & & Electron tube:p31,INT SCALE, & 80009 & 154-0729-00 \\
\hline VR412 & 152-0280-00 & & SEMICOND DEVICE:ZENER,0.4W,6.2V,5\% & 80009 & 152-0280-00 \\
\hline VR746 & 152-0306-00 & & SEMICOND DEVICE:ZENER,0.4W,9.1V,5\% & 81483 & 1 N 960 B \\
\hline VR762 & 152-0195-00 & & SEMICOND DEVICE:ZENER,0.4W,5.1V,5\% & 80009 & 152-0195-00 \\
\hline VR784 & 152-0293-00 & & SEMICOND DEVICE:ZENER,1W,33V,5\% & 04713 & 1N3032B \\
\hline VR2392 & 152-0279-00 & & SEMICOND DEVICE:ZENER,0.4W, \(5.1 \mathrm{~V}, 5 \%\) & 80009 & 152-0279-00 \\
\hline VR2590 \({ }^{1}\) & 152-0195-00 & & SEMICOND DEVICE:ZENER,0.4W,5.1v,5\% & 80009 & 152-0195-00 \\
\hline
\end{tabular}

\footnotetext{
\(1_{\text {T935A only }}\)
}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Ckt No. & Tektronix Part No. & \begin{tabular}{l}
Serial/Model No. \\
Eff Dscont
\end{tabular} & Name \& Description & Mfr Code & Mfr Part Number \\
\hline VR4184 & 152-0195-00 & & SEMICOND DEVICE:ZENER, \(0.4 \mathrm{w}, 5.1 \mathrm{~V}\),5\% & 80009 & 152-0195-00 \\
\hline VR4284 & 152-0195-00 & & SEMICOND DEVICE:ZENER,0.4W,5.1V,5\% & 80009 & 152-0195-00 \\
\hline VR4415 & 152-0195-00 & & SEMICOND DEVICE:ZENER,0.4W,5.1V,5\% & 80009 & 152-0195-00 \\
\hline
\end{tabular}

_ TRANSISTORS \(\qquad\) \(\perp\)


G
\(\qquad\) FET
_ FLAT PACK \(-1\) L_DUAL-FET_._ \(\qquad\)


\section*{DIAGRAMS AND CIRCUIT BOARD ILLUSTRATIONS}

\section*{Symbols and Reference Designator}

Electrical components shown on the diagrams are in the following units unless noted otherwise:
\[
\begin{aligned}
& \text { Capacitors }=\quad \text { Values one or greater are in picofarads }(\mathrm{pF}) . \\
& \quad \text { Values less than one are in microfarads }(\mu \mathrm{F}) .
\end{aligned}
\]
\[
\begin{aligned}
& \text { Values less than one are in microfarads ( } \\
& \text { Ohms }(\Omega) \text {. }
\end{aligned}
\]

Graphic symbols and class designation letters are based on ANSI Standard Y32.2-1975
Logic symbology is based on ANSI Y32.14-1973 in terms of positive logic. Logic symbols depict the logic function performed and may differ from the manufacturer's data
The overline on a signal name indicates that the signal performs its intended function when it goes to the low state Abbreviations are based on ANSI Y1.1-1972
Other ANSI standards that are used in the preparation of diagrams by Tektronix, Inc. are:
Y14.15, 1966 Drafting Practice
Y14.2, 1973 Line Conventions and Lettering.
Y10.5, 1968 Letter Symbols for Quantities Used in Electrical Science and Electrical Engineering

The following prefix letters are used as reference designators to identify components or assemblies on the diagrams.
\begin{tabular}{|c|c|c|c|c|c|}
\hline A & Assembly, seaparale & н & Heat dissipating edevice (heat sink, & \(\stackrel{s}{5}\) & Swith or contactor \\
\hline \({ }^{\text {at }}\) &  & HR & heat raser
Heater & Tc & Treermocouple \\
\hline \({ }^{\text {B }}\) & Motor & HY & Hybrid circuit & TP & Test point \\
\hline \({ }^{\text {BT }}\) & Battery & & Connector, stationary portion & & Assembly, inseparable or. non-repairable \\
\hline c & Capacitor, fixed or variable & к & Relay & & (integrated circuit, etc.) \\
\hline CB & Circuit breaker & & Inductor, itied or variable & & Electron tube \\
\hline CR & Diode, signal or rectifier & M & Meter & vR & Voltege regulator (zener diode, ett \\
\hline D & Delay line & P & Connector, movable portion & w & Wirestrap or cable \\
\hline \({ }_{\text {D }}\) & - \({ }_{\text {Incicating device (lamp) }}^{\text {Spark Gap, eerrite bead }}\) & \({ }^{\circ}\) & Transistor or silicon-controled
rectifier & z & crsstal
Phase shitter \\
\hline F & Fuse & & Resistor, fixed or variable & & \\
\hline FL & Filter & RT & & & \\
\hline
\end{tabular}



Fig. 7-2. A13-Trigger circuit board component locations.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { CKT } \\
& \text { NO }
\end{aligned}
\] & \[
\begin{aligned}
& \text { GRID } \\
& \text { LOC }
\end{aligned}
\] & \[
\begin{aligned}
& \text { CKT } \\
& \text { NO } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { GRID } \\
& \text { LOC }
\end{aligned}
\] & \[
\begin{aligned}
& \text { CKT } \\
& \text { NO } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { GRID } \\
& \text { LOC }
\end{aligned}
\] \\
\hline C2001 & 2B & 02038 & 3D & R2036 & 3D \\
\hline C2005 & 2B & 02050 & 3A & R2037 & 2D \\
\hline C2010 & 1B & 02051 & 3A & R2038 & 3D \\
\hline C2011 & 1B & 02058 & 4A & R2039 & 2D \\
\hline C2013 & 1C & 02092 & 2A & R2040 & 3D \\
\hline C2014 & 1D & & & R2048 & 3A \\
\hline C2023 & 3B & R0010 & 1B & R2049 & 3A \\
\hline C2033 & 2D & R2000 & 2C & R2050 & 2A \\
\hline C2035 & 2D & R2001 & 2B & R2051 & 2A \\
\hline C2040 & 3D & R2005 & 2B & R2052 & 2A \\
\hline C2063 & 4D & R2006 & 2 C & R2053 & 3A \\
\hline C2090 & 3B & R2007 & 2B & R2055 & 3A \\
\hline \multirow[t]{2}{*}{C2091} & 4B & R2008 & 2C & R2057 & 4B \\
\hline & & R2011 & 1B & R2060 & 4C \\
\hline CR2001 & 2C & R2013 & 1 C & R2061 & 4B \\
\hline CR2002 & 2C & R2014 & 1D & R2062 & 4C \\
\hline CR2005 & 2C & R2021 & 2B & R2063 & 4D \\
\hline CR2006 & 2C & R2022 & 3B & R2065 & 3D \\
\hline CR2024 & 3C & R2024 & 3B & R2092 & 2B \\
\hline CR2032 & 2D & R2026 & 3B & & \\
\hline CR2036 & 3D & R2027 & 4C & RT2061 & 4B \\
\hline \multirow[t]{2}{*}{CR2063} & 4D & R2028 & 3C & & \\
\hline & & R2030 & 2D & & \\
\hline 02020 & 3C & R2032 & 2D & & \\
\hline 02028 & 3C & R2032 & 3B & & \\
\hline 02032A & 2D & R2033 & 2D & & \\
\hline Q2032B & 2D & R2035 & 20 & & \\
\hline
\end{tabular}

\title{
BLOCK DIAGRAM DESCRIPTION
}

\section*{VERTICAL INPUT}

Signals to be displayed on the crt are applied to either (or both) the channel \(1(X)\) or channel \(2(Y)\) input connector. The input signals are amplified by the preamplifier circuits. Each preamplifier circuit includes separate input coupling, attenuators, gain switching, variable attenuators, balance, and gain adjustments.

A Trigger Pickoff circuit in each channel supplies a sample of the vertical input signal to the Trigger Input Amplifier via the Trigger Switching circuit and the SOURCE switch.

A trigger pickoff at the delay line driver provides a sample of the signal at the deflection plates for composite trigger.

When SOURCE switch is in \(X-Y\) position, triggering is disabled, CH 1 signals are connected to Horizontal Output Amplifier through X Buffer Amplifier, and CH 2 signals are connected through regular CH 2 circuits. Channel 1 is X : Channel 2 is \(Y\).

\section*{VERTICAL SWITCHING}

The Vertical Mode switch selects which channel supplies the trigger signal as well as the vertical function. The vertical signal passes through the Input Buffer Amplifier circuit which isolates the preamplifier circuits from the Delay Line Driver. The output of each Input Buffer Amplifier is connected to the Delay Line Driver through a Diode Gate circuit. The Diode Gate circuits are controlled by the Vertical Switching circuit to select the channel(s) to be displayed. An output from the Vertical Switching circuit (through the Chop Blanking Pulse Generator) is connected to the \(Z\) Axis Amplifier to blank switching transients in the CHOP mode. A sync pulse from the sweep (via the Alternate Sync Pulse Amplifier) switches the display between channels at the end of each sweep in the ALT mode.

A DIFFerential function allows display of the difference between two input signals using circuitry which inverts CH 2 signal and adds it algebraically to CH 1 signal.

\section*{VERTICAL AMPLIFIER}

The vertical input signal goes from the Delay Line Driver through the Delay Line to the Vertical Output Amplifier. The Delay Line provides approximately 120 ns delay in the vertical signal. This allows the sweep generator circuit time to initiate a sweep before the vertical signal reaches the crt vertical deflection plates. The

Vertical Output Amplifier provides final amplification of the signal to drive the crt vertical deflection plates. One section of the BEAM FINDER switch, when pressed, causes the display to compress vertically to aid in locating off-screen displays. Another section affects the horizontal circuitry.

\section*{TRIGGER}

The Trigger circuit produces a logic triggering signal to trigger the sweep. Trigger signals are selected by the SOURCE switch from four sources: external trigger (via the External Trigger Input Buffer circuit), vertical amplifier input signal ( \(\mathrm{CH} 1 / \mathrm{CH} 2\) ), line voltage at the secondary of T700, or from Composite Pickoff for COMP. (No trigger signal is produced during \(\mathrm{X}-\mathrm{Y}\) operation.)

The selected trigger signal is amplified and inverted by the Trigger Input Amplifier. The trigger signal passes to the Trigger Level Comparator, which determines the voltage level (on the trigger waveform) at which triggering occurs. The SLOPE switch determines whether the sweep triggers on the positive-going or negative-going portion of the trigger signal. For TV signals, the SLOPE switch determines whether the sweep triggers from positive or negative sync polarity. The Trigger Level comparator also supplies a signal to the TV Sync Separator circuit.

Two Schmitt Trigger circuits produce the logic trigger signal; one is for conventional trigger signals and the other is for TV signals. The MODE switch selects which Schmitt Trigger circuit is operating.

\section*{A SWEEP AND HORIZONTAL AMPLIFIER}

The A Sweep circuit, when triggered by the Trigger circuit, produces a linear sawtooth output signal to the Horizontal Amplifier. The slope of the sawtooth is controlled by the SEC/DIV switch. When the sawtooth output reaches a predetermined level, the Hold-off Circuit resets the A Sweep circuit, blanks the crt (through the \(Z\) Axis Amplifier) and prevents subsequent triggers from initiating another sweep until the sweep reset is completed.

The sawtooth output from the Sweep circuit is amplified by the Horizontal Output Amplifier circuit to
produce horizontal deflection on the crt. One section of the BEAM FINDER switch, when pressed, causes the display to compress horizontally to aid in locating offscreen displays.

\section*{B SWEEP}

The B Sweep circuit produces a linear sawtooth output signal to the Horizontal Amplifier after a delay. The length of the delay is determined by the DELAY TIME POSITION control. The output signal from the A sweep circuit triggers the B sweep circuit. The DISPLAY MODE switch selects A, A INTEN BY B, or B (delayed) modes. In the A INTEN BY B mode, the B sweep intensifies a portion of the A sweep.

\section*{CRT CIRCUIT}

The \(Z\) Axis Amplifer determines the crt intensity and blanking. The \(Z\) Axis Amplifier sums the current inputs from several sources: INTENSTIY control, X-Y intensity limit, unblanking signal from sweep circuit, chop blanking signal from the Vertical Switching circuit, and EXT Z AXIS INPUT connector, J419.

Output of the \(Z\) Axis circuit controls the trace intensity through the HV circuit. The HV circuit provides the voltages (greater than 100 V ) necessary for operation of the crt.

The Probe Comp Generator provides a square-wave voltage output for compensating voltage probes.

\section*{POWER SUPPLY}

The Power Supply circuits provide the low-voltage power necessary for operation of the instrument.


\title{
CRT \& VERT AMPL CIRCUIT DESCRIPTION
}

\section*{PROBE COMPENSATION}

The Probe Compensation (PROBE COMP) circuit provides an output of approximately 0.5 V peak-to-peak negative from ground at approximately 1 kHz .

When the output (pin 6) of U24 is positive, the voltage divider, R22-R23, sets pin 3 at a positive voltage. Feedback through R24 charges C24 until the pin 2 level reaches the same positive voltage as pin 3. When pin 3 and pin 2 are at the same voltage, U24 output (pin 6) switches from positive to negative. The output of U 24 is about 7.2 V either positive or negative. Then C24 starts charging negative. When pin 2 and pin 3 are at the same voltage again, U24 output (pin 6) switches positive, and the cycle repeats.

During the positive half cycle, CR26 is forward biased and CR27 is reverse biased, keeping the output at ground level. During the negative half cycle, CR26 is reverse biased and CR27 is forward biased, causing current to flow from ground through R27, CR27 and R26 to -8 V . This sets the output level to approximately -0.5 V .

\section*{VERTICAL OUTPUT AMPLIFIER}

The vertical output amplifier circuit provides final amplification for the signal to drive the vertical deflection plates of the crt.

Q112, Q122, Q134, Q136, Q144, and Q146 form a common-emitter shunt-feedback amplifier. Shuntfeedback transistors Q134, Q136, Q144, and Q146 are stacked. Resistors R118K, R118L, R118H, and R118J provide the feedback. The output voltage at the collectors of Q136 and Q146 is proportional to the collector current of Q112 and Q122 through feedback resistors R118KR118L and R118H-R118J.

\footnotetext{
When BEAM FINDER button S100A is pressed, R117 is placed in series with R118B and R118C, limiting Q112 and Q122 emitter current. This limits the maximum vertical deflection to within the crt screen area. Another section of the BEAM FINDER switch limits the horizontal deflection.
}

\section*{Z AXIS CIRCUIT}

The \(Z\) Axis Amplifier controls the crt intensity level from several inputs: the INTENSITY control, unblanking signal from the sweep circuit, chop blanking signal from the vertical amplifier, and external signals from the EXT Z AXIS INPUT connector (also intensity limit signal during X-Y operation). The INTENSITY control, R412, varies the trace intensity from off to maximum brightness, overriding all other inputs to the \(Z\) Axis Amplifier. The unblanking signal from the sweep circuit blanks the signal during retrace and holdoff. The chop blanking signal (with the vertical in the DUAL TRACE chop mode) blanks the crt during the channel switching interval to eliminate vertical chopping noise from appearing on the display. The EXT Z AXIS INPUT connector, through J 419 , allows control of the trace intensity from an external source.

The current signals from the various inputs are connected to the emitter of Q416. The algebraic sum of the signals determines the collector conduction level. In case of overdrive from any input, Q416 cuts off and CR416 conducts the excess current to ground and thereby prevents the output stage from saturating.

Transistors Q424, Q426, Q434, and assoicated circuitry form an inverting operational amplifier. Components R423 and C423 are the feedback elements. Any current into the input summing point, the base of Q424, results in an output voltage at the collectors of Q426 and Q434. This output voltage controls the display intensity level by changing the dc voltage level at the junction of R462, C463, and C464.

\section*{HIGH VOLTAGE OSCILLATOR}

Transistor Q458 and associated circuitry make up the high-voltage oscillator that produces the drive for highvoltage transformer T460. When the instrument is turned on, current through Q454 provides forward bias for Q458. Transistor Q458 conducts and the collector current increases, which develops a voltage across the primary (Q458 collector) winding of T460. This produces a corresponding voltage increase in the feedback winding of T460, which is connected to the base of Q458, and Q458 conducts even harder. Eventually the rate of collector current increase in Q458 becomes less than that required to maintain the voltage across the collector winding, and the output voltage drops. This turns off Q458 by way of the feedback voltage to the base. The voltage waveform at the collector of Q458 is a sine wave at the resonant frequency of T460. During the negative half cycle, Q458 remains off
and the field collapses in the primary of T460. When the field is collapsed sufficiently, the base of Q458 become forward biased into conduction again and the cycle begins anew. The amplitude of sustained oscillation depends upon the average current delivered to the base of Q458 by the regulator circuitry. The frequency of oscillation is approximately 50 kHz . Components C 458 and R 458
decouple the unregulated +100 V supply line.

\section*{HIGH-VOLTAGE REGULATOR}

Transistors Q446-Q454 and associated circuitry con rol the output voltage of the High Voltage supply. Components R443 and C443 provide a slow start up for the high-voltage oscillator. When the instrument is turned on the +100 V supply charges C443 through R443. The CR443, holding the voltage at slightly above +8 volts. This forms the reference for the high-voltage regulator.

The resulting current in R444A ( \(100 \mu \mathrm{~A}\) ) turns on Q44 Q4 Q44, providing base current for Q458. This starts the high voltage oscillator, causing a negative voltage to evelop at the crt cathode.

Resistors R444B, C, D, and R468 sample the cathod oltage. The high voltage increases until the cathod voltage is -2000 V , At this point the current in R444B is approximately the same as the current in R444A with Q446 barely conducting
Any change in the level at the base of Q446 produces an error signal at the collector of Q446, which is amplified by feedback winding of T460. Regulation occurs as follows
If the cathode voltage at the -2000 V point starts to go positive (less negative), this positive-going change is
applied to the base of Q446. Q446 conducts harder which in turn causes Q454 to conduct harder. This results in greater bias current to the base of Q458 through the feedback winding of T460. Now Q458 is biased closer to its conduction level so that it comes into conduction sooner
o produce a larger induced voltage in the secondary o T460. This increased voltage appears as a more negative voltage at the crt cathode to correct the original positive cathode supply in this manner, the total output of the highvoltage supply is held relatively constant.

Components, R445 and C445, damp the response of the regulator against fast changes in the load such as when the crt is unblanked at the beginning of the sweep.

Resistors, R446, R453, and R457, stabilities in the high-voltage oscillator

\section*{HIGH-VOLTAGE RECTIFIERS AND OUTPUT}

The high-voltage transformer, T460, has 3 output windings. One winding provides about 6.3 V for the cr liament. The crt filament is referenced to the cathode oreage ( \(\approx-2 \mathrm{kV}\) ), preventing cathode-to-filamen reakdown. A second winding provides high ac voltage to e multiplier, U460, to produce a 10 kV crt anode ectified by CR465 to produce the da volta tapped and athode. Components C465, R465, and C466 filter the do voltage.

The third winding is used to control the crt intensity Components CR463, C462, C463, C464, R462, and R46 rectify and filter the secondary voltage to provide apntire winding is referenced to the output of the \(Z\) axis mplifier whose output voltage variations are used to ontrol the crt intensity by varying the grid to cathod oltage. The dc path for the \(Z\) axis signal to the grid is hrough R462, CR463, R463 and the transformer winding Resistor R462 isolates the transformer capacitance fro he Z axis Amplifier. Capacitors C 463 and C 464 provide path for fast changes in the \(\mathbf{Z}\) axis output to the crt grid
Resistor R464 provides a discharge path for C462, C463 and C464. Glow lamps DS463 and DS465 prevent the grid o-cathode voltage from rising high enough to caus breakdown within the crt during turn-on or when the cathode or grid is shorted to ground.

\section*{CRT CONTROL CIRCUITS}

Crt display focus is controlled by FOCUS control R46 ASTIG adjustment R477, which is used in conjunctio with the FOCUS control to provide a well-defined display varies the voltage on the astigmatism grid. Geometry
adjustment, R473, varies the voltage on the horizonta deflection plate shields to control the overall geometry of the display.

Two adjustments control the trace alignment by vary ing the magnetic field around the crt. \(Y\) axis adjustmen R474, controls the current through L470, which affects th crt beam after vertical deflection but before horizonta components of the display. Trace Rotation (TR ROT) adjustment, R472, controls the current through L472 and affects both vertical and horizontal rotation of the beam.

R475 and R476 provide the proper voltage for the vertical plate shield and R 478 and C 478 decouple the firs accelerator electrode from the +33 V supply.

\section*{VOLTAGE AND WAVEFORM CONDITIONS}

\section*{VOLTAGE CONDITIONS}

Voltages shown on this diagram were measured with a Tektronix DM 501 Digital Multimeter. Voltage measurements can ry as much as \(\pm 20 \%\). No signals were applied to the vertical inpus or to the \(X\) (external trigger) input. Referto Waveform Conditions for T932A or T935A control settings. In the crt circuit, set the INTENSITY control for a voltage measurement o 22 volts at the collector of Q426 and of Q434 before attempting to measure voltages in the rest of the circuit.

\section*{WAVEFORM CONDITIONS}

Waveforms below were monitored with a Tektronix 7704A Oscilloscope, \(7 B 71\) Time Base, 7A15A Amplifier, and 10X probe. The oscilloscope input coupling was set to ac. Waveforms vary as much as \(\pm 20 \%\).

A \(50 \mathrm{kHz}, 100 \mathrm{mV}\) sine wave was applied to the CH 1 input and a \(50 \mathrm{kHz}, 2 \mathrm{~V}\) square wave was applied to the CH 2 input A Tektronix FG 501 Function Generator provides either of the input waveforms.
The T932A or T935A controls were set as follows:
\begin{tabular}{ll} 
SOURCE & CH1/CH2 \\
MODE & AUTO \\
Vertical Mode & DUAL ALT \\
CH 1 VOLTS/DIV & 50 mV \\
CH 2 VOLTS/DIV & 1 V \\
VAR (both) & Detent \\
AC-GND-DC (both) & DC \\
DISPLAY MODE & A \\
A \& B SEC/DIV & \(10 \mu \mathrm{~s}\) \\
1X-10X & 1 s \\
HOLD-OFF & Fully ccw \\
LEVEL & For triggered display
\end{tabular}

The other controls were set as necessary to obtain the desired display




CRT \& VERTICAL AMPLIFIER 《 1 〉

\section*{POWER SUPPLY CIRCUIT DESCRIPTION}

\section*{POWER INPUT}

AC power is applied to the primary of T700 though line fuse F700, POWER switch S700, Line Selector switch 701, and Range Selector switch \(\$ 705\).

The Line Selection switch, S701, connects the split primary windings of \(T 700\) in parallel for 120 V operation or in series for 240 V . When changing the nominal line use values

The Range Selector switch S 705 , selects either LO
\((100\) or 220 V ) or HI ( 120 or 240 V ) nominal line-voltage range.

\section*{SECONDARY CIRCUITS}

The secondary circuit supplies four regulated voltages: \(-8 \mathrm{~V},+8 \mathrm{~V},+33 \mathrm{~V}\), and +100 V
Operational amplifiers U742A ( +8 V supply) and 742B ( -8 V supply) have differential inputs that monito utput voltage variations and provide correction signals to he series-regulating transistors. For example, suppose he +8 volt supply drops. This negative change is coupled R756, causing pin 7 to go positive. Since the voltage across VR746 remains essentially constant, Q754 and Q756 follow this change and raise the output voltage back o +8 volts. In the +100 volt supply, Q726 acts as the feedback amplifier with its base being the inverting input. The regulating action is the same as in the +8 and -8 vol supplies. Zener diode, VR762, provides a 5 volt reference for the -8 V supply, which in turn provides the reference elements in the +100 V and +8 V supplies are transistors Q734-Q736 and Q754-Q756. The series regulating element in the -8 V supply is a modified Darlington configuration consisting of Q774 and Q776. Current limiting circuits provide short-circuit protection for each regulated supply. The following describes the +8 V current-limiting circuit. The other current-limiting circuits operate similarcirc.
ly.

In the +8 V supply, Q752 is normally biased off. Under normal conditions, the base of Q752 is set at about +8 V . As the supply current increases, the voltage drop across R754 increases. Since the Q756 emitter-base diode
voltage on Q756 emitter due to the R754 voltage drop auses a corresponding increase at the base of \(Q 756\). This voltage is applied to voltage divider R752 and R753 causing the base of Q752 to go more positive. When the upply current increases sufficiently beyond the norma moves in the negative direction, which begins turning off Q754-Q756 and creates a foldback condition, (see Fig. 7when the supply is limited, dropping enough voltag across R754 to keep Q752 biased on.

Regulated +33 V is provided by Zener diode VR784 rom the +100 V supply. Current divider, R741, R742 voltage for line triggering.

\section*{POWER-ON LED CIRCUIT}

The POWER (On) LED, DS811, remains on, steady, as long as the line voltage does not vary more than approximately \(10 \%\) from the nominal selected line voltage ( \(100,120,220\), or 240V). When the line voltage is not within
mit, the POWER LED

As long as Q796 is conducting (with nominal selected ine voltage), the oscillator is off-output of the oscillator current to -and Q810 is conducting to provide steady biased begins oscillating and output level of the voltage, U805 rom approximately -8 to approximately +8 volts at a low requency repetition rate. Q810 acts as a buffer for oscillator, output resulting in an on, off LED display at the sciliators repetition rate.

For detailed description of theory of operation for U805 (U24) IL1 (U2), II.1.


 帾


Fig. 7-3. Foldback circuit action.



\section*{VERT INPUT CIRCUIT DESCRIPTION}

Since Channel 1 and Channel 2 vertical input circuits are identical, only Channel 1 is discussed in detail. The 4100 series circuit numbers identify the Channel 1 components and 4200 series numbers identify the Channel 2 components.

\section*{INPUT COUPLING SWITCH}

Vertical input signal is ac-coupled, dc-coupled, or grounded by \(\$ 4100\). In the DC position, the input signal is coupled directly to the VOLTS/DIV switch attenuator. In the AC position, the input signal passes through C4102 to the attenuator. In the GND position, the signal patin from the input connector to the attenuator is grounded though C4102-R4102. This provides a ground reference without disconnecting the signal from the input connector. In the GND position, C4102 is charged to the average signal level through R4102 so that the trace remains on screen when S4100 is changed to the AC position.

\section*{VOLTS/DIV SWITCH}

The VOLTS/DIV switch selects attenuator ratio and preamplifier gain to determine the deflection factor. The basic 1X deflection factor of the vertical deflection system is \(2 \mathrm{mV} / \mathrm{division}\). At this setting, no attenuators are switched in and the gain switching circuit sets the preamplifier gain to maximum. To provide the complete range of deflection factors indicated on the front panel, precision attenuators are switched in and out of the attenuator and gain switching circuit.

The attenuators are frequency compensated voltage dividers that provide constant attenuation at all frequencies within the bandwidth of the instrument. The input RC characteristics (approximately \(1 \mathrm{M} \Omega\) shunted by approximately 30 pF ) are maintained for each setting of the VOLTS/DIV switch. The attenuator circuit consists of a 10 X and a 100 X attenuator. 1000 X is obtained when the 10X and 100X attenuators are cascaded.

The gain switching circuit consists of R4143 through R4147 and three VOLTS/DIV switch contacts. Three preamplifier gains are selected: 1X (maximum), 2.5 X reduction, and 5 X reduction. Refer to Table 7-1 for the attenuator and gain switching sequence.

\section*{PREAMPLIFIER}

The signal from the input attenuator is connected to source follower Q4122A via C4122 and R4122. Resistor R4121 determines the \(1 \mathrm{M} \Omega\) input resistance, and R4122 limits current drive to the gate of Q4122A. Diode CR4122
protects the circuit from high negative-going input signals by limiting the voltage at the gate of Q4122A to about - 8 volts. The Q4122A gate-drain junction provides protection from high positive-going signals by limiting the gate voltage to about +8 volts. FET Q4122B provides a constant-current source for Q4122A.

Circuits including Q4132 and Q4134 are emitter followers. The signal at the emitter of Q4132 follows the signal at the gate of Q4122A. Divider network R4143 through R4147 attenuates the signal from Q4132 which drives the base of Q4132. DC BAL, R4130 adjusts for minimum trace shift when switching between adjacent positions of the VOLTS/DIV switch.

\section*{First Cascode Amplifier}

Paraphase amplifier stage, Q4168, Q4158, and associated circuitry, converts the single-ended signal at the base of Q4158 to a push-pull current signal. Capacitors C4158 and C4168 minimize the Miller effect through Q4158 and Q4168. Components C4154, C4156, R4156, R4166 and C4166, connected between Q4168 and Q4158 emitters, compensate for high-frequency losses in the preamplifier. Gain adjustment R4151 determines the gain of the preamplifier. The VAR control, R4152, provides uncalibrated deflection factors between VOLTS/DIV switch settings by attenuating the signal to the base of Q4158. When R 4152 is rotated clockwise, its full resistance is in series with R4162, and the deflection factors are calibrated.

Transistors Q4174 and Q4184 and associated circuitry make up a common base amplifier stage.
table 7-1
\begin{tabular}{c|c|c}
\multicolumn{3}{c}{ Attenuator and Gain Switching Sequence } \\
\hline \begin{tabular}{c} 
VOLTS/DIV \\
Setting
\end{tabular} & \begin{tabular}{c} 
Attenuator \\
(signal attenuation)
\end{tabular} & \begin{tabular}{c} 
Gain Switch \\
(preamp gain \\
reduction)
\end{tabular} \\
\hline \hline 2 mV & 1 X & 1 X \\
5 mV & 1 X & 2.5 X \\
10 mV & 1 X & 5 X \\
\hline 20 mV & 10 X & 1 X \\
50 mV & 10 X & 2.5 X \\
.1 V & 10 X & 5 X \\
\hline .2 V & 100 X & 1 X \\
.5 V & 100 X & 2.5 X \\
1 V & 100 X & 5 X \\
\hline 2 V & 100 X & 1 X \\
5 V & 1000 X & 2.5 X \\
10 V & 1000 X & 5 X \\
\hline
\end{tabular}

\section*{Second Cascode Amplifier}

Transistors Q4176-Q4186 and Q4344-Q4346 (on diagram 4) comprise the second cascode amplifier Capacitors C4177 and C4187 minimize the Miller effect
through Q4176 and Q4186. The value of thermal resistor RT4175 (connected between emitters of Q4176 and Q4186) changes with temperature to counteract any gain change in the amplifier due to thermal variations. This holds the gain of the entire vertical amplifier constant over the operating temperature range of the instrument.

A sample of the vertical voltage signal from the emitters of Q4176 and Q4186 is applied to Q4194 and Q4196 where it is converted to a current signal. This current signal is
applied to the trigger input amplifier (see diagram 5 ) via diode switching circuitry (see diagram 4). See circuit descriptions for diagrams 4 and 5 for further details.

\section*{voltage and waveform conditions}

\section*{VOLTAGE CONDITIONS}

Voltages shown on this diagram were measured with a Tektronix DM 501 Digital Multimeter. Voltage measurements can vary as much as \(\pm 20 \%\). No signals were applied to the vertical inputs or to the X (external trigger) input. Refer to Waveform Conditions for T932A or T935A control settings.

\section*{WAVEFORM CONDITIONS}

Waveforms below were monitored with a Tektronix 7704A Oscilloscope, 7 B71 Time Base, 7A15A Amplifier, and 10X robe (unless otherwise stated). The oscilloscope input coupling was set to ac. Waveforms vary as much as \(\pm 20 \%\)

A \(5 \mathrm{kHz}, 100 \mathrm{~m} V\) sine wave was applied to the CH 1 input and \(50 \mathrm{kHz}, 2 \mathrm{~V}\) square wave was applied to the CH 2 input. Tektronix FG 501 Function Generator provides either of the input waveforms.

The T932A or T935A controls were set as follows:

\section*{SOURC}

Vertical Mod
CH 1 VOLTS/DIV
CH 2 VOLTS/DIV
VAR (both)
AC-GND-DC (both)
DISPLAY MODE
A \& B SEC/DIV
1X-10X
hold off
LEVEL
CH1/CH2
AUTO
50 mv
1 V
Detent
DC
\(10 \mu \mathrm{~s}\)
1 X
Fully cow
For triggered display
The other controls were set as necessary to obtain the desired display.


USE \(1 \times\) PROBE



\title{
VERT SWITCHING CIRCUIT DESCRIPTION
}

Since Channel 1 and Channel 2 vertical circuits are identical, only Channel 1 is discussed in detail.
Digital logic devices are used to perform some of the functions in this instrument. LO and HI designations are used in his circuit description to indicate the state of the digital circuit. Hl indicates the more positive of the two levels. The specific voltages that constitute a LO and HI logic state, may vary between individual devices.

\section*{POSITION CONTROL}

POSITION control R4346 varies the dc voltage at the the CH 2 output. These diodes are controlled by flip-flop bases of Q4386 and Q4376 to vertically position the trace U4324A, which in turn is controlled by Vertical Mode on the crt. witch, S 4320.

\section*{DELAY LINE DRIVER}

The delay line driver is a push-pull feedback amplifier stage composed of Q4386, Q4376, and associated circuitry. A sample of the output of Q4386 and Q4376 is fed back through R4383 and R4373 to the bases of Q4386 and Q4376. Due to this feedback, this stage forms an inverting perational amplifier with a virtual ground at the bases of Q4386 and Q4376. Any current into these virtual ground the feedback resistance

Components C4396, R4396, C4397, C4395, R4397 4398, R4398 provide compensation (peaking) to corre or delay line losses.

\section*{DELAY LINE}

The vertical switching circuit determines whether CH or CH 2 is connected to the vertical output amplifier. In the UAL alternate (ALT) or chopped (CHOP) modes, both channels are alternately displayed on a time shared basis.

\section*{VERTICAL SWITCHING}

The vertical switching circuit determines whether \(\mathrm{CH}_{1}\) or CH 2 is connected to the vertical output amplifier in the hannels are ate (ALT) or chopped (CHOP) modes. Bot channels are alternately displayed on a time shared basis.

The diode gates, consisting of four diodes each, act switches that allow either of the vertical preamplifie CR4346, CR4347, CR4348, and CR4349 control the CH 1 output; CR4356, CR4357, CR4358, and CR4359 control

When the Vertical Mode switch is in the CH 1 position in 4 of U4324A is held pin 5 (a voltage higher than at the bases of Q4386 and Q4376) reverse biases CR4347 and CR4348 and forward pass to 4346 and CR4349. This allows the CH 1 signal to pausing delay line driver. When pin 5 is \(\mathrm{HI}, \mathrm{pin} 6\) is LO, connected to cathodes of CR4357 and CR4358 to be Q4386 and Q4376. Diodes CR4357 and CR4358 are now forward biased and diodes CR4356 and CR4359 are reverse biased, preventing the CH 2 signal from passing to the delay line driver.

In the CH 2 mode, the above conditions are reversed. iodes CR4357 and CR4358 are reverse biased, passing the CH 2 signal and blocking the CH 1 signal.

In the DUAL Vertical Mode, CH 1 and CH 2 are alternately connected to the delay line driver. There are two dual trace modes: chopped (CHOP) and alternate (ALT). These modes are determined by the ALT or CHOP elected for sweep speeds of about 1 ms and slower; alternate should be selected for sweep speeds of about 0.5 ms and faster.

In the chopped mode, pin 2 of U4306A is ungrounded by Vertical Mode push-button switching, allowing the multivibrator, U4306A and U4306D, to free run at about pulse for U4324A, which in turn switches the diode gates which provides an output pulse to the \(Z\) Axis to U4324B, which provides an output pulse to the \(Z\) Axis amplifier to
blank out the transition between CH 1 and CH 2 traces. If pin 13 of U4324B goes LO, the output pin 9 is set LO causing pin 6 of U4306B to go HI. This causes pin 13 of U4324A to go HI after being delayed by C4315 charging through R4315.

The clock pulse applied to pin 11 of U4324B causes pin 9 to go HI , which in turn, after passing through the inverter and after some delay, sets pin 13 LO again. This causes pin 9 to go LO again. The positive-going voltage pulse (whose width is determined by R4315 and C4315) is converted to current by R4318 and sent to the \(Z\) Axis Amplifier to blank witching transients

In the alternate mode, pin 2 of U4306A is grounded (via Vertical Mode switching), preventing multivibrator operation, thus keeping pin 10 of U 4306 CH . At the end of eac sweep, the base of Q4302 receives a current pulse driving collector is fed through C4302 to pin 9 of U4306C causing pin 8 to go HI. This in turn, switches U4324A to pass either CH 1 or CH 2 to the delay line driver at the end of each weep. Pin 12 of U4324B is grounded through Vertical Mode switching and prevents an output at pin 9 .

With Vertical Mode in DIFFerential, the inputs from both channels are added at the delay line driver. The DIFF push-button switch inverts CH 2 by removing forward bias voltage from the bases of Q4354 and Q4356 and applying bases of Q4350 and Q4352. The DIFF mode switch also takes pins 1 and 4 of U4324A low, causing pins 5 and 6 to o high, turning on both CH 1 and CH 2. CH 1 and the ivertedCH 2 signal currents are then added at the input to the delay line driver.

The Vertical Mode switch also selects the appropriate internal triggering source for CH 1 and CH . Wit Vertical Mode switch set to CH 1 and DUAL TRACE, CR4335 is forward biased and the signal from the CH 1 trigger pickoff goes to the sweep circuit. In these modes, CR4331 is connected to the +8 voits, thus reverse biasing CR4336, preventing the CH 2 trigger signal from entering the trigger input amplifier. With the Vertical Mode switch set to CH 2, CR4336 becomes forward biased while
CR4335 is reverse biased because CR4332 is now connected to +8 volts.

\section*{TRIGGER PICKOFF}

Transistors Q4196 and Q4194 (diagram 3) convert a sample of the vertical signal to a single-ended current signal to drive the trigger input amplifier. When the COMP diode switching network CR2002, CR2005, CR2006. CR2001 is used to select either trigger signal from CH 1 or 2 , or composite trigger pickoff. When in EXT, EXT \(\div 10\), LINE, \(X-Y\) these circuits are disabled.

\section*{VOLTAGE AND WAVEFORM CONDITIONS}

\section*{VOLTAGE CONDITIONS}

Voltages shown on this diagram were measured with a Tektronix DM 501 Digital Multimeter. Voltage measurements can vary as much as \(\pm 20 \%\). No signals were applied to the vertical inputs or to the \(X\) (external trigger) input. Refer to Waveform Conditions for T932A or T935A control settings.

\section*{WAVEFORM CONDITIONS}

Waveforms below were monitored with a Tektronix 7704A Oscilloscope, 7B71 Time Base, 7A15A Amplifier, and 10X probe. The oscilloscope input coupling was set to ac. Waveforms vary as much as \(\pm 20 \%\).

A \(50 \mathrm{kHz}, 100 \mathrm{mV}\) sine wave was applied to the CH 1 input and a \(50 \mathrm{kHz}, 2 \mathrm{~V}\) square wave was applied to the CH 2 input. A Tektronix FG 501 Function Generator provides either of the input waveforms.

The 442 or T935A controls were set as follows:

SOURCE
MODE
Vertical Mode
CH 1 VOLTS/DIV
CH 2 VOLTS/DIV
VAR (both)
AC-GND-DC (both)
DISPLAY MODE
A \& B SEC/DIV
1X-10X
HOLD-OFF
LEVEL
```

CH 1/CH }
AUTO
DUAL ALT
50 mV
1 V
Detent
DC
A
10\mus*
1X
Fully ccw
For triggered display

```

The other controls were set as necessary to obtain the desired display. For waveforms 1, 2, 5, and 6, adjust CH 1 and CH 2 POSITION controls as necessary for the desired display.

*SET T932A OR T935A SEC/DIV TO 0.2 ms



\section*{TRIGGER CIRCUIT DESCRIPTION}

Digital logic devices are used to perform some of the functions in this instrument. LO and HI designations are digital circuit. HI indicates the more positive of the two levels. The specific voltages that constitute a LO and HI logic state may vary between individual devices.

Digital logic devices are used to perform some of the functions in this instrument. LO and HI designations are used in this circuit decription to indicate the state of the digital circuit. HI indicates the more positive of the two levels. The specific voltages that constitute a LO and HI logic state may vary between individual devices

\section*{INPUT AND SWITCHING}

\section*{SOURCE Switch}

The SOURCE switch, S2010, selects trigger signals LINE. A sample of line voltage, obtained from powe from COMP, CH 1/CH 2, LINE, EXT, EXT \(\div 10\), and X-Y transformer, is switched directly to \(\mathbf{S 2 0 3 0}\) and to followe sources. stage at gate of Q2032A.

COMP. Signal at P2000-1, from collector of Q4388 EXT. Externally applied trigger signals are connecte (Vertical Switching Diagram), is portion of output of the to the gate of source follower, Q2032A, after passing delay line driver. It is a current which represents actual crt through the appropt signals, as with all trigger signals, display-signal at vertical output amplifier input. This common base stage amplifier, Q2020, when SOURCE switch is in COMP. Follower Q2028 provides voltage signal and R2006 maintains dc level for coupling at \(\$ 2030\).

\section*{EXT}
10. R2010, R2011, C2010, and C2011 provide attenuator network to divide EXT signal by a factor of ten (10)

CH 1/CH2. Internal trigger input for SOURC switching is a current signal from Q4194, or Q4294 X-Y current signals from X input are fed to common (Vertical Switching diagram) which is fed through CR2002 base stage amplifier Q2050; then followed by Q2054 and to the common base stage amplifier, Q2020. Current converted to voltage output for X-Y gain adjustment output at Q2020 collector is fed to base of follower, Q2028, Q2058 acts as an emitter follower and R2060, R2062,
and is a voltage signal at its emitter. Coupling switch, R2061, RT2061 convert this signal to a current for input to and is a voltage signal at its emitter. Coupling switch, and \(B\), which is change to source Collowers, Q2032A description in Trigger Amplifier Circuit Description).

The Follower stage, a buffer amplifier using Q2032A and \(B\), provides high impedance for all trigger inputs and C2035 provides peaking for high frequency signals to ensure stable triggers. Q2038 is a common base stage amplifier which provides current output for Trigger Inpu Amplifier.
the horizontal amplifier. \(Y\) signals proceed through regular CH 2 circuits.

\section*{MODE Switch}

The MODE switch (S2150) selects three triggering ORM and TV
riggering signal. See sweep to free ruit description for details.

\section*{VOLTAGE AND WAVEFORM CONDITIONS}

\section*{VOLTAGE CONDITIONS}

Voltages shown on this diagram were measured with a Tektronix DM 501 Digital Multimeter. Voltage measurements can vary as much as \(\pm 20 \%\). No signals were applied to the vertical inputs or to the EXT (external trigger) input. Refer to Waveform Conditions for T932A or T935A control settings.

\section*{WAVEFORM CONDITIONS}

Waveforms below were monitored with a Tektronix 7704A Oscilloscope, 7B71 Time Base, 7A15A Amplifier, and 10X probe. The oscilloscope input coupling was set to ac. Waveforms vary as much as \(\pm 20 \%\).

A \(50 \mathrm{kHz}, 100 \mathrm{mV}\) sine wave was applied to the CH 1 input and a \(50 \mathrm{kHz}, 2 \mathrm{~V}\) square wave was applied to the CH 2 input. A Tektronix FG 501 Function Generator provides either of the input waveforms.

The T932A or T935A controls were set as follows:
\begin{tabular}{ll} 
SOURCE & CH 1/CH 2 \\
MODE & AUTO* \\
Vertical Mode & CH 1 \\
CH 1 VOLTS/DIV & 50 mV \\
CH 2 VOLTS/DIV & 1 V \\
VAR (both) & Detent \\
AC-GND-DC (both) & DC \\
DISPLAY MODE & A \\
A \& B SEC/DIV & \(10 \mu \mathrm{~s}\) \\
1X-10X & 1 X \\
HOLD-OFF & Fully ccw \\
LEVEL & For triggered display
\end{tabular}

The other controls were set as necessary to obtain the desired display.
*For waveforms 5 and 6, the MODE switch was set to TV.



\section*{TRIGGER AMPLIFIER CIRCUIT DESCRIPTION}

Digital logic devices are used to perform some of the functions in this instrument. LO and HI designations are used in his circuit description to indicate the state of the digital circuit. Hl indicates the more positive of the two levels. The specific oltages that constitute a LO and HI logic state may vary between individual devices.

\section*{TRIGGER INPUT AMPLIFIER}

The trigger input amplifier consists of Q2122, Q2124, Transistor Q2164 is a high gain feedback amplifier. To Q2128, and associated circuitry. Resistors R2127 and achieve stable triggering on TV signals, the LEVEL control R2128 set the amplifier input at -4 volts. The inverting must be set at a point that will allow the sync pulses to configuration and feedback from the emitter of Q2128
the base of Q2122. Any current into the null point produces a voltage at the output proportional to the feedback resistor R2116

The sync separator circuit consists of Q2174 and associated circuitry. It processes sync-positive pulses when the SLOPE switch is in the +OUT position and syncnegative pulses in the -IN position. Transistor Q2174 produces large positive-going pulses from negative-going
sync signals at the collector of Q2164.

\section*{TRIGGER LEVEL COMPARATOR}

Differential amplifier Q2134-Q2136 functions as a in the TV field mode (SEC/DIV switch set for 1 ms or comparator. The LEVEL control R2138 selects the point slower), Q2176 is saturated (since base is grounded), and on the waveform that starts a sweep. As the trigger signal at the base of Q2134 passes through the same voltage level as the base of Q2136 (set by LEVEL control), the signal at he emitter of Q2152 passes through the threshold (about 1 volt) of Schmitt trigger U2156A-U2156B producing a Q2134 and Q2136 are of opposite polarity. This allows the SLOPE switch S2140 to invert the signals applied to the TV trigger input amplifier Q2164 and the normal trigger input amplifier Q2142, Q2144, and Q2152. When the SLOPE switch is in the +OUT position, the output at the collector of Q2142 is in phase with the trigger source signal. Transistors Q2142, Q2144 and Q2152 convert the current signal for triggering the Schmitt trigger. he integrat ( R2176) is switched into the circuit (effectively connected to +8 volts through saturated Q2176). The integrator filters out the horizontal sync pulses, leaving only the
integrated vertical sync pulses, which trigger the TV Schmitt trigger U2156B and U2156C

In the TV line mode (SEC/DIV switch set for \(50 \mu \mathrm{~s}\) or aster), Q2176 is turned off (base open), disconnecting C 2174 and C2176 from +8 volts. Capacitors C2174 and the horizontal and vertical sync pulses to pass through to the TV Schmitt trigger

\section*{SCHMITT TRIGGERS}

The Schmitt trigger for the NORM and AUTO triggering modes consists of U2156A, U2156B, and associated circuitry. Hysteresis of this trigger circuit is determined by R2152, R2153, and R2151.
Active devices Q2164, Q2174, Q2176, U2156B, C, D and associated circuitry Comprise the TV triger circuil and associated circuitry comprise the TV trigger circuit. collectors of Q2134 and Q2136 to pass through the TV Resistors R2154 and R2178 determine the sensitivity. trigger circuit. (In AUTO and NORM, the +8 volts applied to R2186 biases Q2164 to saturation.)

When the MODE switch S 2150 is in AUTO or NORM, +8 volts is applied to R2156 which causes pin 1 of U2156A to go HI enabling Schmitt trigger U2156A-U2156B. At the same time, pins 12 and 13 of U2156D are also HI disabling Schmitt trigger U2156C-U2156B. A trigger signal from Q2152 triggers Schmitt trigger U2156A-U2156B to produce a logic trigger signal at pin 6 of U 2156 B .

When the MODE switch \(\mathbf{S} 2150\) is in TV, +8 volts is emoved from R2156 and pin 1 of U2156A is LO, disabling Schmitt trigger U2156A-U2156B. Pins 12 and 13 of U2156D are LO, enabling Schmitt trigger U2156BU2156C. The trigger signal from the TV sync separator riggers Schmitt trigger U2156B-U2156C to produce logic trigger signal at pin 6 of U2156B.

\section*{VII. 3}

\section*{VOLTAGE AND WAVEFORM CONDITIONS}

\section*{VOLTAGE CONDITIONS}

Voltages shown on this diagram were measured with a Tektronix DM 501 Digital Multimeter. Voltage measurements can vary as much as \(\pm 20 \%\). No signals were applied to the vertical inputs or to the EXT (external trigger) input. Refer to Waveform Conditions for T932A or T935A control settings.

\section*{WAVEFORM CONDITIONS}

Waveforms below were monitored with a Tektronix 7704A Oscilloscope, 7B71 Time Base, 7A15A Amplifier, and 10X probe. The oscilloscope input coupling was set to ac. Waveforms vary as much as \(\pm 20 \%\).

A \(50 \mathrm{kHz}, 100 \mathrm{mV}\) sine wave was applied to the CH 1 input and a \(50 \mathrm{kHz}, 2 \mathrm{~V}\) square wave was applied to the CH 2 input. A Tektronix FG 501 Function Generator provides either of the input waveforms.

The T932A or T935A controls were set as follows:
\begin{tabular}{ll} 
SOURCE & CH 1/CH 2 \\
MODE & AUTO* \\
Vertical Mode & CH 1 \\
CH 1 VOLTS/DIV & 50 mV \\
CH 2 VOLTS/DIV & 1 V \\
VAR (both) & Detent \\
AC-GND-DC (both) & DC \\
DISPLAY MODE & A \\
A \& B SEC/DIV & \(10 \mu \mathrm{~s}\) \\
1X-10X & 1 X \\
HOLD-OFF & Fully ccw \\
LEVEL & For triggered display
\end{tabular}

The other controls were set as necessary to obtain the desired display.





\section*{T932A SWEEP AND HORIZ AMPL CIRCUIT DESCRIPTION}

Digital logic devices are used to perform some of the篗ctions in this instrument．LO and HI designations are都d in this circuit description to indicate the state of th
 ogic state may vary between individual devices．

Digital logic devices are used to perform some of the functions in this instrument．LO and HI designations are used in his circuit description to indicate the state of the digital circuit．HI indicates the more positive of the two levels．The specific oltages which constitute a LO and HI logic state may vary between individual devices．

\section*{SWEEP}

The sweep is produced by a Miller Integrator circuit onsisting of Q2242，Q2244，and Q2246．A sweep ramp is nitiated at the collector of Q2246 when pin 3 of U2234
Uoes 10 and is terminated when pin 3 goes HI （see Timing iagram，Fig．7－4）

In the NORM triggering mode，pin 2 of U2212A is H llowing a positive－going trigger signal at pin 1 of U2212 llowing a positive－going trigger signal at pin 1 of U2212A J2234C）．This reverse biases CR2233 and CR2234，and allows the timing capacitor（selected by the SEC／DIV witch，S2250）to charge，producing a sweep ramp at the collector of Q2246．When the sweep ramp reaches about 2 volts，Q2274 turns on．This causes pin 7 of U2224A to go O ，pin 8 of U2234C to go LO，and pin 3 of U2234A to go HI．When pin 3 of U2234A goes HI，CR2233 and CR2234 re forward biased，terminating the sweep．Pin 7 of etermined by C2275，C2274，R2271，R2274，and the OLD－OFF control，R2272．Three hold－off times are selected by the SEC／DIV switch S2250 and varied by R2272．After the selected hold－off time，U2224A pin 7 goes I．This allows the next trigger signal to switch pin 3 of 2234A LO and again start the sweep． In the AUTO triggering mode，when no trigger signa
ccurs at pin 11 of U2224B for about 50 ms ，pin 10 o U2224B goes LO，causing the sweep to start after the hold－ off time ends．This allows the sweep to free run and
provide a reference display．When a trigger signal is present，pin 11 of U2224B goes HI ，then LO（when trigge signal ends），and the time constant of C2226 and R2226 prevents pin 10 from going LO as long as the repetitio rate of the trigger signal is higher than about 20 Hz ．


Fig．7－4．Timing diagram：sweep generator and gate．
When pin 3 of U2234A goes HI，the current set by Q416（see diagram 1）to blank the crt during hold－off．

HORIZONTAL AMPLIFIER
The horizontal amplifier converts the single－ended gnal to a push－pull signal，which drives the crt horizonta deflection plates．The input of the horizontal amplifier omes from either the sweep generator or the CH都 he center of the screen by the current through R2182．In the AUTO and NORM modes，the input to the horizont
amplifier is a linear ramp from the sweep generator．

Transistors，Q2314，Q2326，and associated circuitry， orm an operational amplifier with a variable gain range o ver 10 to 1 ．The gain is set by feedback elements X ． OSITION control，R2316，positions the crt display orizontally by varying the current into the base of Q2314． The cascode configuration of Q2314 and Q2326 improves he high frequency response．

When the BEAM FINDER switch，section S100B，is pressed，the dynamic range of Q2326 is decreased．This mits the horizontal deflection to the crt screen area．Th EAM FINDER switch（section S100A）

Transistors Q2332，Q2334．Q2344，and associated circuitry form a paraphase amplifier．Transistor Q2332 is a w－impedance input for Q2334．Horiz Cal adjustme R2332，sets the gain of the paraphase amplifier．When the urrent through the collector of Q2334 increases，the current through the collector of Q2344 decreases and is \(80^{\circ}\) out of phase with the current at the collector o 2334．The resulting signal to the crt deflection plates is signal．Diode CR2334 prevents 2234 fro saturating when R2322 is in the X10 position

Since Q2334 is a shunt feedback amplifier and Q2344 is common base amplifier，any noise in the 100 V powe upply will appear as a part of the output．To prevent amplifier，consisting of Q2354 and associated circuitry， upplies an inverted sample of the power supply noise to the output．Now，any noise in the 100 volt power supply ppears common mode to the horizontal deflection plates reventing horizontal deflection of the noise signal Resistor R2354 provides feedback for the operational amplifier

\section*{VOLTAGE AND WAVEFORM CONDITIONS}

\section*{VOLTAGE CONDITIONS}

Voltages shown on this diagram were measured with a Tektronix DM 501 Digital Multimeter. Voltage measurements can vary as much as \(\pm 20 \%\). No signals were applied to the vertical inputs or to the EXT (external trigger) input. Refer to Waveform Conditions for T932A or T935A control settings.

\section*{WAVEFORM CONDITIONS}

Waveforms below were monitored with a Tektronix 7704A Oscilloscope, 7B71 Time Base, 7A15A Amplifier, and 10X probe. The oscilloscope input coupling was set to ac. Waveforms vary as much as \(\pm 20 \%\).

A \(50 \mathrm{kHz}, 100 \mathrm{mV}\) sine wave was applied to the CH 1 input and a \(50 \mathrm{kHz}, 2 \mathrm{~V}\) square wave was applied to the CH 2 input. A Tektronix FG 501 Function Generator provides either of the input waveforms.

The T932A controls were set as follows:
\begin{tabular}{ll} 
SOURCE & CH 1/CH 2 \\
MODE & AUTO \\
Vertical Mode & CH 1 \\
CH 1 VOLTS/DIV & 50 mV \\
CH 2 VOLTS/DIV & 1 V \\
VAR (both) & Detent \\
AC-GND-DC (both) & DC \\
DISPLAY MODE & A \\
A \& B SEC/DIV & 10 ' \(\mu \mathrm{s}\) \\
1X-10X & 1 X \\
HOLD-OFF & Fully ccw \\
LEVEL & For triggered display
\end{tabular}

The other controls were set as necessary to obtain the desired display.


Scan by Zenith



T935A A SWEEP AND HORIZ AMPL CIRCUIT DESCRIPTION

\section*{a SWEEP GENERATOR}

Digital logic devices are used to perform some of functions in this instrument. LO and HI designations digital circuit. HI indicates the more positive of the \(t\) levels. The specific voltages which constitute a LO and logic state may vary between individual devices.

The A sweep is produced by a Miller Integrator circuit onsisting of Q2242, Q2244, and Q2246. A sweep ramp is initas \(L \mathrm{O}\) and is terminated when pin 3 goes HI (see Timing diagram, Fig. 7-5).

In the NORM triggering mode, pin 2 of U2212A is H allowing a positive-going trigger signal at pin 1 of U2212A to cause pin 3 of U2234A to go LO (via U2212D and allows the timing capacitor (selected by the A SEC/DIV switch, S2250A) to charge, producing a sweep ramp at the collector of Q2246. When the sweep ramp reaches about 12 volts, Q2274 turns on. This causes pin 7 of U2224A to go LO, pin 8 of U2234C to go LO, and pin 3 of U2234A to go HI . When pin 3 of U2234A goes HI, CR2233 and CR2234 are forward biased, terminating the sweep. Pin 7 of determined by C2275, C2274, R2271, R2274, and the


Fig. 7-5. Timing diagram: sweep generator and gate.

HOLD-OFF control, R2272. Three hold-off times ar selected by the SEC/DIV switch S2250A and varied by HI. This allows the next trigger signal to switch pin 3 of U2234A LO and again start the sweep

In the AUTO triggering mode, when no trigger signa occurs at pin 11 of U2224B for about 50 ms , pin 10 o U2224B goes LO, causing the sweep to start after the holdprovide a reference display. When a trigger signal is present, pin 11 of U2224B goes HI, then LO (when trigger signal ends), and the time constant of C2226 and R2226 prevents pin 10 from going LO as long as the repetition rate of the trigger signal is higher than about 20 Hz .

When the DISPLAY MODE switch S2510 (see diagra Axis in the A or B modes, a signal is applied to Q416 in the off time and unblank the crt during sweep time. In the A mode, when pin 3 of U2234A goes HI, R2236, R2235, and R2237 convert the voltage to a current for blanking and unblanking. Refer to T935A B Sweep circuit description for blanking and unblanking operation when S2510 is in or A INTEN BY B modes.

\section*{HORIZONTAL AMPLIFIER}

The horizontal amplifier converts the single-ended ignal to a push-pull signal, which drives the crt horizontal deflection plates. The input of the horizontal amplifier \(X^{\prime \prime}\) pickomeither the sweep generator or the CH 1 vertical \(X\) pickoff. In the \(X-Y\) mode, the trace is shifted to the UTO and NORM by in input to the horizontal amplifier is a linear ramp from the sweep generator.

Transistors, Q2314, Q2326, and associated circuitry, orm an operational amplifier with a variable gain range of over 10 to 1 . The gain is set by feedback elements R2312, R2323, and X1-X10 control, R2322. The horizontal POSITION control, R2316, positions the crt display The cascode configuration of Q2314 and Q2326 improve the high frequency response.

When the BEAM FINDER switch, section S100B, is pressed, the dynamic range of Q2326 is decreased. This a common base amplifier, any noise in the 100 V power
limits the horizontal deflection to the crt screen area. The supply will appear as a part of the output. To prevent the

Since Q2334 is a shunt feedback amplifier and Q2344 is limits the horizontal deflection to the crt screen area. The vertical deflection to the crt screen area

Transistors Q2332, Q2334. Q2344, and associated circuitry form a paraphase amplifier. Transistor Q2332 is a ow-impedance input for Q2334. Horiz Cal adjustment R2332, sets the gain of the paraphase amplifier. When the current through the collector of Q2344 decreases and is \(180^{\circ}\) out of phase with the current at the collector of Q2334. The resulting signal to the crt deflection plates is a push-pull signal. Diode CR2334 prevents Q2334 from saturating when R2322 is in the X10 position.
supply will appear as a part of the output. To prevent the noise from appearing on the crt screen, an operational amplifier, consisting of Q2354 and associated circuitry, the output. Now, any noise in the 100 volt power supply appears common mode to the horizontal deflection plates, preventing horizontal deflection of the noise signal. Resistor R2354 provides feedback for the operationa amplifier.

\section*{IX. 3}

\section*{VOLTAGE AND WAVEFORM CONDITIONS}

\section*{VOLTAGE CONDITIONS}

Voltages shown on this diagram were measured with a Tektronix DM 501 Digital Multimeter. Voltage measurements can vary as much as \(\pm 20 \%\). No signals were applied to the vertical inputs or to the EXT (external trigger) input. Refer to Waveform Conditions for T935A control settings.

\section*{WAVEFORM CONDITIONS}

Waveforms below were monitored with a Tektronix 7704A Oscilloscope, 7B71 Time Base, 7A15A Amplifier, and 10X probe. The oscilloscope input coupling was set to ac. Waveforms vary as much as \(\pm 20 \%\).

A \(50 \mathrm{kHz}, 100 \mathrm{mV}\) sine wave was applied to the CH 1 input and a \(50 \mathrm{kHz}, 2 \mathrm{~V}\) square wave was applied to the CH 2 input . A Tektronix FG 501 Function Generator provides either of the input waveforms.

The T932A or T935A controls were set as follows:
\begin{tabular}{ll} 
SOURCE & CH 1/CH 2 \\
MODE & AUTO \\
Vertical Mode & CH 1 \\
CH 1 VOLTS/DIV & 50 mV \\
CH 2 VOLTS/DIV & 1 V \\
VAR (both) & Detent \\
AC-GND-DC (both) & DC \\
DISPLAY MODE & B \\
A \& B SEC/DIV & 10 ' \(\mu \mathrm{s}\) \\
1X-10X & 1 X \\
HOLD-OFF & Fully ccw \\
DELAY TIME POSITION & Midrange \\
LEVEL & For triggered display
\end{tabular}

The other controls were set as necessary to obtain the desired display.


Scan by Zenith



\title{
T935A B SWEEP CIRCUIT DESCRIPTION
}

Digital logic devices are used to perform some of the functions in this instrument. LO and HI designations are used in this circuit description to indicate the state of the digital circuit. HI indicates the more positive of the two levels. The specific voltages which constitute a LO and HI logic state may vary between individual devices.

The DISPLAY MODE switch S2510 selects A, B, or A INTEN BY B. In the A position, the \(B\) sweep is disconnected from the Horizontal Output Amplifier. In the B position, the A sweep is disconnected from the Horizontal Output Amplifier and the B sweep starts after the delay. In the A INTEN BY B position, the A sweep is connected to the Horizontal Output Amplifier. In this mode, the A sweep starts and then after the delay, the B sweep runs and intensifies a portion of the A sweep.

With the B mode selected, when pin 3 of U2524B goes HI, R2539, R2537, and R2532 convert the voltage at pin 3 to a current signal. This signal is applied to Q416 in the ZAxis amplifier (see diagram 1) to blank the crt during holdoff and unblank the crt during B sweep time. With S2510 in the A INTEN BY B mode, R2539, R2537, R2533 and R2531 provide the \(B\) sweep current source for Q416. This current signal is combined with the \(A\) sweep blanking and unblanking current signal from R2237 (see diagram 6B), allowing the \(A\) sweep to be intensified by the \(B\) sweep.

A Miller Integrator circuit consisting of Q2542, Q2544, Q2546, and associated circuitry, produces B sweep. The sweep ramp is initiated at the collector of Q2546 when pin 3 of U2524B goes LO, and is terminated when pin 3 of U2524B goes HI.

When pin 3 of U2524B goes LO, CR2535 and CR2536 are reverse biased. This allows the timing capacitor (selected by the B SEC/DIV switch S2550B) to charge, producing a sweep ramp at the collector of Q2546. When the sweep ramp reaches about 12 V , Q2548 turns on, causing pin 3 of U2524B to go HI . The HI at pin 3 of U2524B forward biases CR2535 and CR2536, ending the B sweep. If the A sweep ends before Q2548 turns on (before the B sweep ends), the Hold-ofi signal from pin 7 of U2224A causes pin 1 of U2524B to go LO. This in turn, causes pin 3 of U2524B to go HI, ending the B sweep. Pin 3 of U2524B will remain HI until pin 5 of U2524A goes LO again.

Transistors Q2514 and Q2516 make up a voltage comparator. The DELAY TIME POSITION control, R2516, sets the voltage at the base of Q2516. Initially, Q2514 is turned on, and Q2516 and Q2522 are turned off. The A sweep ramp from the collector of Q2246 increases the @
voltage at the base of Q2514. When the base of Q2514 is at the same voltage as the base of Q2516, Q2514 turns off, and Q2516 and Q2522 turn on. Components C2521 and R2521 provide feedback for a fast switch of Q2522, causing a sharp negative pulse through C2525. This pulse produces a LO at pin 5 of U2524A. The LO at pin 5 of U2524A produces a LO at pin 3 of U2524B which starts the B sweep. CR2514 and CR2516 are protection diodes. When S2510 is in the A position, the base of Q2522 is grounded, preventing the B sweep from starting.



\section*{VOLTAGE AND WAVEFORM CONDITIONS}

\section*{vOLTAGE CONDITIONS}

Voltages shown on this diagram were measured with a Tektronix DM 501 Digital Multimeter. Voltage measurements can vary as much as \(\pm 20 \%\). No signals were applied to the vertical inputs or to the EXT (external trigger) input. Refer to Waveform Conditions for T935A control settings.

\section*{WAVEFORM CONDITIONS}

Waveforms below were monitored with a Tektronix 7704A Oscilloscope, 7B71 Time Base, 7A15A Amplifier, and 10X probe. The oscilloscope input coupling was set to ac. Waveforms vary as much as \(\pm 20 \%\).

A \(50 \mathrm{kHz}, 100 \mathrm{mV}\) sine wave was applied to the CH 1 input and a \(50 \mathrm{kHz}, 2 \mathrm{~V}\) square wave was applied to the CH 2 input. A Tektronix FG 501 Function Generator provides either of the input waveforms.

The T935A controls were set as follows:
\begin{tabular}{ll} 
SOURCE & CH 1/CH 2 \\
MODE & AUTO \\
Vertical Mode & CH 1 \\
CH 1 VOLTS/DIV & 50 mV \\
CH 2 VOLTS/DIV & 1 V \\
VAR (both) & Detent \\
AC-GND-DC (both) & DC \\
DISPLAY MODE & A \\
A \& B SEC/DIV & \(10{ }^{\prime} \mu \mathrm{s}\) \\
1X-10X & 1 X \\
HOLD-OFF & Fully ccw \\
LEVEL & For triggered display
\end{tabular}

The other controls were set as necessary to obtain the desired display.


\title{
REPLACEABLE MECHANICAL PARTS
}

\section*{PARTS ORDERING INFORMATION}

Replacement parts are available from or through your local Tektronix, Inc. Field Office or representative.

Changes to Tektronix instruments are sometimes made to accommodate improved components as they become available, and to give you the benefit of the latest circuit improvements developed in our engineering department. It is therefore important, when ordering parts, to include the following information in your order: Part number, instrument type or number, serial number, and modification number if applicable.

If a part you have ordered has been replaced with a new or improved part, your local Tektronix, Inc. Field Office or representative will contact you concerning any change in part number.

Change information, if any, is located at the rear of this manual.

\section*{SPECIAL NOTES AND SYMBOLS}

X000 Part first added at this serial number
00X Part removed after this serial number

FIGURE AND INDEX NUMBERS
Items in this section are referenced by figure and index numbers to the illustrations.

\section*{INDENTATION SYSTEM}

This mechanical parts list is indented to indicate item relationships. Following is an example of the indentation system used in the description column.

12345
Name \& Description
Assembly and/or Component
Attaching parts for Assembly and/or Component
- - * - -

Detail Part of Assembly and/or Component Attaching parts for Detail Part

Parts of Detail Part
Attaching parts for Parts of Detail Part
\(\qquad\)

Attaching Parts always appear in the same indentation as the item it mounts, while the detail parts are indented to the right. Indented items are part of, and included with, the next higher indentation. The separation symbol---*---indicates the end of attaching parts.

Attaching parts must be purchased separately, unless otherwise specified.

\section*{ITEM NAME}

In the Parts List, an Item Name is separated from the description by a colon (:). Because of space limitations, an Item Name may sometimes appear as incomplete. For further Item Name identification, the U.S. Federal Cataloging Handbook H6-1 can be utilized where possible.
\begin{tabular}{|c|c|c|c|}
\hline Mir. Code & Manufacturer & Address & City, State, Zip \\
\hline 00779 & AMP, INC. & P O BOX 3608 & HARRISBURG, PA 17105 \\
\hline \multirow[t]{2}{*}{01295} & TEXAS INSTRUMENTS, INC., SEMICONDUCTOR & & \\
\hline & GROUP & P O BOX 5012, 13500 N CENTRAL EXPRESSWAY & DALLAS, TX 75222 \\
\hline 05091 & TRI-ORDINATE CORPORATION & 343 SNYDER AVENUE & BERKELEY HEIGHTS, NJ 07922 \\
\hline 11897 & PLASTIGLIDE MFG. CORPORATION & P O BOX 867, 1757 STANFORD ST. & SANTA MONICA, CA 90406 \\
\hline 12327 & FREEWAY CORPORATION & 9301 ALLEN DRIVE & CLEVELAND, OH 44125 \\
\hline 22526 & BERG ELECTRONICS, INC. & YOUK EXPRESSWAY & NEW CUMBERLAND, PA 17070 \\
\hline 27264 & MOLEX PRODUCTS CO. & 5224 KATRINE AVE. & DOWNERS GROVE, IL 60515 \\
\hline 28520 & HEYMAN MFG. CO. & 147 N. MICHIGAN AVE. & KENILWORTH, NJ 07033 \\
\hline 55210 & GETTIG ENG. AND MFG. COMPANY & PO BOX 85, OFF ROUTE 45 & SPRING MILLS, PA 16875 \\
\hline 59730 & THOMAS AND BETTS COMPANY & 36 BUTLER ST. & ELIZABETH, NJ 07207 \\
\hline 70485 & ATLANTIC INDIA RUBBER WORKS, INC. & 571 W. POLK ST. & CHICAGO, IL 60607 \\
\hline 71279 & CAMBRIDGE THERMIONIC CORP. & 445 CONCORD AVE. & CAMBRIDGE, MA 02138 \\
\hline \multirow[t]{2}{*}{71590} & CENTRALAB ELECTRONICS, DIV. OF & & \\
\hline & GLOBE-UNION, INC. & P O BOX 858 & FORT DODGE, IA 50501 \\
\hline \multirow[t]{2}{*}{72228} & CONTINENTAL SCREW CO., DIV. OF & & \\
\hline & AMTEL, INC. & 459 MT. PLEASANT & NEW BEDFORD, MA 02742 \\
\hline 73743 & FISCHER SPECIAL MFG. CO. & 446 MORGAN ST. & CINCINNATI, OH 45206 \\
\hline 74445 & HOLO-KROME CO. & 31 BROOK ST. WEST & HARTFORD, CT 06110 \\
\hline \multirow[t]{2}{*}{78189} & ILIINOIS TOOL WORKS, INC. & & \\
\hline & SHAKEPROOF DIVISION & ST. CHARLES ROAD & ELGIN, IL 60120 \\
\hline 80009 & TEKTRONIX, INC. & P O BOX 500 & BEAVERTON, OR 97077 \\
\hline 83385 & CENTRAL SCREW CO. & 2530 CRESCENT DR. & BROADVIEW, IL 60153 \\
\hline 88245 & LITTON SYSTEMS, INC., USECO DIV. & 13536 SATICOY ST. & VAN NUYS, CA 91409 \\
\hline 95987 & WECKESSER CO., INC. & 4444 WEST IRVING PARK RD. & CHICAGO, IL 60641 \\
\hline 98978 & INTERNATIONAL ELECTRONIC RESEARCH CORP. & 135 W. MAGNOLIA BLVD. & BURBANK, CA 91502 \\
\hline 99742 & PERMACEL DIV. OF JOHNSON AND JOHNSON & U. S. HIGHWAY 1 & NEW BRUNSWICK, NJ 08901 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Fig. \& Index No. & Tektronix Part No. & Serial/Model No. Eff Dscont & Qty & 12345 Name \& Description & Mfr Code & Mfr Part Number \\
\hline 1-1 & 348-0443-00 & & 1 & STAND,ELEC EQPT:0.156 DIA,SST,PSVT,0.5 HARD & 80009 & 348-0443-00 \\
\hline -2 & 437-0200-01 & & 1 & \begin{tabular}{l}
CABINET,SCOPE:LEFT \& RIGHT \\
(ATtACHING PARTS)
\end{tabular} & 80009 & 437-0200-01 \\
\hline -3 & 211-0648-00 & & 6 & SCR ASSEM WSHR:6-32 \(\times 0.625\) INCH, PNH,STL & 80009 & 211-0648-00 \\
\hline -4 & 210-0408-00 & & 6 & NUT, PLAIN, HEX. :6-32 X 0.312 INCH,BRS & 73743 & 3040-402 \\
\hline & ---------- & & - & - CABINET ASSY INCLUDES: & & \\
\hline -5 & 348-0441-00 & & 4 & - FOOT, CABINET: POLYURETHANE, BLACK & 80009 & 348-0441-00 \\
\hline -6 & 348-0447-01 & & 2 & . FOOT, CABINET:LEFT FRONT,RIGHT REAR & 80009 & 348-0447-01 \\
\hline & 348-0447-00 & & 2 & \begin{tabular}{l}
- FOOT, CABINET: RIGHT FRONT,LEFT REAR \\
(ATTACHING PARTS FOR EACH)
\end{tabular} & 80009 & 348-0447-00 \\
\hline -7 & 213-0731-00 & & 1 & - SCR,TPG,THD FOR:6-19 X 0.5 INCCH,PNH STL & 72228 & OBD \\
\hline -8 & 334-2682-00 & & 2 & - PLATE,IDENT:MARKED TEKTRONIX & 80009 & 334-2682-00 \\
\hline -9 & 334-2624-00 & & 1 & . PLATE,IDENT:MARKED DC BALANCE CHl,CH2 & 80009 & 334-2624-00 \\
\hline -10 & 337-2185-00 & & 1 & SHLD, IMPLOSION: & 80009 & 337-2185-00 \\
\hline -11 & 384-1371-01 & & 1 & EXTENSION SHAFT:5.2" LONG W/KNOB & 80009 & 384-1371-01 \\
\hline -12 & 384-1371-03 & & 1 & EXTENSION SHAFT:10.7" LONG W/KNOB & 80009 & 384-1371-03 \\
\hline -13 & 366-1559-00 & & 1 & PUSH BUTTON:GRAY & 80009 & 366-1559-00 \\
\hline -14 & 366-1559-03 & & 1 & PUSH BUTTON:SILVER GRAY, OFF & 80009 & 366-1559-03 \\
\hline -15 & 426-1072-00 & & 2 & FRAME, PUSH BTN:PI,ASTIC & 80009 & 426-1072-00 \\
\hline -16 & 358-0550-00 & & 2 & BUSHING,SHAFT:0.15 ID X 0.3INCH OD,PLSTC & 80009 & 358-0550-00 \\
\hline -17 & 333-2421-00 & & 1 & PANEL,FRONT: & 80009 & 333-2421-00 \\
\hline -18 & 352-0477-00 & & 1 & HOLDER, LED: & 80009 & 352-0477-00 \\
\hline -19 & 136-0387-01 & & 1 & JACK,TIP:BLACK & 71279 & 450-4352-01-0310 \\
\hline -21 & 386-3900-00 & & 1 & \begin{tabular}{l}
SUBPANEL, FRONT:CRT \\
(ATTACHING PARTS)
\end{tabular} & 80009 & 386-3900-00 \\
\hline -21 & 213-0146-00 & & 1 & SCR,TPG,THD FOR:6-20 X 0.313 INCH,PNH STL - - - * - - - & 83385 & OBD \\
\hline -22 & 384-1370-00 & & 1 & EXTENSION SHAFT:4.68" L,MOLDED PLSTC & 80009 & 384-1370-00 \\
\hline -23 & 384-1364-00 & & 1 & EXTENSION SHAFT:10.818" L,NYLON,BLK & 80009 & 384-1364-00 \\
\hline -24 & 351-0456-00 & & 2 & GUIDE,RES ADJ:PLASTIC & 80009 & 351-0456-00 \\
\hline -25 & 352-0425-00 & & 1 & FUSEHOLDER:PLASTIC & 80009 & 352-0425-00 \\
\hline -26 & 337-2227-00 & & 1 & ShIELD, ELEC:HIGH VOLTAGE POWER SUPPLY (ATTACHING PARTS) & 80009 & 337-2227-00 \\
\hline -27 & 211-0008-00 & & 2 & SCREW,MACHINE:4-40 X 0.25 INCH,PNH STL & 83385 & OBD \\
\hline -28 & 342-0293-00 & & 1. & INSULATOR, SHLD :HV & 80009 & 342-0293-00 \\
\hline -29 & 343-0213-00 & & 2 & CLAMP,LOOP:PRESS MT,PLASTIC & 80009 & 343-0213-00 \\
\hline -30 & ------ -- & & 1 & TRANSISTOR:CHASSIS MTG (SEE Q458 EPL) (ATTACHING PARTS) & & \\
\hline -31 & 344-0236-01 & & 1. & CLIP,SPR TNSN:TRANSISTOR MOUNTING & 80009 & 344-0236-01 \\
\hline & 342-0202-00 & & 1 & INSULATOR, PLATE:TRANSISTOR & 01295 & 10-21-023-106 \\
\hline -32 & 253-0202-00 & & FT & INSUL TAPE,ELEC:POLYMIDE,0.875" W X 1.0" L & 99742 & 221 \\
\hline -33 & ----- -- & & 1 & CKT BOARD ASSY:TRIGGER FUNCTION(SEE AlO EPL) (ATTACHING PARTS) & & \\
\hline -34 & 211-0008-00 & & 4 & SCREW,MACHINE:4-40 X 0.25 INCH,PNH STL & 83385 & OBD \\
\hline & - & & - & - CKT BOARD ASSY INCLUDES: & & \\
\hline -35 & 131-0608-00 & & 4 & . CONTACT, ELEC:0.365 L X 0.25 PH BRZ GOLD PL & 22526 & 47357 \\
\hline -36 & 136-0263-04 & & 13 & . SOCKET, PIN TERM:FOR 0.025 INCH SQUARE PIN & 22526 & 75377-001 \\
\hline -37 & --------- & & 1 & CKT BOARD ASSY:INTERFACE (SEE AI EPL) (ATTACHING PARTS) & & \\
\hline -38 & 211-0008-00 & & 5 & SCREW,MACHINE:4-40 X 0.25 INCH, PNH STL & 83385 & OBD \\
\hline -39 & 361-0750-00 & & 2 & SPACER,POST:4-40 X 0.25 INT/EXT THD & 80009 & 361-0750-00 \\
\hline & ---- & & - & - CKT BOARD ASSY INCLUDES: & & \\
\hline -40 & 131-0566-00 & & 1. & . LINK,TERM.CONNE:0.086 DIA X 2.375 INCH L & 55210 & L-2007-1 \\
\hline -41 & 131-0608-00 & & 19 & . CONTACT,ELEC:0.365 L X 0.25 PH BRZ GOLD PL & 22526 & 47357 \\
\hline -42 & 131-1749-01 & & 1 & - CONN,RCPT,ELEC:CKT BD, 8 CONTACT & 80009 & 131-1749-01 \\
\hline & 131-1795-00 & & 1 & . CONNECTOR,RCPT,:12 FEMALE CONTACT,RT-ANGLE & 27264 & 09-62-3121 \\
\hline -43 & 131-1792-00 & & 1 & - CONTACT ASSY, EL: 12 MALE CONTACT, FLAT WAFER & 27264 & 09-70-2121 \\
\hline
\end{tabular}

Fig. \&
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Index No. & Tektronix Part No. & Serial/Model No. Eff Dscont & Qty & 12345 Name \& Description & Mfr Code & Mfr Part Number \\
\hline 1-44 & 214-0693-00 & & 4 & . HEAT SINK, ELEC:0.25 ID X 0.75 INCH LONG & 98978 & TXD017-075 \\
\hline -45 & --------- & & 1 & - TRANSFORMER: (SEE T460 EPL) & & \\
\hline -46 & 361-0007-01 & & 3 & . SPACER,SLEEVE:0.188 L X 0.111 ID,PLASTIC & 80009 & 361-0007-01 \\
\hline -47 & ----- ----- & & 1 & - RES., VAR:INTENSITY (SEE R412 EPL) & & \\
\hline -48 & ----- ----- & & 1 & - RES., VAR:FOCUS (SEE R468 EPL) & & \\
\hline -49 & ----- ----- & & 1 & - SWITCH, PUSH : BEAMF INDER (SEE S100 EPL) & & \\
\hline -50 & 361-0608-00 & & 2 & - SPACER,PUSH SW:PLASTIC & 80009 & 361-0608-00 \\
\hline -51 & ----- ----- & & 1 & - SWITCH, PUSH:POWER ON (SEE S700 EPL) & & \\
\hline -52 & 344-0154-00 & & 2 & - CLIP,ELECTRICAL:FOR 0.25 INCH DIA FUSE & 80009 & 344-0154-00 \\
\hline -53 & 342-0294-00 & & 1 & INSULATOR,FILM:2.125 X 4.875,0.01 POLYEST & 80009 & 342-0294-00 \\
\hline -54 & 386-3291-00 & & 1 & SUPPORT, CRT:FRONT & 80009 & 386-3291-00 \\
\hline -55 & ------ & & 1 & ELECTRON TUBE:CRT, W/ANODE (SEE V470 EPL) & & \\
\hline & 334-1379-00 & & 1 & LABEL:CRT,ADHESIVE BACK & 80009 & 334-1379-00 \\
\hline & 334-2614-00 & & 1 & MARKER,IDENT:MARKED PROPERTY OF & 80009 & 334-2614-00 \\
\hline -56 & 214-2300-00 & & 1 & SPRING,GROUND:2.0 L X \(0.3 \mathrm{~W}, 0.0063\) THK BRS (ATTACHING PARTS) & 80009 & 214-2300-00 \\
\hline -57 & 211-0008-00 & & 1 & SCREW, MACHINE:4-40 X 0.25 INCH, PNH STL & 83385 & OBD \\
\hline -58 & 210-0586-00 & & 1 & NUT, PLAIN, EXT W:4-40 X 0.25 INCH,STL & 78189 & OBD \\
\hline & 626-0458-00 & & 1 & CRT SHIELD ASSY: & 80009 & 626-0458-00 \\
\hline -59 & ---------- & & 1 & . COIL, TUBE DEFL:TRACE ROTATION(SEE L472 EPL) & & \\
\hline -60 & 131-0707-00 & & 2 & -. CONNECTOR,TERM.:0.48" L,22-26AWG WIRE & 22526 & 75691-005 \\
\hline -61 & 352-0169-01 & & 1 & . . CONN BODY,PL,EL:2 WIRE BROWN & 80009 & 352-0169-01 \\
\hline -62 & --------- & & 1 & - COIL, TUBE DEFL: X-Y ALIGNMENT (SEE L470 EPL) & & \\
\hline & 131-0707-00 & & 2 & . . CONNECTOR,TERM. \(0.48^{\prime \prime} \mathrm{L}, 22-26 \mathrm{AWG}\) WIRE & 22526 & 75691-005 \\
\hline -63 & 352-0169-00 & & 2 & - CONN BODY,PL,EL:2 WIRE BLACK & 80009 & 352-0169-00 \\
\hline -64 & 407-2107-00 & & 1 & - BRACKET,SUPPORT:CRT SHIELD (ATTACHING PARTS) & 80009 & 407-2107-00 \\
\hline -65 & 210-0457-00 & & 3 & . NU', PLAIN,EXT W:6-32 X 0.312 INCH,STL & 83385 & OBD \\
\hline -66 & 211-0510-00 & & 2 & . SCREW,MACHINE:6-32 X 0.375 INCH, PNH STL & 83385 & OBD \\
\hline & 210-0803-00 & & 2 & - WASHER,FLAT:0.15 ID X 0.375 INCH OD,STL & 12327 & OBD \\
\hline & 210-0006-00 & & 2 & - WASHER,LOCK:INTL,0.146 IDX 0.288 OD,STL & 78189 & 1206-00-00-0541C \\
\hline -67 & 386-3288-00 & & 1 & \begin{tabular}{l}
- SPRT,CRT SHIELD:REAR \\
(ATTACHING PARTS)
\end{tabular} & 80009 & 386-3288-00 \\
\hline -68 & 211-0510-00 & & 2 & . SCREW, MACHINE:6-32 X 0.375 INCH, PNH STL & 83385 & OBD \\
\hline -69 & 220-0419-00 & & 2 & . NUT,PLAIN,SQ:6-32 X 0.312 INCH,STL & 83385 & OBD \\
\hline -70 & 386-3305-00 & & 1 & . SUPPORT,CRT: REAR & 80009 & 386-3305-00 \\
\hline -71 & 348-0004-00 & & 1 & . GROMMET,RUBBER:0.281 ID X 0.563 INCH OD & 70485 & 763 \\
\hline -72 & 337-2223-02 & & 1 & - SHIELD,CRT: & 80009 & 337-2223-02 \\
\hline & 129-0701-00 & & 1 & . SPACER,POST:0.665 L,W/6-32 THD ONE END AL & 80009 & 129-0701-00 \\
\hline & 255-0648-00 & & 1 & . RUBBER EXTR:U. SHAPE,11.437 L & 80009 & 255-0648-00 \\
\hline & 136-0698-00 & & 1 & SKT,PL-IN ELEK:ELCTRN TUBE,9 CONT W/LEADS & 80009 & 136-0698-00 \\
\hline & 198-3838-00 & & 1 & - WIRE SET,ELEC: & 80009 & 198-3838-00 \\
\hline -73 & 136-0202-01 & & 1 & . . SOCKET, PLUG-IN:14 PIN & 80009 & 136-0202-01 \\
\hline -74 & 131-0707-00 & & 9 & . CONNECTOR,TERM. 0 0.48" L, 22-26AWG WIRE & 22526 & 75691-005 \\
\hline -75 & 352-0162-00 & & 2 & . CONN BODY,PL,EL:4 WIRE. BLACK & 80009 & 352-0162-00 \\
\hline -76 & 352-0171-00 & & 1 & . CONN BODY,PL,EL:I WIRE BLACK & 80009 & 352-0171-00 \\
\hline -77 & 386-3289-02 & & 1 & PANEL,REAR: & 80009 & 386-3289-02 \\
\hline & & & & (ATTACHING PARTS) & & \\
\hline -78 & 211-0529-00 & & 2 & SCREW, MACHINE:6-32 \(\times 1.25\) INCHES, PNH STL & 83385 & OBD \\
\hline -79 & 211-0578-00 & & 2 & SCREW, MACHINE:6-32 X \(0.4381 \mathrm{NCH}, \mathrm{PNH}\) STL & 83385 & OBD \\
\hline -80 & 131-0955-00 & & 1 & CONNECTOR,RCPT, :BNC,FEMALE,W/HARDWARE (ATMTACHING PARTS) & 05091 & 31-279 \\
\hline -81 & 210-0255-00 & & 1 & TERMINAL,LUG:0.391" ID INT TOOTH & 80009 & 210-0255-00 \\
\hline -82 & 200-1811-00 & & 1 & \begin{tabular}{l}
COVER,SCOPE:REAR PLASTIC \\
(ATTACHING PARTS)
\end{tabular} & 80009 & 200-1811-00 \\
\hline -83 & 211-0517-00 & & 2 & SCREW,MACHINE:6-32 X 1 INCH, PNH,STL & 83385 & OBD \\
\hline
\end{tabular}

Fig. \&
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Index } \\
& \text { No. } \\
& \hline
\end{aligned}
\] & Tektronix Part No. & Serial/Model No. Eff Dscont & Qty & 12345 & Name \& Description & Mfr Code & Mfr Part Number \\
\hline 1- & ---------- & & - & . rear covir & includes: & & \\
\hline -84 & 348-0441-00 & & 4 & . FOot, cab & YURETHANE, BLACK & 80009 & 348-0441-00 \\
\hline -85 & 161-0107-01 & & 1 & CABLE ASSY, & AWG,115V,7.5 FT,W/LUG & 80009 & 161-0107-01 \\
\hline -86 & 358-0323-00 & & 1 & bshg,strain & deg,0.515 dia hole & 28520 & SR15-1 \\
\hline -87 & 211-0504-00 & & & SCREW, MACH & \(\times 0.25\) INCH, PNH STL & 83385 & obd \\
\hline -88 & 210-0287-00 & & - &  & & 00779 & 34142 \\
\hline -89 & 348-0063-00 & & 2 & GROMMET, PL & 50 InCH DIA & 80009 & 348-0063-00 \\
\hline -90 & 255-0334-00 & & FT & PLASTIC CH2 & & 11897 & 122-37-2500 \\
\hline & 672-0711-00 & & 1 & Ckt board & R Supply & 80009 & 672-0711-00 \\
\hline
\end{tabular}
-92 344-0236-01
. TRANSISTOR:CHAS MTG (SEE \(9756 \&\) Q776 EPL)
- TRANSISTOR:CHAS MTG(SEE Q736 EPL)
                                    (ATTACHING PARTS FOR EACH)
- CLIP,SPR TNSN:TRANSISTOR MOUNTING

80009 344-0236-01
- INSULATOR, PLATE:TRANSISTOR

FT . INSUL TAPE,ELEC:POLYMIDE,0.875 ID X 3.5" L
. HEAT SINK,XSTR:6.0" L X 0.72" H,AL
(ATTACHING PARTS)
- SCREW,MACHINE:6-32 X 0.312 INCH,PNH STL 83385 OBD
. SCREW,MACHINE:4-40 X 0.25 INCH,PNH STL 83385 OBD
- NUT,PLAIN,EXT W:4-40 X 0.25 INCH,STL 78189 OBD
- - - \(\quad\) - -
- FUSEHOLDER:PLASTIC

80009 352-0425-00
SHIELD,ELEC:LV POWER BOARD
80009 337-2302-00
- CKT BOARD ASSY:.L.V. POWER SUPPLY (SEE A2 EPL) (ATTACHING PARTS)
. SCREW,MACHINE:10-32 X 2.250" HEX.HD STL 83385 OBD
. INSUL SLVG,ELEC:0.19 ID X 1.875"LONG MYLAR
. SPACER,SLEEVE:0.625 I X 0.31 ID,ALUMINUM
. NUT,PLAIN,HEX.: \(10-32 \times 0.25\) INCH,PL BRS
83385
- - - * - - -
. . CKT BOARD ASSY INCLUDES:
. . TERM,FEEDTHRU: 8 PIN,INSULATED
- CLIP,ELECTRICAL:FOR 0.25 INCH DIA FUSE 80009 344-0154-00
- . SW,SLIDE:LINE VOLT/SELECT (SEE S701,S705 EPL)
- . TRANSFORMER:POWER(SEE T700 EPL)

CLAMP,LOOP:PRESS MT,PLASTIC
- CLAMP,LOOP:0.188 INCH DIA
- CLAMP,LOOP:0.062 INCH DIA KNOB:RED
- SETSCREW:5-40 X 0.125 INCH,HEX SOC STL

EXTENSION SHAFT: 6.8" LONG,W/KNOB
KNOB:GY,VOLTS/DIV,0.135 ID,W/SKIRT
PUSH BUTTON:GRAY
FRAME, PUSH BTN:PLASTIC
BUSHING,SHAFT: 0.15 ID X 0.3INCH OD,PLSTC
PANEL, FRONT:VERTICAL
EXTENSION SHAFT:0.123 DIA X 6.3" L,PLSTC CPLG,SHAFT,FLEX:FOR 0.125 INCH DIA SHAFTS
- SETSCREW:4-40 X 0.188 INCH, HEX SOC STL

GUIDE,RES ADJ:PLASTIC
CKT BOARD ASSY:ATTENUATOR,CH1
CKT BOARD ASSY:ATTENUATOR,CH2
(ATTACHING PARTS FOR EACH)
-120 211-0144-00
-121 211-0018~00
SCREW,MACHINE:4-40 X 1.312 INCH,PNH STL
SCREW,MACHINE:4-40 X 0.875 PNH,STL
80009 343-0213-00
343-0002-00
343-0088-00
-110 366-1031-00
-111
-112 366-1746-00
-113 366-1559-00
-114 426-1072-00
-115 358-0550-00
-116 333-2419-00
-117 384-1393-00
-118 376-0051-00 213-0022-00
-119 351-0456-00
672-0708-00
672-0709-00
-122 210-0586-00
NUT, PLATN, EXT W:4-40 X 0.25 INCH,STL
- - - *-- -
- EACH ATTEN ASSY INCLUDES:

Fig. \&
Index

No.
1-1
-1
-1
-126 \(210-1000-00\)
-127 105-0678-01 105-0678-02
-128 214-1126-01
-129 214-1752-00
-130 401-0338-00
-131 211-0244-00
-132 210-0406-00
-133 376-0174-00
-134 105-0679-00
-135 343-0564-00
343-0565-00
-136 211-0244-00
-137 211-0246-00
-138 210-0406-00
-139 131-1779-03
131-1779-04
-140 131-1779-01
131-1779-02
-141 ----- ----
\(\begin{array}{ll}-142 & 136-0263-04 \\ -143 & 361-0735-00\end{array}\)
-144 384-1136-00
-145 ----- ----
\(-146\)
211-0008-00
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{-147} & 131-05 \\
\hline & 131-0608-00 \\
\hline 148 & 131-1792-00 \\
\hline -149 & \\
\hline -150 & 361-0542 \\
\hline -151 & ----- \\
\hline \multirow[t]{3}{*}{-152} & \\
\hline & 361-0542-00 \\
\hline & 131-0433-00 \\
\hline -153 & \\
\hline -154 & 211-0008-00 \\
\hline -155 & 210-0586-00 \\
\hline -156 & 210-0458- \\
\hline -157 & 131-1768-00 \\
\hline -158 & 346-0121-00 \\
\hline -159 & \\
\hline -160 & 211-0008-00 \\
\hline -161 & 29-023 \\
\hline
\end{tabular}

Fig. 8
Index Tektronix Serial/Model No.
\begin{tabular}{|c|c|c|}
\hline ty 12345 Name \& Description & Mfr Code & Mfr Part Number \\
\hline ADAPTER,EXT SET:PUSH SW,.45 OFFSET & 80009 & 103-0186-01 \\
\hline SUBPANEL, FRONT:VERTICAL & 80009 & 386-3899-00 \\
\hline PLATE, IDENT:MARKED T932A & 80009 & 334-3306-00 \\
\hline PLATE, IDENT:MARKED T935A & 80009 & 334-3308-00 \\
\hline STRIP,TRIM:FRONT & 80009 & 124-0315-00 \\
\hline KNOB: GRAY & 80009 & 366-1660-00 \\
\hline SETSCREW:5-40 X 0.125 INCH, HEX SOC STL & 74445 & OBD \\
\hline \multicolumn{2}{|l|}{(ATTACHING PARTS)} & 131-0106-02 \\
\hline TERMINAL,LUG:0.391" ID INT TOOTH & 80009 & 210-0255-00 \\
\hline PUSH BUTTON:GRAY & 80009 & 366-1559-00 \\
\hline PUSH BUTTON:GRAY & 80009 & 366-1559-00 \\
\hline EXTENSION SHAFT:2.0" LONG,W/KNOB,PLASTIC & 80009 & 384-1371-00 \\
\hline KNOB:GRAY & 80009 & 366-1660-00 \\
\hline KNOB : GRAY & 80009 & 366-1660-00 \\
\hline . SETSCREW:5-40 X 0.125 INCH, HEX SOC STL & 74445 & OBD \\
\hline KNOB: RED & 80009 & 366-1667-00 \\
\hline . SETSCREW:5-40 X 0.125 INCH, HEX SOC STL & 74445 & OBD \\
\hline KNOB: GRAY & 80009 & 366-1661-00 \\
\hline . SETSCREW:5-40 X 0.125 INCH, HEX SOC STL & 74445 & OBD \\
\hline KNOB:CLEAR,FCTN TIMING & 80009 & 366-1662-00 \\
\hline . SETSCREW:5-40 x 0.125 INCH, HEX SOC STL & 74445 & OBD \\
\hline KNOB:0.127" ID X 0.5" OD X \(0.531 "\) & 80009 & 366-1647-00 \\
\hline . SETSCREW:5-40 X 0.125 INCH, HEX SOC STL & 74445 & OBD \\
\hline KNOB: GRAY & 80009 & 366-1281-00 \\
\hline . SETSCREW:5-40 X 0.125 INCH, HEX SOC STL & 74445 & OBD \\
\hline BUSHING, PLASTIC:0.257 ID X 0.412 INCH OD & 80009 & 358-0216-00 \\
\hline EXTENSION SHAFT:6.8" LONG,W/KNOB & 80009 & 384-1371-02 \\
\hline BUSHING, SHAFT: 0.15 ID X 0.3INCH OD, PLSTC & 80009 & 358-0550-00 \\
\hline FRAME, PUSH BTN:PLASTIC & 80009 & 426-1072-00 \\
\hline FRAME, PUSH BTN:PLASTIC & 80009 & 426-1072-00 \\
\hline PANEL,FRONT: HORIZONTAL & 80009 & 333-2420-00 \\
\hline PANEL,FRONT:HORIZONTAL & 80009 & 333-2418-00 \\
\hline \multicolumn{3}{|l|}{RES. , VAR:HOLD-OFF, POSTION(SEE R2272 EPL)
(ATTACHING PARTS)} \\
\hline NUT, PLAIN, HEX. :0.25-32 \(\times 0.312\) INCH, BRS & 73743 & 2x20224-402 \\
\hline NUT,PLAIN,HEX.:0.25-32 X 0.375 INCH BRS - - * - - - & 73743 & 3095-402 \\
\hline CKT BOARD ASSY:TRIGGER,W/LEVER SWITCH & 80009 & 672-0707-00 \\
\hline . SW Lever assy: & 80009 & 263-0030-00 \\
\hline \multicolumn{3}{|l|}{(Attaching parts for each)} \\
\hline . SCR,ASSEM WSHR:4-40 x 0.688"PNH,STL & 78189 & OBD \\
\hline . NUT,PLAIN, HEX. :4-40 X 0.25 INCH,STL & 83385 & OBD \\
\hline . GUIDE ,SWITCH:W/SPRING AND ROLLER & 80009 & 351-0448-01 \\
\hline \begin{tabular}{l}
. CKT BOARD ASSY:TRIGGER SWITCH (SEE All EPL) \\
. . CONTACT,ELEC:0.64 INCH LONG \\
. . SWITCH,PUSH:(SEE S2030 EPL)
\end{tabular} & 22526 & 47359 \\
\hline . . SPACER,SWITCH:PLASTIC & 71590 & J-64281 \\
\hline ADAPTER,EXT SFT:PUSH SW,. 30 OFFSET & 80009 & 103-0186-00 \\
\hline \begin{tabular}{l}
RES., VAR:DELAY TIME (SEE R2516 EPL) \\
(ATTACHING PARTS)
\end{tabular} & & \\
\hline NUT, PLAIN, HEX. 0 0.25-32 \(\times 0.312\) INCH, BRS & 73743 & 2x20224-402 \\
\hline NUT, PLAIN, HEX.:0.25-32 X 0.375 INCH BRS & 73743 & 3095-402 \\
\hline EXTENSION SHAFT:8.06 L X 0.123 Od, PLASTIC & 80009 & 384-1422-00 \\
\hline EXTENSION SHAFT:8.296 L X 0.081 Od, SST,PSVT & 80009 & 384-1410-00 \\
\hline CPLG, SHAFT,FLEX:FOR 0.125 INCH DIA SHAFTS & 80009 & 376-0051-00 \\
\hline CPLG, SHAFT,FLEX:FOR 0.081/0.125 INCH SHAFTS & 80009 & 376-0050-00 \\
\hline . SETSCREW:4-40 X 0.188 INCH, HEX SOC STL & 74445 & ObD \\
\hline CKT BOARD ASSY:TIMING W/ROTARY SWITCH & 80009 & 672-0551-01 \\
\hline CKT BOARD ASSY:TIMING W/ROTARY SWITCH & 80009 & 672-0533-01 \\
\hline
\end{tabular}

Mfr
No. Part No. Eff Dscont Qty 12345 Name \& Description C
\begin{tabular}{|c|c|}
\hline 1-162 & 103 \\
\hline 63 & \\
\hline 64 & 334 \\
\hline & \\
\hline -165 & 124-031 \\
\hline 66 & 366- \\
\hline & \\
\hline -167 & 131-01 \\
\hline -168 & \\
\hline 69 & 36 \\
\hline & \\
\hline -170 & 384-137 \\
\hline 71 & 366-16 \\
\hline & 366 \\
\hline & 213-015 \\
\hline & \\
\hline & \\
\hline -173 & \\
\hline & \\
\hline & \\
\hline
\end{tabular}

SUBPANEL, FRONT:VERIICAL

TERMINAL,LUG:0.391" ID INT TOOTH
PUSH BUTTON:GRAY
PUSH BUTTON:GRAY
EXTENSION SHAFT:2.0" LONG,W/KNOB,PLASTIC KNOB:GRAY
KNOB : GRAY
- SETSCREW:5-40 X 0.125 INCH,HEX SOC STL KNOB: RED
. SETSCREW:5-40 X 0.125 INCH, HEX SOC STL KNOB:GRAY
. SETSCREW:5-40 X 0.125 INCH,HEX SOC STL KNOB:CLEAR,FCTN TIMING
. SETSCREW:5-40 X 0.125 INCH,HEX SOC STL
. SETSCREW:5-40 X 0.125 INCH,HEX SOC STL KNOB: GRAY
- SETSCREW:5-40 X 0.125 INCH,HEX SOC S'TL BUSHING,PLASTIC:0.257 ID X 0.412 INCH OD EXTENSION SHAFT:6.8" LONG,W/KNOB
BUSHING, SHAFT: 0.15 ID X 0.3 INCH OD,PLSTC
RAME,PUSH BTN:PLASTIC
FRAME,PUSH BTN:PLASTIC
PANEL FRONT:HORTZONTAI
RES., VAR:HOLD OFF,POSTION(SEE R2272 EPL) (ATTACHING PARTS)
NUT, PLAAIN, HEX. : 0.25-32 X 0.312 INCH,BRS
NUT, PLAIN, HEX. :0.25-32 X 0.375 INCH BRS
CKT BOARD ASSY:TRIGGER,W/LEVER SWITCH - SW LEVER ASSY:
- LEVER,SWITCH:STYLE B,W/CONTACTS
(ATTACHING PARTS FOR EACH)
- SCR,ASSEM WSHR:4-40 X 0.688"PNH,STL
- NU, RANA,
- - - * - - -
- CKI BOARD ASSY:TRIGGER SWITCH(SEE All EPL)
- CONTACT, ELEC: 0.64 INCH LONG
- . SWITCH,PUSH:(SEE S2O30 EPL)
- . SPACER,SWITCH:PLASTIC

ADAPTER, EXT SFT:PUSH SW, . 30 OFFSET
(ATTACHING PARTS)
-195 210-0583-00
-196 210-0465-00
-197 384-1422-001
384-1410-00 \({ }^{2}\)
-198 376-0051-00
376-0050-00 \({ }^{2}\)
213-0022-00
-199 672-0551-01
672-0533-01

\footnotetext{
\(1_{\text {T932A }}\) only
\(2^{\text {T935A }}\) only
}

Fig. \&


\footnotetext{
\(1_{\text {T935A }}\) only
\({ }^{2}\) T932A only
}


\section*{ACCESSORIES}

Fig. \&
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline index No. & Tektronix Part No. & \begin{tabular}{l}
Serial/Model No. \\
Eff Dscont
\end{tabular} & Qty & 12345 & Name \& Description & Mfr Code & Mfr Part Number \\
\hline & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& 070-2492-00 \\
& 010-6108-03
\end{aligned}
\]}} & 1 & MANUAL, TE & Tion & 80009 & 070-2492-00 \\
\hline & & & 2 & \multicolumn{2}{|l|}{PROBE, VOLTAGE: \(10 \mathrm{X}, 2\) METERS, W/ACCESSORIES} & 80009 & 010-6108-03 \\
\hline
\end{tabular}

\section*{MANUAL CHANGE INFORMATION}

At Tektronix, we continually strive to keep up with latest electronic developments by adding circuit and component improvements to our instruments as soon as they are developed and tested.

Sometimes, due to printing and shipping requirements, we can't get these changes immediately into printed manuals. Hence, your manual may contain new change information on following pages.

A single change may affect several sections. Since the change information sheets are carried in the manual until all changes are permanently entered, some duplication may occur. If no such change pages appear following this page, your manual is correct as printed.

\section*{SERVICE NOTE}

Because of the universal parts procurement problem, some electrical parts in your instrument may be different from those described in the Replaceable Electrical Parts List. The parts used will in no way alter or compromise the performance or reliability of this instrument. They are installed when necessary to ensure prompt delivery to the customer. Order replacement parts from the Replaceable Electrical Parts List.

\section*{CALIBRATION TEST EQUIPMENT REPLACEMENT}

\section*{Calibration Test Equipment Chart}

This chart compares TM 500 product performance to that of older Tektronix equipment. Only those characteristics where significant specification differences occur, are listed. In some cases the new instrument may not be a total functional replacement. Additional support instrumentation may be needed or a change in calibration procedure may be necessary.

Comparison of Main Characteristics
\begin{tabular}{|c|c|c|}
\hline DM 501 replaces 7D13 & & \\
\hline PG 501 replaces 107 & \begin{tabular}{l}
PG 501 - Risetime less than 3.5 ns into \(50 \Omega\). \\
PG 501-5 V output pulse; 3.5 ns Risetime. \\
PG 501 - Risetime less than \(3.5 \mathrm{~ns} ; 8 \mathrm{~ns}\) Pretrigger pulse delay. \\
PG 501- \(\pm 5\) V output. \\
PG 501 - Does not have Paired, Burst, Gated, or Delayed pulse mode; \(\pm 5 \mathrm{~V}\) dc Offset. Has \(\pm 5 \mathrm{~V}\) output.
\end{tabular} & \begin{tabular}{l}
107-Risetime less than 3.0 ns into \(50 \Omega\). \\
108-10 V output pulse; 1 ns Risetime. \\
111 - Risetime \(0.5 \mathrm{~ns} ; 30\) to 250 ns Pretrigger Pulse delay. \\
\(114- \pm 10 \mathrm{~V}\) output. Short proof output. \\
115 - Paired, Burst, Gated, and Delayed pulse mode; \(\pm 10 \mathrm{~V}\) output. Short-proof output.
\end{tabular} \\
\hline \[
\begin{aligned}
& \hline \text { PG } 502 \text { replaces } 107 \\
& 108 \\
& 111 \\
& 114 \\
& 115 \\
& \\
& \\
& \\
& \\
&
\end{aligned}
\] & \begin{tabular}{l}
PG 502-5 V output \\
PG 502 - Risetime less than \(1 \mathrm{~ns} ; 10 \mathrm{~ns}\) Pretrigger pulse delay. \\
PG 502- \(\pm 5 \mathrm{~V}\) output \\
PG 502 - Does not have Paired, Burst, Gated, Delayed \& Undelayed pulse mode; Has \(\pm 5 \mathrm{~V}\) output. \\
PG 502 - Does not have Paired or Delayed pulse. Has \(\pm 5 \mathrm{~V}\) output.
\end{tabular} & \begin{tabular}{l}
108-10 V output. \\
111 - Risetime \(0.5 \mathrm{~ns} ; 30\) to 250 ns Pretrigger pulse delay. \\
\(114- \pm 10 \mathrm{~V}\) output. Short proof output. \\
115 - Paired, Burst, Gated, Delayed \& Undelayed pulse mode; \(\pm 10 \mathrm{~V}\) output. Short-proof output. \\
2101 - Paired and Delayed pulse; 10 V output.
\end{tabular} \\
\hline PG 506 replaces 106
067-0502-01 & ```
PG 506 - Positive-going trigger output signal
    at least 1 V; High Amplitude out-
    put, 60 V.
PG 506 - Does not have chopped feature.
``` & \begin{tabular}{l}
106 - Positive and Negative-going trigger output signal, 50 ns and 1 V ; High Amplitude output, 100 V . \\
0502-01 - Comparator output can be alternately chopped to a reference voltage.
\end{tabular} \\
\hline \[
\begin{array}{r}
\hline \text { SG } 503 \text { replaces } 190, \\
190 \mathrm{~A}, 190 \mathrm{~B} \\
191 \\
067-0532-01
\end{array}
\] & \begin{tabular}{l}
SG 503 - Amplitude range 5 mV to 5.5 V p-p. \\
SG 503 - Frequency range 250 kHz to 250 MHz . \\
SG 503 - Frequency range 250 kHz to 250 MHz .
\end{tabular} & \begin{tabular}{l}
190B - Amplitude range 40 mV to 10 Vp -p. \\
191 - Frequency range 350 kHz to 100 MHz . \\
\(0532-01\) - Frequency range 65 MHz to 500 MHz .
\end{tabular} \\
\hline \begin{tabular}{l}
TG 501 replaces 180, 180A \\
181 \\
184 \\
2901
\end{tabular} & \begin{tabular}{l}
TG 501 - Marker outputs, 5 sec to 1 ns . Sinewave available at 5,2 , and 1 ns . Trigger output - slaved to marker output from 5 sec through 100 ns . One time-mark can be generated at a time. \\
TG 501 - Marker outputs, 5 sec to 1 ns . Sinewave available at 5,2 , and 1 ns . \\
TG 501 - Marker outputs, 5 sec to 1 ns . Sinewave available at 5,2 , and 1 ns. Trigger output - slaved to marker output from 5 sec through 100 ns. One time-mark can be generated at a time. \\
TG 501 - Marker outputs, 5 sec to 1 ns . Sinewave available at 5,2 , and 1 ns . Trigger output - slaved to marker output from 5 sec through 100 ns . One time-mark can be generated at a time.
\end{tabular} & \begin{tabular}{l}
180A - Marker outputs, 5 sec to \(1 \mu \mathrm{~s}\). Sinewave available at 20,10 , and 2 ns . Trigger pulses 1,10 , \(100 \mathrm{~Hz} ; 1,10\), and 100 kHz . Multiple time-marks can be generated simultaneously. \\
181 - Marker outputs, 1, 10, 100, 1000, and \(10,000 \mu \mathrm{~s}\), plus 10 ns sinewave. \\
184 - Marker outputs, 5 sec to 2 ns . Sinewave available at \(50,20,10,5\), and 2 ns . Separate trigger pulses of 1 and \(.1 \mathrm{sec} ; 10,1\), and .1 ms ; 10 and \(1 \mu \mathrm{~s}\). Marker amplifier provides positive or negative time marks of 25 V min. Marker intervals of 1 and \(.1 \mathrm{sec} ; 10,1\), and .1 ms ; 10 and \(1 \mu \mathrm{~s}\). \\
2901 - Marker outputs, 5 sec to \(0.1 \mu \mathrm{~s}\). Sinewave available to 50,10 , and 5 ns . Separate trigger pulses, from 5 sec to \(0.1 \mu \mathrm{~s}\). \\
Multiple time-marks can be generated simultaneously.
\end{tabular} \\
\hline
\end{tabular}

NOTE: All TM \(\mathbf{5 0 0}\) generator outputs are short-proof. All TM \(\mathbf{5 0 0}\) plug-in instruments require TM 500-Series Power Module.

Affects Manuals: 070-1981-01
070-1982-01
070-1983-01
070-2492-00

Oscilloscope Light Filter and Graticule Illumination Photography Effects
Some oscilloscopes contain a factory installed colored (usually blue or green) plastic light filter in front of the crt faceplate to improve general purpose viewing contrast in ambient lighting conditions (in some applications this device also functions as an implosion safety shield).

In order for the oscilloscope graticule to be photographed along with a crt display, oscilloscopes that do not provide internal graticule (scale) illumination must be used with a camera such as the C5A or C5A Option 3, which provide external flash illumination of the graticule. An exception to this is some storage oscilloscopes operated in the store mode, where the target illumination may also illuminate the graticule lines.

Effectiveness of the graticule illumination flash is severly degraded when used with most colored crt light filters. If a clear light filter was provided as an accessory with your oscilloscope, the colored filter should be removed and the clear filter installed in its place when taking oscilloscope display photographs. The clear filter may also provide improved photograph definition and contrast with reduced oscilloscope display intensity settings (some colored filters reduce effective display intensity as much as \(75 \%\)). Under no circumstances should the oscilloscope be operated without either a clear or colored light filter when no other implosion shield is provided (optional accessory mesh filters are not intended for implosion protection and must be removed when using an oscilloscope camera).

If your oscilloscope was not provided with a clear light filter accessory, contact your local Tektronix Field Office for ordering information.

For all T900-series, bench-version oscilloscopes, the instrument cabinet must be removed in order to replace the crt light filter. Only qualified service personnel should remove the instrument cabinet. Cabinet removal instructions are provided in the Service portion of T900-series manuals. The part number for the clear light filter to fit T900-series, bench-version oscilloscopes is 337-2185-03. PAGE 1 OF 1

TEXT CORRECTIONS
Page 1-1 Table 1-1, right column, Performance Requirement for CMRR (DIFF Mode), 4th line:
CHANGE TO:with gain adj. for best CMRR
Page 1-2 Table 1-1, right column, Performance Requirement for X-AXIS Bandwidth:
CHANGE TO: DC to at least 2 MHz with 5 div reference signal.
Page 2-10 Left column, X1-X10 Trigger Operation, Step 3, Second paragraph, first line:

CHANGE TO:.......Now set the SLOPE button to -(IN) position. Rotate......
Page 2-10 Right column, Delay Time Position and Delayed Sweep Operation (T935A on1y), Step 7:

ADD: DISPLAY MODE A
Page 3-3 Fig. 3-1. Deflection accuracy check test setup:
NOTE: Do not use the 50 ohm Termination at the Amplitude Calibrator output as shown in Fig. 3-1. Connect the cable directly to the "AMPL OUTPUT HIGH or STD" (PG 506) output connector.

Page 3-3 TABLE 3-2, bottom line.
CHANGE TO: \(10 \mathrm{~V} 50 \mathrm{~V} \quad 5 \quad 4.85\) to 5.15
Page 3-4 Step 2, following part e.
ADD: . f. Set Amplitude Calibrator for a . 5 V output.
Page 3-4 Step 3, part b, first line:
CHANGE TO: b. CHECK--Horizontal deflection 5 divisions \(\pm 5 \%\) (4.75 to 5.25 div).
Page 3-5 Step 6, part a:
ADD: CH 1 VOLTS/DIV .IV
Page 3-5 Step 6, part c, second line:
CHANGE TO:adjust output amplitude for 5 divisions (about . 5 V) of......
Page 3-5 Step 6, part e:
CHANGE TO: e. CHECK--Display amplitude is at least 3.5 divisions.
Page 3-6 Step 12, part a:
ADD: SOURCE LINE
PAGE 1 OF 4

DATE
CHANGE:
DESCRIPTION

Page 3-7 Before Step 12, part c:
ADD :
NOTE
If the frequency of the ac-1ine-voltage source is lower than 60 Hz , connect the probe tip to the 60 Hz output of a sine-wave generator (instead of laying it near the line voltage source) in step 12 , parts \(c\) and \(d\).

Page 3-7 Step 12, part \(c\), second and third lines:
CHANGE TO: CH1 VOLTS/DIV switch and CH 1 VAR control for a 0.5-division display (LEVEL adjustment may be necessary to stabilize display).

Page 3-7 Fig. 3-4 and Step 13, part a:
NOTE: Cable connections to Time Mark Generator are shown incorrectly in Fig. 3-4 if a TG 501 is being used. Connect one end of the first 50 ohm cable to the "Marker Out (5 S to 2 nS)"Time Mark Generator connector and connect the other end to a 50 ohm termination at the CH 1 (X) oscilloscope input. Connect one end of the second cable to the "+ Trigger Out" Time Mark Generator connector and connect the other end to a 50 ohm termination at the EXT connector on the oscilloscope.

Page 4-6 Step 1 title:
CHANGE TO: 1. Vertical preamplifier Balance and CH 2 Invert Balance
Page 4-6 Step 1, part c:
CHANGE TO:
c. ADJUST -- CH 2 DC BAL, R4230 (see Fig. 4-3), for no trace shift while switching CH 2 volTs/DIV control between 2 mV and 10 mV .

Page 4-6 Step 1 following part c:
ADD:
d. Set Vertical Mode to CH 1 and adjust CH 1 POSITION to align trace with center horizontal graticule line.
e. Set Vertical Mode to CH 2 and adjust CH 2 POSITION to align trace with center horizontal graticule line.
f. Press Vertical Mode DIFF button in.
g. ADJUST CH 2 Invert Balance, R4280 (on A8 VERTICAL board near C4396) for no trace shift while alternately pressing CH 2 and DIFF Vertical Mode buttons. Note: In some instruments R4280 may not be present and CH 2 Invert Balance will be an unmarked control R4265 located near C4154. Adjustment procedure is the same for R4280 and R4265.

Page 4-9 Step 6, part g. first line:
CHANGE TO: g. Connect a 10 X probe to the CH 2 input. Connect the....
Page 4-10 PRELIMINARY CONTROL SETTINGS
ADD
CPLG AC

Page 4-10 Step 3, part a:
ADD: DISPLAY MODE (T935A) A

Page 4-12 Subsection title
CHANGE TO: D. TRIGGERING AND X-AXIS

Page 4-12 Before Step 1
ADD: PRELIMINARY CONTROL SETTINGS
Preset front panel controls as follows:

INTENSITY
FOCUS
Vertical Mode
VOLTS/DIV (both)
VAR (both)
AC-GND-DC (both)
A SEC/DIV
X1-X10
SOURCE
MODE
SLOPE
HOLD-OFF
LEVEL
DISPLAY MODE (T935A)
POSITION (all)
DELAY TIME POSITION
CPLG

Midrange
Midrange
CH 1
\(10 \mathrm{~m}^{1}\) (See footnote page 4-10)
Detent
DC
\(10 \mu\)
X1 (fully cow)
\(\mathrm{CH} 1 / \mathrm{CH} 2\)
AUTO
+ (out)
Fully ccw
Midrange
A
Midrange
Fully ccw
AC
\(\qquad\)

CHANGE:

Page 4-12 Step 1 , part a:
CHANGE TO:
a. Connect a 50 ohm bnc cable from the sine wave generator output to a 50 ohm termination attached to the center connector of a dual-input-coupler. Connect the end connectors of the dual-input-coupler to CH 1 and CH 2 inputs.

Page 4-13 Step 2, part d:
CHANGE TO:
d. ADJUST --X Centering, R2051 (see Fig. 4-6), so dot is at center line.

Page 4-13 Step 3 title:
CHANGE TO: 3. X-Axis Gain
Page 4-13 Step 3, part f.
CHANGE TO:
f. CHECK- Horizontal deflection 4 divisions \(\pm 5 \%\) (3.8 to 4.2 div .

Scan by Zenith

Scan by Zenith
PRODUCT \(\qquad\)
CHANGE: : DESCRIPTION

ADD:

\section*{REF}

R4259 315-0220-00 RES., FXD,CMPSN:22 OHM,5\%,0.25W PC 9
(Added in series with left end of C4258-diagram 3)
R4265 311-0334-00 RES.,VAR,WW:500 OHM PC 7
(Added in series between R 4267 and -8 V supply; diagram 3)
R4269 315-0220-00 RES.,FXD,CMPSN:22 OHM,5\%,0.25W PC 9
(Added in series with left end of C4268-diagram 3)
W4280
131-0566-00 BUS CONDUCTOR,DUMMY RES
PC 7
(Added in place of R4280)
Afore listed components affect circuit board and schematics as follows: Cl18: AI INTERFACE board; CRT \& VERT AMPL diagram 1. C4156, C4256, R4156, R4178, R4188, R4256, R4267, R4278, R4288, R4289, R4280, R4159, R4169, R4259, R4265, R4269 and W4280: A8 VERTICAL board; VERTICAL INPUT diagram 3.
R766: A2 LOW VOLTAGE POWER SUPPLY board; POWER SUPPLY diagram 2.
R811: Al INTERFACE board; POWER SUPPLY diagram 2.
R4398, C4375, C4385, R4363, R4364: A8 VERTICAL board; VERTICAL SWITCHING diagram 4.

DIAGRAM 3
NOTE:
Voltage at bottom of R 4125 is \(-8 \mathrm{~V}_{1} \quad\left(\right.\) not \(\left.+8 \mathrm{~V}_{1}\right)\).
Voltage at emitter of Q 4134 is \(+8 \mathrm{~V}_{1}\).
Voltage at emitter of \(Q 4234\) is \(+8 \mathrm{~V}_{1}\) (not -8 V).```

