Sept. 15, 1980

COMPANY CONFIDENTIAL

2118 DRAM meets 5-volt-only challenge

The Intel 2118 is the first 16K dynamic RAM on the market that appears to have met the challenge of requiring a single 5-volt power supply.

com

To produce the 2118, Intel uses a variation of their standard HMOS process which uses two levels of polysilicon rather than just one. The first poly together with a very thin silicon dioxide dielectric form the cell capacitors. The second poly forms the MOS transistor gates. The area of the individual cells was found to be relatively large, indicating that alpha particle immunity was a primary design objective. The entire design approach appears very conservative and directed at producing a solid 16K DRAM rather than just a test vehicle for the 64K DRAM design.

The consequences of 5 volts only

The most obvious consequence of using only a single 5-volt power supply, and probably the most agonizing to dynamic RAM designers, is the fact that there will be less charge stored in the cells. Because each cell is nothing more than a very small capacior for which

dQ = C dV,

it's not hard to see that a smaller voltage swing means less charge and therefore a reduced noise margin. Because the noise margin in existing 12-volt dynamic RAMs is already painfully small, this problem represents a major obstacle to be overcome with both process technology and circuit innovation.

A second consequence of using only a single power supply is being faced with the decision of generating substrate bias on chip or connecting the substrate directly to ground. Good substrate bias generators are difficult to design and consume large amounts of chip real estate and power. On the other hand, leaving the substrate at ground potential will nearly double the capacitance associated with N⁺ diffusions, increase the sensitivity of transistor threshold voltages to changes in source to substrate voltage and reduce transistor punch-through voltages. A negative substrate voltage also provides the device with protection against negative undershoots on its input pins. The input pins are connected directly to an N⁺ diffusion so if the input voltage becomes negative with respect to the substrate the diode becomes forward biased and large numbers of electrons will be injected into the substrate.

ponent

The process

Intel's HMOS process is characterized by very shallow arsenic doped source and drain regions, channel lengths as short as 2.5μ m and a gate oxide thickness of about 700Å for enhancement transistors and 600Å for depletion transistors. The result is smaller transistors with higher gain and reduced parasitic capacitance. No less than

continued on page 2

Issue 283

Also in this issue

Batteries, calculatorpa	age	11
Bubble memory, 92K bit		.10
Component Engineer listing	• • •	.15
Error detection/correction chips		6
Line Voltage Standard		.12
Reliability/service information		7-8
Wire and cable ampacity		9
Wiring shield P/N'd		6

two threshold adjusting implants are used to create four different threshold voltages. The four transistor types which result are:

- 1. A standard enhancement device with a threshold voltage of about 0.6 volts.
- 2. An intrinsic device which uses no adjusting implant and has a threshold voltage of about zero volts.
- A shallow depletion mode transistor with a threshold voltage of approximately -1.5 volts.
- A deep depletion mode transistor with a threshold voltage around -2.0 volts.

Because the 2118 has an on-chip substrate bias generator that provides a bias of about -3 volts, the transistor threshold voltages will all increase in the positive direction several tenths of a volt. The finite time required to pump the substrate down to this voltage is the cause of the current surge that occurs during power up. Without the bias applied the threshold voltages are too low, resulting in large transistor currents.

The HMOS process also uses three different diffusions; one for the source and drain regions that uses arsenic and is about 0.5 microns deep, one for the buried contacts which uses phosphorous and is 1.2 microns deep, and finally, a 1.6 micron deep phosphorous diffusion for the metal contacts. Figure 1 is a cross-sectional view of an HMOS transistor.

As mentioned earlier, the cell capacitors are formed by the first polysilicon layer and a very thin SiO₂ dielectric. The measured oxide thickness was between 400Å and 450Å resulting in a surprisingly large cell capacitance of about 0.1pF. Intel is the only vendor that we know of that has been able to use an oxide this thin in a production process. (HMOS II transistors have a 400Å to 450Å gate oxide thickness. The process has been in production mode for over six months.) The first poly, often referred to as the cell plate, is tied to Von

through a depletion mode decoupling transistor. The series transistor between the cell plate and the V_{DD} provides some decoupling from power supply noise. Having the cell plate at V_{DD} potential means that the semiconductor surface will be inverted for semiconductor surface potentials as high as V_{DD} . This means that a one can be written into a cell to a full V_{DD} level with no implant under the cell plate.

The other technique used is to tie the cell plate to ground because the ground line usually has less noise on it. But this requires an implanted N^+ channel under the cell plate which may be undesirable for processing reasons.

The addition of the first poly to the standard HMOS process requires only one additional mask and four extra steps:

- 1. Grow the capacitor oxide.
- 2. Deposit polysilicon.
- Deposit SiO₂ to separate poly I and poly II.
- 4. Define and etch poly I.
- 5. Continue with standard HMOS process.

Figure 2 shows a cross-sectional view of a cell, it's access transistor and the associated diffused bit line.

continued on page 3

Figure 1 — Cross-section of HMOS transistor

1

Cell capacitance and one and zero margins

As mentioned before, 2118 cell capacitance is about 0.1pF. If a voltage level of 2.5 volts is used to distinguish between a one and a zero the associated critical charge stored on the capacitor is

$$Q = CV = 2.5 \times 10^{-13} \text{ coulombs}$$

or
N =
$$\frac{Q}{A}$$
 = 1.6 million electrons

Obviously there is not much extra charge to play around with, and this points out why a dynamic RAM must be so carefully designed and how something like an alpha particle can induce soft errors. Naturally occurring alpha particles exist with energies as high as 9 Mev. However, those emitted by trace elements in the packages of dynamic RAMs range in energy from 0 to about 5 Mev. A 5 Mev. alpha particle will generate about 1.4 million electron-hole pairs in silicon. Fortunately though, even a good collector at the semiconductor surface will collect only about 60 percent of the electrons generated. For the case of a 5 Mev. particle, then, about 840 thousand electrons could be collected. To more accurately determine the critical charge or voltage required to induce a soft error the sensing circuitry must be analyzed.

Figure 3 shows a schematic representation of the sensing circuitry. Just before sensing, the access transistor turns on allowing charge sharing to occur between the bit line and the cell (dummy cell). The bit lines are precharged to V_{dd} and have a capacitance of about 0.63pF. The dummy cell is precharged to ground potential and has a capacitance of one half the cell capacitance with a tolerance of about 5%. With this information the voltage levels present on the bit line for sensing can now be found. For a stored zero in the cell and V_{DD} at 4.5 volts,

$$V_{zero} = V_{DD} - \frac{C_{Bit}}{C_{Bit} + C_{Cell}} = 3.88 \text{ volts}$$

For a stored one the cell voltage equals the bit line voltage and the bit line voltage does not change. This assumes no charge loss due to leakage into the cell, which is a reasonable assumption for a 2mS refresh cycle.

$$V_{one} = V_{DD}$$

The bit line connected to the dummy cell will assume a voltage in the range

$$V_{\text{dummy}} = V_{\text{DD}} \frac{C_{\text{bit}}}{C_{\text{bit}} + (\frac{1}{2}C_{\text{cell}} \pm 5\%)} = 4.17 \pm 0.03$$

The sense amplifier may also have as much as a ± 30 mV offset due to imbalance in the circuit components. Combining the above information the one and zero margins can now be calculated.

 $\Delta V_{zero} =$

 $\Delta V_{one} =$ 4.5 - (4.17 + 0.06) = 0.27 volts

Figure 2 — Cross-section of 2118 cell and access transistor

Looking back at the alpha particle problem the critical charge can be found. For a zero,

 $Q_{zero} = \Delta V_{zero} (C_{Bit} + C_{Dummy}) = 1.5 \times 10^{-13}$ coulombs.

nzero = 0.93M electrons

 $Q_{one} = \Delta_{one} (C_{Bit} + C_{Cell}) = 20 \times 10^{-13} coulombs$

 $n_{one} = 1.2 \text{ M} \text{ electrons}$

Both of these charge values are safely above the 84K electrons that could be collected after an alpha particle hit. Theoretically then the Intel 2118 **should be alpha immune.**

A factor not accounted for in this analysis is noise on the V_{DD} line. As was mentioned earlier the cell plate is connected to VDD through a series transistor which gives it a slow response to level shifts in the VDD supply. Figure 4 shows the cell plate response to a 1 volt square wave superimposed on a 5 volt DC level. As a result it is possible to shift the level of the stored data with respect to the sense circuitry by as much as 1 volt. (The difference between the power supply maximum and minimum limits.) Now instead of using 4.5 volts in the charge sharing equations, 3.5 volts must be used which reduces the voltage swings by 22%. The sequence of level shifts that the power supply must go through to create this situation is unlikely in any real system, but it does point out the need for well regulated supply lines.

Conclusions

- The Intel 2118 is produced using standard Intel processing steps, HMOS and HMOS II. This instills some confidence that it will be an easy part to produce and that large yield glitches will not occur.
- 2. The cell area is large and the silicon dioxide dielectric is thin, resulting in a large cell capacitance. Larger cell capacitance means larger voltage margins when sensing and reduced sensitivity to minority carrier charge in the substrate, whether from a forward biased diode, impact ionization in transistor channels or an alpha particle. The 2118,

theoretically, is immune to alpha particles. Whether it really is or not remains to be seen, but regardless, soft error rates will be very low.

3. There will be a large current surge during power up that is caused by the finite pump down time of the substrate bias generator. The system power supply must be large enough to handle this surge. Intel's application notes provide the necessary design information.

If you have any questions, or for more information, please contact me at 78-557, ext. DR-2541.

> John Carlson Memory & I/O Component Engineering

EPROM identification labels available

The two identification labels shown below may be of interest to areas using UV-erasable PROMs or other programmable devices in 24-pin DIPs.

P/N 334-4016-00 part number identification marker is a typeable label with pressure-sensitive adhesive sized to fit on either the top or bottom of a 24-pin DIP. This allows the user to affix a part number to the device. Both labels are made from a paper which is destroyed if an attempt is made to remove them. If a part number is required, you can use the 334-4016-00 on the bottom side of the EPROM. These two labels were developed for use on the 834 Data Communications Analyzer.

If you need more information, please contact John Tilden (92-623), ext. WR-1883, or Mike Lancaster (92-623), ext. WR-1886.

P/N 334-4046-00 copyright identification marker is a label designed to be affixed over the window of a UV-erasable PROM to prevent customers from altering the contents of the device. No space is left on this label for adding part number information.

> Textronix © 1980 All Rights Reserved Warranty void if Removed

> > 334-4046-00

Primary wiring shield simplifies assembly

A molded plastic primary wiring shield has been designed to shield the back half of the EIA line voltage connector commonly used at Tek for removeable line cords (such as P/N 131-1084-00).

This shield, electrical receptacle P/N 337-2752-00, has two 4-40 threaded inserts to simplify assembly and can be assembled with the chassis between the connector and the shield, or with both shield and connector on the inside of the chassis (see illustration).

This shield is designed to pass UL inspection and is in production on the 834 Data Communication Analyzer. For more information, please contact John Tilden (92-623), ext. WR-1883, or Mike Lancaster (92-623), ext. WR-1886.

Error Detection/Correction Chips

With the size of memories increasing and with the corresponding decrease in cell geometries, memory error will undoubtedly increase. To improve system reliability, error detection and correction schemes may need to be considered within the new product design. Memory and I/O Component Engineering is interested in your plans to incorporate these schemes into the Tek product and is currently investigating the following detection/correction chips:

Manufacture	r P/N	Data word size Availability				
AMD	AM2960	16 Bit	October, 1980			
Fijitsu	MB1412A	8 Bit	now			
Intel		16 Bit	1981			
Motorola	MC68540	8 & 16 Bit	3rd Q, 1980			
TI	74LS360	16 Bit	now			
TI	74LS361	16 Bit	now			

To share more detailed information, call Jim McKay, Memory and I/O Component Engineering, ext. DR-2557.

16K static RAMs now available

Looks like Japan did it again — Hitachi's 6116 (2K X 8) is now available in larger quantities at about \$25 (slower speeds — 20nS access time). Toshiba's 2016 and 5516 (both 2K X 8) are also available in larger quantities. The 6116 and 5516 are CMOS-type, the 2016 is NMOS. For specification sheets and more information contact me on ext. DR-2555.

> Peter Reitmajer Memory & I/O Comp. Eng.

Improved reliability/service information available

The Reliability Information Services group in Component Services has, in the past year, enhanced its ability to provide field reliability and service information. An on-line warranty failure data base, various forms of graphic information and improved information retrieval of all failure data are just some of the enhancements. This information is available to engineering, manufacturing and support groups throughout Tektronix.

The reliability data is contained on the Computer Science Center (CSC) CYBER 73 computer. The information is handled through System 2000, a data base management system. Persons wishing to utilize the system have two options either request the information from anyone in the Reliability Information group (ext. MR-8004), or access it yourself through the CYBER 73. Reports requested from the reliability group are generally available on a same-day basis. However, if you plan to access the data yourself, you should first attend a short course taught by Reliability Information Services.

Two sources of information are currently available, the Warranty Failure System and the total Field Failure System. Both sources are based upon information contained in the Service Record. This record is completed by the Tektronix technician at the customer's location or at various Service Centers across the U.S.

Warranty Failure System

This data is kept on-line for immediate access on the CYBER 73. Information contained on the data base is limited to warranty and demo instrument failures that have occurred within the last running year (e.g., AP005-AP104). The Warranty System contains 20 different items taken from Service Records. They are:

	Example
Instrument Name (Product Type)	7104
Business Division	LID
Product Group	7000 Series
Tracked Instrument Indicator	1 = Tracked
	Instrument
Instrument Serial Number	B010203
Instrument Sale Date (DOS)	8002 (Year-
	Week)
Service Center	144262
	(Houston)
Warranty Service or Warranty	F=Warrantv
Failure Flag	Failure
Type of Failure (Warranty	2 = Warranty
or Demo)	
Instrument Failure Date	8/12/1980
Tek Accounting Period (of	103
Instrument Failure	
Date Service Record was	Week 35
Entered	
Time to Failure (TTF)	25 Weeks
Comment of Customer Problem	Bright Spot
	Defect
Comment of Repair Work Done	Replaced
	CRT &
	Realign
Component Failure Number (Part	154078300
Number)	
Exchange Board Number	N/A
Assembly Number of Failure	N/A
Circuit Symbol of Failure	V1850
Failure Code of Component	286

Information can be presented in a multitude of ways, ranging from listings of each failure to summarized information. A standard engineering report has been formatted (see Figure 1) which

continued on page 8

								Figure 1					
•						ME	DIGAL H	10D SEARCH F. 80/05/07.	IR SANDBERG			۵·	4
	INST.	FIELD	SERIAL	DOS	AD	FAIL DATE	ITF	PART NO.	CKT SYM	CUD	PROBLEM DESC.	ACTION TAKEN	
	• 413	143818	80 41 69 4	1941	2	02/01/1980	10	A00A00000	K1505	910	REPAIR	HIGH RATE LIMIT NO	A
	• 413	145361	8951651	1938	2	10/18/1979	ŭ	300300000		911	SUPPLIES DOWN	REPLACED CLOIL SHOT	£
4	• 413	143858	80101+8	7951	Z	01/24/1980	,	920300000		912	AGO	DLUER JNT A INPUT FOUND DVM BOARD TO I E LODSE	8
•	• 413	143565	8031035	1942	2	11/01/1979	۷	900900000		912	DVN READS 400 IN ECG CUNT	DAN BD LOUSE ADDED I	P
	• 413	1435+0	8031413	7927	2	37/26/1979	ذ	900900000		912	INAGGJRATE HE	PADE OFF ITS PINS	

contains key information most commonly requested. Graphic information can also be obtained on request as shown in Figure 2 (Reliability Growth Curve) and Figure 3 (Instrument Profile).

RELIABILITY INFORMATION SERVICES

Field Failure System

Additional information not contained in the Warranty Failure System resides in the Field Failure System. Currently, some 135,000 Service Records are available through this system, and contain all known repairs occurring within the past year.

This data generally falls into the following categories:

Type of Repair (Warranty, Billables, Contracts, etc.)

Cost Information (Labor, Parts, etc.) Systems Information

Down Time, Response Time, Turnaround Time, Repair Time, etc. for Instruments

Board Repair Information

Quote, Clean, Repair, Calibration and QA Times per Instrument

Maintenance Contract Information

Preventative Maintenance and Installation Other

This information is available for all types of Service Records by request through the Reliability Information Services group. Reports can also be generated on a regular schedule. If computer costs are excessive, costs will be negotiated with the requesting department. The group can also assist in formatting your request for the most efficient and meaningful information.

Reliability Information Report Manual

A manual is available showing what information can be obtained with the two systems. Also, a users manual is available for persons interested in utilizing the Warranty Failure System information. Request either of these manuals by calling ext. MR-8004.

> Wayne Bridges 53-114, ext. MR-8007

Current carrying capacity of wires and cables

Current carrying capacity (ampacity) is defined as the current a conductor can carry before its temperature rise exceeds a permissible value. It is a function of many variables, some of which are:

- 1. The copper area of the conductor. The ampacity varies with cross-sectional area. The larger the diameter, the greater the current carrying capacity. (Stranded and solid conductors of the same gauge will have slightly different current carrying capacities owing to differences in their circular mil area.)
- 2. The ambient temperature. This is defined as the temperature of the surrounding air. With a higher ambient temperature, less heat will be required to reach the maximum temperature rating of the insulation; therefore, the ampacity rating will be lower.
- The type of insulation. The degree to which heat is conducted through the insulation varies with the material. The conductor temperature should never be permitted to exceed the maximum temperature rating of the insulation. Where room temperature is within 10° C of the rated temperature, use of a higher rated insulation is recommended.
- 4. Ventilation around the cable. Ventilation is the amount of air flow. This affects heat dissipation by convection or radiation.
- Number of conductors in the cable. Single conductors have a higher ampacity rating than equivalent size conductors in a multiconductor cable. Heat dissipation is more limited in cables because each conductor is not completely exposed to air.
- 6. Amperage. Heat rise varies as the square of the applied current. Therefore, the more current, the greater the amount of generated heat.

It is obvious that no single chart of ampacities can be constructed when these and other possible variables are considered. The assignment of an ampacity rating to a conductor is a rather inexact procedure. In addition to all the factors discussed above, the design engineer is concerned with the equipment's service life. Thus, he or she may choose to derate the values shown to provide an even greater margin of safety.

The following table should be used as a guide but not as a firm statement of acceptable amperage values. It should be noted that these values are computed for an ambient air temperature of 25°C. The ambient temperature inside an instrument may be considerably higher.

Current Carrying Capacity for Two or Three Conductor Cables

	0.0		Max Current	in Amperes
Size	O.D.	0hms/	Insulation	Insulation
	(Inches)	1000 ft.	Rating 60°C	Rating 105°
28	.0126	67.3	.398	0.63
26	.0159	42.4	.635	1.02
24	.0201	26.7	1.01	1.62
22	.0254	16.8	1.61	2.57
20	.0320	10.5	2.55	4.09
18	.0403	6.65	4.05	6.48
16	.0508	4.17	6.45	10.32

Based on ambient temperature of 25 $^\circ$ C. (All values listed apply to each single conductor)

Correction factors to above table for other multiple-conductor cables:

 No. of Conductors
 1 Wire
 4-5 Wires
 6-15 Wires
 16-30 Wires

 Rating factor
 1.6
 0.8
 0.7
 0.5

For further information, contact Elizabeth Doolittle (78-552), ext. DR-2309.

More on TI's 92K bubble memory

In our continuing evaluation of bubble memories (see **Component News 280**, pages 3-7), Memory and I/O Component Engineering has successfully completed the first step in evaluating the Texas Instruments TIB0203S 92K bit bubble — an interface to the MICE M6809 Memory Evaluation Test Fixture. This interfacing was done on a wire wrap board, using TI's support chip set, with the exception of the coil driver (SN75382). The support chips include the controller (TMS9916), function timing generator (TIB0951), sense amp (TIB0833), function driver (SN75381), thermistor (SP102G) and diode array (VSB53).

Thus far, the TI coil driver does not function properly. A spike on the negative supply will cause the chip to short circuit internally and literally explode. Instead of the TI part, discrete coil drivers were designed and substituted. TI has admitted to having problems with these drivers and claim they have now solved the problem. We will continue to evaluate the coil driver chip.

There are also several problems associated with the controller. They include:

 BDET from the controller is not used. It must be generated externally. Also, BXIN must be delayed one field cycle. Both of these fixes are due to the controller being set up for the earlier TIB0103, T-bar version of the 92K bubble.

- 2. Due to a design fault, the transfer in pulse remains on too long when accessing page 640. A software fix will prevent this occurrence.
- 3. Again due to a design fault, Loop #0 of the bubble must be good. The controller will ignore the redundancy logic for this loop.
- 4. The interrupt and multipage modes were not originally designed into the controller, but added at the last minute. Consequently, there are problems associated with using these modes, such as interrupts occurring at the wrong time.

Our continuing evaluation results on the TI 92K bit bubble will be reported in future issues. For more information, or help in clearing a contaminated bubble, call **Dick Green (ext. DR-2541)** or **Jim McKay (ext. DR-2557)**.

Upcoming catalog change

The Digital Integrated Circuits section of the Semiconductor Parts Catalog is undergoing a change.

Because one of the goals of CE is to provide the most useful data possible, we are soliciting inputs from catalog users before implementing this change.

Digital integrated circuit listings by function will contain footnotes, the purpose of which will be to identify the general nature of problems associated with each component. The proposed list of footnotes follows.

Suggested new-design codes for Tek part numbers:

- 1. Preferred
- 2. Acceptable
- 3. Not recommended

- Do not use
- 5. Blank no recommendation

Qualifying phrases to be used, alone or grouped, as applicable:

- a) Obsolete
- b) Availability problem
- c) Function fulfilled better elsewhere
- d) Known electrical problem
- e) Part evaluated by CE
- f) Part not evaluated by CE
- g) Part not presently supported by CE

Reliability and cost data will not be handled in this footnoting system, as they appear elsewhere in the catalog.

Send your inputs to **Yvonne Brinck, Digital**. **Component Engineering, 78-573.**

CAUTION: Calculator batteries can explode

Recently, the owner of a "Slim Jim" calculator, one of those 1/8" thick things, handed me a silver oxide battery that had blown up in his desk drawer. He had replaced the cells (there were two operated in series) when the "low battery" indicator came on, and then put them in his desk. Later he opened the drawer to find one of them had exploded!

When two or more cells are operated in series and one of the cells runs down and goes to zero volts, it "sees" a reversed polarity at its terminals and begins to charge up with reversed polarity. *The only thing that happens is that gas is generated*. Carried on long enough, the cell blows up. This is true of silver oxide, mercury and lithium cells.

When your low voltage indicator comes on in your thin calculator or watch where two or more cells are used to power it, replace them and dispose of the cells immediately. In addition, if a cell such as this blows up in an instrument, it will vent potassium hydroxide throughout, and ruin the instrument.

> Byron Witt 78-552, ext. DR-2479

Vendor component data books

The responsibility for acquisition and distribution of the free vendor data books for engineering has recently been assigned to the Parts Cataloging Group, 78-567, ext. DR-2585.

Our staff is very small. For the present, we are limited as to the level of personal service we can provide.

As we have time, we are correlating past requests with new data book arrivals and mailing them. We are generally able to do this within a week.

Primarily we stock and request data books for semiconductors (microcircuits, transistors and diodes). We do keep a stock of as many of these data books as we can get our hands on. They are located in our area and engineers are welcome to drop by and select as needed.

This service and these books are strictly for new design engineering use at Tek and are not intended to support personal needs. Again, we are located at 78-567 ext. DR-2585.

Mike Boer named CE manager

Mike Boer is the new Component Engineering manager within the Component Services Group.

Managers reporting to Mike will be Jack George, Analog Component Engineering; Paul Curley, Optoelectronic and Passive Component Engineering; Bob Aguirre, Electromechanical Component Engineering; Phil Brothers, Digital Component Engineering; Paul Gray, Memory and I/O Component Engineering; and Virg Tomlin, Component Application Engineering.

Mike joins the group from SID where he was Digital Accessories Design manager. He will report to me.

> Mike Probstfield Component Services manager

Line Voltage Standard to be updated

A committee representing the various business units was recently formed to update Tek's Line Voltage Standard. The Line Voltage Standard, first published in 1966, needs to be brought up to date for several reasons:

- 1. To achieve uniformity among our products, both in performance and panel markings.
- 2. To reduce costs, by not designing our products to performance levels beyond actual international line voltage requirements.
- 3. To bring about agreement between product markings and manual ratings.
- 4. To reflect new line voltage selection devices introduced to the marketplace since 1966.

Members of the Line Voltage Standard Committee (listed below) will be meeting weekly to gain input and recommendations from business units and the engineering staff at Tek. Their objective is to write an electrical performance and panel marking standard. If you have any comments, contact the appropriate committee member for your business unit. After the new standard has been compiled, each business unit will be asked to vote for adoption of the standard.

The committee members are:

Dick Bailey	IDD	63-212
Larry Shorthill	IDD	63-356
Dave Leatherwood	Power Supply Design	58-733
Al Schamel	T&M500	92-815
Ed Wesel	Product Safety	41-400
Richard Nute	Product Safety	41-400
Don Roberts	Accessories	19-092

Dick Griffin, Product Safety 41-400, ext. TC-253

Notice to all mechanical engineers:

The flame retardant polypropylenes, which were commonly used in mini and maxi harmonica connectors, have been discontinued by Eastman Chemical Co. and are no longer available for new or existing plastic component designs.

The Tek P/Ns affected appear on page 1-23 of the blue Materials Catalog (March 1980 edition). They are 255-0461-01 Tenite 423R, black; and 255-0568-00 Tenite 423R, natural.

The existing parts made of these two materials are in the process of being modified to other

materials. If the lack of these materials poses any inconvenience or design problems contact me on ext. V-7296.

In addition, the silicone rubber (Tek P/N 255-0520-00) listed on page 1-31 of the Materials Catalog should be listed more correctly as a *modified* silicone rubber. In addition to the General Electric SE436U silicone rubber, this compound contains 15% Carbon Black, 10% GE SE30 FR silicone rubber.

> Bert Hippe 08-538, ext. V-7296

page 13

The function of Technical Standards is to identify, describe, and document standard processes, procedures, and practices within the Tektronix complex, and to ensure these standards are consistent with established national and international standards. Technical Standards also provides a central repository for standards and specifications required at Tektronix. Chuck Sullivan, manager (41-260)

New standards available_

MIL-T-1072B	Tin Plating: Electrodeposited or Hot-Dipped, for Ferrous and Nonferrous Metals
FED-SPEC-MMM-A-250C	Adhesive, Water-Resistant (for closure of fiberboard boxes)
IEEE STD 389	IEEE Recommended Practice for Testing Electronic Transformers and Inductors
IEEE STD 748	IEEE Standard for Spectrum Analyzers
FED-SPEC-QQ-S-571E	Solder, Tin Alloy: Tin-Lead Alloy; and Lead Alloy
MIL-C-39012B	Connectors, Coaxial, Radiofrequency; General Specs for
MIL-M-63320	Microcircuit, Digital CMOS (Initial Logic)
MIL-R-63319	Resistor Network, Fixed, Film (Externally Trimmable)
MIL-STD-1654A	Power Cable Assemblies
ANSI/ANS-10.5	American Nuclear Society Guidelines for Considering User Needs in Computer Program Development
EIA-RS-463	Fixed Aluminum Electrolytic Capacitors for Alternating Current Motor Starting, Heavy Duty (type 1), and Light Duty (type 2)
MIL-STD-1395A	Filters and Networks, Selection and Use of
NBS	Special Publication 400-14 Semiconductor Measurement Technology: Thermal Resistance Measurements on Power Transistors
NBS	Special Publication 400-48 Semiconductor Measurement Technology: Spreading Resistance Analysis for Silicon Layers with Nonuniform Resistivity
ICEA Pub. No. S-19-81 (6th Edition)	ICEA/NEMA Standards Publication. Rubber-insulated Wire and Cable for the Transmission and Distribution of Electrical Energy
NEMA Pub. No. WC 3-1980	
IPC technical papers	
IPC-TP-313	The Reduction of Gold Thickness from 60 Millionths to <15 Millionths
IPC-TP-316	Printed Wiring Board End Product Dimensioning and Tolerancing — Part II
IPC-TP-317	Warpage Reduction During Wave Soldering
IPC-TP-318	Improved Leaded Chip Carrier Performance
IPC-TP-320	Improved Quality Control of Printed Circuit Board B-Stage Epoxy Resins
IPC-TP-321	A New Method of Building a Multilayer Printed Circuit Board

- A New Method of Building a Multilayer Printed Circuit Board
 - A Comparison of Direct Surface Analysis Techniques with Solvent Extraction/Contaminant Profiling Techniques for

062-3762-00 Circuit Board Standard: Switch Design

IPC-TP-323

The purpose of this standard is to define the specific circuit board hole and contact pattern requirements for mounting Tektronix-made switches. This includes hole location patterns, location of contact patterns, tolerances, and other special requirements. The standard applies to circuit board design parameters and switch mounting requirements for commonly used types of circuit board, mounted switches manufactured by Tektronix for use in Tektronix products. The standard will be updated as new switches become available.

You may obtain a copy of this standard by calling Technical Standards, ext. TC-241, or by sending a request to delivery station 41-260.

The "Component Checklist" is intended to draw attention to problems or changes that affect circuit design. This listing includes: catalog and spec changes or discrepancies; availability and price changes; production problems; design recommendations; and notification of when and how problems were solved. For those problems of a continuing nature, periodic reminders with additional details will be included as needed.

Component Engineers

Call the appropriate engineer listed below for information on purchased components. Delivery stations are: Analog CE – 78-557, Digital CE – 78-573, Electromechanical CE – 78-552, Memory & I/O CE – 78-557, Optoelectronic & Passive CE – 78-552. Extensions are all Beaverton DanRay.

ATTENUATORS Byron Witt	2479
BATTERIES Byron Witt	2470
BIII BS Holeov Boydon	24/3
CARLE ASSEMBLIES	2014
CABLE ASSEMBLIES Elizabeth Doolittle	2309/
CARACITORS	2461
CAPACITORS	
ceramicRay Powell	2550
electrolytic, film Don Anderson	2545
variable, mica Dave Hayes	2317
COILS	2310
CONNECTORS Peter Butler	2474
CORES, ferriteByron Witt	2479
CRYSTALS & SAW Byron Witt	2479
DELAY LINES Byron Witt	2170
DIODES	2413
	0017
IP omitter leger diede	2317
high frequency	2549
high frequency Eric Etheridge	2399
all othersGary Sargeant	2540
DISPLAYS Alan LaValle	2317
ELECTROMECHANICAL PRINTERS Jim Deer	2484
FANSBill Stadelman	2466
FETsJerry Willard	2539
FIBER OPTICS, cables, emitters, detectors, Louis Mahn	2549
FILTERS	2010
air Bill Stadelman	2466
crystal Byron Witt	2400
light Louis Mohr	24/9
line Dennis Johnson 0474 (Just 7.)	2549
The Dennis Johnson 24/1/Herb Zajac	1881
FUSES, FUSEHOLDERS Dennis Johnson	2471
GASKETSBella Geotina	2315
GENERATORSBill Stadelman	2466
GPIBBill Pfeifer	2566
HARDWARE, miscellaneous Eleanor Olson	2498
HEAT SINKS Jim Williamson	2552
INDUCTORS	2310
INTEGRATED CIRCUITS	rcuits
JOYSTICKS	2484
KEYBOARDS Halsey Boyden	2314
KNOBS Halsey Poyden	2014
	2014
LAWFS, LAWF SOCKETS	2314
LIGHT-EMITTING DIODES Alan Lavalle	2317
MAGNETIC TAPE HEADSBill Stadelman	2466
METERS	
digital panelsChris Martinez	2312
general Dennis Johnson	2471
MICROCIRCUITS	
advanced Schottky TTL Dale Coleman	2573
A/D converters Chris Martinez	2312
analog switches	2399
bubble memory devices Brad Benson	2557
CCD/analog Willie Person	2309
CMOS devices	2500
communications circuits analog Mott Portor	2012
comparatore	2311
deta communicational distal	2308
data communications, digital	2566
D/A converters	2551
EAPROMS	2546
EPROMs, PROMs	2546
ECL devicesDale Coleman	2573
FPLAs, PALs	2573

....

MICROCIRCUITS, continued	
linear devices	2551
high speed logic	2573
low-power Schottky TTL	2571
MOS (general)	2566
operational amplifiers Willie Rempfer	2308
regulators, linear Chris Martinez	2312
regulators switching lim Williamson	2552
RAMs dynamic Bob Goetz	2543
RAMs static Pete Beitmaier	2555
ROMs Don Van Beek	2546
Schottky TTI Dale Coleman	2573
TTI devices Bruce Brown	2571
	2371
hit-slice microprocessors Dale Coleman	2572
Dit-Silce Incroprocessors	2013
E8 6800 6802	2000
780 78000 8080 8085 8086 Wilton Hart	2507
200, 20000, 0000, 0005, 0000	2012
8035, 8046	2319
bool, borol	2316
MICROWAVE components	24/9
MONITORS	2310
MOTORSBill Stadelman	2466
MULTIPLIERS, high-voltage	2540
OEMJIM Deer	2484
OSCILLATORS	2479
PHOTOCOUPLERSLouis Mann	2549
POTENTIOMETERS	2544
POWER CORDS/receptacles/plugs Dennis Johnson	24/1
RAW MATERIALS, metals, plastics	2315
READOUT DEVICES Alan LaValle	2317
RELAYS, mechanical & solid state Paul Johnson	2473
RESISTORS	
fixedRay Powell	2550
variable	2544
SCRs, SCSs Paul Johnson	2473
SHIELDS	2310
SPARK GAPS Paul Johnson	2473
SLEEVES, insulatingBella Geotina	2315
SPEECH, input/outputJim Deer	2484
SOCKETS	
crystalByron Witt	2479
all others Peter Butler	2474
SWITCHES	
general, solid state Dennis Johnson	2471
reedPaul Johnson	2473
TERMINAL PINS	2313
TERMINATIONS	2479
THERMISTORS	2550
TRANSDUCERS	2479
TRANSFORMERSByron Witt	2479
powerBill Stadelman	2466
TRANSISTORS	
field-effect	2539
phototransistorsLouis Mahn	2549
powerJim Williamson	2552
small signal, arrays Matt Porter	2311
triacs, unijunctions Paul Johnson	2473
TUBING, metalBella Geotina	2315
WIRES & CABLES Phillip Lee	2461

Revised September 1, 1980

componentNewsNewComponents

This column is designed to provide timely information regarding new components, vendors, availability and price. "New Components" can also be used as an informal update to the Common Design Parts Catalogs. Samples may or may not be available in Engineering Stock.

			When		Engineer
Vendor	Number	Description	Available	Tek P/N	to contact, ext.
		memory and I/O devices			
				150 1550 00	P. Contr. DP. 2542
Intel	2118	DRAM, 16K x 1, 5V Dynamic RAM, (120nS)	now	156-1002-00	D. GUELZ, DH-2040
Hitachi	HM6147	SRAM, second source for 2147	now	156-1226-00	DR-2555
Motorola	MCM214/C/0	SRAM, second source for 2147	now		DH 2000
I OSNIDA	D01470.0	SRAM, second source for 2147	now		
AMD	AM74S189	SRAM, second source for 745189	now	156-1189-00	The second se
		entrelectronic and passive day	lage		
		optoelectronic and passive dev	ices		
Clarostat	CM41773	Panel Control, 50 KΩ Lin, PCP, w/case grounding	-	311-2135-00	G. Single, DR-2544
Clarostat	_	Panel Control, 5M Ω Lin, w/6KV HV Standoff, w/case	11/15/80	311-2138-00	
Clarostat		Panel Control, 2MΩ Lin, w/6KV HV Standoff, w/case	11/15/80	311-2139-00	
Beckman Bourns Spectrol	7286 3540 534	Precision WW Pot, 2KΩ, Bushing ¾ x ¾, shaft ¼ x 0.812, 10T	11/15/80	311-2140-00	
Clarostat	_	Panel Control, 10KΩ Lin, w/%" metal spacer	11/15/80	311-2141-00	
Bourns	3540	Precision WW Pot, $10K\Omega$, Bushing ¹ / ₄ x 0.312 FMS, Shoft ¹ / ₄ x 0.812 FMS, w/l oc lug 10T	10/15/80	311-2142-00	Y
TEIM	534 BW/20E	Besistor 0.200+5% 1W Eusible	9/1/80	308-0832-00	R Powell, DR-2550
TRW	BWE	Resistor 0.220+5% 2W	9/1/80	308-0827-00	R.Powell, DR-2550
TRW	BWF	Resistor, $1.00+5\%$ 2W Fusible	10/1/80	308-0831-00	R.Powell, DR-2550
TRW	TRW-35	Capacitor, 1.33 μ F, 200V metallized polypropylene, 2.8 ARMS ripple current at 30KHz +65°C	now	285-1217-00	D. Anderson, DR-2545
Electrocub	230D	Capacitor 0.27 JF 400V metallized mylar	now	285-1218-00	1
Electrocub	e230D	Capacitor, 1.0.4 400V metallized mylar	now	285-1219-00	
Electrocub	e910D	Capacitor, 1200pF, 200V metallized polypropylene	now	285-1220-00	
TRW	X463UW	Capacitor, 0.1μ F ± 2%, 100V metallized	now	285-1221-00	
RIFA	PME271	Capacitor, line-to-line interference suppressor.	now	285-1222-00	~ .
Electrocub	e910D	Capacitor, 3300pF ± 1%, 200V metallized polypropylene	now	285-1224-00	Y

component news.

Component News is published by Technical Communications (58-122) Jacquie Calame, editor Eileen Yee, illustrator Loretta Clark, layout/paste-up Lola Janes, typesetting Joni Miller, typesetting

To submit an article, contact Jacquie on ext. 6867. For mailing list changes, contact Kelly Turner on ext. 5502. MAIL LABEL GOES HERE

copyright © 1980, Tektronix, Inc. All rights reserved.

company confidential