FIELD MAINTENANCE SUPPORT

NUVISTOR CHECKER/BALANCER OPERATION PROCEDURE (For use with Type 575 Transistor Curve Tracer)

The Nuvistor Checker/Balancer, used in conjunction with the Type 575 Curve Tracer, provides a means of observing a family of characteristic curves. In addition, two nuvistors can be operationally compared for similar characteristics.

This device incorporates 1 k, 1% current sampling resistors between the base and emitter terminals so that the MA/step selector of the Type 575 can be read as V/step directly. The following equations are used to determine the μ and gm of the nuvistor under test:

$$\mu = \frac{\Delta Ep}{\Delta Eg}$$
 with Ip constant gm = $\frac{\Delta Ip}{\Delta Eg}$ with Ep constant

Test Procedure:

Preset the Type 575 as follows:

Vert. Sens: 1 MA/Div Horiz. Sens: 10 V/Div (6CW4) 10 V/Div (7895) 5 V/Div (7586)

Collector Sweep:

Base Step Generator:

Peak Volts Range 0-200 Polarity Peak Volts Approx. 60% Step/Family 12
Polarity + Step Sel: .05 to .2 MA/Step
Diss. Lim. Res. 5 k to 50 k (Read as V/Step)

Plug the Checker/Balancer into the test panel of the Type 575. Remove the indicator light jewel and bulb from the Type 575 and insert the power plug of the Checker/Balancer.

Nuvistor Characteristics: Source: RCA Publications 7586, Feb., 1960; 6CW4, June, 1960; 7895, Mar., 1961.

6CW4	<u>7586</u>	<u>7895</u>
Max. Ratings:	Max. Ratings:	Max. Ratings:
Ep = 110V $Pp = 1 watt$ $Ip = 15 ma$	Ep = 110V Pp = 1 watt Ip = 20 ma	Ep = 110V Pp = 1 watt Ip = 20 ma
Typical Operation:	Typical Operation:	Typical Operation:
Ep = 70V Ip = 8 ma Ep (for Ip = 10 μa = -4V) μ = 68 gm = 12,500 μmhos	Ep = 40V Ip = 6.8 ma Eg (for 10 μa Ip) = -6.5V μ = 35 gm = 11,000 μmhos	Ep = 110V Ip = 7 ma Eg (for 10 μa Ip) = -4V μ = 64 gm = 9,400 μmhos