INSTRUCTION MANUAL

Tektronix, Inc.

WARRANTY

All Tektronix instruments are warranted against defective materials and workmanship for one year. Tektronix transformers, manufactured in our own plant, are war: ranted for the life of the instrument.

Any questions with respect to the warranty mentioned above should be taken up with your Tektronix Field Engineer.

Tektronix repair and replacement-part service is geared directly to the field, therefore all requests for repairs and replacement parts should be directed to the Tek. tronix Field Office or Representafive in your ared. This procedure will assure you the fastest possible service. Please include the instrument Type and Serial number with all requests for parts or service.

Specifications and price change privileges reserved.

Copyright © 1965 by Tektronix, Inc, Beaverton, Oregon. Printed in the United States of America. All rights reserved. Contents of this publication may not be reproduced in any form without permission of the copyright owner.

Type 1 L10 Spectrum Analyzer Plug-In Unit

SECTION 1

CHARACTERISTICS

Introduction

The Type 1 L 10 Spectrum Analyzer plug-in unit is designed for use with Tektronix Type 530 -, $540-1550$-, and $* 580$ Series Oscilloscopes. The Type 1 LIO Spectrum Analyzer is tunable over the frequency range of 1 mc to 36 mc . The frequency "window" (dispersion) of the display is variable in eight calibrated steps of 0.01 to $2 \mathrm{kc} / \mathrm{cm}$ in a 1, 2, 5 sequence.

The Type 1 L10 displays the frequency distribution of an applied signal (or signals) along the horizontal axis of the crt while the signal energy is displayed on the vertical axis.

Specifications

R-F Center Fre- Continuously tunable from 1 mc to 36 mc . quency Range
$\begin{array}{ll}\text { Dial Accuracy } & \pm(100 \mathrm{kc}+1 \% \text { of dial reading }) \\ \text { Dispersion } & 10 \mathrm{cps} / \mathrm{cm} \text { to } 2 \mathrm{kc} / \mathrm{cm} \text { in eight calibrated }\end{array}$ (width of frequency "window")

Dispersion Ac- $\pm 3 \%$ when the Type 1 LIO is calibrated curacy for an individual oscilloscope. Otherwise, accuracy is $+13 \%$ and -7%.
Sensitivity $\quad-100 \mathrm{dbm}$ minimum at 10 cps resolution. $(0 \mathrm{dbm}$ equals 1 milliwatt).

Sweep Rate Determined by oscilloscope Time/Cm switch. Typically less than $1 \mathrm{Sec} / \mathrm{Cm}$ to more than $5 \mathrm{mSec} / \mathrm{Cm}$.

Resolution $\quad 10 \mathrm{cps}$ to 1 kc depending on setting of COUPLED RESOLUTION switch.
*A plug-in adapter must be used with 580-Series Oscilloscopes.

| Maximum Input | -20 dbm with all R-F ATTEN switches |
| :--- | :--- | :--- |
| Power | OFF. |
| | +24 dbm with all R-F ATTEN switches |

OPERATING INFORMATION

Function of Controls and Connectors

R-F CENTER
FREQUENCY
Control

FINE R-F
CENTER
FREQUENCY
OSC Con-
nectors

VERTICAL
POSITION

R-F ATTEN Six toggle switches that may be individually switched in or out to obtain from 1 to 51 db attenuation. The attenuators are useful for making comparative amplitude measurements.
EXT OSC-INT
OSC
Tunes the Spectrum Analyzer to the frequency to be displayed. The dial reading indicates the frequency at an accuracy of $\pm(1 \%$ of reading $+100 \mathrm{kc})$.
Provides a fine adjustment as a supplement to the R-F CENTER FREQUENCY control. Range of the FINE R-F CENTER FREQUENCY control is approximately 20 kc.
OSC OUT (top connector) is the output of the tunable local oscillator in the Type 1 LL 0 . Output frequency is 61 mc to 96 mc . OSC IN (bottom connector) is the oscillator input connector to the mixer. When an external oscillator is used, it should be connected to this connector.

Varies the position of the trace on the crt screen. Normally set where the trace is aligned with the bottom graticule line.

VERTICAL DISPLAY

Turns off the internal local oscillator in the EXT OSC position. To avoid interference, the local oscillator should be turned off when an external oscillator is used. In most other applications the switch should be set to INT OSC.

LOG: Provides about a 50 db dynamic range in a six-centimeter vertical display. LIN and LIN $\times 10$: Both positions provide about a 26 db dynamic range with a sixcentimeter vertical display. The LIN $\times 10$ position is more sensitive than the LIN position.
VIDEO INPUT: Permits a vertical input signal to be displayed on the oscilloscope for a conventional analog display of amplitude versus time. Input signal must be connected to the VIDEO INPUT connector.
GAIN Varies the vertical amplitude of the display. Range is at least 60 db .
DISPERSION- Sets the frequency width of the display. $\mathrm{KC} / \mathrm{CM}$

COUPLED RESOLUTION (PULL TO VARY RESOLUTION)
R-F INPUT
50Ω
R-F INPUT
600Ω

VIDEO INPUT

SWEEP INPUT

TO RECORDER Jack

Sets the resolving power of the instrument. (The ability to resolve between two signals that are near the same frequency.)

Spectrum input connector. Nominal characteristic input impedance is 50Ω.

Spectrum input connector. Serves the same function as the R-F INPUT 50Ω connector. Nominal characteristic input impedance is 600Ω.
Input connector for use when the VERTICAL DISPLAY switch is set to the VIDEO INPUT position. Permits an analog display of time versus signal amplitude.
Jack for applying the sawtooth or sweep voltage of the oscilloscope. This coupling must be made when the Type 1 L 10 is used as a spectrum analyzer (i.e., in the LOG, LIN and LIN $\times 10$ positions of the VERTICAL DISPLAY switch).
Jack for driving a recorder. Output amplitude is at least $15 \mathrm{mv} / \mathrm{cm}$, when working into a 600Ω load.

First Time Operation

The following procedure provides a display on the oscilloscope and demonstrates the functions of certain controls of the Type ILIO.

1. Insert the Type 1 LIO Spectrum Analyzer into the oscilloscope, turn on the power and allow 5 to 10 minutes for warm up.
2. Connect the special patch cord between the Sawtooth output connector of the oscilloscope and the SWEEP INPUT connector of the Type 1L10, and connect a coaxial cable between OSC OUT and OSC IN.
3. From a signal generator, apply a signal of between 1 and 36 mc to the R-F INPUT 50Ω connector (or the R-F INPUT 600Ω connector if the output impedance of the signal generator is significantly higher than 50Ω).
4. Set the front-panel controls of the Type 1 L 10 as follows:

R-F CENTER	To the approximate fre- quency of the signal gen- erator.
FINE R-F CENTER	Midrange (5 turns from either extreme)
VERTICAL POSITION	Midrange
R-F ATTEN	All OFF
VERTICAL DISPLAY	LIN
GAIN	Midrange

EXT OSC-INT OSC	INT OSC
DISPERSION-KC/CM	
COUPLED RESOLU- TION	SEARCH
Sweep Rate (Oscillo- scope)	. $\mathrm{SEC} / \mathrm{CM}$

5. Carefully adjust the R-F CENTER FREQ control to the point where the signal generator signal appears on the screen. Use the FINE R-F CENTER FREQ control to move the displayed spectra to the middle of the trace. Set the GAIN and/or R-F ATTEN switches for a vertical display of 3 to 6 divisions. The display at this point should resemble Fig. 2-1.

Fig. 2-1. Display of a signal with the DISPERSION-KC/CM switch in the SEARCH position.
6. Set the DISPERSION-KC/CM COUPLED RESOLUTION switch to 2.
7. Reset the FINE R-F CENTER FREQ control to position the displayed spectra to the middle of the trace. At this point the display should resemble that shown in Fig. 2-2. The frequency window is now 20 kc wide (ten divisions) and centered about the input signal frequency. If it is desired to narrow the dispersion further, move the signal to the center of the trace prior to narrowing the dispersion.
8. Set the VERTICAL DISPLAY switch to LOG. In this position of the VERTICAL DISPLAY switch the vertical deflection is logarithmic. That is, smaller signals are amplified more than larger amplitude signals. This allows a wider dynamic range of signal levels to be viewed in a given display.

Applied Signal Precautions

Signals applied to the R-F INPUT 50Ω connector should be connected through a 50 -ohm coaxial cable with a Type BNC male connector. Unshielded connections will tend to pick up stray signals and cause a confusing display. Be-

Fig. 2-2. Display of a signal with the DISPERSION-KC/CM switch at 2.
fore applying any input signals make sure the signal energy is $-24 \mathrm{dbm}(0 \mathrm{dbm}=1 \mathrm{mw})$ or less. If the signal energy exceeds this, use external attenuation.

The nominal characteristic input impedance $\left(Z_{0}\right)$ at the R-F INPUT 50Ω connector is 50Ω. Proper matching between the device under test and the Type 1 L 10 may be necessary to prevent adverse loading effects on the device under test. The R-F INPUT 600Ω connector is provided for situations where the device under test has a higher output impedance.

Harmonic and Image Frequency Displays

Before making any measurements of a displayed signal (or signals), it must be determined that the signal is not a harmonic or an image frequency.

An image frequency is twice the frequency of the I-F ($2 \times 60 \mathrm{mc}$) above the R-F CENTER FREQ dial indication. For example, with the R-F CENTER FREQ dial set at 5 mc , an image frequency of 125 mc could be displayed on the screen ($2 \times 1-\mathrm{F}+5 \mathrm{mc}$). A signal may be identified as an image frequency by turning the FINE R-F CENTER FREQ dial clockwise. If the displayed signal is an image, it will move to the left on the screen; if it moves to the right, it is not an image frequency.

Harmonic frequencies are whole-number multiples of the fundamental frequency. The amplitude and amount of harmonics associated with the fundamental frequency is proportional to the amount of sine-wave distortion. The fundamental frequency of an applied sine-wave signal will have two characteristics that differentiate it from any of the harmonics: (1) the fundamental display will be the lowest frequency and (2) the fundamental display will usually be the largest in amplitude.

Absolute Frequency Measurements

Absolute frequency measurements can be made from the R-F CENTER FREQ dial within an accuracy of \pm (100 kc $+1 \%$ of the dial reading). To measure the frequency of an applied signal, proceed as follows:

1. Set the DISPERSION-KC/CM switch to SEARCH.
2. Set the R-F CENTER FREQ and FINE R-F CENTER FREQ controls to the point where the signal of interest is displayed in the center of the screen.
3. Set the DISPERSION-KC/CM switch to 2.
4. Set the R-F CENTER FREQ and FINE R-F CENTER FREQ controls to the point where the signal of interest is displayed in the center of the screen.
5. Read the frequency indicated by the R-F CENTER FREQ dial. Accuracy of the reading is $\pm(100 \mathrm{kc}+1 \%$ of the dial reading). For example, with a dial reading of 10 mc , the actual signal frequency is $10 \mathrm{mc} \pm 200 \mathrm{kc}$ (i.e., 1% of $10 \mathrm{mc}+100 \mathrm{kc}= \pm 200 \mathrm{kc}$).

NOTE

Highly accurate frequency measurements may be obtained using an accurate reference frequency that is within 20 kc of the signal that is to be measured. See the following information under "Frequency Difference Measurements".

Frequency Difference Measurements

Accurate frequency separation measurements can be made between frequencies that are up to 20 kc apart. Accuracy of the measurement is within $+13 \%$ and -7%. The DIS-PERSION-KC/CM switch sets the dispersion or "frequency window" of the display to a calibrated width. For example, with the DISPERSION-KC/CM switch set to 2, the frequency width of the display is $20 \mathrm{kc},(+13 \%$ or $-7 \%)$ or $2 \mathrm{kc} / \mathrm{cm}$. At a setting of 1 , the width of the display is 10 kc or $1 \mathrm{kc} / \mathrm{cm}$ and so on through the remaining settings of the DISPER-SION-KC/CM switch. Use the following information to measure the frequency separation between two signals.

1. With the two signals displayed on the screen, set the DISPERSION-KC/CM switch so that the signals are spaced as far apart on the screen as possible. (Center the two signals on the screen each time the DISPERSION-KC/CM switch is set to a lower position.)
2. Set the sweep rate of the oscilloscope for the best defined signal peaks.
3. Measure the distance, in graticule divisions, between the two signals (see Fig. 2-3).
4. Multiply the distance of step 3 by the setting of the DISPERSION-KC/CM switch. That is:

Fig. 2-3. Illustration of frequency difference measurement between two signals.

$$
\begin{aligned}
\mathrm{f}_{\mathrm{s}} & =\mathrm{cm} \times \text { DISPERSION-KC/CM setting } \\
\text { Where: } \mathrm{f}_{\mathrm{s}} & =\text { Frequency separation in kilocycles. } \\
\mathrm{cm} & =\text { Distance measured in step } 3 \text { in centimeters. }
\end{aligned}
$$

Relative Amplitude Measurements

The relative amplitudes of two signals can be measured by using the R-F ATTEN switches on the Type 1L10. To measure relative amplitude, proceed as follows:

1. With the R-F CENTER FREQ and FINE R-F CENTER FREQ controls, tune the smallest amplitude signal to the center of the screen.
2. With all of the R-F ATTEN switches at OFF, adjust the GAIN control for exactly 4 cm of vertical deflection of the smallest signal.
3. With the R-F CENTER FREQ and FINE R-F CENTER FREQ controls, tune the largest amplitude signal to the center of the screen.
4. Switch as many R-F ATTEN switches to $O N$ as required to make the largest amplitude signal exactly 4 cm high.
5. Add the settings of the R-F ATTEN switches that are switched in. The total is the relative amplitude difference, in db , between the two signals.

SECTION 3
 THEORY OF OPERATION

Introduction

A spectrum analyzer is a device that breaks down a complex electronic signal into its various frequency components. The display presented by the spectrum analyzer is a plot of frequency versus signal energy. The Type 1L10 Spectrum Analyzer is very similar to a superheterodyne radio receiver with quadruple conversion (see Fig. 3-1).

R-F Attenuator

The input signal from either the R-F INPUT 50Ω or R-F INPUT 600Ω connector is coupled to the R-F Attenuator section. The R-F Attenuator network is composed of 6 pi attenuator sections. Each pi attenuator may be switched in or out of the signal path with the various R-F ATTEN switches. Output of the R-F Attenuator is coupled to the balanced mixer circuit.

Front-End Local Oscillator

The Front-End Local Oscillator runs at a frequency of from 61 mc to 96 mc depending upon the setting of the R-F CENTER FREQ controls (R58 and C50). Upper frequency limit of the oscillator is set by C49 and the lower limit is set by T50. FINE R-F CENTER FREQ control is accomplished with a voltage variable capacitance diode D54. Bias on the capacitance diodes (and hence capacitance) is controlled by R58. The reactance of the D54-L54 combination is coupled by distributed capacity into the tank circuit of the collector of Q40.

The Q40 stage oscillates due to the capacitively coupled positive feedback from its collector to emitter through C48. The base of Q40 is held at R-F ground by C42.
In the SEARCH position of the DISPERSION-KC/CM switch, the sawtooth voltage of the oscilloscope is coupled to the emitter circuit of Q40. This sweeps the oscillator over a small frequency range and widens the effective dispersion. This makes it easier to locate signals on the screen and to use a faster sweep rate.
The EXT OSC-INT OSC switch SW40 removes power from the local oscillator in the EXT OSC position.

Output of the local oscillator is coupled to the Balanced Mixer circuit and is heterodyned with the input signal.

Balanced Mixer and Filter

The mixer circuit is balanced to minimize spurious signals from the local oscillator. The balance adjustments are C71 and C73. Heterodyning with the input signal takes place at the junction of D71-D73-L80-R80.
With no applied signal and with C71 and C73 set for proper balance, the local oscillator signal cancels at the junction of D71 and D73. This reduces spurious signals that might otherwise be produced by the local oscillator. When
an applied signal appears at the junction of D71 and D73, it disturbs the balance of the bridge circuit by alternately biasing the diodes in different directions. When this occurs, heterodyning takes place between the applied signal and the local oscillator.

The Filter circuit is a narrowband circuit that is peaked at 60 mc . Whenever the difference frequency between the local oscillator and the applied signal equals 60 mc , signal energy is passed through the filter to the Wideband Amplifier.

Wideband Amplifier

The Wideband Amplifier chassis contains a two-stage $60-\mathrm{mc}$ amplifier, a $49.3-\mathrm{mc}$ oscillator, and a three-stage $10.7-\mathrm{mc}$ amplifier. The $60-\mathrm{mc}$ and $49.3-\mathrm{mc}$ signals are mixed at the input of the $10.7-\mathrm{mc}$ amplifier.

Q110 and Q120 form the two-stage $60-\mathrm{mc}$ amplifier. The stages are transformer coupled through T114 and T124. Cl 14 and Cl 24 tune the coupling transformers for resonance at 60 mc . The emitters of Q110 and Q120 are R-F grounded through C 115 and Cl 23 .

Q150 is a 49.3 -mc crystal-controlled oscillator. The oscillator is peaked with the variable inductor L154. Output of the oscillator passes from the collector of Q150 to the base of Q200 through C150.

The $60-\mathrm{mc}$ signal from the secondary of T124 is also coupled to the base of Q200. The Q200 stage is tuned to the difference frequency of the $60-\mathrm{mc}$ and $49.3-\mathrm{mc}$ signals $(10.7 \mathrm{mc})$. The Q200, Q210 and Q220 stages form a threestage $10.7-\mathrm{mc}$ I-F amplifier. Between-stage coupling is accomplished with I-F transformers T204, T214 and T224. The $10.7-\mathrm{mc}$ output from the secondary of T224 passes to the Swept I-F Oscillator chassis.

Swept I-F Oscillator

The Sweep Frequency Oscillator (Q360) is swept over a frequency range determined by the setting of the DISPER-SION-KC/CM switch SW325A. The DISPERSION-KC/CM switch varies the amplitude of the oscilloscope sawtooth voltage that is applied to the Sweep Frequency Oscillator.

The action of the Swept I-F Oscillator circuit is as follows: The sawtooth voltage from the oscilloscope is connected to the front-panel SWEEP INPUT connector. The sweep voltage is attenuated by an amount determined by the setting of the Sawtooth Selector switch SW320. In the SEARCH position of the DISPERSION-KC/CM switch the sawtooth voltage is applied to the Front-End Local Oscillator rather than to the Sweep Frequency Oscillator. In all other positions of the DISPERSION-KC/CM switch the sawtooth voltage is applied to the sweep-frequency circuit through the attenuating resistors of the DISPERSION-KC/CM switch. The DISPERSION CAL adjustment, R321, sets the amplitude of the sawtooth voltage that appears across the voltage divider network (R322 through R329).

The sawtooth voltage from the voltage divider is applied to the base of emitter follower Q340. The emitter follower has a high input impedance and thus, does not significantly load the voltage divider. Output of the emitter follower is coupled to the base of Q341. Q341 forms one half of a difference amplifier. The purpose of the difference amplifier will be described a little later. For now, consider that the output of the difference amplifier is developed across R354 and applied to the voltage variable capacitance diode D362 through R355.

The sawtooth voltage appearing across D362 causes its capacitance to change in an amount proportional to the sawtooth voltage. D362 forms part of the capacitance of the tank circuit (L364) of the Sweep Frequency Oscillator Q360. The amplitude of the sawtooth voltage applied to the capacitance diode D362 determines the frequency change of the Sweep Frequency Oscillator. Output of the Sweep frequency Oscillator passes through C398 and mixes with the $10.7-\mathrm{mc}$ signal from the Wideband Amplifier. Center frequency of the Sweep Frequency Oscillator is 11.5 mc . This gives a beat frequency of 800 kc .

Part of the output of the Sweep Frequency Oscillator is also coupled back through a closed loop circuit that includes an amplifier, discriminator and the other half of the difference amplifier. This closed-loop system corrects for the inherent non-linearity of the voltage variable capacitance diode D362. This is accomplished as follows: The sweep frequency is amplified by the R-F amplifier Q370 and coupled to the Discriminator circuit Y380. The Discriminator converts the sweep frequency back into a sawtooth signal. The sawtooth signal derived by the Discriminator contains any non-linearity that was introduced by the voltage variable capacitance diode D362. This sawtooth signal is coupled back to the difference amplifier through the emitter follower Q350. Assuming that the oscilloscope sawtooth voltage on the other side of the difference amplifier is linear, only the non-linear portion of the sawtooth will be amplified and coupled to the voltage variable capacitance diode. The result is that a non-linear driving voltage appears on D362. This non-linearity is such that it is equal and opposite to non-linear characteristics of the voltage variable capacitance diode. This, in turn, forces the Sweep Frequency Oscillator to produce a linear sweep frequency.

The mixed output of the Swept I-F Oscillator and the Wideband Amplifier is coupled through an 800-kc filter and then to an amplifier stage (Variable Resolution Amplifier schematic).

Variable Resolution Amplifier

The Variable Resolution Amplifier schematic contains an 800-kc filter, a feedback stabilized amplifier (Q500 and Q510), a 900 -kc oscillator and a variable bandwidth circuit.

The filter circuit ($\mathbf{L} 405, \mathrm{~L} 410, \mathrm{~L} 415$, etc.) allows only the passage of the $800-\mathrm{kc}$ signal. Output of the filter is coupled to a feedback stabilized amplifier consisting of Q500 and Q510. The $800-\mathrm{kc}$ output of the amplifier is mixed with the output of the $900-\mathrm{kc}$ oscillator giving a beat frequency of 100 kc .

The 900 -kc oscillator is a stable crystal-controlled oscillator. Amplitude of the oscillator is peaked with L454.

In the SEARCH position of the COUPLED RESOLUTION switch the Variable Resolution circuit (Q520 through Q560) is bypassed. In all other positions of the switch the 100-kc signal passes through the Variable Resolution Amplifier.

The first stage (Q520) of the Variable Resolution Amplifier is a conventional amplifier with the output from the collector applied to the base of Q530 through coupling capacitor C524.

Fig. 3-2. Typical impedance versus frequency graph of a crystal. Note the series- and parallel-resonance points.

Q530 and Q540 form a bandwidth limiting circuit. Bandwidth of the circuit is set by the amount of forward bias on D548. To understand how this circuit operates, first consider the impedance characteristics of a crystal (such as Y530 in the collector circuit of Q530). Fig. 3-2 shows a typical impedance versus frequency curve of a crystal. In examining the curve, from left to right, we first encounter a very low impedance point at the series-resonant frequency point. At some higher frequency, the impedance increasesthis is the parallel-resonance point. With a still higher frequency, the impedance drops fairly abruptly because of the inherent parallel capacitance of the crystal mounting.

Fig. 3-3. Impedance versus frequency curve of a crystal when the parallel capacitance is effectively cancelled.

Theory of Operation-Type 1 L10

If the parallel capacitance is cancelled, the impedance of the crystal exhibits an impedance versus frequency curve that is shown in Fig. 3-3. This cancelling of the shunt capacitance of the crystal is accomplished by C534. Since the voltage on the collector is 180° out of phase with the voltage on the emitter of Q530, the capacity reactance introduced by C534 directly subtracts from the shunt X_{c} of the crystal. Hence, with C534 properly adjusted, Y530 exhibits no parallel resonance and assumes an impedance versus frequency curve like that shown in Fig. 3-3.

Fig. 3-4. Simplified drawing of the relationship between Y530, C538, L537 and the base impedance of Q540.

The next item to consider in the circuit is the tank circuit consisting of L537 and C538. This tank circuit and the crystal form a voltage divider when considering the voltage at the base of Q540. Also, the base impedance (which is largely resistive at 100 kc) of Q540 shunts the tank circuit of 1537 and C538. Fig. 3-4 represents this circuitry in simplified form.

Since the base impedance of Q540 shunts the L537-C538 tank circuit, the ' Q ' of the tank circuit can be controlled by changing the base impedance of Q540. This is accomplished by forward biasing D548. The more D548 is forward biased, the closer the emitter of Q540 comes to R-F ground. This, in turn, changes the input impedance at the base of Q540 since:

Input Z of $Q 540=h_{f e} \cdot R_{\text {ee }}$
Where: $h_{f e}$ is the Beta of the transistor.
$R_{e e}$ is the external emitter impedance of Q540 at 100 kc . Governed by the amount of forward bias on D548.

Fig. 3-5a shows the impedance versus frequency curve of the L537-C538 tank circuit at two settings of the COUPLED RESOLUTION switch superimposed on the impedance of Y530. Fig. 3 - 5 b shows the resultant bandpass of the circuit at the base of Q540. Note that with a narrow bandpass the signal amplitude is less at the base of Q540. This diminishing amplitude, however, is compensated for by the increase in gain of the Q540 stage. The increased gain results from the decrease in emitter degeneration due to the increased forward bias on D548.

Fig. 3-5. (A) Impedance versus frequency curves of L537-C538 tank circuit at two settings (a and b) of the COUPLED RESOLUTION switch superimposed on the impedance curve of Y530. (B) Resultant voltage division curve derived from A. Notice the narrower bandwidth of curve (b).

The Q550-Q560 stage of the circuit operates the same as the Q530-Q540 stage. Output of the Variable Resolution Amplifier is coupled to the Output Amplifier and Detector Circuits.

Output Amplifier and Detector

The Output Amplifier circuitry contains an emitter follower (Q600) and two amplifier stages (Q610 and V620). The V620 amplifier stage is tuned to 100 kc with L 624.

Diodes D640 and D641 detect the 100-kc output of the output amplifier. Output of the detector is coupled to the junction of R640-R641 and to the VERTICAL DISPLAY switch SW640. In the LIN $\times 10$ position of the VERTICAL DISPLAY switch the signal passes straight through to the input of the oscilloscope with no attenuation. In the LIN position of the VERTICAL DISPLAY switch the output of the detector is attenuated approximately 10 times by the attenuation network. In the LOG position, the signal is attenuated by an amount that is proportional to the log of its amplitude. To small amplitude signals, D646 acts as a comparatively high impedance. To larger signals, D646 becomes increasingly forward biased and acts as a lower impedance. Hence, larger amplitude signals are attenuated more than smaller signals. R646 adjusts the attenuation of this network so that it is more nearly logarithmic.

In the VIDEO INPUT position of the VERTICAL DISPLAY switch the spectrum signal path is blocked and the input to the Output Amplifier is grounded. Also, any signal connected to the VIDEO INPUT connector is coupled to the
vertical input of the oscilloscope. The GAIN potentiometer, R109B, sets the attenuation of the signal from the VIDEO INPUT connector. Input R of the VIDEO INPUT connector is approximately 50Ω.

SECTION 4

MAINTENANCE AND CALIBRATION

PREVENTIVE MAINTENANCE

Visual Inspection

The Type 1110 Spectrum Analyzer should be inspected occasionally for such visible defects as poor connections, broken or damaged ceramic strips, improperly seated tubes or transistors, and heat-damaged parts. The remedy for most visible defects is obvious; however, particular care must be taken if heat-damaged parts are detected. Overheating can be caused by other, less apparent defects in the circuit. For this reason, it is essential to determine the actual cause of overheating before the parts are replaced; otherwise the damage may be repeated.

Recalibration

The Type 1 L 10 Spectrum Analyzer is a highly stable instrument and needs no recalibration except in the event the instrument fails to perform to the requirements specified in Section 1 of this manual. In the event of a failure of the instrument, first perform the Checkout Procedure described later in this section of the manual. This will serve to either localize the trouble or point out the need for recalibration.

PARTS REMOVAL AND REPLACEMENT

General Information

Removal or replacement procedures for most of the parts in the Type 1 LIO are obvious. Some parts, however, require special instructions regarding their replacement. These parts are discussed in the following paragraphs.

Many components in the Type 1L10 are mounted in a particular way to control stray inductance and capacitance. When replacing this type of component, take care to duplicate lead length, lead dress, and location of the original component.

After replacing any electrical component, be sure to perform the Checkout Procedure. Components of the same type often exhibit slightly different characteristics which may affect calibration.

Tubes and Transistors

The tubes or transistors in the Type 1 L 10 should not be replaced unless they are actually defective. When a tube or transistor is removed and found acceptable, return the component to its original socket. This will avoid recalibration because of different tube or transistor characteristics.

The best way to check a tube or transistor is by substituting another tube or transistor of the same type that is of known good quality. Then check to see if proper operation is restored. If not, replace the original tube or transistor in its socket.

Soldering Precautions

In the production of Tektronix instruments, a silver-bearing solder is used to establish a bond to the ceramic terminal strips. This bond can be broken by repeated use of ordinary tin-lead solder or by excessive heating of the connection in the solder process. Occassional use of ordinary tin-lead solder is permissible if applied with moderate heat. The silver-bearing solder should contain about 3% silver. If this type of solder is not available locally, it may be purchased from Tektronix in one-pound rolls (order by part number 251-0514-00).

A wedge-shaped tip on the soldering iron is best for soldering and unsoldering parts on the ceramic strip. This type of tip allows the heat to be applied directly to the solder slot in the strip, reducing the overall heating effect. Use as little heat as possible to establish a good solder bond.

To properly solder and unsolder short lead components, the following procedure is recommended: (1) Use long-nose pliers for a heat sink. Attach the pliers between the component and the point being soldered. (2) Use a hot iron for a short time. (3) Carefully manipulate the leads to prevent lead or insulation damage. (4) Use only a small amount of solder; just enough to make a good bond.

Ceramic Terminal Strips

To remove a ceramic terminal strip, first unsolder all leads and components connected to it. Then pry the strip, with yokes attached, out of the chassis. The spacers may come out with the yokes. If not, the spacers can be pulled out separately. If the spacers are not damaged, they can be reused with the new strip assembly.

Another way to remove a strip from the chassis is to use diagonal cutters to cut off one side of each yoke. This frees the strip and the remainder of the yokes can be pulled from the chassis separately. Ceramic strips are supplied with the yokes attached, so it is not necessary to salvage the old yokes.

After removing a damaged strip and yokes, place the spacers into the holes in the chassis and insert the yokes into the spacers. If necessary, use a soft-faced mallet to tap the yokes into the spacers. Fig. 4-1 shows the assembled ceramic strip.

Schematics

The schematics of the Type 1 L 10 are at the back of this manual. The schematics contain waveforms and voltages at certain points in the circuit that will aid in troubleshooting or in analyzing the circuit operation.

If it is necessary to duplicate any of the voltages or waveforms, be sure to read the special note on the schematics regarding the proper conditions. The voltages and waveforms on the schematics are typical only, and may vary widely from instrument to instrument.

Fig. 4-1. Ceramic strip assembly.

TROUBLESHOOTING

General Information

If trouble develops in the Spectrum Analyzer, first check for proper connections and control settings. Look for simple explanations for the trouble first, before getting involved in detailed troubleshooting.

If all connections and control settings are proper, make a visual check of the instrument. Check and correct anything observed that could cause trouble.

Also, check the oscilloscope to make sure that it is operating properly. A faulty power supply in the oscilloscope can cause a variety of unusual trouble symptoms. The quickest way to check the operation of the oscilloscope is with another plug-in unit if one is available. If faulty operation is still noted with a different plug-in unit, the trouble can be assumed to be in the oscilloscope.
The Checkout and Calibration Procedures in this section are helpful in isolating trouble to a particular circuit.

Signal tracing is another important method of troubleshooting. Voltages and waveforms are shown on the schematic at points that facilitate signal tracing.

CHECKOUT PROCEDURE

Preliminary Information

This procedure offers a systematic way of checking the Type 1 L10 against the requirements of Section 1 of this manual. The Checkout Procedure should be performed routinely after each 500 hours of operation or every six months if the instrument is used intermittently. Also use the Checkout Procedure after any corrective maintenance work.

Aways perform this procedure before attempting to calibrate the instrument. This will avoid making unnecessary calibration adjustments in many cases.

The test equipment required for this precedure must meet or exceed the accuracies specified under "Equipment Required'. If the equipment used does not meet these requirements, the Type 1 L10 cannot be checked or calibrated to
the accuracies given in Section 1 of this manual.

Equipment Required

1. Tektronix oscilloscope that is normally used with the Type 1 LIO Spectrum Analyzer.
2. Tektronix Type 180A Time-Mark Generator.
3. Tektronix Type 105 Square-Wave Generator.
4. Calibrated-Frequency Audio Generator capable of supplying 10 -cycle to $2-\mathrm{kc}$ signals with a frequency accuracy of $\pm 1 \%$. The output amplitude shall be variable $0-1$ volt rms.
5. Calibrated amplitude source of r-f power at frequencies between 1 mc and 60 mc . Output amplitude of the generator should be variable from 0 dbm to $-100 \mathrm{dbm} \pm 1 \% 10 \mathrm{dbm}$ $=1$ milliwatt). The frequency generator and attenuator must be well shielded to prevent stray radiation.
6. Tektronix Harmonic Modulator Unit, Tektronix part number 067-0518-00.
7. Connecting cables, 50 -ohm with BNC connectors, 4 each Tektronix part number 012-0057-00.

Preliminary Setup

The following steps apply throughout the Checkout Procedure except as noted.

1. Insert the Type 1 L10 Spectrum Analyzer into the oscilloscope, turn on the power and allow about 20 minutes for warm up.
2. Connect a patch cord between the SWEEP INPUT connector of the Type 1 L10 and the Sawtooth output connector of the oscilloscope.
3. Set oscilloscope time-base for a free-running sweep.

Sensitivity Check

1. Set the front-panel controls of the Type 1 LIO as follows:

RF CENTER FREQ	10
FINE RF CENTER FREQ	Midrange
VERTICAL POSITION	Midrange
R-F ATTEN	All OFF
EXT OSC INT OSC	INT OSC
VERTICAL DISPLAY	LIN
GAIN	Fully clockwise
DISPERSION-KC/CM	2
COUPLED RESOLUTION	2

2. Apply the output signal of the calibrated amplitude r-f generator to the RF INPUT 50Ω connector of the Type 1 L 10 (see Fig. 4-2). Set the output of the generator for about -50 dbm .
3. Vary the frequency of the r-f generator and the RF CENTER FREQ control of the Type 1L10, if necessary, to bring the signal onto the screen.
4. Decrease the output amplitude of the r-f generator to -100 dbm and note the relative amplitude between the displayed signal and the noise displayed on the trace (see Fig. 4-3). The signal must be twice or more the amplitude of

Fig. 4-2. Equipment setup for making sensitivity check.

Fig. 4-3. Measurement of relative amplitude between an applied low-level signal and the noise of the system. (a) Amplitude of signal and (b) amplitude of noise.
the displayed noise. If the amplitude of the display is not at least two times noise, set the DISPERSION-KC/CM and COUPLED RESOLUTION switches to .01 , and set the VERTICAL DISPLAY switch to LIN $\times 10$. Slow the sweep rate of the oscilloscope to $.5 \mathrm{SEC} / \mathrm{CM}$. If the signal amplitude is still not two times as great as noise, the instrument needs a complete calibration.

Dispersion Check

1. Connect the equipment as shown in Fig. 4-4.
2. Set the front-panel controls on the Type $1 \mathrm{L10}$ as follows:

RF CENTER FREQ	10
VERTICAL POSITION	Midrange
R-F ATTEN	All OFF
VERTICAL DISPLAY	LIN
GAIN	Midrange
DISPERSION-KC/CM	2
COUPLED RESOLUTION	2
INT OSC EXT OSC	INT OSC

4. Set the Type 180A Time-Mark Generator for an output frequency of 5 mc .
5. Using the RF CENTER FREQ control of the Type 1L10, tune the 2 nd harmonic (10 mc) of the Type 180A signal to the center of the screen.
6. Set the GAIN control and R-F ATTEN switches of the Type ILIO for about 6 cm of the displayed signal.
7. Set the output frequency of the audio generator to 2 kc .
8. Set the output amplitude of the audio generator and the controls on the Harmonic Modulator Unit for maximum modulation (maximum number of side-frequency markers). See Fig. 4-5 for the desired display.

Fig. 4-4. Equipment setup for dispersion check at 2, $1, .5, .2$, and $.1 \mathrm{KC} / \mathrm{CM}$ settings of the DISPERSION-KC/CM switch.
9. With the FINE RF CENTER FREQ control of the Type 1L10, position the center-frequency marker to the centerline of the graticule.
10. Check the distance between markers. The markers should be 1 cm apart, $+13 \%,-7 \%$. If not, the dispersion of the Type 1110 should be calibrated as per the Calibration Procedure in this section of the manual.
11. Using Table 4-1, check the $1, .5$ and $.2 \mathrm{KC} / \mathrm{CM}$ dispersion settings of the DISPERSION-KC/CM switch. The markers should be 1 cm apart, $+13 \%,-7 \%$ at all settings. If not, calibrate the dispersion of the instrument as per the Calibration Procedure in this section. In each case, set the COUPLED RESOLUTION switch to the same setting as the DISPERSION-KC/CM switch.

TABLE 4-1

DISPERSION-KC/ CM COUPLED RESOLUTION Setting	Audio Generator Frequency	Oscilloscope Sweep Rate
1	1 kc	50 mSEC
.5	500 cps	.2 SEC
.2	200 cps	.2 SEC
.1	100 cps	.5 SEC

12. Set the DISPERSION-KC/CM and COUPLED RESOLUTION controls to 2 and set the oscilloscope sweep rate to 20 mSEC .

Fig. 4-5. A 5 -me signal modulated with a 2 -ke audio signal. DIS-PERSION-KC/CM switch set at 2.
13. Set the EXT OSC INT OSC switch of the Type 1 L 10 to EXT OSC.
14. Set up the equipment as shown in Fig. 4-6.
15. Set the GAIN control of the Type 1 LIO for about 6 cm of signal.

NOTE
The signal now observed is the 12 th harmonic

Fig. 4-6. Equipment setup for Dispersion Check/adjustment at $.01, .02, .05 \mathrm{KC} / \mathrm{CM}$ settings of DISPERSION-KC/CM switch.
$(60 \mathrm{mc})$ of the $5-\mathrm{mc}$ signal from the Type 180 A . This signal will normally appear to the right of the graticule centerline.
16. Reduce the output amplitude of the audio generator so that it is not modulating the Type 180A signal.
17. Set the output frequency of the Type 105 SquareWave Generator to about 3 kc and adjust its output amplitude so that the modulation markers are clearly visible.
18. Set the output frequency of the Type 105 SquareWave Generator so that the first modulation marker on the left-hand side of the center frequency is at the graticule centerline (see Fig. 4-7).
19. Set the DISPERSION-KC/CM and COUPLED RESOLUTION switches to $1, .5, .2, .1$ and .05 while keeping the Type 105 Square-Wave Generator signal positioned to the graticule centerline by varying the output frequency.

20 . Set the sweep rate of the oscilloscope to .2 SEC .
21. Set the output frequency of the audio generator to 50 cps and increase the output amplitude of the audio generator until the 50 cps modulation is clearly visible. Check for 1 marker $/ \mathrm{cm},+13 \%,-7 \%$.
22. Using Table $4-2$, check the .2 and .1 settings of the DISPERSION-KC/CM switch. The markers should be 1 cm apart $+13 \%,-7 \%$ at all settings. If not, calibrate the dispersion of the instrument per the Calibration Procedure in this section. In each case, set the COUPLED RESOLUTION switch to the same setting as the DISPERSION-KC/CM switch. Keep the display centered by slight adjustment of the Type 105 Square-Wave Generator frequency.

Fig. 4-7. Initial display (step 18) in checking the narrow dispersion settings of the Type iLlo.

TABLE 4-2

DISPERSION-KC/CM COUPLED RESOLUTION Setting	Audio Generator Frequency	Oscilloscope Sweep Rate
.02	20 cps	.5 SEC
.01	10 cps	1 SEC

Fig. 4-8. Equipment setup for resolution check.

Resolution Check

1. Connect up the equipment as shown in Fig. 4-8.
2. Set the front-panel controls as follows:

RF CENTER FREQ	10
VERTICAL POSITION	Midrange
R-F ATTEN	All OFF
VERTICAL DISPLAY	LIN
GAIN	Midrange
DISPERSION-KC/CM	2
COUPLED RESOLUTION	2
INT OSC EXT OSC	INT OSC
Oscilloscope Sweep Rate	20 mSEC

3. On the Harmonic Modulator Unit, set the MOD 2 switch to ON and the 60 mc TRAP switch to IN .
4. Set the Type 180A Time-Mark Generator for an output frequency of 5 mc .
5. Using the RF CENTER FREQ control of the Type ILIO, tune the 2nd harmonic (10 mc) of the Type 180A signal to the center of the screen.
6. Set the audio generator for an output frequency of 1 kc and adjust the controls on the Harmonic Modulator Unit so that at least two modulation markers (one on each side of center frequency) are visible.
7. Set the DISPERSION-KC/CM and COUPLED RESOLUTION switches to .2 and center the display on the screen with the FINE RF CENTER FREQ control.
8. With the VERTICAL POSITION control, position the bottom of the display to the bottom line on the graticule.
9. Set the GAIN control so that the center frequency marker is six centimeters in amplitude.

Fig. 4-9. Display of a 1 -kc modulated signal with the COUPLED RESOLUTION control set at 2-KC/CM and the DISPERSION-KC/CM at .5. Notice that the valleys in the display do not come to the baseline.

Fig. 4-10. Equipment setup for checking oscillator tracking and accuracy.
10. Pull out on the COUPLED RESOLUTION control and set it to 2. (Make sure the DISPERSION-KC/CM switch remains at the .5 position.)
11. If necessary, reset the GAIN control so that the centerfrequency marker is six centimeters in amplitude.
12. If the resolution of the Type 1 LI 10 is proper, the valleys between the center-frequency marker and the side-frequency markers will not fall to the baseline of the trace; see Fig. 4-9. If the valleys of the display fall to the baseline, the resolution of the Type 1 L 10 should be calibrated as per the Calibration Procedure in this section.

Oscillator Tracking Check

1. Set up the equipment as shown in Fig. 4-10.
2. Set the front-panel controls as follows:

RF CENTER FREQ
FINE RF CENTER
FREQ
VERTICAL POSITION R-F ATTEN

EXT OSC INT OSC VERTICAL DISPLAY GAIN DISPERSION-KC/CM COUPLED RESOLUTION Oscilloscope Sweep Rate

5
Midrange

Midrange
All OFF except
16 db and 20 db
INT OSC
LIN
Midrange
2
2
5 mSEC
3. Set the output frequency of the Type 180A Time-Mark Generator to 5 mc .
4. Set the RF CENTER FREQ and FINE RF CENTER FREQ controls to display the Type 180A signal on the screen of the oscilloscope. Make sure the displayed signal is not a spurious signal. This can be checked by temporarily removing the input signal from the Type 180A and noting whether the signal displayed at the 5 mc dial setting disappears.
5. Change the output frequency of the Type 180A to 1 mc ($1 \mu \mathrm{sec}$ markers).
6. Slowly turn the GAIN control clockwise. A signal should appear on the trace that is in the same position as the 5 mc signal. This signal is the 5 th harmonic of the 1 mc signal. Make sure this signal moves on the screen when the FINE RF CENTER FREQ control is turned.
7. Turn the RF CENTER FREQ control slowly counterclockwise until the 4th harmonic of the 1 mc signal is displayed on the screen. Check the RF CENTER FREQ dial reading. The dial reading should be $4 \mathrm{mc} \pm 1 \%$ of dial reading $\pm 100 \mathrm{kc}$.
8. Continue turning the RF CENTER FREQ dial counterclockwise while checking where the 3rd, 2nd, and fundamental frequencies occur on the dial. In all cases, the tolerance is $\pm 1 \%$ of dial reading $\pm 100 \mathrm{kc}$.
9. Set the output frequency of the Type 180 A to 5 mc .
10. Set the RF CENTER FREQ control to 10 mc and tune for the 2nd harmonic of the 5 mc signal. The RF CENTER FREQ dial reading should be $\pm 1 \%$ of dial reading $\pm 100 \mathrm{kc}$.

Turn the RF CENTER FREQ control to $15 \mathrm{mc}, 20 \mathrm{mc} 25$ $\mathrm{mc}, 30 \mathrm{mc}$, and 35 mc and check to see where on the dial the 3 rd , 4th, 5 th , 6 th , and 7 th harmonies of the 5 mc signal occur. In all cases, the tolerance is $\pm 1 \%$ of dial reading $\pm 100 \mathrm{kc}$.

Dynamic Range Check

1. Set the VERTICAL DISPLAY switch to LIN.
2. Set up the Type 1 L 10 to display a 6 cm signal. Leave the $2 \mathrm{db}, 4 \mathrm{db}$, and 20 db switches at OFF.
3. Set the $2 \mathrm{db}, 4 \mathrm{db}$, and 20 db switches to on. The displayed signal must still be discernible on the trace. Set the R-F ATTEN switches to OFF.
4. Set the VERTICAL DISPLAY switch to LOG and set up the Type 1 L 10 to display a 6 cm signal. In addition, the GAIN and/or COUPLED RESOLUTION should be set so as to limit the noise on the trace to 2 mm or less. Leave the R-F ATTEN switches in the OFF position.
5. Switch in all of the R-F ATTEN switches except the 1 db switch. The signal must still be discernible on the trace. Set all R-F ATTEN switches to OFF.
6. Set the VERTICAL DISPLAY switch to LIN and set the GAIN control for a 6 cm signal.
7. Set the VERTICAL DISPLAY switch to LIN $\times 10$ and switch in the 20 db R-F ATTEN switch. The displayed signal must be $6 \mathrm{~cm} \pm 10 \%$.

R-F ATTEN Check

1. Set the front-panel controls as follows:

RF CENTER FREQ	Any position
FINE RF CENTER FREQ	Midrange
R-F ATTEN	All OFF
VERTICAL DISPLAY	LIN
DISPERSION-KC/CM	2
(UN)COUPLED	1
RESOLUTION	
Oscilloscope Sweep Rate	$5 \mathrm{mSEC} / \mathrm{CM}$

2. Apply a $-70 \mathrm{dbm} 60-\mathrm{mc}$ signal from the Calibrated Output r-f generator to the Type 1 L10 RF INPUT 50Ω connector.
3. Set the Type 1 L 10 GAIN control so that the $60-\mathrm{mc}$ signal is exactly 5 centimeters high.
4. Switch the 1 db R-F ATTEN switch to ON and adjust the attenuator control of the r-f generator so that the $60-\mathrm{mc}$ signal is exactly 5 centimeters high. The r-f generator attenuator control should read -69 dbm to $\pm 0.1 \mathrm{dbm}$.
5. Switch the 1 db R-F ATTEN switch to OFF.
6. Check the rest of the R-F ATTEN steps in the same way, as directed in Table 4-3.

TABLE 4-3

Type 1L10 R-F ATTEN Switched to ON	r-fGenerator Attenuator Setting 2 db 4 db 8 db 16 db 20 db$-68 \mathrm{dbm} \pm 0.2 \mathrm{dbm}$
ALL ON	$-62 \mathrm{dbm} \pm 0.4 \mathrm{dbm}$
0.8 dbm	

TO RECORDER Check

1. Apply a $60-\mathrm{mc}$ signal from the r-f generator to the Type 1 LlO RF INPUT 600Ω connector.
2. Turn the Type 1 L 10 GAIN control fully clockwise.
3. Adjust the amplitude of the signal generator for 4 centimeters of display.
4. Terminate the TO RECORDER output with 600Ω and connect the test oscilloscope across the termination. The signal amplitude should measure at least 60 millivolts.

VIDEO INPUT Check

1. Set the VERTICAL DISPLAY switch to the VIDEO input position.
2. Set the Amplitude Calibrator switch of the oscilloscope to the .1 volt into 50Ω position. If the oscilloscope does not have this position use the .5 volt position.
3. Turn the GAIN control of the Type 1 LIO fully clockwise.
4. Connect between the VIDEO INPUT connector of the Type 1 L10 and the CAL OUT connector of the oscilloscope.
5. Set the sweep rate of the oscilloscope to $.5 \mathrm{mSEC} / \mathrm{CM}$ and set the triggering controls for a stable display.
6. Check for approximately 1 cm of vertical deflection on the screen of the oscilloscope. This check is mainly for continuity rather than a deflection factor check. The deflection factor is controlled by the oscilloscope.

CALIBRATION PROCEDURE

Do not calibrate the Type 1 L10 unless the need is indicated in the Checkout Procedure. Once the need for calibration is indicated, perform only the calibration steps that are recommended in the Checkout Procedure.

Calibration Equipment Required

1. Items 1 through 7 under "Equipment Required" in the Checkout Procedure of this section.
2. Test Oscilloscope: Tektronix Type 530 or 540-Series recommended with a Type H or K plug-in unit and a 10X Probe.
3. Alignment tools:

Description
Tektronix Part Number
Screwdriver
003-0000-00
plastic shaft
Rod for $0.100^{\prime \prime}$ inside
003-0301-00 diameter hex slugs
$\begin{array}{ll}\text { Handle and insert for } & 003-0307-00 \\ 5 / 64^{\prime \prime} \text { inside diameter } & 003-0310-00\end{array}$ hex slugs

Fig. 4-11. Equipment setup for I-F stages alignment.
4. Small screwdriver with $3 / 32^{\prime \prime}$ bit width, $3 / 32^{\prime \prime}$ diameter shank $3^{\prime \prime}$ long: Tektronix part number 003-0192-00.
5. $1 / 16^{\prime \prime}$ allen wrench.
6. Flexible plug-in extension, Tektronix part number 012-0038-00.

1. I-F Stages Alignment

a. Connect the equipment shown in Fig. 4-11.
b. Preset the front-panel controls of the Type $1 \mathrm{L10}$ as follows:

VERTICAL POSITION	Midrange
R-F ATTEN	All OFF
EXT OSC INT OSC	EXT OSC
VERTICAL DISPLAY	LIN
GAIN	Fully clockwise
DISPERSION-KC/CM	2
COUPLED RESOLUTION	2

Free run the oscilloscope sweep at a sweep rate of 20 mSEC/CM.
c. Set the output frequency of the r-f signal generator to 60 mc and the output amplitude for approximately -90 dbm .
d. Inside the plug-in unit, disconnect the cables at connectors J80 and J101. Connect the cable that was connected to J 80 to J 101 . Use long-nosed pliers to reach the connectors. Connect a cable between J38 and J101.
e. Unsolder the coax at the output of the Wideband Amplifier (see Fig. 4-12) and connect the probe of the test oscilloscope to the output terminal of the Wideband Amplifier. Set the test oscilloscope to observe a 10.7 mc signal
that is approximately 200 mv in amplitude.
f. While observing the test oscilloscope, adjust L154 through the range where the 10.7 mc signal appears and disappears. Set L154 to the middle of the range where the signal appears.
g. Adjust C114, C124, T204, T214 and T224 (Fig. 4-12) for maximum signal amplitude on the test oscilloscope.
h. Disconnect the cable from J101 and connect it back to J80. Reconnect the original cable to J 101.
i. Adjust C89, C92, C95 and C98 (Fig. 4-12) for maximum signal amplitude on the test oscilloscope.
i. Disconnect the test oscilloscope and resolder the connection at the output terminal of the Wideband Amplifier.
k. Connect the probe of the test oscilloscope to the collector of Q370 (or to the ungrounded side of L374) and make a preliminary adjustment of L364 for a frequency of approximately 11.5 mc as displayed on the test oscilloscope.
I. Connect the probe of the test oscilloscope to the base of Q350.
m. Adjust L364 until the sawtooth voltage at the base of Q350 is approximately 1.4 volts, peak to peak. Remove the probe.
n . Connect the probe of the test oscilloscope to the end of the coax that comes from connector J458.
o. Adjust L454 for "lock" of the 900 kc oscillator. The oscillator is "locked" when its frequency no longer changes with adjustment of L454. Set L454 to the middle of its "locked in" range.

Fig. 4-12. Location of adjustments on Wideband Amplifier and 60-mc Filter chassis.

Fig. 4-13. Location of adjustments for steps \mathbf{k} through \mathbf{r}.

NOTE

To adjust L454 an offset adjustment tool may be needed, or the Front-End Oscillator chassis must be removed from its mounting. To remove the Front-End Oscillator from its mounting, remove the RF CENTER FREQ knob with a $1 / 16^{\prime \prime}$ allen wrench. Then remove the nut from around the shaft of the control with a 7/16" wrench. This frees the oscillator. Be careful not to short the chassis of the oscillator to any of the adjacent components.
b. Preset the front-panel controls of the Type 11.10 as follows:

RF CENTER FREQ	3 mc
FINE RF CENTER	Midrange
FREQ	
VERTICAL POSITION	Midrange
R-F ATTEN	All OFF
EXT OSC INT OSC	INT OSC
VERTICAL DISPLAY	LIN
GAIN	Midrange
DISPERSION-KC/CM	2
COUPLED RESOLUTION	2

Fig. 4-14. Equipment setup for adjustment of resolution.
p. Connect the probe of the test oscilloscope to the test point shown in Fig. 4-13.
q. Adjust L405, L410 and L415 for maximum signal on the test oscilloscope. If no signal is observed on the test oscilloscope, set the COUPLED RESOLUTION switch to SEARCH. Also, it may be necessary to adjust L624 to get a display on the test oscilloscope. Remove the probe. Replace the oscillator if necesary.
r. At this point, the Type 1 L 10 should be producing a display of the 60 mc signal. Using this display, adjust L624 for maximum amplitude of the displayed 60 mc signal.

2. Resolution Adjustment

a. Connect the equipment shown in Fig. 4-14.
c. Set the output frequency of the r-f generator for 1 mc .
d. Set the output frequency of the audio generator for 1 kc .
e. With the RF CENTER FREQ control, tune to display the 3rd harmonic (3 mc) of the 1 mc signal from the $r-f$ generator.
f. Set the DISPERSION-KC/CM switch to .5. (Leave the COUPLED RESOLUTION switch at 2.)
g. Set the FINE RF CENTER FREQ control so that the display is centered on the screen.
h. Adjust L557, L537, C554 and C534 for the display shown in Fig. 4-15. The valleys in the display should be

Maintenance and Calibration-Type 1 L10

adjusted for maximum distance from the base line. Also, the display must have good symmetery. While making this adjustment, keep in mind that the largest amplitude of display is not the optimum point for the proper resolution. In fact, proper resolution will occur when the display is several db lower than the maximum amplitude settings of L557, L537, C554 and C534.

Fig. 4-15. Location of Resolution adjustments and the desired waveform with the adjustments properly set. See Text.

3. Balanced Mixer Adjustment

a. Preset the front-panel controls of the Type $1 \mathrm{L10}$ as follows:

RF CENTER FREQ	1.5 mc
RF CENTER FINE	Midrange
FREQ	
VERTICAL POSITION	Midrange
R-F ATTEN	All OFF

GAIN	Fully Clockwise
VERTICAL DISPLAY	LIN
DISPERSION-KC/CM	2
COUPLED RESOLUTION	2
INT OSC EXT OSC	INT OSC

b. With no signal applied to the input of the Type 1L10, slowly turn the RF CENTER FREQ control from 1.5 mc through 3 mc and look for any signal indication on the screen of the oscilloscope. Except for the possibility of any stray external signal radiation, there should be no signals observed on the display produced by the Type 1 L 10 (except for the inherent noise of the system).

Fig. 4-16. Location of Balanced Mixer adjustments.
c. If any spurious signal is observed, position the signal to the center of the screen with the RF CENTER FREQ and FINE RF CENTER FREQ controls.
d. Adjust C71 and C73 (Fig. 4-16) for minimum displayed signal amplitude. After the adjustment is completed, maximum spurious signal amplitude is two times noise.

4. Dispersion Adjustment

a. Connect the equipment shown in Fig. 4-17.
b. Preset the front-panel controls of the Type 1L10 as follows:

RF CENTER FREQ	10 mc
FINE RF CENTER	Midrange
FREQ	
VERTICAL POSITION	Midrange
R-F ATTEN	All OFF
GAIN	Midrange
VERTICAL DISPLAY	LIN
DISPERSION-KC/CM	2
COUPLED RESOLUTION	2
INT OSC EXT OSC	INT OSC

c. Set the output frequency of the r-f generator to $b \mathrm{mc}$.
d. Set the controls of the Harmonic Modulator Unit as follows:

MOD 2 Switch	ON
MOD 2 Knob	Midrange
60-MC TRAP Switch	IN
RF Knob	Midrange

Midrange
Midrange

Fig. 4-17. Equipment setup for Dispersion adjustment.

Fig. 4-18. DISPERSION CAL (R321) adjustment.
e. Set the output frequency of the audio generator to 8 kc .
f. Set the RF CENTER FREQ control of the Type 1 LIO to bring the second harmonic of the 5 mc signal onto the screen. Use the FINE RF CENTER FREQ control to position the 5 mc signal to the centerline of the graticule. Momentarily turn off the MOD 2 switch on the Harmonic Modulator Unit to establish that the center-frequency marker is on the centerline of the graticule rather than one of the 8 kc sidebands.
g. Set the DISPERSION CAL R321, (Fig. 4-18) adjustment for exactly four graticule divisions between the center-frequency marker and the sideband marker on the right-hand side of the graticule.
h. Adjust L374 for exactly four graticule divisions between the center-frequency marker and the sideband marker on the left-hand side of the graticule.
i. Steps g and h interact. Repeat these steps until no further adjustment is necessary.
i. Check the dispersion at all settings of the DISPERSIONKC/CM as per the "Dispersion Check" in the Checkout Procedure.

5. Oscillator Tracking Adjustment

a. Set up the equipment as shown in Fig. 4-19.
b. Set the front-panel controls as follows:

RF CENTER FREQ	36
RF CENTER FINE	Midrange
FREQ	
VERTICAL POSITION	Midrange
R-F ATTEN	All OFF except 16 db
	and 20 db
EXT OSC INT OSC	INT OSC
VERTICAL DISPLAY	LIN
GAIN	Midrange
DISPERSION-KC/CM	2
COUPLED RESOLUTION	2
Oscilloscope Sweep Rate	$5 \mathrm{mSEC} / \mathrm{CM}$
Leave the Oscilloscope power OFF	

Fig. 4-19. Equipment setup for oscillator tracking adjustment.
c. Turn on the oscilloscope power and allow about 20 minutes for warm up and stablization.
d. Set the output frequency of the Type 180A Time-Mark Generator to 5 mc .
e. Set the RF CENTER FREQ control to 5 to display the Type 180A signal on the screen of the oscilloscope.
f. Change the output frequency of the Type 180A to 1 mc ($1 \mu \mathrm{sec}$ markers).
g. Turn the GAIN control clockwise slightly and note the appearance of the 5 th harmonic of the 1 mc signal. Set all R-F ATTEN switches to OFF if more deflection is needed. This signal should appear at the same point on the trace as the signal of step e. Make sure that this signal can be moved by slight adjustment of the FINE RF CENTER FREQ control. If the signal is stationary when the FINE RF CENTER FREQ control is turned, you are observing the 60th harmonic of the 1 mc signal. If this is the case, repeat steps d through g .
h. Slowly turn the RF CENTER FREQ control counterclockwise and observe the $4 \mathrm{th}, 3 \mathrm{rd}$, 2nd and fundamental displays of the 1 mc signal. Set the RF CENTER FREQ control to display the fundamental signal.
i. Check the RF CENTER FREQ dial reading. If it does not read $1 \mathrm{mc}, \pm 110 \mathrm{kc}$, carefully adjust T 50 (Fig. 4-20) so that the dial reading is proper when the 1 mc signal is displayed on the screen.

Fig. 4-20. Location of oscillator adjustments.
i. Set the output frequency of the Type 180A Time-Mark Generator to 5 mc .
k. Turn the RF CENTER FREQ control to the 35 mm region to display the seventh harmonic of the 5 mc signal. This can be verified by momentarily changing the output frequency of the signal generator to 10 mc and insuring that it produces no harmonic at this point. Return the output frequency of the signal generator to 5 mc to display the 7 th harmonic of the 5 mc signal.
I. Change the output frequency of the signal generator to 1 mc and check for the presence of the 35th harmonic of the 1 mc signal. Turn off all R-F ATTEN switches. The GAIN control may have to be turned clockwise slightly in order to see this signal.
m. Slowly turn the RF CENTER FREQ control clockwise to display the 36th harmonic of the 1 mc signal.
n. Check the dial reading. If the dial does not read 36 mc , $\pm 460 \mathrm{kc}$, carefully adjust C49 (Fig. 4-21) so that the dial reading is proper when the signal is displayed on the screen.
o. Due to interaction between adjustments, steps d through n should be repeated until no further adjustment is necessary.

NOTE

If the tracking of the oscillator cannot be calibrated to within specifications, check the setting of the slug in the oscillator housing as per steps p, q, r and s. Then repeat the preceding steps.

Fig. 4-21. Proper position of oscillator tuning slug when the dial reading is 36 mc .
p. Remove the Front-End Oscillator from its mounting as follows:
(a) Remove the RF CENTER FREQ knob with a $1 / 16^{\prime \prime}$ allen wrench.
(b) Remove the nut from around the shaft of the RF

Fig. 4-22. Equipment Setup for LOG ADJ and GAIN RANGE adjustment.

CENTER FREQ control with a $7 / 16^{\prime \prime}$ wrench. This frees the oscillator from the front panel.
(c) Carefully lift the oscillator free from the front panel.
q. Remove the metal cover of the Front-End Oscillator by unscrewing all of the screws on the sides of the oscillator housing.
r. Inside the oscillator, check to insure that the end of the tuning slug of the oscillator is positioned in the transparent plastic area of the sleeve no further than $1 / 16^{\prime \prime}$ and no less than $1 / 32^{\prime \prime}$ (Fig. 4-21). If not, turn the RF CENTER FREQ control until the funing slug is within these dimensions. Once this has been done, move the metal tape of the RF CENTER FREQ dial so that the dial reads 36. The tape can be disengaged from the sprocket by slightly unrolling the tape from one of the rollers.
s. Remount the oscillator to the front panel using the reverse of the procedures of steps d and c.

6. LOG ADJ and GAIN RANGE Adjustment

a. Connect the equipment as shown in Fig. 4-22.
b. Preset the front-panel controls of the Type 1 LIO as follows:

RF CENTER FREQ	10
RF CENTER FINE	Midrange
FREQ	
VERTICAL POSITION	Midrange
R-F ATTEN	All OFF
GAIN	Fully Clockwise
VERTICAL DISPLAY	LIN
INT OSC EXT OSC	INT OSC
DISPERSION-KC/CM	2
COUPLED RESOLUTION	2

c. Set the output frequency of the r-f signal generator to 10 mc and the output amplitude for -90 dbm .
d. Set the RF CENTER FREQ control to display the 10 mc signal from the r-f generator.
e. Switch in the necessary R-F ATTEN switches to set the displayed amplitude of the signal to exactly 6 cm of vertical deflection. Use external attenuation if necessary, but do not change the output amplitude of the signal generator.
f. Turn the GAIN control of the Type 1 LIO fully counterclockwise.
g. Increase the output amplitude of the r - f signal generator to -30 dbm .
h. Check for 6 cm of vertical deflection. If there is not 6 cm of deflection, adjust the GAIN RANGE, R107 (Fig. 4-23).
i. Set the VERTICAL DISPLAY switch to LOG.
i. Set the output amplitude of the r-f signal generator to -50 dbm .
k. Turn the GAIN control of the Type 1 LIO fully clockwise.
I. Remove any external attenuation and switch all R-F ATTEN switches to OFF.
m . Check for 6 cm of vertical deflection. If there is not 6 cm of deflection, set the LOG ADJ, R646 (Fig. 4-23).

Fig. 4-23. Location of LOG ADJ and GAIN RANGE adjustments.

7. Gain Compensation Adjustment

a. Connect the equipment as shown in Fig. 4-24.
b. Preset the front panel controls of the Type 1.10 as follows:

RF CENTER FREQ	Any setting
FINE RF CENTER FREQ	Any setting
VERTICAL POSITION	Midrange
R-F ATTEN	All OFF
GAIN	Midrange
VERTICAL DISPLAY	LIN
EXT OSC INT OSC	EXT OSC
DISPERSION-KC/CM	2
COUPLED RESOLUTION	2
Oscilloscope Sweep Rate	$20 \mathrm{mSEC} / \mathrm{CM}$

Fig. 4-24. Equipment setup for gain compensation adjustment.
c. On the Harmonic Modulator Unit, set the 60 mc TRAP switch to out.
d. Set the GAIN control of the Type 1 LIO for about six centimeters of displayed signal.
e. Set the output frequency of the Type 105 Square-Wave Generator to about 2 kc and adjust its output amplitude so that the modulation markers are clearly visible.

Fig. 4-25. Initial display for gain compensation.
f. Set the output frequency of the Type 105 so that the first modulation marker on the left-hand side of the center
frequency is at the graticule centerline (see Fig. 4-25).
g. Set the DISPERSION-KC/CM and COUPLED RESOLUTION switches to $1, .5, .2, .1, .05, .02$ and .01 while keeping the modulation marker centered on the screen by varying the output frequency of the Type 105 Square-Wave Generator.
h. Set the sweep rate of the oscilloscope to $.2 \mathrm{SEC} / \mathrm{CM}$.
i. Adjust C564 and C544 for the same displayed signal amplitude in the $.1 \mathrm{KC} / \mathrm{CM}$ and $2 \mathrm{KC} / \mathrm{CM}$ settings of the DISPERSION-KC/CM switch.

Fig. 4-26. Location of gain compensating adjustments.

SECTION 5

PARTS LIST and DIAGRAMS

PARTS ORDERING INFORMATION

Replacement parts are available from or through your local Tektronix Field Office.
Changes to Tektronix instruments are sometimes made to accommodate improved components as they become available, and to give you the benefit of the latest circuit improvements developed in our engineering department. It is therefore important, when ordering parts, to include the following information in your order: Part number including any suffix, instrument type, serial number, and modification number if applicable.

If a part you have ordered has been replaced with a new or improved part, your local Tektronix Field Office will contact you concerning any chanae in part number.

ABBREVIATIONS AND SYMBOLS			
a or amp	amperes	mm	millimeter
BHS	binding head steel	meg or M	megohms or mega (10 ${ }^{6}$)
C	carbon	met.	metal
cer	ceramic	μ	micro, or 10^{-6}
cm	centimeter	n	nano, or 10^{-9}
comp	composition	Ω	ohm
cps	cycles per second	OD	outside diameter
crt	cathode-ray tube	OHS	oval head steel
CSK	counter sunk	p	pico, or 10^{-12}
dia	diameter	PHS	pan head steel
div	division	piv	peak inverse voltage
EMC	electrolytic, metal cased	plstc	plastic
EMT	electroyltic, metal tubular	PMC	paper, metal cased
ext	external	poly	polystyrene
f	farad	Prec	precision
F \& I	focus and intensity	PT	paper tubular
FHS	flat head steel	PTM	paper or plastic, tubular, molded
Fil HS	fillister head steel	RHS	round head steel
g or G	giga, or 10^{9}	rms	root mean square
Ge	germanium	sec	second
GMV	guaranteed minimum value	Si	silicon
h	henry	S/N	serial number
hex	hexagonal	\dagger or T	tera, or 10^{12}
HHS	hex head steel	TD	toroid
HSS	hex socket steel	THS	truss head steel
HV	high voltage	tub.	tubular
ID	inside diameter	v or V	volt
incd	incandescent	Var	variable
int	internal	w	watt
k or K	kilohms or kilo (10^{3})	w/	with
kc	kilocycle	w/o	without
m	milli, or 10^{-3}	WW	wire-wound
mc	megacycle		

SPECIAL NOTES AND SYMBOLS

X000
000X Part first added at this serial number.
*000-000 Asterisk preceding Tektronix Part Number indicates manufactured by or for Tektronix, or reworked or checked components.

Use
$000-000$
Part number indicated is direct replacement.

Internal screwdriver adjustment.
Front-panel adjustment or connector.

EXPLODED VIEW

EXPLODED VIEW (Cont'd)

REF.		SERIAL/MODEL NO.			
NO.	PART NO.	EFF.	DISC.	T	N
16	175-0325-00			1	CABLE, assembly (oscillator out to oscillator chassis)
17	175-0326-00			1	CABLE, assembly (oscillator in to converter filter)
18	333-0911-00	1030	1079	1	PANEL, front, Type L-10A
	333-0911-01	1080		1	PANEL, front, Type 1110
19	260-0643-00			1	SWITCH, toggle-EXT OSC/INT OSC
	- - - -				mounting hardware: (not included w/switch)
	210-0562-00			2	NUT, hex, $1 / 4-40 \times 5 / 16$ inch
	210-0940-00			1	WASHER, $1 / 4 \mathrm{ID} \times 3 / 8$ inch OD
	210-0046-00			1	LOCKWASHER, internal, . 400 OD $\times .261$ inch ID
	210-0241-00			1	LUG, solder
20	136-0094-00			1	SOCKET, miniature jax, w/hardware
	610-0149-00			1	ASSEMBLY, R-F ATTENUATOR
	- - - -				assembly includes:
21	131-0372-00			3	CONNECTOR, coax., w/hardware
22	260-0642-00			6	SWITCH, toggle
	337-0702-00	1030	1259	1	mounting hardware for each: (not included w/switch alone) SHIELD, switch
	210-0562-00			1	NUT, hex, $1 / 4-40 \times 5 / 16$ inch
	337-0799-00	1260		1	SHIELD, switch
23	441-0620-00			1	CHASSIS
24	---			-	mounting hardware: (not included w/assembly)
	210-0940-00			6	WASHER, $1 / 4 \mathrm{ID} \times 3 / 8$ inch OD
	210-0562-00			6	NUT, hex, $1 / 4-40 \times 5 / 16$ inch
25	337-0706-00			1	SHIELD, cover
	---- -			-	mounting hardware: (not included w/shield)
	213-0138-00			4	SCREW, 4-40 $\times 3 / 16$ inch, PHS phillips
26	386-0115-00			1	PLATE, dial window
	----			-	mounting hardware: (not included w/plate)
	213-0138-00			2	SCREW, thread forming, \# $4 \times 3 / 16$ inch, PHS phillips
27	384-0631-00			2	ROD, spacer
	- --- -			-	mounting hardware for each: (not included w/rod)
	$212-0043-00$			1	SCREW, $8-32 \times 1 / 2$ inch, 100°, CSK, FHS phillips
	212-0044-00			1	SCREW, $8-32 \times 1 / 2$ inch, RHS phillips
28	384-0633-00			2	ROD, spacer
	-----			1	mounting hardware for each: (not included w/rod)
	212-0043-00			1	SCREW, $8-32 \times 1 / 2$ inch, 100°, CSK, FHS phillips
	212-0044-00			1	SCREW, $8-32 \times 1 / 2$ inch, RHS phillips
	610-0151-00			1	ASSEMBLY, OSCILLATOR CHASSIS (See Ref. \#47)
	- ---			-	assembly includes:
2930	131-0372-00			1	CONNECTOR, coax.
	131-0373-00			$\stackrel{1}{-}$	CONNECTOR, terminal standoff mounting hardware: (not included w/connector alone)
	210-0259-00			2	LUG, solder, peewee
	210-0405-00				NUT, hex, $2-56 \times 3 / 16$ inch

EXPLODED VIEW (Cont'd)

EXPLODED VIEW (Cont'd)

EXPLODED VIEW (Cont'd)

Parts List-Type 1 LIO

EXPLODED VIEW
(Cont'd)

EXPLODED VIEW (Cont'd)

REF.	PART No.	SERIAL/MODEL NO.		$\begin{aligned} & \hline \mathbf{Q} \\ & \mathbf{T} \\ & \mathbf{Y} \end{aligned}$	DESCRIPTION
NO.		EFF.	DISC.		
89	$\begin{aligned} & 131-0373-00 \\ & 210-0405-00 \\ & 210-0001-00 \end{aligned}$			1 - 1 1	CONNECTOR, standoff mounting hardware: (not included w/connector alone) NUT, hex, $2-56 \times 3 / 16$ inch LOCKWASHER, internal, \#2
90	$211-0504-00$			$\begin{aligned} & 4 \\ & i \\ & 1 \end{aligned}$	COIL mounting hardware for each: (not included w/coil alone) SCREW, $6-32 \times 1 / 4$ inch, BHS
91	$\begin{aligned} & 426-0121-00 \\ & \hdashline 361-0007-00 \end{aligned}$			$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	HOLDER mounting hardware: (not included w/holder alone) SPACER, nylon
92	337-0742-00			2	SHIELD
93	441-0615-00			1	CHASSIS
94	$\begin{gathered} -\cdots- \\ 210-0821-00 \\ 210-0813-00 \end{gathered}$			2 - 1 2	mounting hardware for each: (not included w/coil alone) WASHER, \# 10 aluminum, $1 / 4$ ID $\times 1 / 2$ inch OD WASHER, fiber, \#10 shouldered
95	210-0813-00			$\begin{aligned} & 2 \\ & 2 \\ & 2 \end{aligned}$	COIL, w/hardware mounting hardware for each: (not included w/coil alone) WASHER, fiber, \#10 shouldered
96	$\begin{gathered} 610-0146-00 \\ \hdashline-- \\ 131-0372-00 \end{gathered}$			1	ASSEMBLY, WIDEBAND I-F assembly includes: CONNECTOR, coax
97	131-0373-00			2	CONNECTOR, standoff
	$\begin{aligned} & 210-0001-00 \\ & 210-0405-00 \end{aligned}$			1	mounting hardware for each: (not included w/connector alone) LOCKWASHER, internal, \#2 NUT, hex, $2-56 \times 3 / 16$ inch
98	$\begin{aligned} & 131-0182-00 \\ & -358-0135-00 \end{aligned}$			1 -	CONNECTOR, feed thru mounting hardware: (not included w/connector alone) BUSHING, teflon
99	$\begin{aligned} & 136-0182-00 \\ & ---- \\ & 354-0234-00 \end{aligned}$			4	SOCKET, transistor, 4 pin mounting hardware for each: (not included w/socket alone) RING, mounting
100	$\begin{aligned} & 136-0153-00 \\ & 211-0001-00 \\ & 210-0001-00 \\ & 210-0405-00 \end{aligned}$			1 - 1 1 1	SOCKET, crystal mounting hardware: (not included w/socket alone) SCREW, $2-56 \times 3 / 16$ inch, RHS LOCKWASHER, internal, \#2 NUT, hex, $2-56 \times 3 / 16$ inch
101	$\begin{aligned} & 136-0181-00 \\ & \hdashline- \\ & 354-0234-00 \end{aligned}$			2 - 1	SOCKET, transistor, 3 pin mounting hardware for each: (not included w/socket alone) RING, mounting

EXPLODED VIEW (Cont'd)

CABLE HARNESS \& CERAMIC STRIPS

ELECTRICAL PARTS

Values are fixed unless marked Variable.
Tektronix
Ckt No.
Part No.
Description
S/N Range
Capacitors
Tolerance $\pm 20 \%$ unless otherwise indicated.

C40	283-0039-00	$0.001 \mu \mathrm{f}$	Cer		500 v	
C42	283-0067-00	$0.001 \mu \mathrm{f}$	Cer		200 v	10\%
C46	283-0059-00	$1 \mu \mathrm{f}$	Cer		25 v	
C47	281-0518-00	47 pf	Cer		500 v	
C48	281-0592-00	4.7 pf	Cer			$\pm 0.5 \mathrm{pf}$
C49	281-0027-00	0.7-3 pf	Tub.	Var		
C50 \dagger	281-0109-00	1-16.5 pf		Var		FREQUENCY
C54	283-0039-00	$0.001 \mu \mathrm{f}$	Cer		500 v	
C55	283-0039-00	$0.001 \mu \mathrm{f}$	Cer		500 v	
C71	281-0105-00	0.8-8.5 pf	Cer	Var		
C72	281-0592-00	4.7 pf	Cer			$\pm 0.5 \mathrm{pf}$
C73	281-0105-00	0.8-8.5 pf	Cer	Var		
C74	281-0592-00	4.7 pf	Cer			$\pm 0.5 \mathrm{pf}$
C80	283-0534-00	82 pf	Mica		500 v	5\%
C81	283-0534-00	82 pf	Mica		500 v	5\%
C89	281-0105-00	0.8-8.5 pf	Cer	Var		
C90	283-0534-00	82 pf	Mica		500 v	5\%
C92	281-0105-00	0.8-8.5 pf	Cer	Var		
C93	283-0534-00	82 pf	Mica		500 v	5\%
C95	281-0105-00	0.8-8.5 pf	Cer	Var		
C96	283-0534-00	82 pf	Mica		500 v	5\%
C98	281-0105-00	0.8-8.5 pf	Cer	Var		
C101	283-0067-00	$0.001 \mu \mathrm{f}$	Cer		200 v	10\%
C107	283-0039-00	$0.001 \mu \mathrm{f}$	Cer		500 v	
C110	283-0039-00	$0.001 \mu \mathrm{f}$	Cer		500 v	
C114	281-0105-00	$0.8-8.5 \mathrm{pf}$	Cer	Var		
C115	283-0067-00	$0.001 \mu \mathrm{f}$	Cer		200 v	10\%
C123	283-0067-00	$0.001 \mu \mathrm{f}$	Cer		200 v	10\%
C124	281-0105-00	0.8-8.5 pf	Cer	Var		
C125	283-0067-00	$0.001 \mu \mathrm{f}$	Cer		200 v	10\%
C140	283-0039-00	$0.001 \mu \mathrm{f}$	Cer		500 v	
C146	283-0067-00	$0.001 \mu \mathrm{f}$	Cer		200 v	10\%
C147	283-0067-00	$0.001 \mu \mathrm{f}$	Cer		200 v	10\%
C150	281-0504-00	10 pf	Cer		500 v	10\%
C155	283-0039-00	$0.001 \mu \mathrm{f}$	Cer		500 v	
C156	281-0602-00	68 pf	Cer		500 v	5\%
C157	283-0610-00	220 pf	Mica		500 v	
C203	Use 283-0079-00	0.01 ff	Cer		250 v	
C204	283-0067-00	$0.001 \mu \mathrm{f}$	Cer		200 v	10\%
C205	283-0067-00	$0.001 \mu \mathrm{f}$	Cer		200 v	10\%

Capacitors (Cont'd)

Ckt No.	Tekłronix Part No.		Description				S/N Range
C213	283-0079-00	$0.01 \mu \mathrm{f}$	Cer		250 v		
C214	283-0067-00	$0.001 \mu \mathrm{f}$	Cer		200 v	10\%	
C215	283-0067-00	$0.001 \mu \mathrm{f}$	Cer		200 v	10\%	
C223	283-0079-00	$0.01 \mu \mathrm{f}$	Cer		250 v		
C224	283-0067-00	$0.001 \mu \mathrm{f}$	Cer		200 v	10\%	
C226	283-0609-00	100 pf	Mica		500 v		
C227	283-0609-00	100 pf	Mica		500 v		
C228	283-0039-00	$0.001 \mu \mathrm{f}$	Cer		500 v		
C351	285-0633-00	0.22 \%	PTM		100 v	10\%	
C361	283-0079-00	$0.01 \mu \mathrm{f}$	Cer		250 v		
C362	281-0523-00	100 pf	Cer		350 v		
C364	285-0008-00	150 pf	Cer		500 v	5\%	
C365	Use 283-0077-00	330 pf	Cer		500 v	5\%	
C370	281-0576-00	11 pf	Cer		500 v	5\%	
C371	281-0518-00	47 pf	Cer		500 v		
C373	283-0079-00	$0.01 \mu \mathrm{f}$	Cer		250 v		
C374	281-0504-00	10 pf	Cer		500 v	10\%	
C375	281-0594-00	150 pf	Cer		100 v	5\%	
C387	283-0079-00	$0.01 \mu \mathrm{f}$	Cer		250 v		
C389	283-0067-00	$0.001 \mu \mathrm{f}$	Cer		200 v	10\%	
C398	281-0504-00	10 pf	Cer		500 v	10\%	
C405	281-0617-00	15 pf	Cer		200 v		
C410	285-0598-00	0.01 mf	PTM		100 v	5\%	
C411	285-0627-00	$0.0033 \mu \mathrm{f}$	PTM		100 v	5\%	
C415	281-0617-00	15 pf	Cer		200 v		
C450	283-0608-00	68 pf	Mica		500 v		X1260-up
C451	283-0079-00	$0.01 \mu \mathrm{f}$	Cer		250 v		X1260-up
C453	283-0079-00	$0.01 \mu \mathrm{f}$	Cer		250 v		1030-1259X
C454	285-0003-00	100 pf	Glass		500 v	5\%	X1260-up
C455	283-0079-00	0.01 ff	Cer		250 v		1000-1259X
C456	283-0039-00	$0.001 \mu \mathrm{f}$	Cer		500 v		
C457	283-0510-00	180 pf	Mica		500 v	5\%	1030-1259
C457	285-0004-00	220 pf	Glass		500 v	5\%	1260-up
C458	283-0605-00	678 pf	Mica		300 v	1\%	1030-1259
C458	283-0079-00	$0.01 \mu \mathrm{f}$	Cer		250 v		1260-up
C501	283-0079-00	$0.01 \mu \mathrm{f}$	Cer		250 v		
C512	283-0081-00	$0.1 \mu \mathrm{f}$	Cer		25 v		
C514	283-0104-00	$0.002 \mu \mathrm{f}$	Cer		500 v	5\%	
C520	283-0085-00	$0.0027 \mu \mathrm{f}$	Cer		1000 v	5\%	
C522	283-0079-00	$0.01 \mu \mathrm{f}$	Cer		250 v		
C524	283-0079-00	$0.01 \mu \mathrm{f}$	Cer		250 v		
C526	283-0081-00	$0.1 \mu \mathrm{f}$	Cer		25 v		
C534	281-0063-00	9-35 pf	Cer	Var			
C537	283-0079-00	$0.01 \mu \mathrm{f}$	Cer		250 v		
C538	281-0603-00	39 pf	Cer		500 v	5\%	
C543	290-0267-00	$1 \mu \mathrm{f}$	EMT		35 v		
C544	281-0075-00	5-25 pf	Cer	Var			
C550	283-0079-00	0.01 ¢f	Cer		250 v		
C554	281-0063-00	$9-35 \mathrm{pf}$	Cer	Var			
C555	290-0267-00	$1 \mu \mathrm{f}$	EMT		35 v		

Connectors (Cont'd)

Transistors

Q40	$151-0161-00$	2N3284
Q110	$151-0161-00$	2N3284
Q120	$151-0161-00$	2N3284
Q150	$151-0161-00$	2N3284
Q200	$151-0161-00$	2N3284
Q210	$151-0162-00$	2N3324
Q220	$151-0162-00$	2N3324
Q340	$151-0164-00$	2N3702
Q341	$151-0164-00$	2N3702
Q350	$151-0164-00$	2N3702
Q351	$151-0164-00$	2N3702
Q360	$151-0162-00$	2N3324

Transistors (Cont'd)

Ckt No.	Tektronix Part No.	Description	S/N Range
Q370	151-0162-00	2N3324	
Q450	151-0162-00	2N3324	1030-1259
Q450	151-0164-00	2N3702	1260-up
Q500	151-0162-00	2N3324	
Q510	151-0162-00	2N3324	
Q520	*151-0153-00	Replaceable by 2 N 2923	
Q530	151-0162-00	2N3324	
Q540	*151-0153-00	Replaceable by 2 N 2923	
Q550	151-0162-00	2N3324	
Q560	*151-0155-00	Replaceable by 2N2925	
Q600	*151-0153-00	Replaceable by 2N2923	
Q610	*151-0153-00	Replaceable by 2 N 2923	
Q650	*151-0155-00	Replaceable by 2 N 2925	

Resistors

Resistors are fixed, composition, $\pm 10 \%$ unless otherwise indicated.

R1	316-0561-00	560Ω	1/4 w		
R2	316-0331-00	330Ω	$1 / 4 \mathrm{w}$		
R4	316-0180-00	18Ω	$1 / 4 \mathrm{w}$		
R5	316-0331-00	330Ω	$1 / 4 \mathrm{w}$		
R8	315-0911-00	910Ω	$1 / 4 \mathrm{w}$		5\%
R9	307-0107-00	5.6Ω	$1 / 4 \mathrm{w}$		5\%
R10	315-0911-00	910Ω	$1 / 4$ w		5\%
R13	315-0431-00	430Ω	$1 / 4$ w		5\%
R14	315-0120-00	12Ω	$1 / 4 \mathrm{w}$		5\%
R15	315-0431-00	430Ω	$1 / 4 \mathrm{w}$		5\%
R18	315-0221-00	220Ω	$1 / 4 \mathrm{w}$		5\%
R19	315-0240-00	24Ω	$1 / 4$ w		5\%
R20	315-0221-00	220Ω	$1 / 4 w$		5\%
R23	315-0121-00	120Ω	$1 / 4 \mathrm{w}$		5\%
R24	315-0510-00	51Ω	$1 / 4 \mathrm{w}$		5\%
R25	315-0121-00	120Ω	$1 / 4 \mathrm{w}$		5\%
R28	315-0680-00	68Ω	$1 / 4 \mathrm{w}$		5\%
R29	315-0151-00	150Ω	$1 / 4 \mathrm{w}$		5\%
R30	315-0680-00	68Ω	$1 / 4 \mathrm{w}$		5\%
R33	315-0620-00	62Ω	$1 / 4 \mathrm{w}$		5\%
R34	315-0241-00	240Ω	$1 / 4 \mathrm{w}$		5\%
R35	315-0620-00	62Ω	$1 / 4 \mathrm{w}$		5\%
R37	316-0331-00	330Ω	$1 / 4 \mathrm{w}$		
R38	316-0180-00	18Ω	$1 / 4 \mathrm{w}$		
R39	316-0331-00	330Ω	$1 / 4 \mathrm{w}$		
R40	305-0562-00	5.6 k	2 w		5\%
R41	322-0227-00	2.26 k	$1 / 4 \mathrm{w}$	Prec	1\%
R42	322-0227-00	2.26 k	$1 / 4 \mathrm{w}$	Prec	1\%
R45	321-0185-00	825Ω	1/8 w	Prec	1\%
R46	321-0177-00	681Ω	1/8 w	Prec	1\%

Resistors (Cont'd)

Ckt No.	Tektronix Part No.		Description			S/N Range
R327	321-0143-00	301Ω	$1 / 8 \mathrm{w}$	Prec	1\%	
R328	321-0097-00	100Ω	$1 / 8 \mathrm{w}$	Prec	1\%	
R329	321-0097-00	100Ω	1/8 w	Prec	1\%	
R340	316-0102-00	1 k	$1 / 4 \mathrm{w}$			X1080-up
R343	316-0154-00	150 k	$1 / 4 \mathrm{w}$			x1080-up
R344	316-0472-00	4.7 k	$1 / 4$ w			
R345	302-0473-00	47 k	1/2w			
R351	316-0103-00	10 k	$1 / 4 \mathrm{w}$			
R353	316-0154-00	150 k	$1 / 4 \mathrm{w}$			
R354	316-0472-00	4.7 k	$1 / 4 \mathrm{w}$			
R355	Use 316-0334-00	330 k	$1 / 4 \mathrm{w}$			
R360	316-0823-00	82 k	$1 / 4 \mathrm{w}$			
R361	316-0103-00	10 k	$1 / 4 \mathrm{w}$			
R363	Use 302-0393-00	39 k	$1 / 2 \mathrm{w}$			
R370	316-0823-00	82 k	$1 / 4 \mathrm{w}$			
R371	316-0103-00	10 k	$1 / 4 \mathrm{w}$			
R373	316-0104-00	100 k	$1 / 4 \mathrm{w}$			
R387	308-0212-00	100 k	3 w	WW	5\%	
R396	316-0471-00	470Ω	$1 / 4 \mathrm{w}$			
R398	316-0561-00	560Ω	$1 / 4 \mathrm{w}$			
R450	316-0222-00	2.2 k	$1 / 4 \mathrm{w}$			1030-1259
R450	315-0272-00	2.7 k	$1 / 4 \mathrm{w}$		5\%	1260-up
R451	316-0103-00	10 k	$1 / 4 \mathrm{w}$			1030-1259
R451	315-0563-00	56 k	$1 / 4$ w		5\%	1260-up
R452	316-0333-00	33 k	$1 / 4$ w			1030-1259
R452	316-0153-00	15 k	$1 / 4 \mathrm{w}$			1260-up
R453	316-0102-00	1 k	$1 / 4 \mathrm{w}$			
R455	316-0153-00	15 k	$1 / 4 \mathrm{w}$			1030-1259
R455	315-0243-00	24 k	$1 / 4$ w		5\%	1260-up
R501	316-0561-00	560Ω	$1 / 4 \mathrm{w}$			
R504	316-0472-00	4.7 k	$1 / 4 \mathrm{w}$			
R510	316-0103-00	10 k	$1 / 4 \mathrm{w}$			
R512	316-0221-00	220Ω	$1 / 4 \mathrm{w}$			
R513	316-0470-00	47Ω	$1 / 4 \mathrm{w}$			
R514	316-0102-00	1 k	$1 / 4 \mathrm{w}$			
R515	316-0221-00	220Ω	$1 / 4 \mathrm{w}$			
R516	316-0221-00	220Ω	$1 / 4$ w			
R517	316-0221-00	220Ω	$1 / 4 \mathrm{w}$			
R518	316-0102-00	1 k	$1 / 4$ w			
R520	316-0102-00	1 k	$1 / 4 \mathrm{w}$			
R521	316-0682-00	6.8 k	$1 / 4 \mathrm{w}$			
R522	316-0222-00	2.2 k	$1 / 4$ w			
R524	316-0471-00	470Ω	$1 / 4 \mathrm{w}$			
R525	316-0220-00	22Ω	$1 / 4 \mathrm{w}$			
R526	316-0471-00	470Ω	$1 / 4 \mathrm{w}$			
R530	316-0102-00	1 k	$1 / 4 \mathrm{w}$			
R531	316-0103-00	10 k	$1 / 4 \mathrm{w}$			
R533	316-0471-00	470Ω	$1 / 4$ w			
R534	316-0471-00	470Ω	$1 / 4 \mathrm{w}$			
R537	316-0472-00	4.7 k	$1 / 4 \mathrm{w}$			
R538	302-0104-00	100 k	1/2 w			

Resistors (Cont'd)

Ckt No.	Tektronix Part No.		Description				S/N Range
R543	306-0223-00	22 k	2 w				
R544	316-0471-00	470Ω	$1 / 4 \mathrm{w}$				
R574	316-0103-00	10 k	$1 / 4 \mathrm{w}$				
R548	306-0223-00	22 k	2 w				
R550	316-0012-00	1 k	$1 / 4 \mathrm{w}$				
R551	316-0103-00	10 k	$1 / 4 \mathrm{w}$				
R553	316-0471-00	470Ω	$1 / 4 \mathrm{w}$				
R554	316-0471-00	470Ω	$1 / 4 \mathrm{w}$				
R555	316-0102-00	1 k	$1 / 4 \mathrm{w}$				
R557	316-0472-00	4.7 k	$1 / 4 \mathrm{w}$				
R558	302-0104-00	100 k	$1 / 2 \mathrm{w}$				
R563	306-0223-00	22 k	2 w				
R564	316-0471-00	470Ω	$1 / 4 \mathrm{w}$				
R567	316-0103-00	10 k	$1 / 4 \mathrm{w}$				
R568	306-0223-00	22 k	2 w				
R570	315-0472-00	4.7 k	$1 / 4$ w			5\%	
R571	315-0103-00	10 k	$1 / 4 \mathrm{w}$			5\%	
R572	315-0223-00	22 k	$1 / 4 \mathrm{w}$			5\%	
R573	315-0473-00	47 k	$1 / 4 \mathrm{w}$			5\%	
R574	315-0104-00	100 k	$1 / 4 \mathrm{w}$			5\%	
R575	315-0473-00	47 k	$1 / 4$ w			5\%	
R576	301-0223-00	22 k	$1 / 2 \mathrm{w}$			5\%	
R601	316-0684-00	680 k	$1 / 4 \mathrm{w}$				
R602	316-0474-00	470 k	$1 / 4$ w				
R603	302-0472-00	4.7 k	$1 / 2 \mathrm{w}$				1030-1259
R603	305-0223-00	22 k	2 w			5\%	1260-up
R604	316-0102-00	1 k	$1 / 4$ w				
R605	316-0102-00	1 k	$1 / 4 \mathrm{w}$				
R606	316-0104-00	100 k	$1 / 4 \mathrm{w}$				
R614	316-0474-00	470 k	$1 / 4 \mathrm{w}$				
R615	316-0101-00	100Ω	$1 / 4 \mathrm{w}$				
R616	316-0394-00	390 k	$1 / 4 \mathrm{w}$				
R621	316-0153-00	15 k	$1 / 4 \mathrm{w}$				
R623	316-0102-00	1 k	$1 / 4$ w				
R626	316-0221-00	220Ω	$1 / 4 \mathrm{w}$				
R628	316-0470-00	47Ω	$1 / 4 \mathrm{w}$				
R630	311-0006-00	1 k		Var		VERTICAL P	POSITION
R631	304-0103-00	10 k	1 w				
R640	316-0105-00	1 meg	$1 / 4 \mathrm{w}$				
R641	316-0105-00	1 meg	$1 / 4 \mathrm{w}$				
R645	316-0105-00	1 meg	$1 / 4 \mathrm{w}$				
R646	Use 311-0541-00	20 k		Var		LOG ADJ	
R647	315-0823-00	82 k	$1 / 4 \mathrm{w}$			5\%	
R648	316-0105-00	1 meg	$1 / 4$ w				
R649	323-0071-00	53.6Ω	$1 / 2 \mathrm{w}$		Prec	1\%	

Resistors (Cont'd)

Ckt No.	Tektronix Part No.		Description			S/N Range
R651	316-0104-00	100 k	$1 / 4 \mathrm{w}$			
R652	316-0105-00	1 meg	$1 / 4$ w			
R653	Use 308-0313-00	20 k	3 w	WW	1\%	
R654	316-0471-00	470Ω	$1 / 4 \mathrm{w}$			
R656	316-0332-00	3.3 k	$1 / 4 \mathrm{w}$			
R657	316-0332-00	3.3 k	1/4 w			
R658	316-0681-00	680Ω	$1 / 4 \mathrm{w}$			
R662	308-0352-00	425Ω	25 w	WW	1\%	
R667	308-0212-00	10 k	3 w	WW	5\%	

Switches

	Unwired	Wired		
SW9	260-0642-00		Toggle	1 db
SW14	260-0642-00		Toggle	2 db
SW19	260-0642-00		Toggle	4 db
SW24	260-0642-00		Toggle	8 db
SW29	260-0642-00		Toggle	16 db
SW34	260-0642-00		Toggle	20 db
SW40	260-0643-00		Toggle	EXT OSC-INT OSC
SW320	260-0583-00		Slide	SAWTOOTH SELECTOR
SW325A	260-0674-00	*262-0703-00	Rotary	DISPERSION-KC/CM
SW325B				COUPLED RESOLUTION
SW640†		*262-0702-00	Rotary	VERTICAL DISPLAY

Transformers

T50	$* 114-0188-00$	$0.22-0.38 ~$	μh
T70	$* 120-0389-00$	Toroid, 3 windings	Var
T114	*120-0390-00	Toriod, 2 windings	
T124	$* 120-0391-00$	Toriod, 2 windings	
T204	$120-0367-00$	10.7 MC	
T214	$120-0367-00$	10.7 MC	
T224	$120-0367-00$	10.7 MC	

\dagger Furnished as a unit with R109A,B.
Electron Tube
EXT OSC-INT OSC SAWTOOTH SELECTOR DISPERSION-KC/CM

VERTICAL DISPLAY

[^0]
Parts List-Type

Crystals

Ckt No.	Tektronix Part No.	Description	S/N Range
Y150	158-0020-00	49.3 MC	
Y380	*120-0368-00	Discriminator 11.5 MC	
Y450	158-0021-00	900 KC	
Y530	158-0022-00	100 KC	
Y550	158-0022-00	100 KC	

IMPORTANT

VOLTAGE AND WAVEFORM CONDITIONS

Circuit voltages measured with $20,000 \Omega /$ volt VOM. All readings in VOLTS.

Voltage and waveform measurements are not absolute and may vary from unit to unit. For these measurements, a $30^{\prime \prime}$ flexible plug-in extension cable (Tektronix Part No. 012-0038-00) was used to operate the Type 1 Ll 10 outside of the oscilloscope plug-in compartment.
The oscilloscope time base was set for a free-running sweep at a 5 millisecond/centimeter rate.

Voltage readings were obtained under the following conditions:

RF CENTER FREQ
FINE RF CENTER FREQ
VERTICAL POSITION
R-F ATTEN
VERTICAL DISPLAY
GAIN
EXT OSC INT OSC
DISPERSION - KC/CM
COUPLED RESOLUTION

5 mc

Midrange
Midrange
All or
LIN
ccw
INT OSC
2

2

TYPE 1 L10 SPECTRUM ANALYZER

$$
\begin{aligned}
& \text { (1) REFERENCE DIAGRAMS OSCILLATOR }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { (2) WIDE BAND AMPLFIER } \\
\text { (4) VARIABLE RESOLUTION AMPLFIER }
\end{array}
\end{aligned}
$$

SWEPT I.F. OSCILLATOR (3)

MANUAL CHANGE INFORMATION

At Tektronix, we continually strive to keep up with latest electronic developments by adding circuit and component improvements to our instruments as soon as they are developed and tested.

Sometimes, due to printing and shipping requirements, we can't get these changes immediately into printed manuals. Hence, your manual may contain new change information on following pages. If it does not, your manual is correct as printed.

CHANGE TO:

D54	$152-0271-00$
D362	$152-0271-00$

Vari-cap 2.2-26 pF
Vari-cap 2.2-26 pF

TYPE ILIO TENT S/N 1260

PARTS LIST CORRECTION

CHANGE TO:

R603
305-0223-00
$22 k$
2 W
5%

R603 will now connect to +225 V instead of +100 V supply.

TYPE 1LIO/3L10

PARIS LIST CORRECTION

CHANGE TO:

C 365	$283-0077-00$	330 pF	5%
V			

Type 1 LlO
Type 3LlO

Parts List Correction

Part Added:
Ferrite Bead ${ }^{1} \quad$ 276-0507-00
${ }^{1}$ Add to secondary base lead of T 124 .

Type 1LIO
Type 3 LlO

Parts List Correction

Charge To:
R355
316-0334-00
330 K
$1 / 4 \mathrm{~W}$
10%

Parts List Correction

Remove:

C453
C455
283-0079-00
283-0079-00
$.01 \mu \mathrm{f}$
$.01 \mu \mathrm{f}$

68 pf
. $01 \mu \mathrm{f}$ 100 pf

Change To:
C457
C458
Q450
R450
R451
R452
R455

285-0004-00
283-0079-00
151-0164-00
315-0272-00
315-0563-00
316-0153-00
315-0243-00

220 pf
$.01 \mu f$
2N3702
2.7 K

56 K
15 K
24 K

250 V
Cer

1/4 W
5\%
1/4 W
5%
1/4 W
10\%
$1 / 4 \mathrm{~W}$ 5%

Schematic Correction

PARTIAL VAR. RESOLUTION AMP.

Type: LLIO Tent S/N 1208
Type: 3Ll0 Tent S/A 165

Schematic Correction

PARTIAL WIDE-BAND AMP.

[^0]: V620

 154-0040-00

 12AU6

