How fast is FAST?

FAST is an acronym for Fairchild Advanced Schottky TTL. FAST circuits are made with Fairchild's isoplanar process; the same process used for the 100K ECL logic family. This process produces transistors with extremely small parasitic capacitances and f_{T} in excess of 5 GHz , providing the speed/power product shown in Figure 1.

Figure 1

Figure 2
A basic FAST circuit is shown in Figure 2, which illustrates three stages of gain in the twoinput NAND gate. Note the use of speed-up diodes to help discharge internal capacitances. Also, the Schottky clamping diodes built into the transistors prevent saturation, thereby eliminating storage time as a factor in switching speed. High gain is an advantage because it raises the input threshold voltage while keeping high drive capabilities.
continued on page 2

Also in this issue

Batteries, lithiumpage 6
Capacitors, ceramic 5
CMOS latch-up.. 5

Memory Selection Guide page 9-12
New Components... 8
ROM "062" part numbers 6

Voltage transfer functions were measured at $-55^{\circ} \mathrm{C}$ and $25^{\circ} \mathrm{C}$. These plots showed an inputoutput transfer point centered between 0.8 volts and 2.0 volts giving a good balance between the high- and low-state noise margins.

Figure 3 shows the effects of load capacitance on propagation delay and transition time. Figure 4 shows ${ }^{\mathrm{I}} \mathrm{CC}$ on pin 7 of $74 \mathrm{FO4}$ as a function of temperature. Note the peak of ${ }^{\mathrm{CCC}}$ at $0^{\circ} \mathrm{C}$.

Figure 3

Figures 5-7 (page 3) show rise times of TTL, LSTTL and STTL respectively. Note variations in the slope of the waveforms. TTL has a slight overshoot while LS has a long rise time in the last 10%. The Schottky part has about the "cleanest" waveform of the three. The curve is smooth and reaches its final value directly.

Now, compare these figures to Figure 8. Note the slight knee at about the 55% point. Also, the long rise time for the last 10% of the waveform. The following parts possess this waveform: 74F02, 74F04, 74F08 and 74F32. However, Fairchild did remedy the problem in all later parts.

Figure 9 shows the fall time of 74F04. Note that it is very "clean" with just a little over-shoot.

The FAST series devices scheduled for production are listed in Figure 10. FAST provides a good compromise between speed and power. Due to pin-for-pin compatibility with standard 74 TLL series parts, FAST can be used to speedup circuits using standard or LSTTL devices. Also, it can decrease power consumption of a Schottky-designed circuit.

Some of the parts listed in Figure 10 (page 4) show that many devices now have octal grouping. Some new functions have also been added to the family (74F521, 74F531, etc.). This new family of TTL parts should provide a much-needed speed/ power improvement.

Figure 4

For more information about the FAST series, contact Dale Coleman (58-125) ext. 7607.

Editor's note: This article was compiled by Don Van Beek while working in the Digital Component Engineering group. Don now works in Memory and I/O Component Engineering. If you'd like to review his test results or receive a more detailed report, stop by $58-121$, or call ext. 4663.
continued on page 3

Figure 5 - TTL

Figure 6 - LSTTL

Figure 7 - STTL

Rise and Fall Times

Load was $\sim 10 \mathrm{pF}$
Frequency $=3 \mathrm{mHz}$
Vcc $=5.0 \mathrm{VDC}$
Temperature $=$ Room temperature
Rise and fall time from
$10 \%-90 \%$ of final value
$U=$ Input from PG502 pulse generator
$L=$ Output from device
$O=$ Zero volts

Frequency $=3 \mathrm{mHz}$
$\mathrm{Vcc}=5.0 \mathrm{VDC}$
Temperature $=$ Room temperature
Rise and fall time from
$10 \%-90 \%$ of final value
$\mathrm{U}=$ Input from PG502 pulse generator
$0=$ Zero volts

74F04

Figure 8 - FTTL

Figure 9 - FTTL

Figure 10

Fairchild Advanced Schottky TTL Status Guide

Device	Availability	Description
54F/74F00	Now	Quad 2-Input NAND Gate
54F/74F02	Now	Quad 2-Input NOR Gate
54F/74F04	Now	Hex Inverter
54F/74F08	Now	Quad 2-Input AND Gate
54F/74F10	Now	Triple 3-Input NAND Gate
54F/74F11	$12-79$	Triple 3-Input AND Gate
54F/74F20	$12-79$	Dual 4-Input NAND Gate
54F/74F32	Now	Quad 2-Input OR Gate
54F/74F64	6-80	AND/OR - Invert Gate
54F/74F74	Now	Dual D-Type Flip-Flop
54F/74F109	$12-79$	Dual JK Flip-Flop
54F/74F151	$3-80$	8-Input Multiplexer
54F/74F153	Now	Dual 4-Input Multiplexer
54F/74F157	Now	Quad 2-Input Multiplexer
54F/74F158	$3-80$	Quad 2-Input Multiplexer
54F/74F160	$12-79$	BCD Decade Ctr. Asyn. Reset
54F/74F161	$12-79$	4-Bit Binary Ctr. Asyn. Reset
54F/74F162	$3-80$	BCD Decade Ctr. Synch. Reset
54F/74F163	$3-80$	4-Bit Binary Ctr. Synch. Reset
54F/74F175	$3-80$	Quad D Flip-Flop w/Common Master Reset
54F/74F181	Now	Arithmetic Logic Unit
54F/74F182	$3-80$	Carry Look-Ahead Generator
54F/74F189	$3-80$	64-Bit Memory 3-State
54F/74F190	$3-80$	Up/Down Decade Counter
54F/74F191	$12-79$	Up/Down Binary Counter
54F/74F192	$3-80$	Up/Down Decade Counter
54F/74F193	$3-80$	Up/Down Binary Counter
54F/74F194	Now	4-Bit Bidirectional Universal Shift Register
54F/74F195	Obsolete	4-Bit Parallel Access Shift Register
54F/74F240	$12-79$	Octal Inv. Bus/Line Driver
54F/74F241	$12-79$	Octal Bus/Line Driver
54F/74F242	$3-80$	Quad Bus Transceiver
54F/74F243	$3-80$	Quad Bus Transceiver
54F/74F244	$12-79$	Octal Bus/Line Driver
54F/74F245	$3-80$	Octal Bus Transceiver
54F/74F251	$3-80$	8-Input Multiplexer 3-State
54F/74F253	$12-79$	Dual 4-Input Multiplexer 3-State
54F/74F257	Now	Quad 2-Input Multiplexer 3-State
54F/74F258	$3-80$	Quad 2-Input Multiplexer 3-State
547		

Axial-leaded caps for auto insertion

Sprague Electric's type 292C monolythic ceramic capacitor has been accepted for 30 part numbers. For persons interested in applying these parts, a summary of the test results follows.

Two groups of parts were tested; a $0.01 \mu \mathrm{~F}$, $\pm 10 \%, 50 \mathrm{~V}$ group (similar to 281-0773-00), and a $0.10 \mu \mathrm{~F}, \pm 20 \%, 50 \mathrm{~V}$ group (similar to 281-077500).

Insulation resistance after life tests of 1000 hours at 200% rated voltage at $85^{\circ} \mathrm{C}$ showed the mean was over 100G Ω. The specification on Z5U parts is $5 \mathrm{G} \Omega$. The mean dissipation factor after life tests was 1.55%; the spec is 3%. Insulation resistance averaged over 150G Ω after humidity for ten days per MIL-STD-202MTD106. The spec allows $50 \mathrm{G} \Omega$ insulation resistance.

Dielectric withstand voltage was tested at 250% of rated voltage applied from one to five seconds at $25^{\circ} \mathrm{C}$. All parts tested passed without shorting. All parts also passed terminal strength tests (51 lbs . applied axially to MIL-STD-202 MTD211, test A).

The following temperature characteristics are available:

X7R - Changes less than 15\% capacitance from $-15^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
Z5U - Changes less than $+22 \%,-56 \%$ capacitance from $+10^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

NPO - Changes less than $\pm 0.3 \%$ capacitance from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

For complete test results, reference Test Report No. 15 in Optoelectronic \& Passive Component Engineering, or contact Ray Powell (58299), ext. 6520.

Preventing CMOS latch-up

Recent CMOS gates have shown an increased susceptibility to SCR-type latch-up. This latch-up occurs when the input or output of a CMOS gate is driven above the V_{DD} supply. When the part does latch-up, a low resistance path is formed from $V_{D D}$ to $V_{S S}$ and if the power supply can supply 1 amp or more, the device will be destroyed. The condition of an input or output of a CMOS gate going above $V_{D D}$ can happen if certain sections of an instrument are powered up before others.

Some recent Motorola 14001 parts were observed to latch-up at input/output currents of about 10 mA . This was observed by supplying input or output current from an independent supply; then turning on the $V_{D D}$ supply to the CMOS device. Therefore, to avoid latch-up, limit the input or output current to 5 mA or less in cases where the input or output can possibly go above VD.

Electrostatic discharges from persons can also cause this latch-up (but only when the discharge occurs while the CMOS device has power applied). Persons charged to as little as 1500 volts touching a CMOS input or output with a metallic intervening object (such as a screwdriver) can induce latch-up. With bare fingers, the voltage required was about 4KV. Thus, static handling precautions should be observed when servicing instruments containing CMOS, esspecially with the power on.

Ron Schwartz
92-336, ext. 1991

Lithium Battery Warning

We have received the following report about an accident involving an instrument which was powered by lithium batteries:
"Apparently, an instrument which contained a 72 -cell lithium battery power supply in a pressure case was stored in an inactive status in a crate in a warehouse. After the device had been in storage for months, it suddenly exploded. The end cap smashed through the crate and sheared off the leg of a person some distance away, while the rest of the case rocketed in an opposite direction through a building wall with great violence and some flames.

There may have been a detonation of the lithium battery through some internal process, or because of a reaction from leaking gasses with plastic materials inside the instrument."

This report, which is part of the GIDEP "Safe-Alert" program, is only one of many similar accidents which have occurred with lithium batteries. We therefore do not recommend any applications using these batteries.

Byron Witt
58-299, ext. 5417

Memory Selection Guides

In a joint effort with the Parts Cataloging group, Memory and I/O Component Engineering is publishing and maintaining four Memory Selection Guides. This issue of Component News contains three of these guides: Static RAMs, Dynamic RAMs, and Field and Factory Programmable ROMs. The Mass Storage Selection Guide will be published at a later date.

Your comments would be helpful as we update and improve these guides.

Paul Gray, manager
Memory \& I/O Comp. Eng. (ext. 4663)
Fred Schade, manager Parts Cataloging (ext. 7976)

Persons claiming to be representatives of Supra Products, a Salem, Oregon firm, have called or approached members of the Component Engineering team saying they are associated with our group in a private project or endeavor. The representatives have requested help with component problems. Unfortunately, it appears that no such association between our two companies exists.

It is suggested that all outside telephone calls of this nature be carefully checked out before supplying any information.

New component engineer

Dale Coleman has joined the Digital Component Engineering group, with responsibility for ECL, Schottky and bit-slice components. Dale previously worked for Burroughs Corporation as a component engineer, and he has a BSEE degree from the Massachusetts Institute of Technology.

Dale can be reached at 58-125, ext. 7607 .
Steve Pataki, manager Component Engineering

Important Notice:

It has come to our attention that people are changing ROM "160-xxxx-xx" part numbers to the "062-xxxx-xx" number when issuing Bills of Material and other internal paperwork. This should not be done.

The "062" number is only a technical sheet used to inform our vendors of the Tek specification. It does not replace the "160" part number. The "062" is only required on the PPIF to alert specification personnel as to the class of ROM required.

Please direct any questions about these part numbers for ROMs to Don VanBeek, ext. 4663.

The function of Technical Standards is to identify, describe and document standard processes, procedures, and practices within the Tektronix complex, and to ensure these standards are consistent with established national and international standards. Technical Standards also provides a central repository for standards and specifications required at Tektronix.

Chuck Sullivan, manager (41-260)

DIN (German Standards Institute)

English translations of DIN standards are now available from Heyden \& Son, Inc., Philadelphia, and can be ordered through Technical Standards. These DIN standards are in a 'high state-of-the-art' condition and have much value to American industry, including Tektronix. Further information is available from Technical Standards, ext. 241, Town Center.

new publications available from Technical Standards

ANSI B47.1A-1978 Gage Blanks (Metric Translation of ANSI B47.1-1974)
ANSI H35.2(M)-1978 Dimensional Tolerances for Aluminum Mill Products
ANSI X3.17-1977 Character Set and Print Quality for Optical Character Recognition
ANSI X3.25-1976 Character Structure and Character Parity Sense for Parallel-by-bit Data Communication in the American National Standard Code for Information Interchange
ANSI X3.32-1973 Graphic Representation of the Control Characters of American National Standard Code for Information Interchange
ANSI X3.4-1977 Code for Information Interchange
ANSI X3.5-1970 Flowchart Symbols and Their Usage in Information Processing
ANSI X3.50-1976 Representations for U.S. Customary, S1, and Other Units to be Used in Systems with Limited Character Sets
ANSI X3.57-1977 Structure for Formatting Message Headings for Information Interchange using the American National Standard Code for Information Interchange for Data Communication System Control
ANSI X3.60-1978 For Minimal BASIC
ANSI X3.62-1979 For paper used in Optical Character Recognition Systems
ANSI X3.66-1979 For Advanced Data Communication Control Procedures (ADCCP)
ANSI X3.9-1978 Programming Language FORTRAN
ANSI X4.6-1979 American National Standard for 10-Key Keyboard for Adding and Calculating Machines
ANSI Y14.2M-1979 Line Conventions and Lettering
ANSI Y32.10-1967 Graphic Symbols for Fluid Power Diagrams
ANSI Z53.1-1979 Safety Color Code for Marking Physical Hazards
EIA-RS-186-E Standard Test Methods for Passive Electronic Component Parts
EIA-RS-380-A Small Contact Standard for Electrical Connectors
EIA-RS-404 Standard for Start-Stop Signal Quality Between Data Terminal Equipment and NonSynchronous Data Communication Equipment
EIA-RS-431 Electrical Interface Between Numerical Control and Machine Tools
EIA-RS-437.3 Subminiature Sensitive Switches
EIA-RS-437.4 Sub-Subminiature Sensitive Switches
EIA-RS-444 Dimensional and Electrical Characteristics Defining Dual In-Line Lead Socket Panels
EIA-RS-451 Resistor Networks - Fixed Film
EIA-RS-452 Fixed Film Resistors - High Resistance/High Voltage
more Technical Standards
IEC 191-3B-1978 Mechanical Standardization of Semiconductor Devices, Part 3, General rules for the preparation of outline drawings of integrated circuits
IEC 191-2H-1978 Same - Dimensions
IEC 282-1A-1978 High Voltage Fuses
IEC 304-1978 Standard Colors for PVC insulation for low-frequency cables and wires
IEC 344-1971 Amendment 1978, Guide to Calculation of Resistance of plain and tinned copper conductors and low-frequency cables and wires
IEC 384-1-1972 Fixed Capacitors for Use in Electronic Equipment, Terminology and Methods of Test (w/supplements)
IEEE STD-675-1979 Multiple Controllers in a CAMAC Crate
IPC-A-600C Acceptability of Printed Boards
IPC-AM-372 Electroless Copper Film for Additive Printed Boards
IPC-D-310A Artwork Generation and Measurement Techniques
IPC-D-320 Printed Board, Rigid, Single- and Double-Sided, End Product Specification
IPC-D-350B Printed Board Description in Digital Form
IPC-SM-840 Qualification and Performance of Permanent Polymer Coating (Solder Mask) for Printed Boards
UL 844, May 1978 Electric Lighting Fixtures (for use in hazardous locations)
For information on these publications, please call Technical Standards, Town Center, ext. 241.

This column is designed to provide timely information regarding new components, vendors, availability and price. "New Components" can also be used as an informal update to the Common Design Parts Catalogs. Samples may or may not be available in Engineering Stock.

| | No. | When | Description | Available |
| :--- | :--- | :--- | :--- | :--- |\quad P/N | Approx. |
| :---: |
| Vendor |\quad| Engineer |
| ---: |
| to contact |

analog devices

Intersil	ICL7107	A/D Converter, $31 / 2$ digit	now	156-1435-00	\$7.40	Chris Martinez, 7709
Motorola	MC1403AU	V. Reference, $2.5 \mathrm{~V} \pm 1 \%, 25 \mathrm{ppm}, 8 \mathrm{pin}$ DIP	now	156-1439-00	1.54	Gary Sargeant, 5345
Motorola	MC1404AU5	V . Reference, $5.0 \mathrm{~V} \pm 1 \%$, Trimmable, 25ppm, 8 pin DIP	now	156-1437-00	2.20	Gary Sargeant, 5345
Motorola	MC1404AU6	V. Reference, $6.25 \mathrm{~V} \pm 1 \%$, Trimmable, 25ppm, 8 pin DIP	now	156-1436-00	2.20	Gary Sargeant, 5345
TRW	TVP1505A	Transient Suppressor, 13 V , for 12 V power supplies, 1.5 Joule, 82 Amp surge for 1 mS	now	in process	1.74	Gary Sargeant, 5345

optoelectronic and passive devices

E. F. Johnson	186-xxxx-xxx	Capacitor, variable, air dielectric, very small	now	no P/Ns	. 95	Alan LaValle, 5415
Allen Bradley	208B01	Resistor network, fixed film, 4, 100, 2%, 0.3W each	week 1	307-0717-00	. 35	Ray Powell, 6520
Allen Bradley	210A152F	Resistor network, fixed film, 9, 1.5K $\Omega, 1 \%$ 0.15 W each	week 1	307-0719-00	. 35	Ray Powell, 6520
Allen Bradley	210 A680	Resistor network, fixed film, $5,68 \Omega, 2 \%$, 0.3W each	week 1	no P/N	. 35	Ray Powell, 6520
Bourns	$\begin{gathered} \text { 4308R-101 } \\ 682 \end{gathered}$	Resistor network, fixed film, $7,6.8 \mathrm{~K} \Omega, 2 \%$, 1.0W (CS-CR)	now	307-0597-00	. 25	Ray Powell, 6520
Dale	$\begin{gathered} \text { MSP10A01- } \\ 501 \mathrm{~F} \end{gathered}$	Resistor network, fixed film, 9,500 , 1\%, 0.15W each	week 1	307-0720-00	. 35	Ray Powell, 6520
Dale	$\begin{gathered} \text { RS2B-B330- } \\ \text { ROF } \end{gathered}$	Resistor WW, fixed, $330 \Omega, 1 \%$, 2.5W, (CS-CR)	now	308-0443-00	. 19	Ray Powell, 6520
Stackpole	9-8-5-R680	Resistor network, fixed film, 8, 680 , 5\%	week 1	307-0718-00	. 35	Ray Powell, 6520

 Field Programmable ROMs (XROMs)

Memory Selection Guide Dynamic RAMs (DRAMs)

Function	Process	Bit Geometry	Number	Vendor	Vendor No.	Pins	Supply (V)	Power (mW)	CycTime (nS)	
								Active Standby	Read (Max)	Write (Min)
¢	$\begin{aligned} & \\ & \frac{n}{n} \begin{array}{l} 0 \\ \frac{n}{2} \\ \frac{2}{2} \end{array} \end{aligned}$	1024×1	156-0179-xx	Mostek	MK4006P	Not recommended for new design				
			$156-0862-x x$	Motorola	MCM6604L	16	$\pm 5+12$	600	350	500
				Mostek	MK4096K-11	16	$\pm 5+12$	1W	350	500
			156-0924-xx	T. I.	TMS4051L	Not recommended for new design				
		4096×1	$\begin{aligned} & 156-0972-x x \\ & 156-1000-x x \end{aligned}$	Mostek	MK4027-4	$\begin{array}{lll}16 & \pm 5+12 & 462 \\ \text { Not recommended for new design }\end{array}$			250	375
				Nat. Semi.	MM5280D	Not	commen	ed for new design		
			156-1027-xx	Mostek	MK4027P-3	16	$\pm 5+12$	1W	150	375 320
			156-1185-xx	Intel	2104A-1	16	$\pm 5+12$	1W	150	320
			156-0968-xx	Mostek	MK4116P-3	16	$\pm 5+12$	462	200	375
				Nippon	416-2	16	$\pm 5+12$	462	200	375
		4×1		ITT	4116-3J	16	$\pm 5+12$	462	200	375
			156-1353-xx	Mostek	MK4116-2	16	$\pm 5+12$	462	150	320
				Nippon	μ PD416D-3	16	$\pm 5+12$	462	150	320

SMGN INGNJdNOT
$\exists ว \forall d I N \cap O \quad$ oy $\forall H \partial I 甘$

10L-26

component news

Published by Technical Communications 58-299, ext. 6867

Jacquie Calame, Editor
Birdie Dalrymple, Illustrator Lola Janes, Writer
To submit an article, call Jacquie on ext. 6867, or stop by 58-299.
For mailing list changes, contact Kelly Turner at 19-123, ext. 5502.

