## TEK-MADE INTEGRATED CIRCUITS CATALOG



## COMPANY CONFIDENTIAL

The contents of this catalog are for the exclusive use of TEKTRONIX, INC. employees. Any unauthorized use may constitute a theft.

## PURPOSE AND USE

This catalog contains integrated circuits that have had a Component Engineering Release by the publication date.

Data sheets are included for parts that are recommended for new designs. The data sheets, with a few exceptions, are intended to contain sufficient information so that a part may be designed into a new instrument design. For further applications information please call (phone 627-1037).

## CORRECTIONS AND SUGGESTIONS

Corrections or suggestions for improvement are encouraged at any time. Mail to delivery station 59-355. A special form for this purpose is included in this catalog.

## CATALOG DISTRIBUTION

Catalog distribution is automatic to all Electrical Engineers and E.E. managers. If you are not in this job category, please write to Applications Engineering, delivery station 59-355-include name, payroll code, and delivery station.

## TEK-MADE I.C. QUESTIONNAIRE

We want to serve you better. If you are considering using a TEK-made I.C. for a new instrument design, we would like to hear from you.
I.C. Part Number

Do you need any additional information? YesNo

Information Needed $\qquad$

Name

Delivery Station $\qquad$ Phone $\qquad$

Projected volume of new application /yr

Approximate introduction date
Send to: ICM Application Engineering Delivery Station 59-355

## TEK-MADE I.C. QUESTIONNAIRE

We want to serve you better. If you are considering using a TEK-made I.C. for a new instrument design, we would like to hear from you.
I.C. Part Number

Do you need any additional information?
YesNo

Information Needed $\qquad$

Name $\qquad$

Delivery Station Phone $\qquad$

Projected volume of new application /yr

Approximate introduction date
Send to: ICM Application Engineering Delivery Station 59-355

If we have slipped up and you feel there is room for improvement, please tell us at once. You will be doing us a great favor if you call a problem to our attention.

Your
Name $\qquad$ Address $\qquad$ Phone

ERRORS, OMISSIONS, SUGGESTIONS:
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
SEND TO: ICM APPLICATIONS ENGINEERING
D.S. 59-355

If we have slipped up and you feel there is room for improvement, please tell us at once. You will be doing us a great favor if you call a problem to our attention.

Your
Name
Address $\qquad$ Phone $\qquad$

ERRORS, OMISSIONS, SUGGESTIONS:
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## TABLE OF CONTENTS

PageNo.
SECTION 1 TABLE OF CONTENTS
Index by Function ..... 1-3
Index by Part Number ..... 1-6
Index by M Number ..... 1-9
SECTION 2 NEW DESIGN INFORMATION
Preferred for New Designs ..... 2-1
Suitable for New Designs ..... 2-2
Do Not Use for New Designs ..... 2-3
Call Applications Engineering Before Using ..... 2-4
SECTION 3 Q. A. PROGRAM3-1
SECTION 4 RELIABILITYReliability4-1
SECTION 5 PACKAGED PARTS (DATA SHEETS)
PREFERRED FOR NEW DESIGNS—COST EFFECTIVE OR STATE-OF-THE-ART
Page ..... No.
Packaged Parts
155-0012-00 $\quad Z$ axis signal conditioner ..... 5-1
155-0022-00 2 input channel switch Ins Rt ..... 5-7
155-0035-00 Quad Op Amps, 80 MHz gain bandwidth ..... 5-11
155-0038-02 5-bit precision D/A ..... 5-17
155-0048-01 $\quad 5 \mathrm{MHz}$ trigger and $1 \mathrm{~V} / \mu$ s sweep ..... 5-21
155-0049-02 Sweep control ..... 5-27
155-0055-00 $\quad 5 \mathrm{MHz}$ trigger and $1 \mathrm{~V} / \mu \mathrm{s}$ sweep ..... 5-35
155-0057-00 Dual Op Amp, current source ..... 5-41
155-0067-02 DC to DC controller ..... 5-47
155-0078-10 Differential/variable/invert amplifier ..... 5-53
155-0109-01 $\quad 350 \mathrm{MHz}$ trigger ..... 5-61
155-0116-00 Quad Op Amps, 80 MHz gain bandwidth ..... 5-69
155-0122-00 Sweep control ..... 5-75
155-0123-00 50 ns sweep and delay pickoff ..... 5-81
155-0124-00 $\quad 5 \mathrm{~ns} /$ div horizontal preamplifier ..... 5-87
155-0144-00 TV sync stripper ..... 5-93
155-0145-00 Controlled risetime amplifier ..... 5-99
155-0152-01 Magnetic deflected CRT geometry correction ..... 5-103
155-0154-00 3-input multiplexer ..... 5-111
155-0188-00 TV sync generator ..... 5-117
155-0196-00 $\quad 100 \mathrm{MHz}$ trigger ..... 5-125
155-0215-00 Logic analyzer input ..... 5-131
155-0217-00 Amplifier ..... 5-137
155-0218-00 $\quad 100 \mathrm{MHz}$ vertical output ..... 5-141

## TABLE OF CONTENTS (cont)

Page
No.
SECTION 5 PACKAGED PARTS (DATA SHEETS) (cont)
155-0244-00 Scope logic interface ..... 5-149
155-0247-00 Tape controller ..... 5-163
155-0253-00 Schmitt trigger ..... 5-171
155-0273-00 Differential/variable/invert amplifier ..... 5-175
155-0274-00 Differential/variable/invert amplifier ..... 5-181
155-0283-00 Video multiplier ..... 5-187
206-0248-00 Platinum temperature probe tip ..... 5-193
SECTION 6 DIE (DATA SHEETS)
203-0084-90 Differential/variable/invert amplifier ..... 6-1
203-0089-91 Vertical output amplifier ..... 6-7
203-0155-91 4-bit 80 MHz clock flash A/D converter ..... 6.17
203-0177-90 5-bit DAC ..... 6-23
203-0211-90 Channel switch ..... 6-29
203-0212-90 Vertical output ..... 6-33
203-0213-90 $\quad 600 \mathrm{MHz}$ trigger ..... 6-43
203-0214-90 Sweep DAC \& logic ..... 6-53
203-0216-90 Z-axis, autofocus amplifier ..... 6-61
203-0227-90 Z-axis driver ..... 6-67
203-0229-90 $\quad 300 \mathrm{MHz}$ trigger amplifier ..... 6-73
203-0231-90 Sweep integrator ..... 6-81
SECTION 7 COSTING
Costing ..... 7-1
SECTION 8 PACKAGE INFORMATION
14-Pin DIP ..... 8-1
16-Pin DIP ..... 8-2
16-Pin MINIPAC ..... 8-3
20-Pin DIP ..... 8-4
24-Pin Power Plastic ..... 8-5
16-Pin DIP CER ..... 8-6
40-Pin DIP CER ..... 8-7

## INDEX BY FUNCTION

## Part Number <br> Packaged Parts

 or Die$155-0022-00$
$155-0022-01$
$155-0031-01$
$155-0047-00$
$155-0067-02$
$155-0091-00$
$155-0106-00$
$155-0111-01$
$155-0112-01$
$155-0145-00$
$155-0157-00$
$155-0158-00$
$155-0199-00$
$155-0205-00$
$155-0247-00$
$155-0253-00$
$155-0283-00$

155-0035-00
155-0057-00
155-0083-00
155-0116-00

155-0009-00
155-0010-00
155-0011-00
155-0012-00
155-0013-00
155-0244-00

155-0014-01
155-0015-01
155-0017-00
155-0018-00
155-0019-00
155-0020-00
155-0021-01
155-0023-00
155-0024-00
155-0025-00
155-0026-00
155-0027-00
155-0086-00

| Description |
| :--- |
| GENERAL CIRCUITS |
| Channel Switch |
| Channel Switch |
| Quad Timing |
| Dual Output Amplifier |
| Power Supply Controller |
| Channel Switch |
| Normalizing Circuit |
| LED Array |
| Phototransistor Array |
| Pulse Output Amplifier |
| Digital Storage Vertical Control |
| Digital Storage Horizontal Control |
| Vertical Control |
| Channel Switch |
| Tape Controller |
| Hi Speed Schmitt Trigger |
| Video Multiplier |

New
Design

| Package | Page |
| :---: | :---: |
| Style | No. |


| $P$ | 16 DIP | $\ldots .$. | $5-7$ |
| :--- | :--- | :--- | :--- |
| S | 16 DIP | $\cdots$ | $a$ |

Channel Switch
S 16 DIP ..... a
X 16 DIP .... a
C 16 DIP $\ldots \ldots$ a
P 16 DIP $\ldots$.... 5-47
16 Lead TO 8 a

24 DIP ..... a
Special a
Special a
16 DIP ..... 5-99
40 DIP ..... a
40 DIP ..... a
40 DIP ..... a
16 DIP ..... a
40 DIP ..... 5-163
16 MINIPAC 5-171
16 DIP CER . 5-187

## OPERATIONAL AMPLIFIERS

Quad Op Amp
2 Op Amps, 2 Current Sources
Dual Op Amp and 2 Current Sources
Quad Op Amp
P 16 DIP ..... 5-11

2 Op Amps, 2 Current Sources

Quad Op Amp
P Plastic ..... 5-41
S 16 MINIPAC a

OSCILLOSCOPE LOGIC
Horizontal Lockout Logic
Chop Divider \& Blanking
Clock and Chop Blanking
Z Axis Logic
Horizontal Chop \& Alt Binary
Scope Logic Interface

| S | 16 DIP | a |
| :---: | :---: | :---: |
| S | 10 Lead TO-5 | a |
| S | 16 DIP | a |
| P | 16 DIP | 5-1 |
| S | 10 Lead TO-5 | a |
| P | 40 DIP CER | 5-149 |

## KNOB READOUT SYSTEM

Analog to Digital Converter
Data Switch
Decade Counter
Zero Logic
Decimal Point \& Spacing
Output Assembler
Timing Generator
Character Generator
Character Generator
Character Generator
Character Generator
Character Generator
Legend Generator

| 16 DIP | a |
| :---: | :---: |
| 16 DIP | a |
| 20 DIP | a |

NEW DESIGN CODE
P = Preferred
$\mathbf{S}=$ Suitable
$X=$ Do Not Use
$C=$ Call Application Engineering before using
155-XXXX = Packaged Parts
203-XXXX = Die
${ }^{2}$ not included in this catalog.

# INDEX BY FUNCTION (cont) 



155-0087-00
155-0088-00
155-0104-00
155-0105-00
155-0110-00
155-0135-00
155-0171-00
155-0198-00

155-0004-01
155-0005-00
155-0006-00
155-0007-01
155-0008-01
155-0114-00
155-0119-00

155-0028-00
155-0028-01
155-0048-01
155-0049-02
155-0055-00
155-0056-00
155-0109-01
155-0121-00
155-0122-00
155-0123-00
155-0124-00
155-0126-00
155-0151-00
155-0160-00
155-0196-00
155-0216-00
155-0217-00
155-0241-00
203-0196-90
203-0213-90
203-0214-90
203-0229-90
203-0231-90

|  | New | Package | Page |
| :---: | :---: | :---: | :---: |
| Description | Design | Style | No. |

KNOB READOUT SYSTEM (cont)
Legend Generator
Legend Generator
Legend Generator
Legend Generator
Legend Generator
Legend Generator
4 Decade Counter and Memory
Knob Readout Counter

| $X$ | 20 DIP | $\ldots .$. | $a$ |
| :--- | :--- | :--- | :--- |
| $X$ | 20 DIP | $\ldots$. | $a$ |
| $X$ | 20 DIP | $\ldots$. | $a$ |
| $X$ | 20 DIP | $\ldots$. | $a$ |
| X | 20 DIP | $\ldots$. | $a$ |
| $X$ | 20 DIP | $\ldots .$. | $a$ |
| S | 16 MINIPAC | $a$ |  |
| $X$ | 40 DIP | $\ldots .$. | $a$ |

READOUT SYSTEM

| Beta Computer | X | 16 DIP |
| :---: | :---: | :---: |
| Beta Computer | X | 16 DIP |
| Beta Computer | X | 16 DIP |
| Readout I | X | 16 DIP |
| Readout II | X | 16 DIP |
| Seven Segment Character Generator | S | 16 DIP |
| Five Digit BCD Counter | X | 40 DIP |

## HORIZONTAL SYSTEM

Miller Integrator \& Dly Pickoff
Miller Integrator \& Dly Pickoff
Trigger \& Sweep
Sweep Control
Trigger \& Sweep
Sweep Control
Trigger Circuit
Trigger Subsystem
Sweep Control
Sweep \& Pickoff
Horizontal Preamplifier
Trig Amp, Source Select
Trigger Generator
Trigger Amplifier, Source Select
Trigger Circuit
Amplifier
Amplifier
Horizontal Amplifier
Horizontal Clamp
600 MHz Trigger
Sweep DAC \& Logic
300 MHz Trigger Amplifier
Sweep Integrator
C 10 Lead TO-5 a
C 10 Lead TO-5 a
$P \quad 16$ MINIPAC 5-21
P 20 DIP .....5-27
P 16 DIP .....5-35
C 16 DIP ..... a
P 16 DIP .....5-61
X 16 DIP ..... a
P $\quad 16$ DIP .....5-75
P 16 DIP .....5-81
P 16 DIP .....5-87
P 20 DIP ..... a
X 20 DIP ..... a
C 16 MINIPAC a
P 20 DIP .....5-125
S 16 DIP ..... a
P 16 DIP .....5-137
C Power Pkg .. a
a
P . . . . . . . . . . 6-43
P ............6653
P .............6-81

NEW DESIGN CODE
P = Preferred
C = Call Application Engineering before using
155-XXXX $=$ Packaged Parts
203-XXXX = Die
-not included in this catalog.

# INDEX BY FUNCTION (cont) 

Part Number
Packaged Parts
or Die
$155-0038-01$
$155-0038-02$
$155-0185-00$
$203-0155-91$
$203-0175-90$
$203-0177-90$

155-0050-01
155-0059-00
155-0061-00
155-0078-10
155-0187-00
155-0207-00
155-0218-00
155-0273-00
155-0274-00
203-0080-90
203-0084-00
203-0089-91
203-0122-90
203-0126-90
203-0130-90
203-0178-90
203-0198-90
203-0199-90
203-0210-90
203-0211-90
203-0212-90

155-0051-00
155-0144-00
155-0152-01
155-0154-00
155-0188-00
203-0216-90
203-0227-90

|  | New | Package | Page |
| :---: | :---: | :---: | :---: |
| Description | Design | Style | No. |

AD/DA CIRCUITS
D/A Converter
D/A Converter
4 Decade DVM
4 Bit Flash A/D Converter
Dual High Speed Comparator

| S | 16 DIP $\ldots \ldots$ | $a$ |
| :--- | :---: | :---: | :---: |
| P | 16 DIP $\ldots \ldots$ | $5-17$ |
| S | 20 DIP CER | $a$ |
| P | $\ldots \ldots \ldots \ldots$ | $6-17$ |
| C | $\ldots \ldots \ldots \ldots$ | $a$ |
| P | $\ldots \ldots \ldots \ldots$ | $6-23$ |

## VERTICAL AMPLIFIERS

| Vertical Amplifier | S | 20 DIP | a |
| :---: | :---: | :---: | :---: |
| Gain Trim Amplifier | S | 12 Lead TO-8 | a |
| $F_{t}$ Doubler Amplifier | S | 16 DIP | a |
| Diff/Var/Inv Amplifier | P | 16 MINIPAC | 5-53 |
| $\mathrm{F}_{1}$ Doubler Amplifier | S | 12 Lead TO-8 | a |
| Output Amplifier | X | 24 DIP | a |
| Output Amplifier | P | 20 DIP | 5-141 |
| Diff/Var/Inv Amplifier | P | 14 DIP | 5-175 |
| Diff/Var/Inv Amplifier | P | 14 DIP | 5-181 |
| Vertical Output Amplifier | S |  | a |
| Differential/Variable/Invert Amplifier | P |  | 6-1 |
| Vertical Output Amplifier | P |  | 6-7 |
| 1 GHz Trigger | C |  | a |
| $F_{1}$ Doubler | S | .......... | a |
| 100 MHz Vertical Preamp | C |  | a |
| 1 GHz Vertical Amplifier | C |  | a |
| Clamp \& Sensor | C |  | a |
| 1 GHz Input Amplifier | C |  | a |
| Vertical Preamp | C |  | a |
| Channel Switch | P |  | 6-29 |

Vertical Output Amplifier $P$............. 6-33

## TV and CRT CONTROL CIRCUITS

Z-Axis \& HV Regulator
S 20 DIP $\ldots$ a
Sync Stripper
P 16 DIP .... 5-93
CRT Geometry Correction
P 16 DIP ..... 5-103
Display Multiplexer
TV Sync Generator
P 20 DIP ..... 5-111
Z Axis Autofocus
$\begin{array}{lrl}P & 40 \text { DIP } \ldots . . & 5-117 \\ P & \ldots . . . . . & 6-61\end{array}$
5-117

Z Axis Driver
$\begin{array}{lccc}P & 40 \text { DIP } \ldots \ldots & 5-117 \\ P & \ldots . . . . & 6-61\end{array}$
6-67

## PROBE CIRCUITS

155-0076-00
155-0215-00
206-0186-09
206-0248-00
203-0096-90

Input Protection \& Probe Logic Logic Analysis Input
Transistor Temperature Probe
Platinum Temperature Probe Tip
Logic Probe

C 16 MINIPAC a
P 16 DIP ..... 5-131
X Special ..... a
P Special ..... 5-193
Special ..... $\underset{a}{\text { 5-193 }}$

## NEW DESIGN CODE

```
P = Preferred
X = Suitable
X = Do Not Use
```

C = Call Application Engineering before using
155-XXXX = Packaged Parts
203-XXXX $=$ Die
not included in this catalog.

# INDEX BY FUNCTION (cont) 

Part Number
Packaged Parts or Die

151-0659-00
151-1139-00
152-0442-00
152-0442-01
152-0446-00
152-0446-01
152-0646-00
152-0646-02
203-0032-90
203-0075-90
203-0206-90
203-0264-90
203-0269-90

Description

NPN Power Transistor
Dual FET
Schottky Diode
Schottky Diode Pair
Schottky Diode Pair Schottky Diode Single Schottky Diode Pair Schottky Diode Pair Schottky Diode NPN Transistor NPN Transistor Schottky Diode EBS Target Diodes
New
Design

DISCRETES
Design
Package
Page
Style
No.

## INDEX BY PART NUMBER

| Part Number PACKAGED PARTS | Description |  | New Design | Page No. |
| :---: | :---: | :---: | :---: | :---: |
| 131-1393-00 | Programmed Connector | X |  | a |
| 131-1394-00 | Programmed Connector | X |  | a |
| 131-1395-00 | Programmed Connector | X |  | a |
| 131-1396-00 | Programmed Connector | X |  | a |
| 131-1659-00 | Programmed Connector | X |  | a |
| 131-1660-00 | Programmed Connector | X |  | a |
| 151-0659-00 | NPN Power Transistor | C |  | a |
| 151-1139-00 | Dual FET | C |  | a |
| 152-0442-00 | Schottky Diode Pair | X |  | a |
| 152-0442-01 | Schottky Diode Pair | X |  | a |
| 152-0446-00 | Schottky Diode Pair | X |  | a |
| 152-0446-01 | Schottky Diode Pair | X |  | a |
| 152-0646-00 | Schottky Diode Pair | C |  | a |
| 152-0646-02 | Schottky Diode Pair | C |  | a |
| 152-0004-01 | 576 Readout System | X |  | a |
| 155-0005-00 | 576 Readout System | X |  | a |
| 155-0006-01 | 576 Readout System | X |  | a |
| 155-0007-01 | 576 Readout System | X |  | a |
| 155-0008-01 | 576 Readout System | X |  | a |
| 155-0009-00 | Horizontal Lockout Logic | S |  | a |
| 155-0010-00 | Chop Divider, Blanking | S |  | a |
| 155-0011-00 | Clock, Chop Blanking | S |  | a |
| 155-0012-00 | Z Axis Signal Conditioning | P |  | 5-1 |
| 155-0013-00 | Horizontal, Chop Alt Binary | S |  | a |
| 155-0014-01 | A/D Converter | S |  | a |
| 155-0015-01 | Data Switch | S |  | a |
| 155-0017-00 | Decade Counter | C |  | a |
| 155-0018-00 | Zero Logic | C |  | a |
| 155-0019-00 | Decade Counter | S |  | a |
| 155-0020-00 | Output Assembler | S |  | a |
| 155-0021-01 | Scan Osc. Logic Timing Gen. | S |  | a |
| 155-0022-00 | 2 Input Channel Switch | P |  | 5-7 |
| 155-0022-01 | 2 Input Channel Switch | S |  | a |
| 155-0023-00 | Character Generator | S |  | a |
| 155-0024-00 | Character Generator | S |  | a |
| 155-0025-00 | Character Generator | S |  | a |
| 155-0026-00 | Character Generator | S |  | a |
| 155-0027-00 | Character Generator | S |  | a |
| 155-0028-00 | Miller Integrator | C |  | a |
| 155-0028-01 | Miller Integrator | C |  | a |
| 155-0031-01 | Quad Timing Unit | X |  | a |
| 155-0035-00 | Quad Op. Amp. | P |  | 5-11 |
| 155-0038-01 | 5-bit Precision D/A | S |  | a |
| 155-0038-02 | 5-bit Precision D/A | P |  | 5-17 |
| 155-0047-00 | Dual Output Amplifier | S |  | a |
| 155-0048-01 | 5 MHz Trigger and Sweep | P |  | 5-21 |
| 155-0049-02 | Sweep Control | P |  | 5-27 |
| 155-0050-01 | Vertical Preamp | S |  | a |
| 155-0051-00 | Z Axis, HV Regulator | S |  | a |
| 155-0055-00 | 5 MHz Trigger and Sweep | P |  | 5-35 |

NEW DESIGN CODE

```
P = Preferred
X = Suitable
X = Do Not Use
```

$C=$ Call Application Engineering before using
155-XXXX = Packaged Parts
203-XXXX $=$ Die

## INDEX BY PART NUMBER (cont)

| Part Number PACKAGED PARTS | Description |  | New Design | Page No. |
| :---: | :---: | :---: | :---: | :---: |
| 155-0056-00 | Sweep Control | C |  | a |
| 155-0057-00 | Dual Op. Amp, Current Source | P |  | 5.41 |
| 155-0059-00 | Gain Trim Amplifier | S |  | a |
| 155-0061-00 | $F_{t}$ Doubler Amplifier | S |  | a |
| 155-0067-02 | DC to DC Inverter Regulator | P |  | 5-47 |
| 155-0076-00 | Input Protection | C |  | a |
| 155-0078-10 | Differential/Variable/Invert Amp | P |  | 5-53 |
| 155-0083-00 | Dual Op Amp, Current Source | S |  | a |
| 155-0086-00 | Legend Generator | X |  | a |
| 155-0087-01 | Legend Generator | X |  | a |
| 155-0088-00 | Legend Generator | X |  | a |
| 155-0091-00 | 250 MHz Channel Switch | S |  | a |
| 155-0104-00 | Legend Generator | X |  | a |
| 155-0105-00 | Legend Generator | X |  | a |
| 155-0106-00 | Normalizing Circuit | X |  | a |
| 155-0109-01 | 350 MHz Trigger | P |  | 5-61 |
| 155-0110-00 | Legend Generator | S |  | a |
| 155-0111-01 | LED Array | X |  | a |
| 155-0112-01 | Photo Transistor Array | X |  | a |
| 155-0114-00 | 7-segment Character Generator | S |  | a |
| 155-0116-00 | Quad Op. Amps. | P |  | 5-69 |
| 155-0119-00 | 5-digit BCD Counter | X |  | a |
| 155-0121-00 | 50 MHz Trigger | X |  | a |
| 155-0122-00 | Sweep Control | P |  | 5-75 |
| 155-0123-00 | 50 ns Sweep \& Delay Pickoff | P |  | 5-81 |
| 155-0124-00 | 5 ns Horizontal Preamp | P |  | 5-87 |
| 155-0126-00 | Trigger Amp/Source Select | P |  | a |
| 155-0135-00 | Legend Generator | X |  | a |
| 155-0144-00 | TV Sync Stripper | P |  | 5-93 |
| 155-0145-00 | Controlled Risetime Amplifier | P |  | 5-99 |
| 155-0151-00 | 100 MHz Trigger | X |  | a |
| 155-0152-01 | Magnetic Deflected CRT Geometry Correction | P |  | 5-103 |
| 155-0154-00 | 3 Input Multiplexer | P |  | 5-111 |
| 155-0157-00 | Vertical Digital Storage | X |  | a |
| 155-0158-00 | Horizontal Digital Storage | X |  | a |
| 155-0160-00 | Trigger Source/Amplifier | C |  | a |
| 155-0171-00 | 4 Decade Counter Memory | S |  | a |
| 155-0185-00 | 4 Decade DVM | S |  | ${ }^{\text {a }}$ |
| 155-0187-00 | $F_{t}$ Doubler | S |  | a |
| 155-0188-00 | TV Sync Generator | P |  | 5-117 |
| 155-0196-00 | 100 MHz Trigger | P |  | 5-125 |
| 155-0198-00 | Knob Readout Counter | X |  | a |
| 155-0199-00 | Vertical Control | X |  | a |
| 155-0205-00 | $F_{t}$ Doubler | X |  | a |
| 155-0207-00 | Vertical Output | X |  | a |
| 155-0215-00 | Logic Analyzer Input | P |  | 5-131 |
| 155-0216-00 | Amplifier | S |  | a |
| 155-0217-00 | Amplifier | P |  | 5-137 |
| 155-0218-00 | Vertical Output | P |  | 5-141 |
| 155-0241-01 | Horizontal Amplifier | C |  | 5-141 |
| 155-0244-00 | Scope Logic Interface | P |  | 5-149 |
| 155-0247-00 | Tape Controller | P |  | 5-163 |

NEW DESIGN CODE

## INDEX BY PART NUMBER (cont)

Part Number
PACKAGED PARTS
$155-0253-00$
$155-0273-00$
$155-0274-00$
$155-0283-00$

DIE
203-0032-90
203-0075-90
203-0080-90
203-0084-90
203-0089-91
203-0096-90
203-0122-90
203-0126-90
203-0130-90
203-0155-91
203-0175-90
203-0177-90
203-0178-90,91,92
203-0196-90
203-0197-90
203-0198-90
203-0199-90
203-0206-90
203-0210-90
203-0211-90
203-0212-90
203-0213-90
203-0214-90
203-0216-90
203-0227-90
203-0229-90
203-0231-90
203-0264-90
203-0265-90
203-0266-90
203-0268-90
203-0269-90
203-0270-90
203-0271-90
203-0276-90
203-0290-00
206-0186-09
206-0248-00
Description
Schmitt Trigger
Differential/Variable/Invert Amplifier
Differential/Variable/Invert Amplifier
Video Multiplier

|  | New <br> Design | Page <br> No. |
| :---: | :---: | :---: |
| P | $\ldots \ldots \ldots$ | $5-171$ |
| P | $\ldots \ldots \cdots$ | $5 \cdots$ |
| P | $\ldots \ldots \ldots$ | $5-175$ |
| P | $\ldots \ldots \ldots$ | $5-181$ |
|  |  |  |



NEW DESIGN CODE
$\mathrm{P}=$ Preferred
X = Suitable
$\mathbf{X}=$ Do Not Use

C = Call Application Engineering before using
155-XXXX = Packaged Parts
203-XXXX = Die

Packaged Part No./Die No.
M01A 155-0009-00
M04 155-0010-00
M12B 155-0011-00
M15B 155-0012-00
M18H 155-0028-00/01
M19F 155-0014-01
M20J 155-0015-01
M22 155-0013-00
M25E 155-0017-00
M26D 155-0018-00
M27B 155-0019-00
M28C 155-0020-00
M29B 155-0021-01
D32A 152-0646-00
M33B 155-0004-01
M34C 155-0005-00
M35B 155-0006-01
M36K 155-0022-00/01
M38C 155-0007-01
M39C 155-0008-01
M42D 155-0056-00
M45D 155-0038-01/02
M47 155-0031-01/
M50B 155-0047-00
M52G 155-0048-00, 155-0055-00
M53B 155-0035-00, 155-0116-00
M55E 155-0216-00, 155-0217-00
M65 155-0050-01
M68 155-0051-00
M77A 155-0059-00
M79H 155-0049-02
M80F 203-0080-90
M83 155-0061-00
M84F 155-0078-10, 155-0274-00
M89A 203-0089-91
M91E 155-0067-02
M94B 155-0076-00
M95A 155-0091-00
M96F 203-0096-90
M101B 155-0106-00
M105 155-0083-00
M112A 155-0198-00
D113C 155-0112-01
M115A 155-0199-00
M119 155-0110-00
M120D 155-0109-01
M121D 155-0126-00
M122C 203-0122-90
M123A 155-0119-00
M124A 155-0144-00
NEW DESIGN CODE

Packaged Part No./Die No. (cont)

| M126 | 203-0126-90 |  |
| :---: | :---: | :---: |
| M127D | 155-0114-00 |  |
| M130 | 203-0130-90 |  |
| M131A | 155-0121-00 |  |
| M132A | 155-0122-00 |  |
| M133A | 155-0123-00 |  |
| M136D | 155-0160-00 |  |
| M138 | 155-0124-00 |  |
| M150A | 155-0171-00 |  |
| M151A | 155-0145-00 |  |
| M152D | 155-0152-01 |  |
| M154 | 155-0154-00 |  |
| M155B | 203-0155-91 |  |
| M156 | 155-0288-00 |  |
| M159 | 155-0151-00 |  |
| M160A | 155-0023-00 |  |
| M161A | 155-0024-00 |  |
| M162A | 155-0025-00 |  |
| M163A | 155-0026-00 |  |
| M164A | 155-0027-00 |  |
| M165 | 155-0086-00 |  |
| M166 | 155-0087-00 |  |
| M167 | 155-0088-00 |  |
| M169 | 155-0104-00 |  |
| M170 | 155-0105-00 |  |
| M171 | 155-0135-00 |  |
| M175B | 203-0175-90 |  |
| M177A | 203-0177-90 |  |
| M178A | 203-0178-90, 91, 92 |  |
| M180D | 155-0157-00 |  |
| M181D | 155-0158-00 |  |
| M187A | 155-0185-00 |  |
| M188A | 155-0196-00 |  |
| M192C | 155-0188-00 |  |
| M196A | 203-0196-90 |  |
| M197A | 203-0197-90 |  |
| M198A | 203-0198-90 |  |
| M199A | 203-0199-90 |  |
| D206A | 203-0206-90 |  |
| M207 | 155-0187-00 |  |
| M208 | 155-0205-00 |  |
| M210C | 203-0210-90 | . |
| M211C | 203-0211-90 |  |
| M212C | 203-0212-90 |  |
| M213C | 203-0213-90 |  |
| M214C | 203-0214-90 |  |
| M215E | 155-0241-01 |  |
| M216C | 203-0216-90 |  |
| M217G | 155-0244-00 |  |
| M218A | 155-0215-00 |  |
| NEW DESIGN CODE |  | C = Call Application Engineering before using |
| $\begin{aligned} & \mathbf{P}=\text { Preft } \\ & \mathbf{X}=\text { Suits } \end{aligned}$ |  | $\begin{aligned} & \text { 155-XXXX }=\text { Packaged Parts } \\ & \text { 203-XXXX }=\text { Die } \end{aligned}$ |

M222B
M223B M227C M228B M229C M231B M232B M234B M240 M241B M274B M289A M297A M307B M312A

Packaged Part No./Die No. (cont)
155-0218-00
155-0247-00
203-0227-90
155-0279-00, 155-0283-00
203-0229-90
203-0231-90
155-0277-00
155-0253-00
203-0240-90
155-0280-00
203-0274-90
155-0273-00
203-0297-90
203-0307-90
155-0282-00

NEW DESIGN CODE
P = Preferred
X $=$ Suitable
X = Do Not Use

C = Call Application Engineering before using
155-XXXX = Packaged Parts
203-XXXX $=$ Die
Preferred for New Designs ..... 2-1
Suitable for New Designs ..... 2-2
Do Not Use for New Designs ..... 2-3
Call Applications Engineering Before Using ..... 2-4
Page
Preferred for New Designs-Cost Effective or State-of-the-Art ..... No.
Packaged Parts
155-0012-00 $\quad Z$ axis signal conditioner ..... 5-1
155-0022-00 2 input channel switch Ins Rt ..... 5-7
155-0035-00 Quad Op Amps, 80 MHz gain bandwidth ..... 5-11
155-0038-02 5-bit precision D/A ..... 5-17
155-0048-01 5 MHz trigger and $1 \mathrm{~V} / \mu$ s sweep ..... 5-21
155-0049-02 Sweep control ..... 5-27
155-0055-00 5 MHz trigger and $1 \mathrm{~V} / \mu \mathrm{s}$ sweep ..... 5-35
155-0057-00 Dual Op Amp, current source ..... 5-41
155-0067-02 DC to DC controller ..... 5-47
155-0078-10 Differential/variable/invert amplifier ..... 5-53
155-0109-01 $\quad 350 \mathrm{MHz}$ trigger ..... 5-61
155-0116-00 Quad Op Amps, 80 MHz gain bandwidth ..... 5-69
155-0122-00 Sweep control ..... 5-75
155-0123-00 $\quad 50 \mathrm{~ns}$ sweep and delay pickoff ..... 5-81
155-0124-00 $5 \mathrm{~ns} /$ div horizontal preamplifier ..... 5-87
155-0126-00 Trigger Amplifier/Source Select ..... a
155-0144-00 TV sync stripper ..... 5-93
155-0145-00 Controlled risetime amplifier ..... 5-99
155-0152-01 Magnetic deflected CRT geometry correction ..... 5-103
155-0154-00 3-input multiplexer ..... 5-111
155-0188-00 TV sync generator ..... 5-117
155-0196-00 $\quad 100 \mathrm{MHz}$ trigger ..... 5-125
155-0215-00 Logic analyzer input ..... 5-131
155-0217-00 Amplifier ..... 5-137
155-0218-00 $\quad 100 \mathrm{MHz}$ vertical output ..... 5-141
155-0244-00 Scope logic interface ..... 5-149
155-0247-00 Tape controller ..... 5-163
155-0253-00 Schmitt trigger ..... 5-171
155-0273-00 Differential/variable/invert amplifier ..... 5-175
155-0274-00 Differential/variable/invert amplifier ..... 5-181
155-0283-00 Video multiplier ..... 5-187
206-0248-00 Platinum temperature probe tip ..... 5-193
Die
203-0084-90 Differential/variable/invert amplifier ..... 6-1
203-0089-91 Vertical output amplifier ..... 6-7
203-0155-91 4-bit 80 MHz clock flash A/D converter ..... 6-17
203-0177-90 5-bit DAC ..... 6-23
203-0211-90 Channel switch ..... 6-29
203-0212-90 Vertical output ..... 6-33
203-0213-90 $\quad 600 \mathrm{MHz}$ trigger ..... 6-43
203-0214-90 Sweep DAC \& logic ..... 6-53
203-0216-90 Z-axis, autofocus amplifier ..... 6-61
203-0227-90 Z-axis driver ..... 6-67
203-0229-90 $\quad 300 \mathrm{MHz}$ trigger amplifier ..... 6-73
203-0231-90 Sweep integrator ..... 6-81
not included in this catalog.

Suitable for New Designs—Older Still Useful Parts


## Packaged Parts

| $155-0009-00$ | Horizontal Lockout Logic |
| :--- | :--- |
| $155-0010-00$ | Chip Divider, Blanking |
| $155-0011-00$ | Clock Chop Blanking |
| $155-0013-01$ | Horiz Chop Alt Binary |
| $155-0014-01$ | A/D Converter |
| $155-0015-01$ | Data Switch |
| $155-0019-00$ | Decade Counter |
| $155-0020-00$ | Output Assembly |
| $155-0021-01$ | Scan Osc. Logic Timing Generator |
| $155-0022-01$ | Channel Switch |
| $155-0023-00$ | Character Generator |
| $155-0024-00$ | Character Generator |
| $155-0025-00$ | Character Generator |
| $155-0026-00$ | Character Generator |
| $155-0027-00$ | Character Generator |
| $155-0038-01$ | D/A Converter |
| $155-0047-00$ | Dual Output Amplifier |
| $155-0050-01$ | Vertical Preamp |
| $155-0051-00$ | Z-axis, HV Regulator |
| $155-0059-00$ | Gain Trim Amplifier |
| $155-0061-00$ | F Doubler Amplifier |
| $155-0083-00$ | Dual Op Amp, Current Source |
| $155-0091-00$ | 250 MHz Channel Switch |
| $155-0110-00$ | Legend Character |
| $155-0114-00$ | 7 Segment Character Generator |
| $155-0171-00$ | 4 Decade Counter Memory |
| $155-0185-00$ | 4 Decade DVM |
| $155-0187-00$ | F Doubler |
| $155-0216-00$ | Amplifier |
| 10 |  |
| $203-0080-90$ | Vertical Output Amplifier |
| $203-0126-90$ | F Doubler |

Do Not Use for New Designs-Obsolete Designs, Replaced by Newer Designs, or No Longer a Process in Production

## Packaged Parts

131-1393-00 Programmed Connector

131-1394-00
131-1395-00
131-1396-00
131-1659-00
131-1660-00
152-0314-00
152-0442-00
152-0442-01
152-0446-00
152-0446-01
155-0004-01
155-0005-00
155-0006-01
155-0007-01
155-0008-01
155-0031-01
155-0087-01
155-0088-00
155-0104-00
155-0105-00
155-0106-00
155-0111-01
155-0112-01
155-0119-00
155-0121-00
155-0135-00
155-0151-00
*155-0157-00
*155-0158-00
*155-0198-00
*155-0199-00
155-0205-00
*155-0207-00
206-0186-06
206-0286-11
Die
203-0096-90 Logic Probe
203-0268-90 PNP Transistor
203-0276-90 $\quad 50$ Ohm Resistor
203-0290-90

Programmed Connector
Programmed Connector
Programmed Connector
Programmed Connector
Programmed Connector
Schottky Diode
Schottky Diode
Schottky Diode Pair
Schottky Diode Pair
Schottky Diode Single
576 Readout System
Quad Timing Unit
Quad Timing Unit
Legend Character
Legend Character Legend Character Normalizing Circuit LED Array
Photo Transistor Array
5-Digit BCD Counter
50 MHz Trigger
Legend Character
100 MHz Trigger
MOS Digital Storage Vertical Control
MOS Digital Storage Horizontal Control
MOS Knob Readout Counter
MOS Vertical Control
$F_{t}$ Doubler
Vertical Output
Transistor Temperature Probe
Transistor Temperature Probe

[^0]
## Call Application Engineering Before Using

## Packaged Parts

| $151-0659-00$ | NPN Power Transistor |
| :--- | :--- |
| $151-1139-00$ | Dual FET |
| $152-0646-00$ | Schottky Diode Pair |
| $152-0646-02$ | Schottky Diode Pair |
| $155-0017-00$ | Decade Counter |
| $155-0018-00$ | Zero Logic |
| $155-0028-00$ | Miller Integrator |
| $155-0028-01$ | Miller Integrator |
| $155-0056-00$ | Sweep Control |
| $155-0076-00$ | Input Protection |
| $155-0160-00$ | Trigger Source/Amplifier |
| $155-0241-00$ | Horizontal Amplifier |

## Die

203-0032-90
203-0075-90
203-0088-90
203-0122-90
203-0130-90
203-0175-90
203-0178-90
203-0196-90
203-0197-90
203-0198-90
203-0199-90
203-0206-90
203-0210-90
203-0264-90
203-0269-90
203-0270-90
203-0271-90
203-0265-90
203-0266-90
Schottky Diode
NPN Transistor
Vertical Amplifier
1 GHz Trigger
100 MHz Vertical Preamp
Dual Comparator
1 GHz Vertical Amplifier
Horizontal Clamp
Horizontal Output
Clamp \& Sensor
1 GHz Input Amplifier
NPN Transistor
3001 MHz Vertical Preamp
Schottky Diode
EBS Target Diodes
NPN 3 Watt 2 GHz Transistor
NPN 5 Watt 150 V .5 GHz Transistor
Schottky Diode
Schottky Diode
Q.A. PROGRAM

3
$3$

## ICM QUALITY

## QUALITY POLICY

Integrated Circuits Manufacturing exists to provide quality products and services to our customers on time at reasonable cost. Quality is meeting all the requirements of the "specification". The standard of performance is complete conformance to the requirements for guaranteed customer satisfaction. Any change in requirements must be officially documented and reflect what we and our customers really need.

Our intent is that quality be built into each product during the design, development, and manufacturing stages of product life. Defect prevention, rather than "inspecting" quality in, is to be emphasized at all times at all organizational levels. Each individual is responsible for the quality of his/her work, and each manager is responsible for the quality of work performed under his/her direction. Correction of major plant and field problems will be given prompt attention and timely resolution.

## MANUFACTURING, SCREENING AND INSPECTION for <br> INTEGRATED CIRCUITS

The following flow chart describes the major process steps and the key quality check points for producing hermetic and molded package I.C.'s. All operations are totally specified in product, process, test, and quality assurance specifications.

```
HERMETIC MOLDED
PACKAGE
PACKAGE
PROCESS

\section*{INCOMING INSPECTION}

Starting materials are inspected for conformance to specified requirements. Inspection follows written procedures and records are to establish suppliers quality ratings.

II
WAFER FABRICATION
a
Repeated masking, etching, and diffusion processes produce finished die in wafer form. All processes are monitored on process control charts.

\section*{IN-PROCESS INSPECTION}
b


Each wafer is inspected prior to irreversible process steps. Special capacitance vs. voltage tests (CV Monitor) are performed regularly to prevent inversion. A scanning electron microscope (SEM) is used to check metal step coverage and metalization integrity. A PSG (Phospo-silicate glass) monitor checks phosphorous content of the passivation.
c


FINISHED WAFER INSPECTION
A computerized test station electrically probes test elements on all lots to guarantee electrical performance at die sort. All wafers are visually process inspected and then audited by Q.A. to a \(2.5 \% \mathrm{AQL}\). All lot data is verified for completeness.


\begin{tabular}{lr} 
HERMETIC & MOLDED \\
PACKAGE & PACKAGE \\
PROCESS & PROCESS
\end{tabular}


Specialized reliability assurance screen tests, such as burn-in, can be developed for a specific application to insure a product's reliability. Initial discussions should be coordinated with an Applications Engineer. Quality and Reliability Engineers are also ready to support you and your application.
\(3\)

\section*{RELIABILITY}

The reliability of a circuit component is the probability of failure-free performance of a required function under stated conditions for a given period of time. It is possible to calculate the probability of successful operation to a specified confidence interval.

The typical failure rate behavior of a device is shown in the figure below:


INFANT MORTALITY: Early in the lifetime of a device there can be a relatively large number of failures, due to built-in weakness or defect. These early failures show a decreasing failure rate with respect to a relatively short time period.

USEFUL LIFE: During the middle period of the device lifetime fewer failures occur but it is necessary to know which failure mechanism is the principal determinant of the failure rate under the conditions of interest. In this region, sometimes called the "random failure region" of constant failure rate, the device characteristics are essentially constant and when failure occurs it is usually catastrophic.

WEAR-OUT REGION: As a device reaches the age at which wear-out failure mechanisms are activated it begins to deteriorate rapidly. The instantaneous failure rate increases monotonically and many failures occur. This failure region is called the "wear-out region" and is caused by material degradation, effect of electrical fields, and slow chemical reactions. Integrated circuits do not usually reach the wear-out region in normal operation. Exceptions occur when integrated circuits are exposed to ionizing radiation fields and when the hermeticity of integrated circuit packages is impaired by progressive corrosion. An "intrinsic" wearout process leads to the ultimate failure of every device.

\section*{INTEGRATED CIRCUIT FAILURE MECHANISMS}

The physical or chemical process that causes devices to fail is termed the failure mechanism. The cause of rejection of any failed device is termed the failure mode. Thus, electromigration is an example of a failure mechanism, which can lead to the failure mode of an open interconnection. A further example is given by excess charge near a silicon-oxide interface (failure mechanism) which causes drift of the parameters of a MOS transistor (failure mode).

Failure mechanisms for bipolar integrated circuits can be divided roughly into three groups, namely: (1) dierelated failures, such as oxide defects, metallization defects, and diffusion-related failures; (2) assemblyrelated problems such as die mount, wire bonds, or package failures; and (3) miscellaneous undetermined, or application-induced failures.

DIFFUSION-RELATED FAILURES: Nonuniform current-flow may occur within a device because of dopant diffusion-related causes. These may affect the base width, the emitter resistivity, the curvature of junctions, and other device parameters.

OXIDE-RELATED FAILURES: Contamination of oxide, during or after its growth, directly affects its dielectric properties, particularly its breakdown strength. Presence of surface charge, \(\mathrm{Q}_{\mathrm{SS}}\), at or near an oxide-silicon interface can affect the turn-on voltage, \(\mathrm{V}_{\mathrm{TH}}\), of a device and other parameters, such as dc gain, and leakage current. Oxide-charge values of large magnitude can cause surface inversion. Other surface-related failures arise because of ion migration in the thermally grown oxide and along its surface, dipole polarization effects or charge trapping effects.

METALLIZATION-RELATED FAILURES: The mass transport of metal atoms by momentum exchange with conducting electrons is called "electromigration". It occurs in metal lines at high current densities and elevated temperatures, and consists of the movement of metal atoms toward the positive end of the conductor, while voids move in the opposite direction. As a consequence, metal disappears from certain regions and ultimately an open-circuit occurs. The degradation of integrated circuits with aluminum metallization operating at high current densities and at elevated temperatures is described by the Arrhenius model. Electromigration occurs for many metals, including aluminum, gold, silver, copper, and platinum. The current density at which reliability problems occur with gold films is substantially higher than that for aluminum films. This has led to the use of gold in circuits requiring high current densities.

Another significant cause of metallization failure is the formation of microcracks, where the metallization passes over an oxide step. It occurs frequently where the oxide step is greater than 6000 Angstrom. Steeper steps lead to thinner metal deposits which have a greater probability of failure under high current stress. Microcracks are not usually detectable with optical microscopes, but may effectively be detected by scanning electron microscopes.

Metallization may also fail because of poor ohmic contacts with silicon, poor bondability to aluminum or gold wires, or poor adhesion to the silicon dioxide.

DIE MOUNT FAILURES: Die to leadframe attachment failures have been attributed to low strength adhesion caused by inadequate process control. Epoxy mounts may fail under temperature stress because the thermal coefficient of expansion of most epoxies exceeds the coefficients of expansion of both the semiconductor die and the leadframe to which it is mounted.

WIRE BOND FAILURES: Gold wire is bonded to the die metallization. Failure of gold wire bonds to alumi-num-metallized die may be due to the formation of intermetallic compounds that lead to loss of strength and an increase of resistance.

PACKAGE-RELATED FAILURES: The hermeticity of metal can packages depends on a glass to metal seal that isolates the leads going to the device. The coefficient of expansion is matched to that of the header. Failure may occur due to poor hermeticity due to corrosion of the header.

Plastic packages are formed by molding the device in molten plastic. Failure is usually due to environmental factors; however, with proper design and testing they have a high degree of reliability.

\section*{EARLY FAILURES—RELIABILITY SCREENING PROCEDURES}

Ideally, reliability screening selects from a lot of devices having superior reliability and rejects those devices that are potential early failures. Assuming that all devices in a lot are intitially within specification, screening is a test procedure that classifies a device as to longevity, based on time-zero or short-time measurements. See the Quality Assurance section flowchart for a description of the reliability screens performed on all parts.

Specialized additional reliability assurance screen tests such as burn-in, are available for your specific applications. Initial discussions should be with an Applications Engineer.

\section*{ACCELERATED-STRESS LIFE TESTING}

The purpose of a life test is to be able to predict device reliability when the device is operating in a specified environment. Frequently, a device is so reliable under normal operating conditions that years of testing would be required in order to predict its reliability. Hence, there exists a great difficulty, because the greater the reliability of a device, the more difficult it is to determine this reliability.

A solution to this dilemma is to design accelerated-stress life tests in which a device is run at a higher stress level than encountered in normal operation. As a consequence, the device has a shorter life than under normal conditions. Results obtained at more severe stress levels are then extrapolated to normal stress levels so as to obtain an estimate of the life distribution. Accelerated-stress testing typically employs higher than normal temperature as the stress mechanism. The Arrhenius equation to relate the failure rate at one temperature to that at a different temperature is:
\[
\text { Acceleration Factor }=\mathrm{e} \frac{\mathrm{Ea}}{\mathrm{k}}\left[\left\{\frac{1}{\mathrm{~T}_{1}+273}-\frac{1}{\mathrm{~T}_{2}+273}\right\}\right]
\]
in which Ea = activation energy for the failure mechanism
\[
\begin{aligned}
& \mathrm{k}=\text { Boltzman constant } 8.62 \times 10^{-5} \mathrm{EV} /{ }^{\circ} \mathrm{C} \\
& \mathrm{~T}_{1}=\text { Reference temperature in }{ }^{\circ} \mathrm{C} \\
& \mathrm{~T}_{2}=\text { Stress temperature in }{ }^{\circ} \mathrm{C}
\end{aligned}
\]

\section*{NEW PRODUCTS AND PROCESSES}

New products and processes are evaluated for reliability before they are transferred to regular production. New circuits, packages and process test devices are subjected to the rigorous electrical and mechanical tests listed below in Table I.

TABLE I
\begin{tabular}{l|l|l}
\hline \multicolumn{1}{c|}{ TEST } & \multicolumn{1}{c|}{ STRESS } & \multicolumn{1}{c}{ PURPOSE } \\
\hline Mechanical Shock & 15 g for .5 sec. & \begin{tabular}{l} 
The shock test is intended to determine \\
the suitability of the device for use in \\
equipment that may be subjected to \\
moderately severe shocks encountered in \\
rough handling, transportation or field \\
operation.
\end{tabular} \\
\hline Vibration & \(20 \mathrm{~g} ; 20-1000\) cycles & \begin{tabular}{l} 
The variable frequency vibration test is \\
performed for the purpose of determining \\
the effect on component parts of vibration \\
in the specified frequency range.
\end{tabular} \\
\hline Lead integrity & \begin{tabular}{l} 
Lead pull \\
Lead bend \\
Stud Torque
\end{tabular} & \begin{tabular}{l} 
This test provides various tests to \\
determine the integrity of device leads, \\
welds, and seals.
\end{tabular} \\
\hline Thermal Shock & \begin{tabular}{l}
\(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
100 cycles \\
\(+20^{\circ} \mathrm{C}\) to \(+260^{\circ} \mathrm{C}\) \\
10 cycles
\end{tabular} & \begin{tabular}{l} 
The purpose of this test is to determine \\
the resistance of the device to sudden \\
exposure to extreme changes in \\
temperature.
\end{tabular} \\
\hline Humidity & \begin{tabular}{l}
\(-10^{\circ} \mathrm{C}\) to \(+65^{\circ} \mathrm{C}\) \\
Relative humidity of \(95 \%\) to \(98 \%\) \\
10 cycles of 24 hours each.
\end{tabular} & \begin{tabular}{l} 
This test is performed to evaluate in an \\
accelerated manner the resistance of the \\
part to the effects of high humidity.
\end{tabular} \\
\hline High Temperature Storage & \(150^{\circ}\) for 60 hours & \begin{tabular}{l} 
Static and dynamic operating life \\
tests at a junction temperature \\
of \(150^{\circ} \mathrm{C}\).
\end{tabular} \\
\begin{tabular}{l} 
This test is to determine the effect on the \\
device of storage at high temperature \\
without electrical stress applied.
\end{tabular} \\
\begin{tabular}{ll} 
This life test is performed for the purpose \\
of determining a representative failure \\
rate.
\end{tabular} \\
\hline
\end{tabular}

\section*{ON-GOING RELIABILITY MONITOR}

A Reliability Assurance Monitor program is established that regularly runs accelerated life tests on samples from production output. This monitor is our assurance that integrated circuits continue to maintain their high reliability.

The part numbers for the Reliability Assurance Monitor have been classified according to process and package types. Accelerated life tests are scheduled so that during any period of time, a number of production samples of each classification are on life test. The part numbers run during a year represent \(90 \%\) of the output volume of Integrated Circuits Manufacturing.

\section*{PACKAGED PARTS}
(DATA SHEETS)

\section*{SECTION 5 PACKAGED PARTS (DATA SHEETS)}

\section*{PREFERRED FOR NEW DESIGNS—COST EFFECTIVE OR STATE-OF-THE-ART}
\begin{tabular}{|c|c|c|}
\hline & & Page No. \\
\hline \multicolumn{3}{|l|}{Packaged Parts} \\
\hline 155-0012-00 & \(Z\) axis signal conditioner & 5-1 \\
\hline 155-0022-00 & 2 input channel switch Ins Rt & 5-7 \\
\hline 155-0035-00 & Quad Op Amps, 80 MHz gain bandwidth & 5-11 \\
\hline 155-0038-02 & 5-bit precision D/A & 5-17 \\
\hline 155-0048-01 & 5 MHz trigger and \(1 \mathrm{~V} / \mu\) s sweep & 5-21 \\
\hline 155-0049-02 & Sweep control & 5-27 \\
\hline 155-0055-00 & 5 MHz trigger and \(1 \mathrm{~V} / \mu \mathrm{s}\) sweep & 5-35 \\
\hline 155-0057-00 & Dual Op Amp, current source & 5-41 \\
\hline 155-0067-02 & DC to DC controller & 5-47 \\
\hline 155-0078-10 & Differential/variable/invert amplifier & 5-53 \\
\hline 155-0109-01 & 350 MHz trigger & 5-61 \\
\hline 155-0116-00 & Quad Op Amps, 80 MHz gain bandwidth & 5-69 \\
\hline 155-0122-00 & Sweep control & 5-75 \\
\hline 155-0123-00 & 50 ns sweep and delay pickoff & 5-81 \\
\hline 155-0124-00 & \(5 \mathrm{~ns} / \mathrm{div}\) horizontal preamplifier & 5-87 \\
\hline 155-0144-00 & TV sync stripper & 5-93 \\
\hline 155-0145-00 & Controlled risetime amplifier & 5-99 \\
\hline 155-0152-01 & Magnetic deflected CRT geometry correction & 5-103 \\
\hline 155-0154-00 & 3 -input multiplexer & 5-111 \\
\hline 155-0188-00 & TV sync generator & 5-117 \\
\hline 155-0196-00 & 100 MHz trigger & 5-125 \\
\hline 155-0215-00 & Logic analyzer input & 5-131 \\
\hline 155-0217-00 & Amplifier & 5-137 \\
\hline 155-0218-00 & 100 MHz vertical output & 5-141 \\
\hline 155-0244-00 & Scope logic interface & 5-149 \\
\hline 155-0247-00 & Tape controller & 5-163 \\
\hline 155-0253-00 & Schmitt trigger & 5-171 \\
\hline 155-0273-00 & Differential/variable/invert amplifier & 5-175 \\
\hline 155-0274-00 & Differential/variable/invert amplifier & 5-181 \\
\hline 155-0283-00 & Video multiplier & 5-187 \\
\hline 206-0248-00 & Platinum temperature probe tip & 5-193 \\
\hline
\end{tabular}

\section*{"Z" AXIS LOGIC}

\section*{DESCRIPTION}

The 155-0012-00 is a Z-axis logic control circuit. The part is under the control of the horizontal switch drive. It properly selects A intensity or A intensified by B.

\section*{FEATURES}
- 4 current inputs
- 1 current output
- 4 logic inputs
- Chopped blanking
- Fast limiting of composite signal.
- Slow sweep speed limiting to prevent CRT phosphor burn.

\section*{BLOCK DIAGRAM}


\section*{ABSOLUTE MAXIMUMS}

Environmental
\begin{tabular}{l|l|c|c}
\hline \multicolumn{1}{c|}{ Symbols } & \multicolumn{1}{|c|}{ Identifications } & Values & Units \\
\hline \hline \(\mathrm{T}_{\text {stg }}\) & Storage temperature, range. & -55 to +125 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{T}_{\mathrm{A}}\) & \begin{tabular}{l} 
Operating ambient temperature, \\
range.
\end{tabular} & 0 to +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

PIN CONNECTIONS



\section*{ELECTRICAL CHARACTERISTICS}
\begin{tabular}{|c|c|c|c|c|c|}
\hline PIN \#'s & IDENTIFICATION & NOTES AND TEST CONDITIONS & MIN. & MAX & UNITS \\
\hline Pin 4 & B gate; current & Logical 0 & 2.3 & & mA \\
\hline Pin 4 & B gate; current & Logical 1 & & 0.5 & mA \\
\hline Pin 5 & Delay control; voltage & Logical 0 & & 0.600 & V \\
\hline Pin 5 & Delay control; voltage & Logical 1 & 0.8 & & V \\
\hline Pin 14 & A gate; current & Logical 0 & 2.3 & & mA \\
\hline Pin 14 & A gate; current & Logical 1 & & 0.5 & mA \\
\hline Pin 15 & Horizontal binary; voltage & Logical 0 & & 0.2 & V \\
\hline Pin 15 & Horizontal binary; voltage & Logical 1 & 0.7 & & V \\
\hline Pin 14 & Output (pin 8) risetime; input at A gate (pin 14) & & & 4.6 & ns \\
\hline Pin 4 & Output (pin 8) risetime; input at B gate (pin 4) & & & 3.9 & ns \\
\hline Pin 6 & Output (pin 8) risetime; input at chop blanking (pin 6) & & & 2.6 & ns \\
\hline Pin 9 & Output (pin 8) risetime; input at external input (pin 9) & & & 3.3 & ns \\
\hline Pin 14 & Output (pin 8) falltime; input at A gate (pin 14) & & & 4.2 & ns \\
\hline Pin 4 & Output (pin 8) falltime; input at B gate (pin 4) & & & 3.6 & ns \\
\hline Pin 6 & Output (pin 8) falltime; input at chop blanking (pin 6) & & & 2.3 & ns \\
\hline Pin 9 & Output (pin 8) falltime; input at external input (pin 9) & & & 1.4 & ns \\
\hline Pins 14-8 & Propagation delay, A gate input (inverting) & For negative-slope input transition & & 1.9 & ns \\
\hline Pins 4-8 & Propagation delay, B gate input (inverting) & For negative-slope input transition & & 1.3 & ns \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS (cont)
\begin{tabular}{|c|c|c|c|c|c|}
\hline PIN \#'s & IDENTIFICATION & NOTES AND TEST CONDITIONS & MIN & MAX & UNITS \\
\hline Pins 6-8 & Propagation delay, chop blanking input (inverting) & For negative-slope input transition & & 1.4 & ns \\
\hline Pins 9-8 & Propagation delay, external input (noninverting) & For negative-slope input transition & & 2.9 & ns \\
\hline Pins 14-8 & Propagation delay, A gate input (inverting) & For positive-slope input transition & & 4.0 & ns \\
\hline Pins 4-8 & Propagation delay, B gate input (inverting) & For positive-slope input transition & & 6.5 & ns \\
\hline Pins 6-8 & Propagation delay, chop blanking input (inverting) & For positive-slope input transition & & 4.4 & ns \\
\hline Pins 9-8 & Propagation delay, external input (noninverting) & For positive-slope input transition & & 0.94 & ns \\
\hline \[
\begin{aligned}
& h_{\mathrm{fb}} \\
& \text { Pins 16-8 }
\end{aligned}
\] & Current gain from A intensity input & \[
\begin{aligned}
& I=1.0 \mathrm{~mA} \text { and } \\
& I=5.0 \mathrm{~mA}
\end{aligned}
\] & . 87 & 1.01 & \\
\hline \begin{tabular}{l}
\[
h_{t o}
\] \\
Pins 1-8
\end{tabular} & Current gain from B intensity input & \[
\begin{aligned}
& I=1.0 \mathrm{~mA} \text { and } \\
& I=5.0 \mathrm{~mA}
\end{aligned}
\] & . 87 & 1.01 & \\
\hline \begin{tabular}{l}
\[
h_{t o}
\] \\
Pins 2-8
\end{tabular} & Current gain from \(A\) intensified by B input & \[
\begin{aligned}
& I=1.0 \mathrm{~mA} \text { and } \\
& I=5.0 \mathrm{~mA}
\end{aligned}
\] & . 87 & 1.01 & \\
\hline \(h_{f 0}\) Pins 9-8 & Current gain from external input & \[
\begin{aligned}
& \mathrm{I}=1.0 \mathrm{~mA} \text { and } \\
& \mathrm{I}=5.0 \mathrm{~mA}
\end{aligned}
\] & . 89 & 1.01 & \\
\hline \[
h_{f b}
\]
Pins 6-8 & Current gain from chop blanking & \[
\begin{aligned}
& I=1.0 \mathrm{~mA} \text { and } \\
& I=5.0 \mathrm{~mA}
\end{aligned}
\] & . 92 & 1.01 & \\
\hline \[
h_{f b}
\]
Pins 7-8 & Current gain from limit & \[
\begin{aligned}
& I=1.0 \mathrm{~mA} \text { and } \\
& I=5.0 \mathrm{~mA}
\end{aligned}
\] & . 92 & 1.01 & \\
\hline
\end{tabular}

\section*{Reliability}
\(\lambda\), failure rate \(\leqslant .02 \% / 1 \mathrm{~K}\) hours at \(75^{\circ} \mathrm{C} \mathrm{Tj}\)

\section*{CHANNEL SWITCH}

\section*{DESCRIPTION}

This monolithic integrated circuit selects one or mixes two input analog signals in response to a digital input.

High speed switching between two inputs for "CHOPPED" or "ALTERNATE" operation is possible to frequencies of 1 MHz .

\section*{FEATURES}
- Signal rise time \(<2.5 \mathrm{~ns}\).
- Output current swing \(\pm 7.5 \mathrm{~mA}\) MAX
- Output impedance \(100 \mathrm{~K} \Omega \mathrm{NOM}\)
- Input capacitance 2.3 pF NOM
- Output capacitance 5.2 pF NOM
- Differential DC offset between modes 20 mV MAX

\section*{ABSOLUTE MAXIMUMS}
\begin{tabular}{l|l|c|c}
\hline \multicolumn{1}{c|}{ SYMBOLS } & \multicolumn{1}{c|}{ IDENTIFICATIONS } & VALUES & UNITS \\
\hline \hline \(\mathrm{T}_{\text {STG }}\) & Storage temperature, range & -55 to +125 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{T}_{\mathrm{a}}\) & Operating ambient temperature range & 0 to +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline & \begin{tabular}{l} 
Maximum voltage at pins 12 and 13 (referred to \\
pin 3)
\end{tabular} & +10 & V \\
\hline & \begin{tabular}{l} 
Maximum (negative) voltage at pin 11 (referred to \\
pin 3)
\end{tabular} & -10 & V \\
\hline
\end{tabular}

\section*{SCHEMATIC}

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
ELECTRICAL CHARACTERISTICS \\
(For an ambient temperature of \(25^{\circ} \mathrm{C}\) unless otherwise noted.)
\end{tabular}} & \multicolumn{2}{|r|}{VALUES} & \multirow[t]{2}{*}{UNITS} \\
\hline SYMBOLS & IDENTIFICATION & NOTES AND TEST CONDITIONS \({ }^{1}\) & MIN & MAX & \\
\hline \(\mathrm{V}_{\mathrm{L} 4}\)

\(\mathrm{~V}_{\mathrm{H} 4}\) & CH 1-Ch 2 switch input, pin 4 voltage. See note 7 . & \begin{tabular}{l}
LOW - CH 1 on: \\
HIGH-CH 2 on;
\end{tabular} & \[
\begin{aligned}
& -0.5 \\
& +0.6
\end{aligned}
\] & \[
\begin{aligned}
& +0.2 \\
& +1.0
\end{aligned}
\] & \begin{tabular}{l}
v \\
V
\end{tabular} \\
\hline \(V_{\text {L14 }}\)
\(V_{\text {H14 }}\) & ADD switch input, pin 14 voltage. See note 7 . & \begin{tabular}{l}
LOW—Non-add: \\
HIGH—Add
\end{tabular} & \[
\begin{aligned}
& -0.5 \\
& +4.0
\end{aligned}
\] & \[
\begin{aligned}
& +1.0 \\
& +5.0
\end{aligned}
\] & V \\
\hline \[
\begin{aligned}
& V_{V_{L 6}} \\
& V_{H 6}
\end{aligned}
\] & \begin{tabular}{l}
OFF switch input, pin 6 voltage. \\
See note 7 .
\end{tabular} & LOW—on: HIGH—off: & \[
\begin{aligned}
& -0.5 \\
& +0.5
\end{aligned}
\] & \[
\begin{aligned}
& -0.2 \\
& +1.0
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{V} \\
& \mathrm{v}
\end{aligned}
\] \\
\hline \begin{tabular}{l}
Ai \\
\(\mathrm{lo}_{\text {max }}\) \\
\(\Delta V_{\text {OFFSET }}\) \\
\(V_{\text {Offset }}\) \\
\(\epsilon_{\text {ADD }}\)
\end{tabular} & \begin{tabular}{l}
Current gain \\
Output dynamic range DC offset between modes DC offset in any mode ADD mode error
\end{tabular} & \begin{tabular}{l}
See note 2 \\
See note 3 \\
See note 4 \\
See note 4 \\
See note 5
\end{tabular} & \[
\begin{gathered}
1.00 \\
-7.5
\end{gathered}
\] & \[
\begin{gathered}
\hline 1.14 \\
+7.5 \\
12 \\
50 \\
1.0
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{mA} \\
\mathrm{mV} \\
\mathrm{mV} \\
\%
\end{gathered}
\] \\
\hline \(\mathrm{I}_{\mathrm{N} 2}\)
\(\mathrm{I}_{\text {IN15 }}\)
\(\mathrm{I}_{\text {N } 7}\)
\(\mathrm{I}_{\text {IN10 }}\) & Input current; Pin 2 Input current; Pin 15 Input current; Pin 7 Input current; Pin 10 & Connected as shown. Voltage on Pins 2, 15, 7, and 10 held at 0 V . Pin 14 to +5 V . Implies beta \(=60\) & & \[
\begin{aligned}
& .125 \\
& .125 \\
& .125 \\
& .125
\end{aligned}
\] & mA mA mA mA \\
\hline \(\mathrm{T}_{\mathrm{r}}\) & \begin{tabular}{l}
Risetime (CH 1 to OUTPUT; then CH 2 to OUTPUT) \\
See note 6
\end{tabular} & Connect device as shown. & & <2.5 & ns \\
\hline
\end{tabular}

\section*{PIN CONNECTIONS}


\section*{APPLICATIONS}

In its simple application, the 155-0022-00 is a double-pole, double-throw selector of one two balance input signals. Its more sophisticated role is in providing signal steering in dual-trace vertical and horizontal amplifiers.

It is designed for two balanced input signals of \(25 \mathrm{mV} /\) division per side into \(50 \Omega\) terminations to ground are external to the package. A current gain of " 1 " is intended.

The switch output is at or slightly above a +5 volt DC level. It is a current output into a resistance of \(50 \Omega\) per side. Side-to-side diodes are included inside the circuit for limiting the differential voltage swing of the output.

The OFF input turns both inputs "off". The ADD input turns both inputs "on". The common mode current output of the signal channel is maintained and constant for the various modes.

\section*{RELIABILITY}
\(\lambda\), Failure rate \(\leqslant 0.02 \% / 1 \mathrm{~K}\) hours at \(75^{\circ} \mathrm{C} \mathrm{T}_{\mathrm{j}}\)

\section*{QUAD OPERATIONAL AMPLIFIER}

\section*{DESCRIPTION}

The 155-0035-00 is a silicon monolithic quad operational amplifier. It comes in a plastic 16 pin package.

FEATURES
- \(\pm 5\) volt to \(\pm 15\) volt power supply range.
- 80 MHz gain bandwidth product.
- 20 mA output bandwidth product.
- No compensation required.
- Open loop gain 3300 typical.
- 5 mV input offset voltage.
- Available in two versions:

155-0035-00 (plastic DIP)
155-0116-00 (ceramic DIP)


\section*{BLOCK DIAGRAM}


ABSOLUTE MAXIMUMS
\begin{tabular}{|c|c|c|c|}
\hline SYMBOLS & IDENTIFICATIONS & VALUES & UNITS \\
\hline & Difference between \(\mathrm{V}_{\mathrm{CC}}\) and \(\mathrm{V}_{\mathrm{EE}}\) & 32 & V \\
\hline \(\mathrm{V}_{\text {IN, DIFF }}\) & Differential Input Voltage & 7 & V \\
\hline \(I_{\text {Ret }}\) & Reference Current & 500 & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{I}_{\text {Out }}\) & Output Current & 20 & mA \\
\hline \(\mathrm{T}_{\text {storage }}\) & & -55 to 125 & \({ }^{\circ} \mathrm{C}\) \\
\hline Toperating & & 0 to 70 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{P}_{\mathrm{D}}\) & Maximum Power Dissipation & 375 & mW \\
\hline T & Maximum Junction Temperature & 125 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}
* Since this device does not have internal current limiting, the circuits being driven by pins 1, 7, 9 and 15 should have some form of current limiting to keep from exceeding the Absolute Maximum Rating (lout) of \(\mathbf{2 0} \mathbf{~ m A}\) for this device.

\section*{PIN CONNECTIONS}


ELECTRICAL CHARACTERISTICS
\begin{tabular}{|c|c|c|c|}
\hline PARAMETER/CONDITIONS* & MIN & MAX & UNITS \\
\hline \(\mathrm{V}_{\mathrm{CC}}\) & 14.25 & 15.75 & Volts \\
\hline \(V_{\text {EE }}\) & -14.25 & -15.75 & Volts \\
\hline Open Loop Voltage Amplification Condition: See Figure 1. & 1000 & & \\
\hline \begin{tabular}{l}
Input Offset Voltage \\
Condition: \(\mathrm{R}_{\mathrm{L}}\) more than \(100 \mathrm{~K} \Omega\); Input connected to output; (+) Input grounded. Measure output voltage.
\end{tabular} & & \(\pm 5\) & mV \\
\hline Risetime Condition: See Figure 2. & & 60 & nS \\
\hline Closed Loop Voltage Amplification Condition: See Figure 3. & 9.70 & & \\
\hline Output Voltage Swing Condition: Output voltage swing will not go more than 1.0 volt negative of \((-)\) input. & \(\pm 12.0\) & & V \\
\hline Noise Condition: Referred to Input. & & 100 & \(\mu \mathrm{V} /\) peak to peak \\
\hline
\end{tabular}
*The circuit conditions at which these parameter values were tested are:
\(V_{C C}=+15\) volts, \(V_{E E}=-15\) volts; \(I_{R E F}=0.25 \mathrm{~mA}\). All these values \(\pm 5.0 \% . T_{A}=0\) to \(+70^{\circ} \mathrm{C}\).


FIGURE 1.


FIGURE 2.


FIGURE 3

\section*{APPLICATIONS INFORMATION}

RELIABILITY
\(\lambda\), Failure Rate, \(.02 \% / 1 \mathrm{~K}\) hours at \(75^{\circ} \mathrm{C} \mathrm{Tj}\)
\(\theta_{\mathrm{jc}}=94^{\circ} \mathrm{C} / \mathrm{W}\)

\section*{D/A CONVERTER}

\section*{DESCRIPTION}

The 155-0038-02 is a silicon monolithic digital-toanalog converter in a 16 lead dual-in-line hermetic package.

\section*{FEATURES}
- 5-bit precision current source D/A converter.
- Current ratios set by external resistors.
- Range of MSB is 5 mA to 30 mA .
- Two packages may be used together for a 10 -bit D/A with \(\pm 1 / 2\) LSB accuracy.
- Output is designed to sum into 0 volts.
- Logic inputs are \(\mathrm{T}^{2} \mathrm{~L}\) compatible with a low state being true.


ABSOLUTE MAXIMUMS
\begin{tabular}{l|l|l|c}
\hline \multicolumn{1}{c|}{ SYMBOLS } & \multicolumn{1}{|c|}{ IDENTIFICATIONS } & VALUES & UNITS \\
\hline \hline \(\mathrm{T}_{\text {stg }}\) & Storage Temperature & -55 to 125 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{T}_{\mathrm{A}}\) & Operating Ambient Temperature & 0 to 70 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{V}_{\mathrm{CC}}\) & Positive Supply Voltage & 10 & V \\
\hline \(\mathrm{~V}_{\mathrm{EE}}\) & Negative Supply Voltage & -20 & V \\
\hline
\end{tabular}

\section*{PIN CONNECTIONS}


\section*{ELECTRICAL CHARACTERISTICS}

Electrical characteristics
( \(\mathrm{T}_{\mathrm{A}}=0\) to \(+70^{\circ} \mathrm{C}: \mathrm{V}_{\mathrm{EE}}=-15 \mathrm{~V} \pm 1.0 \%\);
\(V_{c C}=+5.0 \mathrm{~V} \pm 1.0 \%\); pin 9 current \(=3\) times
pin 10 current \(\pm 10 \%\).

\section*{Values}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Symbols & Identifications & Notes and Test Conditions & Min & Max & Units \\
\hline \multirow[t]{2}{*}{Pin 8} & Negative-supply voltage & & \(-5.0\) & -15.5 & V \\
\hline & Negative-supply current & & 4.5 & 7.6 & mA \\
\hline \multirow[t]{3}{*}{Pin 16} & Positive-supply voltage & & 4.75 & 5.25 & V \\
\hline & Positive-supply current & All logic inputs HIGH & 4.5 & 7.6 & mA \\
\hline & & All logic inputs LOW & 10 & 14 & mA \\
\hline \multirow[t]{4}{*}{\begin{tabular}{l}
Pins 1, 2, \\
3,4 , and 5
\end{tabular}} & \multirow[t]{4}{*}{Logic input, voltage and current} & \multirow[t]{2}{*}{Input HIGH} & \multirow[t]{2}{*}{1.8} & 5.0 & V \\
\hline & & & & 1.0 & \(\mu \mathrm{A}\) \\
\hline & & \multirow[t]{2}{*}{Input LOW} & 0 & 0.7 & V \\
\hline & & & & 1.5 & mA \\
\hline Pin 11 & Current-input voltage & See note 1 & -0.5 & \(+0.5\) & mV \\
\hline Pin 12 & Current-input voltage & See note 1 & -1.0 & +1.0 & mV \\
\hline Pin 13 & Current-input voltage & See note 1 & -2.0 & \(+2.0\) & mV \\
\hline \multirow[t]{2}{*}{Pin 14} & Current-input voltage & See note 1 & -4.0 & +4.0 & mV \\
\hline & Current-input current & & 2.5 & & \(\mu \mathrm{A}\) \\
\hline Pin 10 & Current-input current & & & 5.0 & mA \\
\hline \multirow[t]{3}{*}{Pin 15} & Output voltage & & \(-100\) & \(+100\) & mV \\
\hline & Output current & All inputs HIGH & 0 & 1.0 & \(\mu \mathrm{A}\) \\
\hline & Output-current accuracy & See note 2 & & 0.032 & \% \\
\hline Pin 15 & Switching Speed & Delay time from the \(50 \%\) point of a TTL input to the output within \(\pm 1 / 2\) LSB of desired output. & & 50 & nS \\
\hline
\end{tabular}

Note 1: Voltage with respect to pin 10.

Note 2: Determine according to:
Output-current accuracy, in percent \(=\frac{\left(\frac{X}{31}\right)\left(I_{\text {TOTAL }}-I_{\text {OUT }}\right)(100)}{\left(\frac{X}{31}\right)\left(I_{\text {TOTAL }}\right)}\)
where \(\mathbf{X}=\) step number (decimal equivalent of binary input),
\(I_{\text {TOTAL }}=\) current out with all logic inputs LOW,
\(\mathrm{I}_{\text {Out }}=\) current measured at pin 15 during selection of all possible combinations of pins \(\mathbf{1}\) through 5.

Input-current conditions are:
\(l\) at pin 10
\(\frac{1}{2}\) at pin 11
\(\frac{1}{4}\) at pin 12
\(\frac{1}{8}\) at pin 13
\(\frac{1}{16}\) at pin 14

\section*{RELIABILITY}
\(\lambda\), Failure rate, \(\leqslant 0.02 \% / 1 \mathrm{~K}\) hours at \(75^{\circ} \mathrm{C} \mathrm{Tj}\)

\section*{TRIGGER SWEEP CIRCUIT}

\section*{DESCRIPTION}

The \(155-0048-01\) is a monolithic integrated circuit. This trigger sweep circuit is for use in low frequency (below 1 MHz ) applications.

\section*{FEATURES}
- Trigger slope/level selection
- Variable sweep rate and length with controlled timing supply
- High Z BIFET Miller and trigger inputs
- Sweep holdoff
- Auto trigger with adjustable holdoff
- Z-axis blanking
- Reference voltage outputs for stable sweep control
- External X-axis Input
- Available in 2 package styles minipak (155-0048-01) \& DIP (155-0055-00)

\begin{tabular}{|c|c|c|c|}
\hline SYMBOLS & IDENTIFICATIONS & VALUES & UNITS \\
\hline \(\mathrm{V}_{\mathrm{cc}}\) & Maximum positive power supply voltage & \(+6.5\) & V \\
\hline \multirow[t]{2}{*}{\(V_{\text {EE }}\)} & Maximum negative power supply voltage & \(-6.5\) & V \\
\hline & Trigger Input voltage & \(\pm 4.6\) & V \\
\hline \(\mathrm{V}_{\mathrm{z}}\) & Current Load & 4.75 & mA \\
\hline \(2 \theta\) & Current Load & 4.75 & mA \\
\hline \multirow[t]{4}{*}{\(P_{\text {d }}\)} & Power dissipation & 300 & mV \\
\hline & Miller Out Source Current & 2 & mA \\
\hline & Miller Out Sink Current & 0.5 & mA \\
\hline & Voltage on input pins 2, 5, 10* & & \\
\hline \(\mathrm{T}_{\text {storage }}\) & Storage temperature range & -55 to +125 & \({ }^{\circ} \mathrm{C}\) \\
\hline Toperating & Operating temperature range & -15 to +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}
* Must not be less than \(2 \theta\) or greater than \(\mathbf{V z}\).


ELECTRICAL CHARACTERISTICS
\begin{tabular}{|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITION & MIN & MAX & UNITS \\
\hline \(V_{c c}\) & Positive Supply Voltage & & 5.0 & 6.5 & V \\
\hline \(V_{\text {EE }}\) & Negative Supply Voltage & & \(-5.0\) & -6.5 & V \\
\hline \(I_{C C}\) & Positive Supply Current & \begin{tabular}{l}
\[
\mathrm{V}_{\mathrm{CC}}=+6.5 \mathrm{~V} \mathrm{~V}_{\mathrm{EE}}=-6.5 \mathrm{~V}
\] \\
Miller sweeping in auto mode
\end{tabular} & & 23 & mA \\
\hline \(\mathrm{I}_{\mathrm{EE}}\) & Negative Supply Current & Same as \(\mathrm{I}_{\mathrm{cc}}\) & -23 & & mA \\
\hline \(V_{\text {REF }}\) & Internal Reference Voltage & Measure \(V_{z}\) pin 14 Measure \(2 \theta\) pin 13
\[
\begin{aligned}
& I_{V Z}=I_{2 \theta}=2.5 \mathrm{~mA} \\
& V_{\mathrm{REF}}=V_{\mathrm{Z}}-2 \theta
\end{aligned}
\] & 5.8 & 6.8 & V \\
\hline \(V_{\text {OS }}\) & Op amp input offset & \begin{tabular}{l}
Force op amp output pin 8 to 0 V \\
Large ( \(>1 \mathrm{M} \Omega\) ) feedback resistor pin 8 to pin 9 Measure voltage on input pin 9
\end{tabular} & \(-.5\) & \(+.5\) & V \\
\hline \(V_{\text {OSTC }}\) & Op amp input offset temperature coefficient & Same as \(V_{\text {os }}\) over temperature & \(-.5\) & \(+.5\) & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline \(I_{B}\) & Op amp input bias current & Measure current into pin 9 from ground & 0 & 5 & nA \\
\hline \(\mathrm{A}_{\mathrm{OL}}\) & Op amp open loop gain & DC signal on Pin 9 Measure pin 8 swing
\[
\mathrm{A}_{\mathrm{oL}}=\frac{\Delta \mathrm{V}_{0} \operatorname{pin} 8}{\Delta \mathrm{~V}_{1} \operatorname{pin} 9}
\] & 80 & & \\
\hline \(\mathrm{V}_{\text {OUT }+}\) & + peak of Miller output & \begin{tabular}{l}
Free run sweep Sweep length pin \(10=\) \(-2 \mathrm{~V}\) \\
Measure + peak at pin 8
\end{tabular} & 1.5 & 2.5 & V \\
\hline \(\mathrm{V}_{\text {OUT }}\) & - peak of Miller output & \begin{tabular}{l}
Same as \(\mathrm{V}_{\text {OUT+ }}\) \\
Measure - peak at pin 8
\end{tabular} & -2.5 & \(-1.5\) & v \\
\hline \(\mathrm{I}_{\mathrm{TL}}\) & Timing supply sink current & Measure from pin 6 during sweep \(\operatorname{pin} 5=V_{z}\) & \(-.5\) & & mA \\
\hline \(\mathrm{V}_{\mathrm{s}}\) & Trigger signal sensitivity & 1 kHz square wave input ramped up in amplitude until sweep triggers & 50 & & mV \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS (cont)
\begin{tabular}{|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITION & MIN & MAX & UNITS \\
\hline \(\mathrm{F}_{\text {TS }}\) & Maximum usable trigger frequency & & & 1 & MHz \\
\hline \(\mathrm{I}_{\text {cFR }}\) & Free run timing current & Measure pin 16 current in auto mode & 35 & 65 & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{Z}_{\text {T }}\) & Trigger input impedance & & 20 & 30 & K \(\Omega\) \\
\hline \(\mathrm{I}_{\text {Bt }}\) & Trigger input bias current & Measure pin 1 current from ground & -- & 5 & nA \\
\hline \(\mathrm{T}_{\mathrm{v}}\) & Usable trigger input range & \begin{tabular}{l}
Ramp offset of 1 kHz , 50 mV square wave on Input pin 1 \\
Measure offset at limits of triggering range
\end{tabular} & -875 & \(+875\) & mA \\
\hline \(\mathrm{I}_{\text {OLB }}\) & Unblanking sink current & Measure pin 4 current during holdoff from \(V_{c c}\) & 200 & 450 & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{V}_{\text {THL }}\) & Timing voltage during holdoff & Voltage on \(5=2 \theta\) Measure pin 6 & -. 5 & +. 5 & v \\
\hline \(V_{\text {THH }}\) & Timing voltage during holdoff & Voltage on pin \(5=\mathrm{V}_{\mathrm{z}}\) & -4 & -2 & v \\
\hline \(V_{\text {TRL }}\) & Timing voltage during sweep & Voltage on pin \(5=2 \theta\) & -. 5 & \(+.5\) & v \\
\hline \(V_{\text {TRH }}\) & Timing voltage during sweep & Voltage on pin \(5=\mathrm{V}_{2}\) & 2.5 & 3.5 & v \\
\hline \(\mathrm{I}_{\text {TH }}\) & Timing supply source current & \begin{tabular}{l}
Measure from pin 6 during holdoff \\
pin \(5=V_{z}\)
\end{tabular} & -- & 1 & mA \\
\hline
\end{tabular}

\section*{APPLICATIONS INFORMATION}

\section*{Applications}

The internal reference voltage output should be used as sources on control networks for sweep cal, sweep length, and level/slope. These sources will track internal bias shifts over temperature.

When sweep length input is forced higher than 7.2 volts above \(\mathrm{V}_{\mathrm{EE}}\), trigger is disabled to gating multi and op amp may be used as external \(X\) axis amplifier with \(Z\) axis unblanked.

When the auto holdoff timing pin is pulled low, the auto trigger is disabled.
When the holdoff timing pin is held high, the trigger to gating multi is disabled and sweep is "held off".

Typical holdoff capacitor valve is one-tenth of \(\mathrm{C}_{\text {timing }}\).
Some low frequency applications may experience a timing supply oscillation which can be squelched with a \(390 \Omega, 87 \mathrm{pF}\) RC series network connected to Miller/op amp output.

Typical temperature coefficient of \(\mathrm{V}_{\mathrm{z}}-2 \theta\) is \(.03 \% /{ }^{\circ} \mathrm{C}\).

Differentiator capacitor on Pin 11 should be 27 to 100 pF .

\section*{Product Precautions}

\section*{Input Protection}

Pins 1 and 9 (BIFET gates) applied voltage should be between -4.6 and +4.6 V .

Pins 2, 5, and 10 applied voltage should be between \(\mathrm{V}_{\mathrm{EE}}\) and \(\mathrm{V}_{\mathrm{CC}}\).

\section*{Output Loading}

Voltage on pin 4 should be kept 15 V above \(2 \theta\).
\(\mathrm{V}_{\mathrm{Z}}\) and \(2 \theta\) outputs should be loaded 4.75 mA each.
Pin 8 loading should be kept 2 mA source and 0.5 mA sink.

\section*{Power Supply Turn-On/Turn-Off Sequence}

Power on sequence:
First: \(\mathrm{V}_{\mathrm{ee}}(-6 \mathrm{~V})\)
Second: \(V_{c c}(+6 \mathrm{~V})\)

\section*{Handling Procedures}

Standard Mini-Pak mounting techniques should be employed. Removal from socket should be accomplished with force applied to the plastic body rather than the leads.

Parts should be handled and transported with materials approved to dissipate static charges and keep the device leads equipotential.

\section*{RELIABILITY}
\(\lambda\), Failure rate \(.02 \% / 1 \mathrm{k}\) hours at \(75^{\circ} \mathrm{C}\) T.
\(\theta_{\mathrm{jc}}=97.7^{\circ} \mathrm{C} / \mathrm{W}\)

\section*{SWEEP CONTROL}

\section*{DESCRIPTION}

The sweep control IC contains bright baseline Auto, Single Sweep, and Holdoff logic. Lamp drivers are provided for Single Sweep and Trigger Lights. It also contains Lockout and Main Frame delay mode controls used in 7000 Series Scopes.

\section*{FEATURES}
- Sweep gate input, 0.125 V differential signal generates a triggered gate.
- Auto bright baseline time constant determined by external R-C.
- Holdoff time constant determined by external R-C.
- Single sweep mode.
- Auto gate outputs.
- 60 mA drive for trigger and reset light bulbs.


ABSOLUTE MAXIMUMS
\begin{tabular}{l|l|c|c|c}
\hline \multicolumn{1}{c|}{ SYMBOLS } & \multicolumn{1}{|c|}{ IDENTIFICATION } & MIN & MAX & UNITS \\
\hline \hline T-A & Operating Ambient Temperature & \(-15^{\circ} \mathrm{C}\) & \(+75^{\circ}\) & C \\
\hline T-J & \begin{tabular}{l} 
Junction Temperature \\
T-A \(=75^{\circ} \mathrm{C}\) \\
Power \(=250 \mathrm{~mW}\)
\end{tabular} & \(+99^{\circ}\) & C \\
\hline T-STG & Storage Temperature & \(-55^{\circ}\) & \(+125^{\circ}\) & C \\
\hline \(\mathrm{V}_{\mathrm{CC}}\) & Positive Supply & +4.00 & +6.00 & V \\
\hline \(\mathrm{~V}_{\mathrm{EE}}\) & Negative Supply & -4.00 & -6.00 & V \\
\hline \(\mathrm{I}_{\mathrm{C}}\) & \begin{tabular}{l} 
Sink Current into Lamp Drivers (Pins 7 \\
and 11)
\end{tabular} & & 100 & mA \\
\hline \(\mathrm{I}_{\mathrm{C}}\) & Sink Current into Hold-Off Out (Pin 10) & & 10 & mA \\
\hline
\end{tabular}

\section*{PIN CONNECTIONS}


ELECTRICAL CHARACTERISTICS
\begin{tabular}{|c|c|c|c|c|c|}
\hline PIN(S) & SYMBOL & NAME & MIN & MAX & UNITS \\
\hline 122 & DR & dYNAMIC RANGE & -500 & 500 & mV \\
\hline 182 & \(\mathrm{I}_{\text {Leak }}\) & input leakage & & 50 & \(\mu \mathrm{A}\) \\
\hline 3 & \(\overline{\text { out }}\) & OUTPUT CURRENT (Absence of Gate) & & 100 & \(\mu \mathrm{A}\) \\
\hline 3 & \(\mathrm{I}_{\text {out }}\) & OUTPUT CURRENT (Presence of Gate) & 2.7 & 3.7 & mA \\
\hline 4 & \(\mathrm{I}_{\text {Out }}\) & OUTPUT CURRENT (Presence of Gate) & & 100 & \(\mu \mathrm{A}\) \\
\hline 4 & \(\overline{\text { Iout }}\) & OUTPUT CURRENT (Absence of Gate) & 2.7 & 3.7 & mA \\
\hline 384 & \(V_{\text {out }}\) & VOLTAGE TO GND & -0.5 & 5.50 & v \\
\hline 5 & \(\mathrm{V}_{\text {EE }}\) & NEGATIVE SUPPLY VOLTAGE & -4.8 & -5.2 & v \\
\hline 5 & \(\mathrm{I}_{\mathrm{EE}}\) & -5 VOLT SUPPLY CURRENT & 15 & 35 & mA \\
\hline 6 & \(\mathrm{R}_{\text {IN }}\) & INPUT IMPEDANCE (while charging) & 500 & & k \(\Omega\) \\
\hline 8 & \(\mathrm{R}_{\text {IN }}\) & INPUT IMPEDANCE (while charging) & 1.0 & & M \(\Omega\) \\
\hline 6\&8 & \(\mathrm{l}_{\text {Leak }}\) & INPUT LEAKAGE (while charging) & & 10 & \(\mu \mathrm{A}\) \\
\hline 688 & \(\mathrm{V}_{\text {ols }}\). & DISCHARGED VOLTAGE
\[
I_{C}=1.5 \mathrm{~mA}
\] & & 360 & mV \\
\hline 7\&11 & \(V_{\text {SAT }}\) & TRANSISTOR SATURATION
\[
\mathrm{I}_{\mathrm{C}}=60 \mathrm{~mA}
\] & & 700 & mV \\
\hline 7\&11 & \(\mathrm{l}_{\text {Leak }}\) & OFF CURRENT \(\mathrm{V}_{\mathrm{C}}=5 \mathrm{~V}\) VLTS & & 40 & \(\mu \mathrm{A}\) \\
\hline 10 & \(\mathrm{V}_{\text {SAT }}\). & TRANSISTOR SATURATION \(\mathrm{I}_{\mathrm{c}}=5 \mathrm{~mA}\) & & 400 & mV \\
\hline 10 & \(\mathrm{I}_{\text {LEAK }}\) & OFF CURRENT \(V_{C}=5\) VOLTS & & 10 & \(\mu \mathrm{A}\) \\
\hline 12 & \(\mathrm{V}_{\text {IN }}\) & S.S. MODE HI VOLTAGE IN, \(\mathrm{R}_{\text {IN }}\) \(=800 \Omega \mathrm{MIN}\). & 4.0 & 5.5 & V \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS (cont)
\begin{tabular}{|c|c|c|c|c|c|}
\hline PIN(S) & SYMBOL & NAME & MIN & MAX & UNITS \\
\hline 12 & \(\overline{V_{\text {IN }}}\) & S.S. MODE LO VOLTAGE IN \(\mathrm{R}_{\mathrm{N}}\) \(=5 \mathrm{~K} \Omega \mathrm{MIN}\). & \(-300\) & 300 & mV \\
\hline 13 & \(\mathrm{V}_{\text {IN }}\) & M.F. DELAY MODE HI VOLTAGE \(\mathrm{IN}_{\mathrm{IN}}=1.5 \mathrm{~K} \Omega \mathrm{MIN}\). & 4.0 & 5.5 & v \\
\hline 13 & \(\overline{V_{\text {IN }}}\) & M.F. DELAY MODE LO VOLTAGE \(\mathbb{N} \mathrm{R}_{\mathbb{I N}}=1 \mathrm{M} 2 \mathrm{MIN}\). & -300 & 300 & mV \\
\hline 16 & \(\mathrm{V}_{\text {IN }}\) & H.O. START HI VOLTAGE IN \(\mathrm{R}_{\mathrm{IN}}=2 \mathrm{~K} \Omega \mathrm{MIN}\). & 2.2 & 2.8 & v \\
\hline 16 & \(\overline{V_{\text {IN }}}\) & h.o. Start lo voltage in \(\mathrm{R}_{\mathrm{IN}}=1 \mathrm{M} \Omega \mathrm{M} / \mathrm{N}\). & -300 & 300 & mV \\
\hline 17 & \(\mathrm{V}_{\text {out }}\) & \begin{tabular}{l}
SWEEP DISABLE HI \\
Nominal Current \(=5 \mathrm{~mA}\)
\end{tabular} & 1.55 & & v \\
\hline 17 & \(\overline{V_{\text {out }}}\) & SWEEP DISABLE LO & \(-1.10\) & -0.45 & V \\
\hline 18 & \(\mathrm{V}_{\text {IN }}\) & LOCKOUT HI VOLTAGE IN RIN \(=1 \mathrm{~K} \Omega \mathrm{MIN}\). & 2.5 & 5.5 & V \\
\hline 18 & \(\overline{V_{\text {IN }}}\) & LOCKOUT LO VOLTAGE IN \(\mathrm{R}_{\mathrm{IN}}\) \(=1 \mathrm{~K} \Omega \mathrm{MIN}\). & -300 & 300 & mV \\
\hline 20 & \(\mathrm{V}_{\mathrm{cc}}\) & POSITIVE SUPPLY VOLTAGE & 4.8 & 5.2 & V \\
\hline 20 & \(\mathrm{I}_{\mathrm{cc}}\) & +5 VOLTS SUPPLY CURRENT & 12 & 16 & mA \\
\hline
\end{tabular}

\section*{APPLICATIONS INFORMATION}

\section*{Input Features}

Sweep Gate Input Pins 182-A differential signal of \(\pm 0.125 \mathrm{~V}\) from ground will cause the input emitter coupled pair to switch and generate a triggered gate inside the IC.

Auto Timing Pin 6-Refer to Figure 1. The auto bright baseline time constant is determined by an external R-C connected to pin 6 as shown. The switching point needed to determine the R-C is \(+4.2 \mathrm{~V} \pm .3 \mathrm{~V}\). When the timing reset has been initiated with a trigger, the voltage at pin 6 must recover to less than +1 volt before recharging can begin.

Hold-Off Timing Pin 8—Refer to Figure 2. The hold-off time constant is determined by an external R-C as shown. The switching point occurs at \(+4.2 \pm .3 \mathrm{~V}\).

Single Sweep Mode Pin 12—A nominal +5 volt signal applied to pin 12 places the IC in single sweep mode and allows reset ready lite to be on when the reset button is pushed (pin 15). Open circuit or grounding of pin 12 places the IC in auto or normal triggering mode.

Main Frame Delay Mode Pin 13-A nominal +5 volt signal applied to pin 13 sets the IC to single sweep mode but does not allow lighting of reset ready lite. High also inhibits the auto circuit. Reset to Ready is accomplished with the rise of LOCKOUT (pin 18).

Reset Timing and Reset Start Pins 14 \& 15-Refer to Figures 3 and 4. A closure of RESET to ground will generate a reset pulse causing the single sweep latch to be reset and lighting the RESET READY LITE (pin 11).

Hold-Off Start Pin 16-This is the input pin to reset the sweep and initiate holdoff. The incoming waveform is intended to be short with respect to sweep duration as might be supplied from a sweep end comparator. High is +2.5 volts min .

Lockout Pin 18-A minimum of +2.5 volts applied to pin 18 will cause SWEEP DISABLE (pin 17) to go high and will reset the single sweep latch if in main frame delaying mode. LOCKOUT will not reset the single sweep latch in single sweep mode.

Auto Mode Pin 19-This pin is to be grounded for bright baseline auto operation. When pin 19 is grounded and no triggers have been present (pin 1 negative with respect to pin 2) for more than the time constant set at pin 6, then the auto gate occurs at pins 3 and 4.

Auto Gate Outputs Pins \(3 \& 4\)-The occurance of an auto gate will cause the differential switching of a nominal 3.2 mA of current from pin 4 to pin 3 .

Trigger Lite Pin 7-This pin is pulled to ground to sink 60 mA of lamp current when a trigger gate has occurred.

Hold-Off Pin 10-This is a current sink to ground during hold-off. Maximum sink current is 5 mA .

Reset Ready Lite Pin 11-This pin is pulled to ground to sink 60 mA of lamp current when a high is supplied to pin 12 and no triggers are present (S.S. latch reset and pin 13 low).

Sweep Disable Out Pin 17-This signal is used to reset and holdoff the sweep. A high at this pin will reset the sweep if it is running and the sweep will be held off as long as it is high.


FIGURE 2

Leakage Current: \(1 \leqslant 10 \mu \mathrm{~A}\) While Charging
\(\mathrm{R}_{\mathrm{IN}}: \geqslant 1\) Meg.
Reset Conditions: \(\mathrm{I}=1.5 \mathrm{~mA}\)
\[
V_{1} \leqslant 350 \mathrm{mV}
\]

FIGURE 3


FIGURE 4


\section*{RELIABILITY}
```

\lambda, Failure Rate }\leqslant.02%/1\textrm{K}\mathrm{ hours at }7\mp@subsup{5}{}{\circ}\textrm{C Tj

```

\section*{TRIGGER SWEEP CIRCUIT}

\section*{DESCRIPTION}

The 155-0055-00 is a monolithic integrated circuit. This trigger sweep circuit is for use in low frequency (below 1 MHz ) applications.

\section*{FEATURES}
- Trigger slope/level selection
- Variable sweep rate and length with controlled timing supply
- High Z BIFET Miller and trigger inputs
- Sweep holdoff
- Auto trigger with adjustable holdoff
- Z-axis blanking
- Reference voltage outputs for stable sweep control
- External X-axis Input
- Available in 2 package styles minipak (155-0048-01) \& DIP (155-0055-00)


ABSOLUTE MAXIMUMS
\begin{tabular}{l|l|l|c}
\hline \multicolumn{1}{c|}{ SYMBOLS } & \multicolumn{1}{|c|}{ IDENTIFICATIONS } & VALUES & UNITS \\
\hline \hline\(V_{\mathrm{CC}}\) & Maximum positive power supply voltage & +6.5 & V \\
\hline \(\mathrm{~V}_{\mathrm{EE}}\) & Maximum negative power supply voltage & -6.5 & V \\
\hline & Trigger Input voltage & \(\pm 4.6\) & V \\
\hline \(\mathrm{~V}_{\mathrm{z}}\) & Current Load & 4.75 & mA \\
\hline \(2 \theta\) & Current Load & 4.75 & mA \\
\hline \(\mathrm{P}_{\mathrm{d}}\) & Power dissipation & 300 & mV \\
\hline & Miller Out Source Current & 2 & mA \\
\hline & Miller Out Sink Current & 0.5 & mA \\
\hline \(\mathrm{~T}_{\text {STORAGE }}\) & Storage temperature range & & \\
\hline \(\mathrm{T}_{\text {OPERATING }}\) & Operating temperature range & -55 to +125 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}
* Must not be less than \(\mathbf{2 \theta}\) or greater than Vz.

\section*{PIN CONNECTIONS}


ELECTRICAL CHARACTERISTICS
\begin{tabular}{|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITION & MIN & MAX & UNITS \\
\hline \(\mathrm{V}_{\mathrm{cc}}\) & Positive Supply Voltage & & 5.0 & 6.5 & V \\
\hline \(V_{\text {EE }}\) & Negative Supply Voltage & & -5.0 & -6.5 & V \\
\hline \({ }_{\text {cc }}\) & Positive Supply Current & \begin{tabular}{l}
\[
\mathrm{V}_{\mathrm{CC}}=+6.5 \mathrm{~V} \mathrm{~V}_{\mathrm{EE}}=-6.5 \mathrm{~V}
\] \\
Miller sweeping in auto mode
\end{tabular} & & 23 & mA \\
\hline \(I_{\text {EE }}\) & Negative Supply Current & Same as Icc & -23 & & mA \\
\hline \(V_{\text {REF }}\) & Internal Reference Voltage & Measure \(\mathrm{V}_{\mathrm{z}}\) pin 14 Measure \(2 \theta\) pin 13
\[
\begin{aligned}
& I_{\mathrm{VZ}}=\mathrm{I}_{2 \theta}=2.5 \mathrm{~mA} \\
& \mathrm{~V}_{\mathrm{REF}}=\mathrm{V}_{\mathrm{Z}}-2 \theta
\end{aligned}
\] & 5.8 & 6.8 & v \\
\hline \(\mathrm{V}_{\text {os }}\) & Op amp input offset & \begin{tabular}{l}
Force op amp output pin 8 to 0 V \\
Large ( \(>1 \mathrm{M} \Omega\) ) feedback resistor pin 8 to pin 9 Measure voltage on input pin 9
\end{tabular} & -. 5 & +. 5 & v \\
\hline \(\mathrm{v}_{\text {ostc }}\) & Op amp input offset temperature coefficient & Same as \(V_{\text {os }}\) over temperature & -. 5 & +. 5 & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline \(I_{B}\) & Op amp input bias current & Measure current into pin 9 from ground & 0 & 5 & nA \\
\hline \(A_{0}\) & Op amp open loop gain & DC signal on Pin 9 Measure pin 8 swing
\[
A_{O L}=\frac{\Delta V_{0} \operatorname{pin} 8}{\Delta V_{1} \operatorname{pin} 9}
\] & 80 & & \\
\hline \(\mathrm{V}_{\text {OUT }+}\) & + peak of Miller output & \begin{tabular}{l}
Free run sweep Sweep length pin \(10=\) \(-2 \mathrm{~V}\) \\
Measure + peak at pin 8
\end{tabular} & 1.5 & 2.5 & v \\
\hline \(\mathrm{V}_{\text {OUT- }}\) & - peak of Miller output & \[
\begin{aligned}
& \text { Same as } \mathrm{V}_{\text {out }+} \\
& \text { Measure }- \text { peak at pin } 8
\end{aligned}
\] & -2.5 & -1.5 & v \\
\hline \(I_{\text {TL }}\) & Timing supply sink current & Measure from pin 6 during sweep
\[
\operatorname{pin} 5=v_{z}
\] & \(-.5\) & & mA \\
\hline \(\mathrm{v}_{\text {s }}\) & Trigger signal sensitivity & 1 kHz square wave input ramped up in amplitude until sweep triggers & 50 & & mV \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS (cont)
\begin{tabular}{|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITION & MIN & MAX & UNITS \\
\hline \(\mathrm{F}_{\text {TS }}\) & Maximum usable trigger frequency & & & 1 & MHz \\
\hline \(I_{\text {cFR }}\) & Free run timing current & Measure pin 16 current in auto mode & 35 & 65 & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{Z}_{\mathrm{T}}\) & Trigger input impedance & & 20 & 30 & K \(\Omega\) \\
\hline \(I_{\text {Bt }}\) & Trigger input bias current & Measure pin 1 current from ground & - & 5 & nA \\
\hline \(\mathrm{T}_{\mathrm{v}}\) & Usable trigger input range & \begin{tabular}{l}
Ramp offset of 1 kHz , 50 mV square wave on Input pin 1 \\
Measure offset at limits of triggering range
\end{tabular} & -875 & +875 & mA \\
\hline \(\mathrm{I}_{\text {ob }}\) & Unblanking sink current & Measure pin 4 current during holdoff from \(\mathrm{V}_{\mathrm{cc}}\) & 200 & 450 & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{V}_{\text {THL }}\) & Timing voltage during holdoff & \begin{tabular}{l}
Voltage on \(5=2 \theta\) \\
Measure pin 6
\end{tabular} & -. 5 & +. 5 & V \\
\hline \(\mathrm{V}_{\text {THH }}\) & Timing voltage during holdoff & Voltage on pin \(5=\mathrm{V}_{\mathrm{z}}\) & -4 & -2 & V \\
\hline \(\mathrm{V}_{\text {TRL }}\) & Timing voltage during sweep & Voltage on pin \(5=2 \theta\) & -. 5 & +. 5 & V \\
\hline \(\mathrm{V}_{\text {TRH }}\) & Timing voltage during sweep & Voltage on pin \(5=\mathrm{V}_{\mathrm{z}}\) & 2.5 & 3.5 & V \\
\hline \(\mathrm{I}_{\text {TH }}\) & Timing supply source current & Measure from pin 6 during holdoff \(\operatorname{pin} 5=V_{z}\) & -- & 1 & mA \\
\hline
\end{tabular}

\section*{APPLICATIONS INFORMATION}

\section*{Applications}

The internal reference voltage output should be used as sources on control networks for sweep cal, sweep length, and level/slope. These sources will track internal bias shifts over temperature.

When sweep length input is forced higher than 7.2 volts above \(\mathrm{V}_{\mathrm{EE}}\), trigger is disabled to gating multi and op amp may be used as external X axis amplifier with Z axis unblanked.

When the auto holdoff timing pin is pulled low, the auto trigger is disabled.

When the holdoff timing pin is held high, the trigger to gating multi is disabled and sweep is "held off".

Typical holdoff capacitor valve is one-tenth of \(\mathrm{C}_{\text {TIMING }}\).

Some low frequency applications may experience a timing supply oscillation which can be squelched with a \(390 \Omega, 87 \mathrm{pF}\) RC series network connected to Miller/op amp output.

Typical temperature coefficient of \(\mathrm{V}_{\mathrm{Z}}-2 \theta\) is \(.03 \% /{ }^{\circ} \mathrm{C}\).

Differentiator capacitor on Pin 11 should be 27 to 100 pF.

\section*{Product Precautions}

\section*{Input Protection}

Pins 1 and 9 (BIFET gates) applied voltage should be between -4.6 and +4.6 V .

Pins 2, 5, and 10 applied voltage should be between \(V_{E E}\) and \(V_{C C}\).

\section*{Output Loading}

Voltage on pin 4 should be kept 15 V above \(2 \theta\).
\(V_{Z}\) and \(2 \theta\) outputs should be loaded 4.75 mA each.
Pin 8 loading should be kept 2 mA source and 0.5 mA sink.

\section*{Power Supply Turn-On/Turn-Off Sequence}

Power on sequence:
First: \(V_{e e}(-6 \mathrm{~V})\)
Second: \(\mathrm{V}_{\mathrm{cc}}(+6 \mathrm{~V})\)

\section*{Handling Procedures}

Standard Mini-Pak mounting techniques should be employed. Removal from socket should be accomplished with force applied to the plastic body rather than the leads.

Parts should be handled and transported with materials approved to dissipate static charges and keep the device leads equipotential.

\section*{RELIABILITY}
\(\lambda\), Failure rate \(.02 \% / 1 \mathrm{k}\) hours at \(75^{\circ} \mathrm{C}\) T.
\(\theta_{\text {jc }}=97.7^{\circ} \mathrm{C} / \mathrm{W}\)


\section*{DUAL OP. AMP./CURRENT SOURCES}

\section*{DESCRIPTION}

The 155-0057-00 is a dual-operational amplifier with two current sources. The monolithic chip is contained in a 16 -pin plastic package.

\section*{FEATURES}
- \(\pm 5 \mathrm{~V}\) to \(\pm 15 \mathrm{~V}\) power supply range
- 80 MHz gain bandwidth product
- No compensation required
- Open loop gain 3300 typical
- 5 mV input offset voltage
- 5 mA output current


ABSOLUTE MAXIMUMS
\begin{tabular}{l|l|l|c}
\hline \multicolumn{1}{c|}{ Symbols } & \multicolumn{1}{c|}{ Identifications } & Values & Units \\
\hline \hline \(\mathrm{T}_{\text {stg }}\) & Storage temperature, range & -55 to +125 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{T}_{\mathrm{A}}\) & Operating ambient temperature, range & -15 to +60 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}\) & Difference between \(\mathrm{V}_{\mathrm{CC}}\) and \(\mathrm{V}_{\mathrm{EE}}\) & 20 & V \\
\hline \(\mathrm{I}_{\text {out }}\) & Output current (pins 16, 6) & 5 & mA \\
\hline \(\mathrm{~V}_{\text {in.diff }}\) & Input differential voltage & \(\pm 7.0\) & V \\
\hline \(\mathrm{I}_{\text {REF }}\) & Reference Current (pin 3) & 500 & \(\mu \mathrm{~A}\) \\
\hline \(\mathrm{I}_{\mathrm{s}}\) out & \begin{tabular}{l} 
Current Source Output (pins 8, 9, 10 or 12, 13, \\
\(14)\)
\end{tabular} & 3 & mA \\
\hline \(\mathrm{I}_{\mathrm{s}}\) in & Current Source Input (pin 11) & 1.5 & mA \\
\hline \(\mathrm{I}_{\mathrm{z}}\) & Current Source Output Impedance & \(\geqslant 200\) & \(\mathrm{~K} \Omega\) \\
\hline \(\mathrm{I}_{\text {vots }}\) & Voltage Swing of Current Source Output & \begin{tabular}{l}
\(\mathrm{V}_{\mathrm{EE}}+1.5 \mathrm{~V}\) \\
to \(\mathrm{V}_{\mathrm{EE}}+20 \mathrm{~V}\)
\end{tabular} & V \\
\hline
\end{tabular}

\section*{PIN CONNECTIONS}


\section*{ELECTRICAL CHARACTERISTICS}

\({ }^{1}\) Test-condition tolerances, \(\pm 1.0\) percent unless shown otherwise.
\({ }^{2}\) OUTPUT voltage will not go more than 1.0 volt negative of -INPUT.


FIGURE 1


FIGURE 2


FIGURE 3


FIGURE 4


FIGURE 5

\section*{DC-TO-DC CONTROLLER}

\section*{DESCRIPTION}

The 155-0067-02 is a DC to DC controller for inverter power supplies. It provides circuitry to do all regulation and protection of the inverter system.

Inputs provided to:
- Sense and control secondary voltage faults
- Sense and limit the maximum inverter current
- Sense line voltage fluctuations
- Sense inverter current phase


\section*{ABSOLUTE MAXIMUMS}

\section*{Electrical}

MAX RATING
\begin{tabular}{llc} 
Pin 1 & -6.0 to +2.0 & V \\
Pin 2 & -6.0 to +0.5 & V \\
Pin 3 & -6.0 to +2.0 & V \\
Pin 4 & -6.0 to +2.0 & V \\
Pin 5 & - & \\
Pin 6 NEVER & & mA \\
APPLY VOLTAGE & 8 to 30 & \\
TO THIS PIN & & V \\
Pin 7 & -15.0 to +6.0 & V \\
Pin 8 & 0 to +10.0 & V \\
Pin 9 & 0 to +5.0 & mA \\
Pins \(10 \& 11\) & \(\pm 2\) & V \\
Pin 12 & 0 to +2.5 & V \\
Pin 13 & -6.0 to +6.0 & V \\
Pin 14 & -0.6 to +0.6 & V \\
Pin 15 & -0.6 to +1.0 & \\
Pin 16 & - &
\end{tabular}

\section*{Environmental}
Operating Temperature Range \(-20^{\circ} \mathrm{C}\) to \(+75^{\circ} \mathrm{C}\)
\(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)
Storage Temperature Range

PIN CONNECTIONS
Over Voltage Timing Input
Voltage Sensing Null Input
Line Stop Timing Input
Line Sensing Input
Ground *
Vcc 16
Vee 15
Inverter Stop Output

\section*{ELECTRICAL CHARACTERISTICS}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Pin \#} & \multirow{2}{*}{Parameter} & \multirow{2}{*}{Conditions} & \multicolumn{2}{|r|}{Limits} & \multirow[t]{2}{*}{Units} \\
\hline & & & Min & Max & \\
\hline 1 & Over voltage timing & Logic "0" at \(\mathrm{I} 1=.1 \mathrm{~mA}\) Logic "1" & 0.02 & 0.30 & V \\
\hline 2 & Voltage sense null (Fault) & \begin{tabular}{l}
Threshold (neg.) \\
(pos.) \\
If pin \(2>\mathrm{Vth}\), then \(\mathrm{V} 1=\) logic "1" \\
Input bias current:
\[
\begin{aligned}
& \mathrm{V} 2>|210 \mathrm{mV}| \\
& \mathrm{V} 2>|150 \mathrm{mV}|
\end{aligned}
\]
\end{tabular} & \[
\begin{array}{r}
-210 \\
+150
\end{array}
\]
\[
\begin{aligned}
& -25 \\
& -1.0
\end{aligned}
\] & \[
\begin{aligned}
& -150 \\
& +210 \\
& \\
& +25 \\
& +1.0
\end{aligned}
\] & \[
\begin{aligned}
& \mu \mathrm{A} \\
& \mu \mathrm{~A}
\end{aligned}
\] \\
\hline 3 & Stop timing & Logic " 0 " at \(13=2 \mathrm{~mA}\) Logic "1" & \[
\begin{aligned}
& 0.02 \\
& 0.85
\end{aligned}
\] & \[
\begin{aligned}
& 0.49 \\
& 1.10
\end{aligned}
\] & \[
\begin{aligned}
& v \\
& v
\end{aligned}
\] \\
\hline 4 & Line sensing (stop delay) & \begin{tabular}{l}
Logic "0" \\
Logic "1" \\
Input bias current:
\[
\mathrm{V} 4=0.85 \mathrm{~V}
\]
\end{tabular} & \[
\begin{aligned}
& 0.02 \\
& 0.85 \\
& 0.0
\end{aligned}
\] & \[
\begin{aligned}
& 0.30 \\
& 1.10 \\
& 500
\end{aligned}
\] & \[
\begin{aligned}
& V \\
& V \\
& \mu \mathrm{~A}
\end{aligned}
\] \\
\hline 5 & GROUND & Connect to pin 16 external to package & & & \\
\hline 6 & Vcc (internal) & Drive with an external current source from 9.0 mA to 30.0 mA & 7.15 & 7.75 & V \\
\hline 7 & Vee (substrate) & Applied voltage lee at \(\mathrm{V} 7=\) \(-2.0 \mathrm{~V}\) & \[
\begin{aligned}
& -3.0 \\
& 1.8
\end{aligned}
\] & \[
\begin{aligned}
& -1.8 \\
& 4.0
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{V} \\
& \mathrm{~mA}
\end{aligned}
\] \\
\hline 8 & Inverter stop & Logic "0" at \(18=2 \mathrm{~mA}\) Logic "1" & \[
\begin{aligned}
& 0.02 \\
& 0.85
\end{aligned}
\] & \[
\begin{aligned}
& 0.30 \\
& 10.0
\end{aligned}
\] & \[
\begin{aligned}
& v \\
& v
\end{aligned}
\] \\
\hline 9 & Inverter control & \begin{tabular}{l}
0.5 V source to pin 9 Logic "0" (sinking) \\
Logic "1" (sourcing)
\end{tabular} & \[
\begin{array}{r}
4.0 \\
-12.0
\end{array}
\] & \[
\begin{aligned}
& 8.0 \\
& -4.0
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{mA} \\
& \mathrm{~mA}
\end{aligned}
\] \\
\hline 10/11 & Phase triggers & \[
\begin{aligned}
& \ln =-1 \mathrm{~mA}(\text { logic } " 0 \text { " }) \\
& \ln =+1 \mathrm{~mA} \text { (logic }{ }^{\prime \prime} 1^{\prime \prime} \text { ) }
\end{aligned}
\] & \[
\begin{aligned}
& -0.85 \\
& 0.02
\end{aligned}
\] & \[
\begin{aligned}
& 0.02 \\
& 0.85
\end{aligned}
\] & \[
\begin{aligned}
& V \\
& V
\end{aligned}
\] \\
\hline 12 & Inverter control timing & Logic "0" at \(112=1.5 \mathrm{~mA}\) Logic "1" & \[
\begin{aligned}
& 0.15 \\
& 0.85
\end{aligned}
\] & \[
\begin{aligned}
& 0.48 \\
& 10.0
\end{aligned}
\] & \[
\begin{aligned}
& V \\
& v
\end{aligned}
\] \\
\hline 13 & Current sense & Logic "0" Logic "1" & \[
\begin{aligned}
& 0.0 \\
& 0.85
\end{aligned}
\] & \[
\begin{aligned}
& 0.05 \\
& 10.0
\end{aligned}
\] & \[
\begin{aligned}
& V \\
& V
\end{aligned}
\] \\
\hline 14 & Gain adjust & Resistance to ground & 260 & 400 & \(\Omega\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS (cont)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Pin \#} & \multirow{2}{*}{Parameter} & \multirow{2}{*}{Conditions} & \multicolumn{2}{|r|}{Limits} & \multirow{2}{*}{Units} \\
\hline & & & Min & Max & \\
\hline 15 & Voltage sense & \begin{tabular}{l}
Logic "0" \\
Logic "1" \\
Input bias current:
\[
\mathrm{V} 15=\operatorname{logic} " 1 "
\]
\end{tabular} & \[
\begin{aligned}
& -1.0 \\
& 0.3 \\
& 0.001
\end{aligned}
\] & \[
\begin{aligned}
& -0.2 \\
& 1.0 \\
& 10.0
\end{aligned}
\] & \begin{tabular}{l}
V
V \\
\(\mu \mathrm{A}\)
\end{tabular} \\
\hline 16 & Reference ground & Connect to pin 5 external to package & & & \\
\hline
\end{tabular}

TIMING DIAGRAM

PIN 1

PIN 12


PIN 13


PIN 15


PIN 10/11


Pin 9 OUT


\section*{APPLICATIONS INFORMATION}

\section*{Functional Description}

The power available from the inverter on switching power supplies is dependent on the amount of energy fed to the inverter regulator. The 155-0067-02 allows the regulator to vary the energy delivered to the inverter by controlling the frequency at which the regulator is pulsed. This control is accomplished through the use of a variable pulse-width, monostable multivibrator, initially triggered by current-phase information fed back from the inverter to pins 10 and 11.

The multivibrator charge ramp is applied to pin 12. When this ramp moves through a level set by one of the sensing inputs, the output at pin 9 sinks drive current away from the inverter regulator until the inverter passes through a zero crossing sending a trigger pulse to either pin 10 or in 11 and the output once again is allowed to provide drive to the inverter.

The time during which the ramp at pin 12 is charging determines how long the inverter is held off. The duration of the "on" state of the multivibrator is determined by the voltage level on pin 15 . If this level is low, the duration is short. As this voltage increases, the duration increases.

When a fault is detected at either pin 2 or pin 13 a capacitor externally connected to pin 1 begins to charge up. If the fault lasts longer than the time it takes for the ramp at pin 1 to reach 1 Vbe , then Q42 turns on causing a positive inverter stop trigger output at pin 8, and the inverter shuts down.

The discharge rate of the capacitor on pin 1 must be set external to the IC and must be approximately five times the charge rate.

\section*{Product Precautions}

\section*{Input Protection}

Reference voltage (pin 6) is developed by current driving pin 6. NEVER apply a voltage source to this pin.

Pins 1, 2, 3, 4, 10 and 11 all connect to the bases of grounded emitter transistors. When voltage driven, the current must be limited in order that damage does not occur.

The substrate voltage applied to pin 7 is typically from -2 V to -3 V in all present applications. Internal current sources have a measure of dependence on the substrate voltage. A voltage applied to pin 7 which is outside this range will inhibit the functionality of the device.

\section*{Output Loading}

This device has two main outputs (pins 8 and 9). Pin 8 should never see a voltage transient greater than 15 V . Pin 9 is a current source/sink output. It must, therefore, be loaded in such a manner so as to perform both the sourcing and sinking functions interchangeably.

\section*{Power Supply Turn-on/Turn-off Sequence}

Power should come up either simultaneously or with the substrate voltage (pin 7) slightly ahead of the reference current driving pin 6.

The current driving pin 6 should be removed either simultaneously or slightly ahead of the substrate voltage (pin 7).

\section*{Handling Procedures}

This device is sensitive to static discharge. Care should be taken in handling.

\section*{Reliability}
\(\lambda\) failure rate \(\leqslant .02 \% / 1 \mathrm{~K}\) hours at \(75^{\circ} \mathrm{C} \mathrm{Tj}\)

\section*{AMPLIFIER}

\section*{DESCRIPTION}

The \(155-0078-10\) is a monolithic integrated circuit originally designed as an Oscilloscope Vertical Amplifier.

The circuit is a differential in, differential out amplifier with variable gain capabilities. By crosscoupling the output collectors, the circuit is basically a multiplier. DC voltages applied to the control inputs can be used to vary gain from the nominal (maximum) gain through zero to the negative nominal gain. Diodes are provided on the control inputs to linearize the gain characteristics.

\section*{FEATURES}
- Nominal voltage gain 2.82 ( \(50 \Omega\) source and loads). Set primarily by an on-chip nichrome resistor.
- Gain variable from nominal (either polarity) to zero.
- Nominal bandwidth 1.05 GHz .
- Package leads and etched circuit board can be used to obtain \(T\)-coil peaking.
- Available in three versions:

155-0078-10 (Minipak)
155-0273-00 (14-pin DIP w/o
nichrome resistors)
155-0274-00 (14-pin DIP) (slower)

\section*{SCHEMATIC}

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{ABSOLUTE MAXIMUMS} \\
\hline SYMBOLS & IDENTIFICATIONS & NOTES & VALUES & UNITS \\
\hline \(\mathrm{V}_{\text {out-sub MAX }}\) & Maximum voltage of the outputs (pins 5, 6, 8, 9) relative to the substrate (pin 4). & Prevents collector-substrate breakdown of Q5, Q6, Q7, Q8. & 19 & V \\
\hline \(\mathrm{V}_{\text {out-cont MAX }}\) & Maximum voltage of the outputs (pins 5, 6, 8, 9) relative to the control inputs (pins 11, 12). & Prevents collector-base breakdown of Q5, Q6, Q7, Q8. & 7 & V \\
\hline \(\mathrm{V}_{\text {cont-input MAX }}\) & Maximum voltage at the control inputs (pins 11, 12) relative to inputs (pins 1, 13, 14, 16). & Prevents collector-base breakdown of Q1 and Q2. & 8 & V \\
\hline \(\mathrm{V}_{\text {sub-input MAX }}\) & Maximum voltage of the substrate (pin 4) relative to the inputs (pins 1, 13, 14, 16). & Substrate voltage must be held more negative than any collector in circuit. & 0 & V \\
\hline \(\mathrm{V}_{\mathrm{RQ} 3 \text { MAX }}\) & Maximum voltage from pin 7 to pin 11 or 12. & Maximum steering diode reverse voltage to avoid degradation. & 2.5 & V \\
\hline \(\mathrm{V}_{\text {R11-R12 MAX }}\) & Maximum voltage from pin 11 to 12 or from pin 12 to pin 11. & Maximum steering diode reverse voltage to avoid degradation. & 2.5 & V \\
\hline \(V_{\text {EB MAX }}\) & Maximum voltage from pin 2 to pin 13 or 16; or from pin 3 to pins 1 or 14. & Maximum base-emitter reverse voltage to avoid degradation. & 2 & V \\
\hline \(\mathrm{I}_{\text {max }}\) & Maximum current, pins 2 or 3. & 40 mA total. & 20* & mA \\
\hline \(\mathrm{P}_{\text {MAX }}\) & Maximum power dissipation. & \(75^{\circ} \mathrm{C}\) ambient. & 270 & mV \\
\hline Toperating & Operating temperature range. & & 0 to 80 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(T_{\text {Storage }}\) & Storage temperature range. & - & \[
\begin{aligned}
& -55 \text { to } \\
& +125
\end{aligned}
\] & \({ }^{\circ} \mathrm{C}\) \\
\hline \(T_{\text {j Max }}\) & Maximum junction temperature. & & 125 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\footnotetext{
* Contact Applications Engineering, IC Manufacturing, if 20 mA is to be exceeded.
}

\section*{PIN CONNECTIONS}


\section*{ELECTRICAL CHARACTERISTICS}
\begin{tabular}{|c|c|c|c|}
\hline PARAMETER/CONDITIONS & MIN & MAX & UNITS \\
\hline BV CEO \(^{\text {Q1, }}\) Q2, at \(200 \mu \mathrm{~A}\) & 4.4 & & V \\
\hline \(\mathrm{BV}_{\text {CEO }}\) Q5, Q6, Q7, Q8 at \(200 \mu \mathrm{~A}\) & 4.4 & & V \\
\hline BV \({ }_{\text {ceo sus }}\) Q1, Q2 at 10 mA & 4.9 & & V \\
\hline BV \({ }_{\text {CEO SUS }}\) Q5, Q6, Q7, Q8 at 10 mA & 4.9 & & V \\
\hline SUBSTRATE VOLTAGE in operating configuration & & -15 & V \\
\hline INPUT BIAS CURRENT Q1 or Q2 ( 16 mA emitter current) & 64 & 225 & \(\mu \mathrm{A}\) \\
\hline NORMAL OFFSET (OUTPUT) & -14 & +14 & mV \\
\hline INVERT OFFSET (OUTPUT) & -14 & \(+14\) & mV \\
\hline NORMAL GAIN & 2.68 & 2.96 & \\
\hline INVERT GAIN & 2.68 & 2.96 & \\
\hline NORMAL-INVERT GAIN MATCH & -0.5 & +0.5 & \% \\
\hline NULL OFFSET (Output offset in null condition) & -10 & \(+10\) & mV \\
\hline NULL GAIN & \(-.14\) & \(+.14\) & \\
\hline 50\% GAIN TOLERANCE & . 49 & . 51 & \(\mathrm{X}\left(\mathrm{AV}_{\text {NORM }}\right)\) \\
\hline OFF FEEDTHRU (Q5 \& Q8 leakage) & \(-200\) & \(+200\) & \(\mu \mathrm{V}\) \\
\hline \begin{tabular}{l}
MEASURED RISETIME \\
Measurement system risetime less than 100 ps
\end{tabular} & & 355 & ps \\
\hline
\end{tabular}

\section*{PARAMETRIC DEFINITIONS}

The 0078 is specified in three different operating conditions: NORMAL, INVERT and NULL. In the NORMAL condition, Q5 and Q8 are conducting and Q6 and Q7 are not.

In the INVERT condition, \(\mathbf{Q 6}\) and \(\mathbf{Q 7}\) are conducting and \(\mathbf{Q 5}\) and \(\mathbf{Q 8}\) are not.
In the NULL condition, Q5, Q6, Q7 and Q8 are all conducting equally.

\section*{APPLICATIONS INFORMATION}

\section*{Output Stage Considerations}

Pin 11 and 12 can be voltage driven and pin 7 left open (Figure 1) if gain linearity as a function of control voltage is not critical. The voltage applied on pins 11 or 12 should be 1.2 to 3.7 volts above the quiescent voltage on pins \(1,13,14\), or 16 for conducting output transistors. For nonconducting output transistors pin 11 or 12 can be at a lower potential than this. Absolute maximum ratings must be observed, however. For the case of pin 11 and 12 voltage driven and pin 7 open, gain is given by:
\[
\begin{aligned}
A_{V} & =A_{V \text { NORM }}\left[\frac{\exp \left(\frac{q V_{12}}{k T}\right)-\exp \left(\frac{q V_{11}}{k T}\right)}{\exp \left(\frac{q V_{12}}{k T}\right)+\exp \left(\frac{q V_{11}}{k T}\right)}\right] \\
\text { where } A_{V \text { NORM }} & =\text { Normal Gain } \\
V_{11} & =\text { voltage applied on pin } 11 \\
V_{12} & =\text { voltage applied on pin } 12 \\
\frac{k T}{q} & =26 \mathrm{mV} \text { at room temperature }
\end{aligned}
\]

If gain linearity as a function of control voltage is critical, pin 11 and 12 should be current driven and pin 7 returned to a voltage so as to set pin 11 and 12 voltage to the proper level as mentioned above. Figure 2 shows this type hookup. Current driving these inputs linearizes the gain by making use of the exponential current-voltage relationship of the diodes Q3 and Q4 to cancel that of the output transistors. The gain is given by:
\[
\begin{aligned}
A_{v}= & A_{V \text { NORM }}\left[\frac{I_{12}-I_{11}}{I_{12}+I_{11}}\right] \\
\text { where } I_{11} & =\text { current into pin } 11 \\
I_{12} & =\text { current into pin } 12
\end{aligned}
\]

If variable gain of only a single polarity is desired, one pair of outputs can be used and the other pair connected to separate unused leads as in Figure 3.

If fixed maximum gain is desired, one pair of outputs can be left open as in Figure 4.

In applications where the output is to be switched from one output pair to another, the difference in offset voltage between the two outputs should not be specified any tighter than 28 mV (the sum of normal and invert offset specs).


\section*{Input Stage Considerations}

The bias current (pin 2 and 3 current) should not exceed 20 mA per side or a decrease in the life of the part may result.

For full bandwidth, T-coil peaking must be used. Package and etched circuit board inductances can be used in the realization of this bridged \(T\) circuit \({ }^{1}\).

Standing current through pin 16 to 13 and pin 1 to 14 will cause a DC drop due to the run and bond wire resistance in their leads. This resistance provides some intentional improvement in gain vs. temperature and may need to be considered in biasing calculations.

Thermal effects due to signal dependent power dissipation changes in \(Q_{1}\) and \(Q_{2}\) cause the low frequency gain to exceed mid band gain by \(\approx 1 \%\) with \(\mathrm{Q}_{1}, \mathrm{Q}_{2}\) at \(15 \mathrm{~mA}, 2.4 \mathrm{~V}\).
'See John Addis' article in Electronics Magazine June 5, 1972.

Typical Performance Graph (not a specification, for information only)

155-0078 GAIN Vs TEMPERATURE


TEMPERATURE

\section*{PRODUCT PRECAUTIONS}

\section*{Input Protection}

Input base-emitter voltages should not exceed 2 volts in the negative direction and 1 volt in the positive direction.

\section*{Output Loading}

Outputs should be limited to less than those listed in Absolute Maximum Ratings.

\section*{Power Supply Turn-On/Turn-Off Sequence}

Substrate voltage should be turned on coincident with or before the other voltages.

\section*{Handling Procedures}

Static sensitive handling procedures should be implemented for this part.

\section*{RELIABILITY}
\(\lambda\). failure rate \(\leqslant .02 \% / 1 \mathrm{~K}\) hours at \(75^{\circ} \mathrm{C} \mathrm{Tj}\).
\(\Theta j c=87^{\circ} \mathrm{C} / \mathrm{W}\).

\section*{TRIGGER CIRCUIT}

\section*{DESCRIPTION}

The 155-0109-01 is a 350 MHz trigger circuit. It can be used by itself or in conjunction with the 155-012600 trigger amplifier, channel switch and peak to peak auto I.C.

\section*{FEATURES}
- 350 MHz operation
- ECL input and output levels (slope input is \(\mathrm{T}^{2} \mathrm{~L}\) )
- Trigger slope select
- Compatible with the 155-0126-00 trigger amplifier, channel switch

\section*{BLOCK DIAGRAM}


\section*{ABSOLUTE MAXIMUMS}


\section*{PIN CONNECTIONS}


ELECTRICAL CHARACTERISTICS
\begin{tabular}{|c|c|c|c|c|}
\hline PARAMETER & PIN & MIN & MAX & UNITS \\
\hline Power Supply Current (note 4) & 8 & 70 & 120 & mA \\
\hline + Slope, + Trigger Input Bias Current (note 5) & 13 & \(-100\) & 100 & \(\mu \mathrm{A}\) \\
\hline + Slope, - Trigger Input Bias Current (note 5) & 14 & \(-100\) & 100 & \(\mu \mathrm{A}\) \\
\hline + Slope, Trigger Input Offset Current (+ Trigger Input Bias Current Less-Trigger Input Bias Current) (computed) & \[
\begin{aligned}
& 13 \\
& 14
\end{aligned}
\] & -25 & 25 & \(\mu \mathrm{A}\) \\
\hline - Slope, + Trigger Input Bias Current (note 6) & 13 & \(-100\) & 100 & \(\mu \mathrm{A}\) \\
\hline - Slope, - Trigger Input Bias Current (note 6) & 14 & \(-100\) & 100 & \(\mu \mathrm{A}\) \\
\hline - Slope, Trigger Input Offset Current (+ Trigger Input Bias Current Less-Trigger Input Bias Current (computed) & 13 & -25 & 25 & \(\mu \mathrm{A}\) \\
\hline Hold-Off Input Current (note 4) & 10 & -200 & 200 & \(\mu \mathrm{A}\) \\
\hline End Sweep Input Current (Note 1) (note 4) & 6 & -200 & 200 & \(\mu \mathrm{A}\) \\
\hline Free Run Input Current (note 7) & 16 & 0 & 500 & \(\mu \mathrm{A}\) \\
\hline Slope In Input Current (note 8) & 1 & \(-2.0\) & 0 & mA \\
\hline Slope in Input Current (note 9) & 1 & -40 & 40 & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS (cont)
\begin{tabular}{|c|c|c|c|c|c|}
\hline PARAMETER & PIN & CONDITIONS & MIN & MAX & UNITS \\
\hline Gate Out ( \(\mathrm{V}_{\mathrm{OH}}\) ) High Voltage & 3 & \(\mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}\), Perform Steps 1 through 3 of the Truth Table, then measure (Ignore Note 2) & 4.0 & 4.3 & V \\
\hline \begin{tabular}{l}
Gate Out \\
Low Voltage ( \(\mathrm{V}_{\mathrm{OL}}\) )
\end{tabular} & 3 & \(\mathrm{I}_{\mathrm{OL}}=1 \mathrm{~mA}\), Perform Steps 17 through 19 of the Truth Table, then measure (Ignore Note 2) & 3.2 & 3.5 & V \\
\hline Gate Out High Voltage ( \(\mathrm{V}_{\mathrm{OH}}\) ) & 4 & \(\mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}\), Perform Steps 17 through 19 of the Truth Table, then measure (Ignore Note 2) & 4.0 & 4.3 & V \\
\hline Gate Out Low Voltage ( \(\mathrm{V}_{\mathrm{OL}}\) ) & 4 & \(\mathrm{I}_{\mathrm{OL}}=-1 \mathrm{~mA}\), Perform Steps 1 through 3 of the Truth Table, then measure (Ignore Note 2) & 3.2 & 3.5 & V \\
\hline + Trigger Absolute Offset & \[
\begin{aligned}
& 13 \\
& 14
\end{aligned}
\] & Perform Steps 1 through 4 of Table 1 repeatedly, adjusting the input 1 and 0 levels independently until the arm and trigger thresholds are determined. The + Trigger Absolute Offset \(=\left(\mathrm{V}_{\text {Trigger }}-\mathrm{V}_{\text {Arm }}\right) / 2\) -3.8 Volts. & -40 & +40 & mV \\
\hline + Slope Hysteresis & \[
\begin{aligned}
& 13 \\
& 14
\end{aligned}
\] & Use data obtained in + trigger absolute offset Hysteresis \(=\mathrm{V}_{\text {Trigger }}-\mathrm{V}_{\text {Arm }}\) & 25 & 50 & mV \\
\hline - Trigger Absolute Offset & \[
\begin{aligned}
& 13 \\
& 14
\end{aligned}
\] & Perform Steps 1 through 4 of Table 2 repeatedly, adjusting the input 1 and 0 levels independently until the arm and trigger thresholds are determined. The - Trigger Absolute Offset \(=\left(V_{\text {Arm }}+V_{\text {Trigger }}\right) / 2\) - 3.8 Volts. & -40 & +40 & mV \\
\hline - Slope Hysteresis & \[
\begin{aligned}
& 13 \\
& 14
\end{aligned}
\] & Use data obtained in - trigger absolute offset Hysteresis \(=V_{\text {Arm }}-V_{\text {Trigger }}\) & 25 & 50 & m \\
\hline \begin{tabular}{l}
+ Trigger Slope In, \\
- Trigger Slope Offset
\end{tabular} & \[
\begin{aligned}
& 13 \\
& 14
\end{aligned}
\] & (Offset \(=(+\) Trigger Slope Absolute Offset less -Trigger Slope Absolute Offset) & -40 & \(+40\) & mV* \\
\hline Propagation Delay ( \(\mathrm{T}_{\mathrm{PD}+}\) ) & \[
\begin{array}{r}
3 \\
13, \\
14
\end{array}
\] & See Figure 1 & & 4.0 & nS \\
\hline
\end{tabular}
*Adjustable to \(\pm 4 \mathrm{mV}\) with offset adjust (Pin 2), with an offset range of 0.5 to 4.5 Volts.

TRUTH TABLE
(See Note 3) INPUTS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Step & Function & \begin{tabular}{l}
Slope \\
Pin 1 \\
( \(\mathbf{T}^{2} \mathrm{~L}\) )
\end{tabular} & \begin{tabular}{l}
End \\
Sweep \\
Pin 6 \\
(ECL)
\end{tabular} & Holdoff Pin 10 (ECL) & \[
\begin{aligned}
& +\mathbb{I N} \\
& \text { Pin } 13
\end{aligned}
\] & \[
\begin{aligned}
& - \text { IN } \\
& \text { Pin } 14
\end{aligned}
\] & Free Run Pin 16 & \begin{tabular}{l}
Gate \\
Pin 3
\end{tabular} & \begin{tabular}{l}
Gate \\
Pin 4
\end{tabular} & Notes \\
\hline 1 & RESET & Oc & 1a & 1a & 0a & 1a & Ob & VOL & VOL & Power Supply Pin \(5+5 \mathrm{~V}\) Pin 8 Gnd. \\
\hline 2 & ARM & Oc & 0a & 0a & 0a & 1a & Ob & VOL & VOH & \\
\hline 3 & + Trigger & Oc & 0a & 0a & 1a & 0a & Ob & VOH & VOL & \\
\hline 4 & LATCH & Oc & 0a & 0a & 0a & 1a & Ob & VOH & VOL & input voltage level CODING \\
\hline 5 & RESET & Oc & 1a & Oa & Oa & 1a & Ob & VOH & VOL & \[
\begin{array}{ll}
0 \mathrm{a} & 3.55 \mathrm{~V} \\
0 \mathrm{~b} & 3.4 \mathrm{~V}
\end{array}
\] \\
\hline 6 & RESET & Oc & 1a & 1 a & 0a & 1a & Ob & VOL & VOH & \[
\begin{array}{ll}
0 \mathrm{c} & 0.8 \mathrm{~V} \\
\text { 1a } & 3.95 \mathrm{~V}
\end{array}
\] \\
\hline 7 & ARM & Oc & 0 a & 0a & 0a & 1a & Ob & VOL & VOH & \\
\hline 8 & \(\overline{\text { DISARM }}\) & 0 c & 0a & 1a & Oa & 1a & Ob & VOL & VOH & \\
\hline 9 & DISARM & Oc & 1a & 1a & Oa & 1a & Ob & VOL & VOH & \\
\hline 10 & LATCH & Oc & 0 a & 1a & 0a & 1a & Ob & VOL & VOH & \\
\hline 11 & + Trigger & Oc & 0a & 1a & 1a & 0a & Ob & VOH & VOL & output voltage level CODING VOL 3.2 V to 3.5 V \\
\hline 12 & LATCH & Oc & 0a & 1a & 0 a & 1a & Ob & VOH & VOL & VOH 4.0 V to 4.3 V \\
\hline 13 & RESET & 1b & 1 a & 1a & 0a & 1 a & Ob & VOL & VOH & \\
\hline 14 & ARM & 1b & 0a & 0a & 1a & Oa & Ob & VOL & VOH & \\
\hline 15 & - Trigger & 1b & 0 a & 0a & 0a & 1a & Ob & VOH & VOL & \\
\hline 16 & LATCH & 1b & 0a & 0a & 1a & 0a & Ob & VOH & VOL & \\
\hline 17 & RESET & 1b & 1a & 1a & 1a & 0a & Ob & VOL & VOH & \\
\hline 18 & \(\overline{\text { ARM }}\) & 1b & Oa & 1 a & Oa & 1 a & Ob & VOL & VOH & \\
\hline 19 & TRIGGER & 1b & 0a & 0a & 0a & 1a & Ob & VOL & VOH & \\
\hline 20 & FREE RUN & 1 b & 0 a & Oa & 0 a & 1a & 1a & VOH & VOL & \\
\hline
\end{tabular}

TABLE \#1
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & & \multicolumn{6}{|c|}{INPUTS} & OUTPUTS \\
\hline Step & Function & \begin{tabular}{l}
Slope \\
(Pin 1)
\end{tabular} & \begin{tabular}{l}
End \\
Sweep (Pin 6)
\end{tabular} & \begin{tabular}{l}
Holdoff \\
(Pin 10)
\end{tabular} & \[
\begin{array}{|c}
+ \text { Trigger } \\
\text { In } \\
\text { (Pin 13) }
\end{array}
\] & \[
\begin{gathered}
- \text { Trigger } \\
\text { In } \\
\text { (Pin 14) }
\end{gathered}
\] & Free Run (Pin 16) & \[
\begin{aligned}
& \text { Gate } \\
& \text { (Pin 3) }
\end{aligned}
\] \\
\hline 1 & RESET & . 8 V & 3.95 V & 3.95 V & LOGIC 0 & 3.8 V & 3.4 V & \[
\begin{gathered}
3.2 \mathrm{~V} \text { to } \\
3.5 \mathrm{~V}
\end{gathered}
\] \\
\hline 2 & ARM & . 8 V & 3.55 V & 3.55 V & LOGIC 0 & 3.8 V & 3.4 V & \[
\begin{gathered}
3.2 \mathrm{~V} \text { to } \\
3.5 \mathrm{~V}
\end{gathered}
\] \\
\hline 3 & + TRIGGER & . 8 V & 3.55 V & 3.55 V & LOGIC 1 & 3.8 V & 3.4 V & \[
\begin{gathered}
4.0 \mathrm{~V} \text { to } \\
4.3 \mathrm{~V}
\end{gathered}
\] \\
\hline 4 & LATCH & . 8 V & 3.55 V & 3.55 V & LOGIC 0 & 3.8 V & 3.4 V & \[
\begin{gathered}
4.0 \mathrm{~V} \text { to } \\
4.3 \mathrm{~V}
\end{gathered}
\] \\
\hline
\end{tabular}

TABLE \#2
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Step} & \multirow[b]{2}{*}{Function} & \multicolumn{6}{|c|}{INPUTS} & \multicolumn{2}{|c|}{OUTPUTS} \\
\hline & & \begin{tabular}{l}
Slope \\
(Pin 1)
\end{tabular} & End Sweep (Pin 6) & \begin{tabular}{l}
Holdoff \\
(Pin 10)
\end{tabular} & \[
\begin{gathered}
+ \text { Trigger } \\
\text { In } \\
\text { (Pin 13) }
\end{gathered}
\] & \[
\begin{gathered}
\text { - Trigger } \\
\text { In } \\
\text { (Pin 14) }
\end{gathered}
\] & Free Run (Pin 16) & \[
\begin{aligned}
& \text { Gate } \\
& \text { (Pin 3) }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Gate } \\
& \text { (Pin 4) }
\end{aligned}
\] \\
\hline 1 & RESET & 2.0 V & 3.95 V & 3.95 V & LOGIC 0 & 3.8 V & 3.4 V & \[
\begin{gathered}
3.2 \mathrm{~V} \text { to } \\
3.5 \mathrm{~V}
\end{gathered}
\] & \\
\hline 2 & ARM & 2.0 V & 3.55 V & 3.55 V & LOGIC 1 & 3.8 V & 3.4 V & \[
\begin{gathered}
3.2 \mathrm{~V} \text { to } \\
3.5 \mathrm{~V}
\end{gathered}
\] & \\
\hline 3 & - TRIGGER & 2.0 V & 3.55 V & 3.55 V & LOGIC 0 & 3.8 V & 3.4 V & \[
\begin{gathered}
4.0 \mathrm{~V} \text { to } \\
4.3 \mathrm{~V}
\end{gathered}
\] & \\
\hline 4 & LATCH & 2.0 V & 3.55 V & 3.55 V & LOGIC 1 & 3.8 V & 3.4 V & \[
\begin{gathered}
4.0 \mathrm{~V} \text { to } \\
4.3 \mathrm{~V}
\end{gathered}
\] & \\
\hline
\end{tabular}

NOTE 1: Gate Out (Pin 3) held at 5 Volts after Power Supply settles at \(\mathbf{+ 5}\) Volts.
NOTE 2: Pins 3 and 4 loaded with a \(\mathbf{2 k} \Omega\) resistor connected from Output Pin to Ground during testing. NOTE 3: The Truth Table for Parameter 13 to be accomplished without Power Supply interruption.

\section*{CONDITIONS}
\begin{tabular}{c|c|c|c|c|c|c}
\hline & \begin{tabular}{c}
+ Trigger ln \\
(Pin 13)
\end{tabular} & \begin{tabular}{c}
- Trigger In \\
(Pin 14)
\end{tabular} & \begin{tabular}{c} 
Free Run In \\
(Pin 16)
\end{tabular} & \begin{tabular}{c} 
End Sweep In \\
(Pin 6)
\end{tabular} & \begin{tabular}{c} 
Slope In \\
(Pin 1)
\end{tabular} & \begin{tabular}{c} 
Holdoff In \\
(Pin 10)
\end{tabular} \\
\hline \hline Note 4 & 3.55 V & 3.95 V & 3.4 V & 3.95 V & .8 V & 3.95 V \\
\hline Note 5 & 3.8 V & 3.8 V & 3.4 V & 3.95 V & .8 V & 3.95 V \\
\hline Note 6 & 3.8 V & 3.8 V & 3.4 V & 3.95 V & 2.0 V & 3.95 V \\
\hline Note 7 & 3.55 V & 3.95 V & 3.95 V & 3.95 V & .8 V & 3.95 V \\
\hline Note 8 & 3.55 V & 3.95 V & 3.4 V & 3.95 V & 0 V & 3.95 V \\
\hline Note 9 & 3.55 V & 3.95 V & 3.4 V & 3.95 V & 2.4 V & 3.95 V \\
\hline
\end{tabular}

FIGURE 1


\section*{Reliability}
\(\lambda\), failure rate \(\leqslant .02 \% / 1 \mathrm{~K}\) hours at \(75^{\circ} \mathrm{T}_{\mathrm{j}}\)
Thermal impedance, \(\theta_{D A}=65^{\circ} \mathrm{C} / \mathrm{W}\)
\(5\)

\section*{QUAD OPERATIONAL AMPLIFIER}

\section*{DESCRIPTION}

The 155-0116-00 is a silicon monolithic quad operational amplifier. It comes in a ceramic 16 pin DIP.

\section*{FEATURES}
- \(\pm 5 \mathrm{~V}\) to \(\pm 15 \mathrm{~V}\) power supply range
- 80 MHz gain bandwidth product
- 20 mA output bandwidth product
- No compensation required
- Open loop gain 3300 typical
- 5 mV input offset voltage
- Available in two versions:

155-0035-00 (plastic DIP)
155-0116-00 (ceramic DIP)


\section*{PIN CONNECTIONS}


\section*{ELECTRICAL CHARACTERISTICS}
\begin{tabular}{|c|c|c|c|}
\hline PARAMETER/CONDITIONS* & MIN & MAX & UNITS \\
\hline \(\mathrm{V}_{\mathrm{CC}}\) & 14.25 & 15.75 & V \\
\hline \(V_{\text {EE }}\) & -14.25 & \(-15.75\) & V \\
\hline Open Loop Voltage Amplification Condition: See Figure 1 & 1000 & & \\
\hline \begin{tabular}{l}
Input Offset Voltage \\
Condition: \(\mathrm{R}_{\mathrm{L}}\) more than \(100 \mathrm{~K} \Omega\). Input connected to output; \((+)\) Input grounded. Measure output voltage.
\end{tabular} & & \(\pm 5\) & mV \\
\hline Risetime Condition: See Figure 2. & & 60 & nS \\
\hline Closed Loop Voltage Amplification Condition: See Figure 3. & 9.70 & & \\
\hline \begin{tabular}{l}
Output Voltage Swing \\
Condition: Output Voltage Swing will not go more than 1.0 V negative of ( - ) Input.
\end{tabular} & \(\pm 12.0\) & & V \\
\hline Noise Condition: Referred to Input. & - & 100 & \(\mu \mathrm{V} /\) peak to peak \\
\hline
\end{tabular}
*The circuit conditions at which these parameter values were tested are:
\(V_{C C}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V} ; \mathrm{I}_{\mathrm{REF}}=0.25 \mathrm{~mA}\). All these values \(\pm 5.0 \%\). \(\mathrm{T}_{\mathrm{A}}=0\) to \(+70^{\circ} \mathrm{C}\).



FIGURE 2.


FIGURE 3

\section*{BLOCK DIAGRAM}


ABSOLUTE MAXIMUMS*
\begin{tabular}{l|l|l|c}
\hline \multicolumn{1}{c|}{ SYMBOLS } & \multicolumn{1}{c}{ IDENTIFICATION } & VALUES & UNITS \\
\hline \hline & Difference between \(V_{C C}\) and \(V_{E E}\) & 32 & V \\
\hline \(\mathrm{~V}_{\text {DN.OIFF }}\) & Differential Input Voltage & 7 & V \\
\hline \(\mathrm{I}_{\text {REF }}\) & Reference Current & 500 & \(\mu \mathrm{~A}\) \\
\hline \(\mathrm{I}_{\text {OUT }}\) & Output Current & 20 & mA \\
\hline \(\mathrm{~T}_{\text {STORAGE }}\) & & -55 to 125 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{T}_{\text {OPERATING }}\) & & 0 to 70 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{P}_{\mathrm{D}}\) & Maximum Power Dissipation & 375 & mW \\
\hline
\end{tabular}
*Since this device does not have internal current limiting, the circuits being driven by pins 1, 7, 9 and 15 should have some form of current limiting to keep from exceeding the Absolute Maximum Rating (lout) of \(\mathbf{2 0} \mathbf{~ m A}\) for this device.

\section*{APPLICATIONS INFORMATION}

\section*{Reliability}
\(\lambda\), Failure Rate, \(.02 \% / 1 \mathrm{~K}\) hours at \(75^{\circ} \mathrm{C} \mathrm{T}_{\mathrm{j}}\)

5-74


\section*{SWEEP CONTROL}

\section*{DESCRIPTION}

The 155-0122-00 is a Monolithic Integrated Sweep Control Circuit designed to interface with the 155-0123-00 Sweep and Delay Pickoff IC and the 155-0196-00 Trigger IC to form a complete Horizontal System.

\section*{FEATURES}
- Miller hold-off timing circuit
- Single sweep lockout circuit
- Triggered and single sweep ready light lamp drivers
- Single sweep reset debounce circuit
- Auto timing circuit
- "A" gate output


\section*{ABSOLUTE MAXIMUMS}
\begin{tabular}{|c|c|c|c|}
\hline SYMBOLS & IDENTIFICATION & VALUE & UNITS \\
\hline & Input voltage. Pins \(1,4,5,6,10\), and 12) & -0.3 to \(V_{C C}\) & V \\
\hline & Input voltage. (pins 2, 3, and 11) & -0.3 to \(\mathrm{V}_{\mathrm{CC}}+0.5\) & V \\
\hline & Output sink current. (Pins 6, 7, 9, and 11) & 6.0 & mA \\
\hline & Lamp sink current. (Pins 13 and 15) & 100 & mA \\
\hline & Lamp \(\mathrm{V}_{\mathrm{cc}}\) (Pins 13 and 15) & \(+7.5\) & V \\
\hline & Sink current. (Pin 10) & 20 & mA \\
\hline & Input current. (Pins 1, 2, 3, 4, 5, 10, and 12) & 5 & mA \\
\hline & \(V_{C C}(\) Pin 16) & \(+7.5\) & V \\
\hline & Light ground. (Pin 14) & -0.2 to +0.2 & V \\
\hline \(\mathrm{T}_{\text {sq }}\) & Storage temperature & -55 to +125 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{T}_{\text {A }}\) & Operating ambient temperature & -15 to +85 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{P}_{\text {D }}\) & Maximum power dissipation & 250 & mW \\
\hline
\end{tabular}

\section*{PIN CONNECTIONS}


\section*{ELECTRICAL CHARACTERISTICS}
\begin{tabular}{|c|c|c|c|}
\hline PARAMETER/CONDITIONS & MIN & MAX & UNITS \\
\hline \(\mathrm{V}_{\text {cc }}\) current & & 35 & mA \\
\hline Input logical "0" current (Pins 1, 4, and 5) & -1.7 & -5.0 & mA \\
\hline Input logical "0" voltage (Pins 1, 4, and 5) & 0.0 & 0.5 & V \\
\hline Input logical "1" current (Pins 1, 4, and 5) & \(-100\) & 0 & \(\mu \mathrm{A}\) \\
\hline Single sweep reset positive threshold (Pin 2) & 2.6 & 3.8 & V \\
\hline Timing pin input currents (See note 1) (Pins 2, 3) & 0 & 1.5 & \(\mu \mathrm{A}\) \\
\hline Auto timing threshold voltage (Pin 3) & 2.8 & 4.0 & V \\
\hline Output logical " 0 " voltage ( \(\operatorname{Pin} 6\), in which pin 6 input current \(=4.0 \mathrm{~mA}\) ) & 0.0 & 0.5 & V \\
\hline Output logical "1" leakage current (Pin 6, in which pin 6 voltage \(=5.6 \mathrm{~V}\) ) & \(-300\) & \(+300\) & \(\mu \mathrm{A}\) \\
\hline Output logical " 0 " voltage (Pins 7, 9, in which pins 7,9 input current \(=2.0 \mathrm{~mA}\) ) & 0.0 & 0.5 & V \\
\hline Output logical "1" current (Pin 7, in which pins 7,9 voltage \(=1.0 \mathrm{~V}\) ) & \(-5.0\) & -1.0 & mA \\
\hline Hold-off timing leakage curent (See note 2) (Pin 10) & -2 & +2 & \(\mu \mathrm{A}\) \\
\hline Hold-off ramp leakage curent (Pin 11, in which pin 11 voltage \(=5.0 \mathrm{~V}\) ) & \(-100\) & \(+100\) & \(\mu \mathrm{A}\) \\
\hline Hold-off ramp trip point (Pin 11) & 1.7 & 2.3 & V \\
\hline Hold-off start logical "0" voltage (Pin 12) & 0.0 & 0.5 & V \\
\hline Light driver \(\left(\mathrm{V}_{\text {SAT }}\right)\) (Pins 13, 15 in which pins 13, 15 current \(=60 \mathrm{~mA}\) ) & 0.0 & 0.6 & V \\
\hline Auto timing source resistance (Pin 3) & 20 & & \(\mathrm{K} \Omega\) \\
\hline Hold-off start propagation delay (See note 3) (Pins 9, 12) & 100 (typ) & & nSec \\
\hline "A" gate propagation delay (See note 4) (Pins 6, 7) & 50 (typ) & & nSec \\
\hline Single sweep \(\overline{\text { reset }}\) negative threshold (Pin 2) & 1.5 & 2.5 & V \\
\hline
\end{tabular}

NOTE 1: With a \(500 \mathrm{k} \Omega\) source resistance, the Single Sweep Reset Positive Threshold maximum increases to 4.25 V and the Auto Timing Threshold maximum increases to 4.25 V .

NOTE 2: With \(1.7 \mathrm{M} \Omega\) OHMS from PIN 10 to +5.0 V , Pin 11 current must be equal to or more than +4.0 mA .
NOTE 3: Delay measured between Pin 12 and Pin 9. See Test Diagram, Figure 1.
NOTE 4: Delay measured between \((-)\) edge of Pin 6 and resulting \((+)\) edge of Pin 7. See Test Diagram, Figure 2.


FIGURE 1


FIGURE 2


\section*{SWEEP GENERATOR AND DELAY PICKOFF CIRCUIT}

\section*{DESCRIPTION}

The \(155-0123-00\) is a monolithic integrated sweep generator and delay pickoff circuit. It is used both as a delaying sweep and as a delayed sweep integrated circuit.

\section*{FEATURES}
- Miller amplifier.
- Delay pickoff.
- Sweep start comparator.
- Sweep switch.
- Sweep end.
- Z axis circuits

BLOCK DIAGRAM


ABSOLUTE MAXIMUMS
\begin{tabular}{l|l|l|c}
\hline \multicolumn{1}{c|}{ SYMBOLS } & \multicolumn{1}{c|}{ IDENTIFICATIONS } & VALUES & UNITS \\
\hline \hline \(\mathrm{V}_{\mathrm{CC}}\) & Input current* (Pins 6, 7, 11, 13) & 10 & mA \\
\hline \(\mathrm{~V}_{\mathrm{EE}}\) & (Pin 15) & +7.5 & V \\
\hline \(\mathrm{~T}_{\mathrm{STG}}\) & (Pin 8) & -7.5 & V \\
\hline & Storage temperature range & -55 to 125 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{P}_{\mathrm{D}}\) & Operating IC ambient temperature range & -15 to +85 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{T}_{\mathrm{J}}\) & Maximum power dissipation & 335 & mW \\
\hline & Maximum junction temperature & 125 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}
*These inputs are to one or more junctions to one of the supplies. Any applied voltage must be current limited.

PIN CONNECTIONS


\section*{ELECTRICAL CHARACTERISTICS}
\begin{tabular}{|c|c|c|c|}
\hline PARAMETER/CONDITIONS & MIN & MAX & UNITS \\
\hline \(I_{\text {cc }}\) Supply Current (Pin 15) & 15 & 35 & mA \\
\hline \begin{tabular}{l}
\(\mathrm{V}_{\mathrm{EE}}\) Supply Voitage \\
(Pin 8)
\end{tabular} & \(-5.25\) & -4.75 & v \\
\hline \(I_{\text {EE }}\) Supply Current (Pin 8) & -50 & -25 & mA \\
\hline Delay Time Input Bias Current (Pin 1) \(\mathrm{V}_{\mathrm{N}}=\mathrm{V}_{\text {pin } 2}+1\) volt & 0 & 2 & \(\mu \mathrm{A}\) \\
\hline Delay Time Input Voltage Range (Pin 1) & -5 & +5 & v \\
\hline Output Voltage (Pin 10, open) (See note 1) Pin 2 ground (Pin 10) & 4 & 5 & v \\
\hline Output Voltage (Pin 10, open) Low State, Pin 2 ground (Pin 10) & -. 9 & -. 6 & v \\
\hline Hold-off Start Output Current During Sweep \(\left(V_{\text {pin }}+5 \mathrm{~V}\right)\) (Pin 10) & 1.5 & 2.75 & mA \\
\hline \begin{tabular}{l}
Retrace Current During Hold-off
\[
\operatorname{Pin} 4=2 V
\] \\
(Pin 4)
\end{tabular} & 1.16 & 2.3 & mA \\
\hline Retrace Current During Sweep (See Note 2) Pin \(4=2 \mathrm{~V}\) (Pin 4) & 2.25 & 3.75 & mA \\
\hline Leakage Retrace Current Pin \(4=2 \mathrm{~V}\) (Pin 4) & -15 & +15 & mA \\
\hline Delay Gate Output Voltage Pin \(1>1\) Volt (Pin 16) & \(-200\) & +200 & mA \\
\hline Delay Gate Output Voltage Pin \(1<1\) Volt (Pin 16) & 1.2 & 1.6 & v \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS (cont)
\begin{tabular}{|c|c|c|c|}
\hline PARAMETER/CONDITIONS & MIN & MAX & UNITS \\
\hline \begin{tabular}{l}
Delay Gate Output Voltage Pin \(1>1 \mathrm{~V}\) Pin 16 voltages
\[
=.6 \mathrm{~V}
\] \\
(Pin 16)
\end{tabular} & 1.68 & 3.92 & mA \\
\hline Miller Output Bias Current Pin \(2=0 \mathrm{~V}\) (Pin 2) & 2.7 & 5 & mA \\
\hline Miller Output Bias Voltage (Pin 2) & 4 & 5.3 & V \\
\hline Sweep Output Voltage Low, Pin \(7=\mathrm{HI}\) (Pin 5) & -5 & -4 & V \\
\hline Sweep Output Voltage High (peak to peak) Pin \(7=\) Low (Pin 5) & 4 & 5.3 & V \\
\hline Sweep Output Current Pin \(7=\mathrm{HI}\) (Pin 5) & 2.94 & 3.74 & mA \\
\hline Sweep Output Peak Voltage Above Ground (Pin 5) & 1.7 & 2.5 & V \\
\hline Constant Current Source Measurement Pin 3, with 4.7 M \(\Omega\) Resistor to 32 Volts (Pin 3) & 1.5 & 3.5 & v \\
\hline \begin{tabular}{l}
Unblanking Current Pin \(14=\) Low \\
(See Notes 3, 4) Pin 11 Force 2 mA at -2.6 V (Pin 12)
\end{tabular} & 1.6 & 2.4 & mA \\
\hline Unblanking Current Pin \(14=\) High (See Notes 3, 4) Pin 1 Force 5 mA at -2.6 V (Pin 12) & 1.9 & 6.0 & mA \\
\hline Input Voltage (Sweep Run) (Pins 13, 14) & 0.0 & 0.3 & V \\
\hline Input Voltage (Sweep Off) (Pins 13, 14) & 1.0 & 1.4 & V \\
\hline Input Bias Current (Pins 13 or \(14=1\) Volt) (Pins 13 or 14) & 0.0 & 50.0 & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

\section*{ELECTRICAL CHARACTERISTICS (Note Section)}

\section*{Note 1:}

Pin 10 goes positive at the end of Sweep to start Hold-off.

Note 2: \(\quad\) Retrace Current is \(3 \mathrm{~mA} \pm 20 \%\) plus \(1 / 2\) of Start Level (Pin 6 ) Current \(\pm 20 \%\). After Retrace, and during Hold-off, Current is \(1 / 2\) of Start Level Current \(\pm 20 \%\).

Note 3: \(\quad 0\) to 3 mA is the normal Unblanking Current. 3 to 6 mA overrides Blanking for XY operation.

Note 4: \(\quad\) Pin 12 Normal Operation Current \(=\) Pin 11 Current \(\pm 25 \%\) from 0 mA to \(\mathbf{3} \mathrm{mA}\) when in normal operation plus twice the current of any Pin 11 Current over \(3 \mathrm{~mA} \pm \mathbf{2 5 \%}\).

Pin \(12 \mathrm{X}-\mathrm{Y}\) Override Condition Current \(=\) Pin 11 Current \(\pm \mathbf{2 5 \%}\) minus \(\mathbf{3} \mathbf{m A}\) in the X -Y Override Condition.


\section*{APPLICATIONS INFORMATION}

\section*{PRODUCT PRECAUTIONS}

\section*{Input Protection}

Input current, Pins 6, 7, 11, 13, and 14 less than 10 mA . Negative applied voltage must be greater than -5 Volts.

\section*{Output Loading}

Load on Pin 5, while in High State, less than 4 mA (High State).

\section*{Power Supply Turn-On/Turn-Off Sequence}

Turn "on" sequence:
First . . . . . . . . . . . . . . . . . . . . . . . -5 Volt Supply
Second . . . . . . . . . . . . . . . . . . . +5 Volt Supply
Turn "off" sequence:
First . . . . . . . . . . . . . . . . . . . . . . +5 Volt Supply
Second . . . . . . . . . . . . . . . . . . . 5 Volt Supply

RELIABILITY
\(\lambda\), failure rate \(\leqslant .02 \% / 1 \mathrm{~K}\) hours at \(75^{\circ} \mathrm{C}\) tj. Thermal resistance junction to case \(87^{\circ} \mathrm{C} / \mathrm{W}\).

\section*{HORIZONTAL PREAMPLIFIER}

\section*{DESCRIPTION}

The 155-0124-00 is a monolithic integrated horizontal preamplifier designed to accept single-ended input signals from A sweep, B sweep, horizontal position, X-Y mode and X-input. The output of a 155-0124-00 is a differential current which drives an external horizontal output amplifier.

\section*{FEATURES}
- Switching between A sweep and B sweep is done internally.
- Switching between the sweep mode and the \(X-Y\) mode is done internally.
- An internal preamplifier amplifies the \(X\) signal from a vertical channel by a factor of 10. Bandwidth of X preamp is greater than 5 MHz .
- Power dissipation (typical application) \(=\) 185 mW in sweep mode and 215 mW in X-Y mode.
- Operates from +5 volt and -5 volt supplies

\section*{BLOCK DIAGRAM}


\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{ABSOLUTE MAXIMUMS} \\
\hline SYMBOLS & IDENTIFICATIONS & VALUES & UNITS \\
\hline \(\mathrm{V}_{\mathrm{cc}}\) & (Pin 15) & Ground to 5.5 & V \\
\hline \multirow[t]{5}{*}{\(V_{\text {EE }}\)} & (Pin 4) & Ground to -5.5 & V \\
\hline & Sweep input voltage (Pins 9 and 10) & +2.4 to -2.6 & V \\
\hline & I-source reference (Pin 5) & 5.0 & mA \\
\hline & X-input & +.24 to -. 24 & V \\
\hline & MGF (Magnified) register current (Pins 1 and 8) & 3 times l-source & \\
\hline \(\mathrm{T}_{\text {SG }}\) & Storage temperature & -55 to 125 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{T}_{\mathrm{A}}\) & Operating ambient temperature & \(+85\) & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{P}_{\mathrm{D}}\) & Max power dissipation & 235 & mW \\
\hline T & Max junction temperature & 125 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

PIN CONNECTIONS


ELECTRICAL CHARACTERISTICS
\begin{tabular}{|c|c|c|c|}
\hline PARAMETER & MIN & MAX & UNITS \\
\hline Average Output Level (Test Setup Note \#1) & 2.17 & 2.57 & mA \\
\hline Differential Output Level (Test Setup Note \#2) & -0.3 & \(+0.3\) & mA \\
\hline A to B Input Offset (Test Setup Notes \#3, 4) & -0.1 & +0.1 & mA \\
\hline A to \(X\) Input Offset (Test Setup Notes \#3, 5) & -0.2 & +0.2 & mA \\
\hline X Transconductance (Test Setup Note \#6) & 4.5 & & mMHOS/SIDE \\
\hline \(\mathrm{A}_{\text {in }}\) Transconductance (Test Setup Note \#7) & 5.0 & & mMHOS/SIDE \\
\hline \(\mathrm{B}_{\text {in }}\) Transconductance (Test Setup Note \#8) & 5.0 & & mMHOS/SIDE \\
\hline \(B_{\text {in }}\) Risetime (Test Setup Note \#9) & & 25.0 & nS \\
\hline \(\mathrm{A}_{\text {in }}\) Risetime (Test Setup Note \#10) & & 25.0 & nS \\
\hline \begin{tabular}{l}
\(X_{\text {in }}\) Risetime \\
(Test Setup Note \#11)
\end{tabular} & & 100 & nS \\
\hline Range (Differential) (Test Setup Note \#12) & -2.4 & +2.4 & mA (Differential) \\
\hline Range (Horizontal Position) (Test Setup Note \#13) & -2.4 & +2.4 & mA (Differential) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS (cont)
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|r|}{Test Set Up Notes} \\
\hline & POSITIONS & & \multirow[b]{2}{*}{(Note \#1)} \\
\hline SW-1 & SW-2 & SW-3 & \\
\hline Gain & X/Y & A* Sweep & \multirow[t]{2}{*}{TEST \# 1 is done to insure that the CRT Average Plate Volts will be \(48 \mathrm{~V} \pm 4 \mathrm{~V}\) (CRT Spec). This limit will be reached if \(\frac{\left(\mathrm{I}_{01}+\mathrm{I}_{02}\right)}{2}=2.37 \pm .225 \mathrm{~mA}\).} \\
\hline 2 & 1 & 1 & \\
\hline \[
\begin{gathered}
\mathrm{X} 1^{*} \\
2
\end{gathered}
\] & \begin{tabular}{l}
Sweep* \\
1
\end{tabular} & 1 & \begin{tabular}{l}
(Note \#2) \\
TEST \#2 is done to insure that the MAG. REGISTER has enough range. This limit will be reached if \(I_{01}-I_{02}=\) \(\pm .1 \mathrm{~mA}\).
\end{tabular} \\
\hline \[
\begin{gathered}
\mathrm{XIO} \\
1
\end{gathered}
\] & Sweep* 1 & 1 & \begin{tabular}{l}
(Note \#3) \\
TEST \#3 is done to establish a reference for TESTS \#4 and \#5. Measure \(\left|\left.\right|_{01}-I_{02}\right|=A\) offset.
\end{tabular} \\
\hline \[
\begin{gathered}
\text { Gain }^{*} \\
\times 10 \\
1
\end{gathered}
\] & Sweep* 1 & 1 & \begin{tabular}{l}
(Note \#4) \\
TEST \#4 is done to measure \(A / B\) offset. \(I_{01}-I_{02}=B\) offset \(|A-B|=\leqslant .1 \mathrm{~mA}\).
\end{tabular} \\
\hline Gain*

2 & \begin{tabular}{l}
\(X^{*}\) Amp \(50 \Omega\) \\
Term. \\
No Sig. \\
2
\end{tabular} & 3 & \begin{tabular}{l}
(Note \#5) \\
TEST \#5 is done to measure \(A / X\) offset. \(\left|\|_{01}-I_{02}\right|=\)
\[
\mathrm{A}-\mathrm{X}= \pm .2 \mathrm{~mA}
\]
\end{tabular} \\
\hline \[
\begin{gathered}
\text { Gain }^{*} \\
\text { X1 } \\
2
\end{gathered}
\] & X Amp. 2 & 3 & \begin{tabular}{l}
(Note \#6) \\
TEST \#6 is done to measure \(X\) Amplifier Gain. \\
a) Measure \(I_{01}-I_{02}\), no signal in. Apply 100 mV DC to \(X\) Input. \\
b) Measure \(I_{01}-I_{02}\) \\
c) \(|a-b| \geqslant 1 \mathrm{~mA}\)
\end{tabular} \\
\hline \[
\begin{aligned}
& \text { Gain* } \\
& \text { X10 }
\end{aligned}
\] & A* Sweep
\[
1
\] & 1 & \begin{tabular}{l}
(Note \#7) \\
TEST \#7 is done to measure A Sweep Gain. \\
a) Measure \(I_{01}-I_{02}\), no signal in. \\
b) Apply 100 mV DC to \(A_{\text {input, }}\), measure \(I_{01}-I_{02}\). \\
c) \(|\mathrm{a}-\mathrm{b}| \geqslant 1 \mathrm{~mA}\)
\end{tabular} \\
\hline \[
\begin{gathered}
\text { Gain* } \\
\text { X10 } \\
1
\end{gathered}
\] &  & 2 & \begin{tabular}{l}
(Note \#8) \\
TEST \#8 is done to measure B Sweep Gain. \\
a) Measure \(I_{01}-I_{02}\), no signal in. \\
b) Apply 100 mV DC to \(B\) input. Measure \(I_{01}-I_{02}\). \\
c) \(|\mathrm{a}-\mathrm{b}| \geqslant 1 \mathrm{~mA}\)
\end{tabular} \\
\hline \[
\begin{gathered}
\text { Gain } \\
\text { X10* } \\
1
\end{gathered}
\] & Sweep* 1 & 2 & \begin{tabular}{l}
(Note \#9) \\
TEST \#9 is done to measure \(\mathrm{B}_{\text {in }}\) Risetime. \\
a) Apply fast rise pulse ( 106 Tek Squarewave Generator "example"). \(t_{p} B\) in \\
b) Measure \(t_{r}\) and \(t_{1}\) of \(I_{01}\) and \(I_{02} . t_{r}\) and \(t_{\mathrm{f}} \leqslant 25 \mathrm{nSEC}\).
\end{tabular} \\
\hline
\end{tabular}

\section*{ELECTRICAL CHARACTERISTICS (cont)}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|r|}{Test Set Up Notes} \\
\hline \[
\begin{gathered}
\text { Gain* } \\
\times 10 \\
1
\end{gathered}
\] & Sweep* 1 & 1 & \begin{tabular}{l}
(Note \#10) \\
TEST \#10 is done to measure \(A_{\text {in }}\) Risetime. \\
a) Apply fast rise pulse (Tek 106) to \(A_{\text {in }}\) \\
b) Measure \(t_{r}\) and \(t_{f}\) of \(I_{01}\) and \(I_{02} \cdot t_{r}\) and \(t_{f} \leqslant 25\) nSEC.
\end{tabular} \\
\hline \[
\begin{gathered}
\text { Gain** } \\
\text { X1 } \\
2
\end{gathered}
\] & \[
\begin{gathered}
X \text { in* } \\
2
\end{gathered}
\] & 3 & \begin{tabular}{l}
(Note \#11) \\
TEST \#11 is done to measure \(X_{i n}\) Risetime. \\
a) Apply fast rise pulse (Tek 106) to \(X_{\text {in }}\) \\
b) Measure \(t_{r}\) and \(t_{f}\) of \(\mathrm{I}_{01}\) and \(\mathrm{I}_{02} . \mathrm{t}_{\mathrm{r}}\) and \(\mathrm{t}_{\mathrm{f}} \leqslant 100 \mathrm{nSEC}\).
\end{tabular} \\
\hline \[
\begin{gathered}
\text { Gain* }^{*} \\
\text { X1 } \\
2
\end{gathered}
\] & \[
\begin{gathered}
X_{i n}^{*} \\
2
\end{gathered}
\] & 3 & \begin{tabular}{l}
(Note \#12) \\
TEST \#12 is done to measure Range of the I.C. \\
a) Apply +300 mV DC to \(X_{\text {in }}\)
\[
\begin{aligned}
& \mathrm{I}_{01} \geqslant 3.57 \mathrm{~mA} \\
& \mathrm{I}_{02} \leqslant 1.17 \mathrm{~mA}
\end{aligned}
\] \\
b)
\[
\begin{aligned}
& \text { Apply }-300 \mathrm{mV} \text { DC to } X_{\text {in }} \\
& \mathrm{I}_{01} \leqslant 1.17 \mathrm{~mA} \\
& \mathrm{I}_{02} \geqslant 3.57 \mathrm{~mA}
\end{aligned}
\]
\end{tabular} \\
\hline 2 & 1 & 1 & \begin{tabular}{l}
(Note \#13) \\
TEST \#13 is done to measure Position Input Range. \\
a) Apply +2.5 V to Position Input
\[
\begin{aligned}
& \mathrm{I}_{02} \geqslant 3.57 \mathrm{~mA} \\
& \mathrm{I}_{01} \leqslant 1.17 \mathrm{~mA}
\end{aligned}
\] \\
b) Apply -2.4 V to Position Input
\[
\begin{aligned}
& \mathrm{I}_{02} \leqslant 1.17 \mathrm{~mA} \\
& \mathrm{I}_{01} \geqslant 3.57 \mathrm{~mA}
\end{aligned}
\]
\end{tabular} \\
\hline
\end{tabular}
* The Function of that Switch Position.

\section*{RELIABILITY}
\(\lambda\) failure rate \(\leqslant .02 \% / 1 \mathrm{~K}\) hours at \(75^{\circ} \mathrm{C} \mathrm{Tj}\)

\section*{SYNC STRIP CIRCUIT}

\section*{DESCRIPTION}

The 155-0144-00 generates an output pulse whose leading edge reproduces the timing of the \(50 \%\) point on the leading edge of the sync pulses contained in a composite video waveform.

\section*{FEATURES}
- Open collector outputs: Comp sync, sound-in-sync, and back porch gate.
- AGC is based upon input sync amplitude. A "test point" is available with inverted comp video reference to 0.8 V sync amplitude.
- Wide input dynamic range with leading sync edge timing preserved.
- Provides a block sync output to be used with sound-in-sync video input.
- Provides a back porch gate suitable for video clamping amplifiers.
- Internal timing, adjustable by external components to accommodate different line rates, creates a window for the acceptance of sync inputs. (This minimizes sensitivity to noise bursts.)
- The gain for the input amplifier (and thus the amplitude of the input sync) can be determined between the AGC voltage and the AGC reference pins.


ABSOLUTE MAXIMUMS
\begin{tabular}{l|l|c|c}
\hline \multicolumn{1}{c|}{ SYMBOL } & \multicolumn{1}{|c|}{ IDENTIFICATIONS } & VALUES & UNITS \\
\hline \hline & Input Current (Pin 16) & \(\pm 2\) & mA \\
\hline \(\mathrm{~V}_{\mathrm{CC}}\) & (Pin 12) & +16 & V \\
\hline & Back Porch Gate Output (Pin 4) & -4 & mA \\
\hline & Output Voltage (Pins 4, 5, 7) & +10 & \({ }^{\circ} \mathrm{C}\) \\
\hline & \begin{tabular}{l} 
Maximum operating temperature \\
(Results in a \(125^{\circ} \mathrm{C}\) Junction temperature)
\end{tabular} & 80 & mW \\
\hline
\end{tabular}

\section*{PIN CONNECTIONS}


ELECTRICAL CHARACTERISTICS*
\begin{tabular}{|c|c|c|c|c|}
\hline SYMBOL & PARAMETER/CONDITIONS & MIN & MAX & UNITS \\
\hline \(V_{\text {TP }}\) & Test Point Voltage (Pin 13) & 11.0 & 13.0 & V \\
\hline \(V_{S Y}\) & Sync Out Voltage (Pin 5) & 4.9 & 5.1 & V \\
\hline \(\mathrm{V}_{\mathrm{BP}}\) & Back porch Gate Out Voltage (Pin 4) & 4.9 & 5.1 & V \\
\hline \(\mathrm{V}_{\text {SS }}\) & Sound in syncs out voltage (Pin 7) & 4.9 & 5.1 & V \\
\hline \(V_{\text {RP }}\) & Ramp timing voltage (Pin 11) & 13.6 & 14.6 & V \\
\hline \(V_{\text {AGC }}\) & AGC Voltage (Pin 2) & 1.8 & 2.6 & V \\
\hline \(V_{\text {REF }}\) & AGC Reference Voltage (Pin 1) & 3.3 & 3.9 & V \\
\hline \(\mathrm{V}_{\text {SR }}\) & Sync Ratio Voltage (Pin 6) & 12.0 & 14.0 & V \\
\hline \(\mathrm{V}_{\text {BP(IN) }}\) & Back Porch Gate In Voltage (Pin 8) & 9.5 & 11.5 & V \\
\hline \(\mathrm{V}_{\text {IN }}\) & Input Voltage (Pin 16) & 1.8 & 2.4 & V \\
\hline \(\mathrm{V}_{\text {LF }}\) & LF Feedback Voltage (Pin 15) & 7.0 & 9.0 & V \\
\hline \(V_{\text {MEM }}\) & Back Porch Memory Voltage (Pin 14) & 8.0 & 10.0 & V \\
\hline \(V_{\text {RT }}\) & Retrigger Input Voltage (Pin 10) & 0.6 & 0.8 & V \\
\hline \(V_{\text {BPT }}\) & Back Porch Timing Voltage (Pin 9) & 0.8 & 1.4 & V \\
\hline \(\mathrm{T}_{10}\) & \begin{tabular}{l}
Input to Output Delay \(\left(V_{\text {gen }}\right.\) to Pin 5) \\
(Figure 1) \\
\(\mathrm{V}_{\text {gen }}=286 \mathrm{mV}\) of horizontal Sync. \\
Between 50\% points
\end{tabular} & 120 & & nS \\
\hline \(\mathrm{V}_{\text {L0 }}\) & Output logic zero levels (Pins 4, 5, 7) (Figure 1) & 300 & \[
750
\] & mV \\
\hline \(\mathrm{T}_{\mathrm{x}}\) & Trailing edge of test point pulse to leading edge of back porch gate output pulse (Pin 13 to Pin 4) (Figure 1) & 100 & 250 & nS \\
\hline
\end{tabular}

\footnotetext{
\({ }^{*} V_{\text {gen }}=0\) volts unless otherwise noted.
}


INPUT AND OUTPUT WAVEFORMS


RAMP TIMING


WIRED-OR OF SYNC
AND SJS


\section*{COMP VIDEO HORIZONTAL BLANKING}


COMP SYNC BLANKING



NOTE: ALL MEASUREMENTS ARE MADE WITH RESPECT TO 10\% POINTS


\section*{RELIABILITY}
\(\lambda\) failure rate \(\leqslant .02 \% / 1 \mathrm{~K}\) hours at \(75^{\circ} \mathrm{C} \mathrm{Tj}\)

\section*{PULSE OUTPUT AMPLIFIER}

\section*{DESCRIPTION}

The 155-0145-00 provides a controlled risetime output pulse occurring between ground and a programmable negative level, given a TTL input pulse. Two such amplifiers are provided per package.

\section*{FEATURES}
- 2 independent amplifiers
- Controlled and matched rise and fallimes, selectable by external capacitor
- TTL compatible inputs
- Output voltage swings from 0 to -8 volts



\section*{ABSOLUTE MAXIMUMS}
\begin{tabular}{|c|c|}
\hline Input Voltage (Pins 4 and 6) & -4.5 V to \(\mathrm{V}_{\mathrm{cc}}\) \\
\hline Output Sink Current (Pins 9 and 16) & 150 mA \\
\hline Output Source Current (Pins 9 and 16) & 30 mA (Under Controlled Conditions) \\
\hline \(V_{\text {cc }}(\) Pin 13) & +5.25 Volts \\
\hline \(V_{\text {EE }}(\operatorname{Pin} 3)\) & -10.25 Volts \\
\hline Operting Ambient Temperature & \(0^{\circ} \mathrm{C}-50^{\circ} \mathrm{C}\) \\
\hline Maximum Power Dissipation & .550 mW at \(50^{\circ} \mathrm{C}\) \\
\hline Input Voltage (Pins 2 and 7) & 2.0 V to -6.0 Volts \\
\hline Input Voltage (Pins 1 and 8) & \(\mathrm{V}_{\text {pins 2and } 7}\) at -2.4 Volts \\
\hline Maximum Die Temperature & \(+125^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{PIN CONNECTIONS}


ELECTRICAL CHARACTERISTICS
\begin{tabular}{l|l|l|l|c}
\hline \multicolumn{1}{c|}{ PARAMETER } & \multicolumn{1}{|c|}{ SYMBOL } & MIN & MAX & UNITS \\
\hline \hline Input Logical "0" Voltage & Pins 4, 6 & & 0.8 & V \\
\hline \begin{tabular}{l} 
Input Logical "1" Voltage
\end{tabular} & Pins 4, 6 & 2.5 & & V \\
\hline \begin{tabular}{l} 
Input Current \\
(For VIN \(=2.5\) Volts)
\end{tabular} & Pins 4, 6 & & 500 & \(\mu \mathrm{~A}\) \\
\hline Charging Current (NOTE 1) & Pins 10, 15 & 800 & NS \\
\hline \begin{tabular}{l} 
Risetime (NOTE 2)
\end{tabular} & Pins 9, 16 & 100 & V \\
\hline \begin{tabular}{l} 
Upper Output Clamp Voltage
\end{tabular} & Pins 9, 16 & -0.1 & +0.1 & V \\
\hline \begin{tabular}{l} 
Lower Output Voltage \\
Differential
\end{tabular} & \(\mathrm{V}_{\text {Pin } 9}-\mathrm{V}_{\text {Pin } 8}\) & -0.1 & +0.1 & \\
\hline
\end{tabular}

NOTES: 1. Minimum current into or out of pin under static conditions
2. For output loaded with \(\mathbf{1 5 0 \Omega}\) from pin to ground and slewing capacitor of \(\mathbf{2} \mathbf{p F}\).

\section*{Reliability}
\(\lambda\), failure rate \(\leqslant .02 \% / 1 \mathrm{~K}\) hours at \(75^{\circ} \mathrm{C} \mathrm{Tj}\)
Thermal resistance, \(\theta_{\mathrm{ja}} \quad 107.4^{\circ} \mathrm{C} / \mathrm{W}\)

\section*{GEOMETRY \& FOCUS CORRECTION}

\section*{DESCRIPTION}

The 155-0152-01 is a CRT Geometry and Focus Correction Integrated Circuit. It contains two Pre-Amplifiers (for \(X\) and \(Y\) Axis), whose nonlinear transfer functions compensate for the pin-cushion distortion seen on CRT displays with electromagnetic deflection systems. The amount of correction is set by external resistors. A third amplifier generates an error signal which can be used to correct for defocusing due to spot position on the CRT.

\section*{*FEATURES}
- Positional Accuracy: Better than \(\pm 1 \%\) relative to screen diagonal.
- Linearity: Better than \(\pm 1 \%\) deviation relative to length of line.
- Vector Length Accuracy: Better than \(\pm 2 \%\) relative to the vector length.
- Speed: Corner to corner jump and settle to \(1 \%\) in \(10 \mu \mathrm{~s}\).
*As seen on the 4006-1 Display Terminal with \(10^{\prime \prime}, 60^{\circ}\) CRT.

\section*{BLOCK DIAGRAM}


ABSOLUTE MAXIMUMS
\begin{tabular}{l|l|l}
\hline \multicolumn{1}{c|}{ SYMBOLS } & \multicolumn{1}{c|}{ IDENTIFICATION } & \multicolumn{1}{c}{ VALUES } \\
\hline \hline & Power Supply Voltage & \(\pm 15 \mathrm{~V}\) \\
\hline & Input Voltage & \(\pm 5.0 \mathrm{~V}\) \\
\hline \(\mathbf{T}_{\mathrm{SG}}\) & Storage Temperature & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{T}_{\mathrm{A}}\) & Operating Ambient Temperature & \(+70^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{P}_{\mathrm{D}}\) & Maximum Power Dissipation & 540 mW \\
\hline \(\mathbf{T}_{\lrcorner}\) & Maximum Junction Temperature & \(+125^{\circ} \mathrm{C}\) \\
\hline \(\mathbf{R}_{\mathrm{L}}\) & Minimum Load Resistance & \(5 \mathrm{~K} \Omega\) \\
\hline \(\mathrm{C}_{\mathrm{L}}\) & Maximum Load Capacitance & 10 pF \\
\hline
\end{tabular}

PIN CONNECTIONS


ELECTRICAL CHARACTERISTICS
\begin{tabular}{|c|c|c|c|c|c|}
\hline Symbol & Parameter* & Conditions & Min & Max & Units \\
\hline \(\mathrm{I}_{\mathrm{Cc}}\) & \(\mathrm{V}_{\mathrm{cc}}\) Supply Current & Note 1 & 10 & 18 & mA \\
\hline \(I_{\text {EE }}\) & \(\mathrm{V}_{\mathrm{EE}}\) Supply Current & Note 1 & -18 & -12 & mA \\
\hline \(\mathrm{I}_{\text {GND }}\) & Ground Current & Note 1 & 0 & 2 & mA \\
\hline \(\mathrm{A}_{\mathrm{v}}\) & Amplifier Voltage Gain & Notes 2, 4 & 0.9 & 1.1 & \\
\hline \(V_{\text {(OFFSET) }}\) & Output Offset Voltage & Notes 1, 3 & -300 & \(+300\) & mV \\
\hline \(\mathrm{A}_{\mathrm{V}(\mathrm{ABS})}\) & Absolute Value Amp. Gain & Notes 1, 8 & 0.95 & \(+1.05\) & \\
\hline \(V_{\text {ABS(OFFSET) }}\) & Absolute Value Amp. Offset & Notes 1, 3 & 10 & \(+300\) & mV \\
\hline \(V_{\text {corner(avg) }}\) & Average Corner Vector Voltage & Notes 1, 5 & 4.54 & 5.54 & V \\
\hline \(\mathrm{V}_{\text {CORNER(DEV) }}\) & Corner Vector Voltage Deviation & Notes 1, 5 & & 5 & \% \\
\hline \(\mathrm{V}_{\text {ON-AXIS (ERROR) }}\) & On-Axis Vector Voltage Error & Notes 1, 5, 6 & & 2 & \% \\
\hline \(\mathrm{V}_{\text {ON-AXIS (DEV) }}\) & On-Axis Vector Voltage Deviation & Notes 1, 5, 6 & & 6 & \% \\
\hline \(V_{\text {f(AVG) }}\) & Average Focus Voltage & Notes 1, 7 & 3.60 & 4.70 & V \\
\hline \(\mathrm{V}_{\text {F(OFFSET }}\) & Focus Offset Voltage & Notes 1, 3 & \(-500\) & \(+500\) & mV \\
\hline \(\mathrm{V}_{\text {F(DEV) }}\) & Focus Offset Deviation & Notes 1, 7 & & 10 & \% \\
\hline
\end{tabular}

\section*{*PARAMETRIC DEFINITIONS}
\(V_{\text {out }}\) specifications subtract the Output Offset Voltage.
\(\mathbf{V}_{\text {OUT }}=V_{\text {OUT(Measured) }}-V_{\text {OUT(Otiset) }}\)
For simplicity, a geographic nomenclature will be used in locating \(X\) and \(Y\) Vectors.
Example: A "NW" (Northwest) Vector would be realized with a negative input on " \(X\) " and a positive input on " \(Y\) ".

\[
V_{\text {CORNER }}=\sqrt{V_{X(O U T)^{2}}+V_{Y(O U T)^{2}}}
\]
(SE)

\section*{ELECTRICAL CHARACTERISTICS (cont)}
\(\mathbf{R}_{\text {REF }}\) and \(\mathbf{R}_{\text {BIAS }}\) set Internal Bias Currents.
\begin{tabular}{ll}
\(R_{\text {BIASI }}=\quad 115.6 \mathrm{~K} \Omega\left(\mathrm{~V}_{\mathrm{EE}}=-12 \mathrm{~V}\right)\) \\
& \(132.0 \mathrm{~K} \Omega\left(\mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}\right)\) \\
\(\mathbf{R}_{\mathrm{REF}}=\quad 14.67 \mathrm{~K} \Omega\left(\mathrm{~V}_{\mathrm{EE}}=-12 \mathrm{~V}\right)\) \\
& \(19.63 \mathrm{~K} \Omega\left(\mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}\right)\) \\
\(\mathbf{R}_{\text {FOCUS }}=\) & \(37.60 \mathrm{~K} \Omega\)
\end{tabular}
\(\mathrm{R}_{\text {FOCuS }}\) is chosen so that \(\mathrm{V}_{\text {FOCus }}=0 \mathbf{V}\) when \(\mathrm{V}_{\mathrm{IN}(\mathrm{X})}\) and \(\mathrm{V}_{\mathrm{IN}(\mathrm{Y})}\) have values corresponding to the corner of the display. \(R_{X}\) and \(R_{Y}\) are used to set currents to the voltage-to-current converters. All specifications are within \(6 \mathrm{~K} \Omega\) resistors unless otherwise noted. This value will vary with the individual application, and the amount of correction desired.

\section*{ELECTRICAL CHARACTERISTICS (Note Section)}

NOTE 1
\(\mathrm{V}_{\mathrm{cc}}=+15 \mathrm{~V}\)
\(V_{\mathrm{EE}}=-12 \mathrm{~V}\)
\(\mathrm{A}_{\text {Ref }}=14.67 \mathrm{Kohm}\)
\(\mathrm{R}_{\text {Bias }}=115.6 \mathrm{Kohm}\)
\(\mathrm{T}_{\mathrm{j}}=+25^{\circ} \mathrm{C}\)
Test Circuit \#1

NOTE 2
\(V_{c c}=+15 \mathrm{~V}\)
\(V_{E E}=-12 \mathrm{~V}\)
\(R_{\text {hef }}=14.67 \mathrm{Kohm}\)
\(\mathrm{R}_{\text {BIAS }}=115.6 \mathrm{Kohm}\)
\(T_{J}=+25^{\circ} \mathrm{C}\)
Test Circuit \#2


NOTE 3
Output Offset Voltages are measured with both inputs, \(\mathrm{V}_{\mathrm{x}(\mathbb{N})}\) and \(\mathrm{V}_{\text {Y(IN) }}\), at 0 V .
NOTE 4
Large Signal Voltage Gain of the \(X\) and \(Y\) Amplifiers, without Pin Cushion Correction.
\(V_{\mathrm{w}}= \pm 5 \mathrm{~V}\)
\(A_{v}=\frac{\Delta V_{\text {our }}}{10 \mathrm{~V}}\)

\section*{ELECTRICAL CHARACTERISTICS (Note Section cont)}

NOTE 5
\(\mathbf{V}_{\text {Corner(avg) }}\) is the average of the four corner Vector Voltages, generated with \(\pm \mathbf{5 V}\) inputs.
\(v_{\text {CORNER(AVG) }}=\frac{v_{\text {Nw }}+v_{\text {NE }}+v_{\text {SE }}+v_{\text {sw }}}{4}\)
\(\mathbf{V}_{\text {cornerideviation) }}\) defines the variation between the four \(\mathbf{V}_{\text {corner }}\) voltages.
\(\mathbf{V}_{\text {CORNER(DEV) }}=\frac{\mathbf{V}_{\text {CORNER(MAX) }}-V_{\text {CORNER(MIN) }} \times 100}{\mathbf{V}_{\text {CORNER(AVG) }}}\)

NOTE 6
\(\mathbf{V}_{\text {ON-AXIS(AVG) }}\) is the average of the Four Output Vector Voltages \(\left(V_{N}, V_{S}, V_{E}, V_{W}\right)\) as defined in the table below.
\(V_{N} V_{\mathbb{N}(\mathbf{X})}=0 \mathrm{~V} \quad \mathbf{V}_{\mathbf{N ( Y )}}=+5 \mathrm{~V}\)

\(\mathbf{V}_{\mathbf{E}} \mathbf{V}_{\mathbf{I N}(\mathrm{X})}=+5 \mathrm{~V} \quad \mathbf{V}_{\mathbb{N}(\mathrm{Y})}=0 \mathrm{~V}\)
\(V_{W}^{E} V_{I N(X)}=-5 V \quad V_{I N(Y)}=0 V\)
\(V_{\text {ON-AXIS(AVG) }}=\frac{V_{\mathrm{N}}+V_{\mathrm{S}}+V_{\mathrm{E}}+V_{\mathrm{W}}}{4}\)
\(X_{\text {ON-AXIS(ERROR) }}\) is the percent difference between the \(\mathbf{V}_{\text {ON-AXIS(AVG) }}\) and the \(\mathrm{V}_{\text {ON-AXIS(THEORY) }}\), as calculated below.
\(V_{\text {ON-AXIS(THEORY) }}=\frac{5 \sqrt{2}}{\sqrt{1+\left(\frac{5 \sqrt{2}}{V_{\text {CORNER(AVG) }}}\right)^{2}}}\)
\(V_{\text {ON-AXIS(ERROR) }}=\left(\frac{V_{\text {ON-AXIS(AVG) }}-V_{\text {ON-AXIS(THEORY) }}}{V_{\text {ON-AXIS(THEORY) }}}\right) \times 100\)
\(V_{\text {ON-AxIS(DEviATION) }}\) defines the variation between the four On-Axis Vector Voltages
\(\mathbf{V}_{\text {ON-AXIS(DEV) }}=\frac{V_{\text {ON-AXISMAX) }}-V_{\text {ON-AXIS(MIN) }}}{V_{\text {ON-AXIS(AVG) }}} \times 100\)

NOTE 7
\(V_{\text {FOCUS(AVG) }}\) is the average of the Four Focus Voltages, as generated by \(V_{\operatorname{IN(X)}}\) and \(V_{\operatorname{IN(Y)}}\) at \(\pm 5 \mathbf{V}\).
\(V_{\mathrm{FOCUS}(\mathrm{AVG})}=\frac{\mathrm{V}_{\mathrm{F}(\mathrm{NW})}+\mathrm{V}_{\mathrm{F}(\mathrm{NE})}+\mathrm{V}_{\mathrm{F}(\mathrm{SE})}+V_{\mathrm{F}(\mathrm{SW})}}{4}\)
\(\mathbf{V}_{\text {focusioeviation) }}\) defines the variation between the four \(\mathbf{V}_{\text {focus }}\) Voltages.


NOTE 8
Large Signal Voltage Gain of the \(\mathbf{X}\) and Y Absolute Value Amplifiers.
\(V_{\mathrm{IN}}= \pm 5 \mathrm{~V}\)
\(A_{V(A B S)}=\frac{\Delta V_{(A B S)}}{10 \mathrm{~V}}\)

APPLICATIONS INFORMATION
\begin{tabular}{c|l|c|c}
\hline SYMBOL & \multicolumn{1}{|c|}{ PARAMETER/CONDITIONS } & TYPICAL & VOLTS \\
\hline \hline\(V_{\text {REF] }}\) & \begin{tabular}{l}
\(V_{\text {Reference-Current! }}\) Pin \#2 \\
See Note 1, Electrical Characteristics
\end{tabular} & -2.8 & V \\
\hline \(\mathrm{~V}_{\text {BIAS }]}\) & \begin{tabular}{l}
\(V_{\text {Bias-Current] }}\) Pin \#3 \\
See Note 1, Electrical Characteristics
\end{tabular} & -8.4 & V \\
\hline
\end{tabular}

If all errors are zero the functions generated by the IC are given below:
\[
v_{X(O U T)}=\frac{V_{X(N)}}{1+\left(\frac{I_{X}}{I_{\text {REF }}}\right)^{2}+\left(\frac{I_{Y}}{I_{\text {REF }}}\right)^{2}}
\]
\[
V_{Y(I O T T)}=\frac{V_{Y(I N)}}{1+\left(\frac{I_{X}}{I_{\mathrm{REF}}}\right)^{2}+\left(\frac{I_{Y}}{I_{\mathrm{REF}}}\right)^{2}}
\]
\[
V_{\text {FIOUT }}=I_{\text {FOCUS }}-\frac{I_{\text {REF }}}{3} \sqrt{I^{\prime}\left(\frac{I_{X}}{I_{\text {REF }}}\right)^{2}+\left(\frac{I_{Y}}{I_{\text {REF }}}\right)^{2}}
\]
\(R_{X}\) and \(R_{Y}\) are external resistors that set \(I_{X}\) and \(I_{Y}\)
\[
\begin{aligned}
& I_{x}=\left|v_{x(I N)}\right| \\
& I_{Y}=\left|v_{Y(I N)}\right|
\end{aligned}
\]
\(R_{\text {REF }}=R_{\text {FOCUS }}\) are external resistors that set \(I_{\text {REF }}\) and \(I_{\text {FOCUS }}\)

\section*{Product Precautions}

\section*{Input Protection}

Do not apply signals of greater than 5.0 V on either input \(-V_{x}\) or \(V_{Y}\).

\section*{Output Loading}

\section*{WARNING}

Output capacitance is to be limited to a maximum of 10 pF on all outputs to avoid oscillation.

Do not short outputs to ground.

Output loads recommended \(=10 \mathrm{~K} \Omega\), Maximum Load \(=5 \mathrm{~K} \Omega\).

\section*{Power Supply Turn-On/Turn-Off Sequence}

\section*{Turn-on Sequence}

Turn on negative supply first, then turn on the positive supply.

\section*{Turn-Off Sequence}

Turn off positive supply first, then turn off the negative supply.

\section*{Handling Procedures}

No special handling or precautions necessary above standard integrated circuits procedures.

\section*{Reliability}
\(\lambda\), Failure Rate \(\leqslant .02 \% / 1 \mathrm{~K}\) hours at \(75^{\circ} \mathrm{C} \mathrm{Tj}\)
Thermal Resistance \(0_{\mathrm{Jc}}=47^{\circ} \mathrm{C} /\) Watt

\section*{DISPLAY MULTIPLEXER}

\section*{DESCRIPTION}

The 155-0154-00 transmits one of three sets of inputs (hardcopy, alphanumeric-mode, or vector mode) in accordance with the appropriate two-bit instruction on lines "A" and "B". Each input set has " \(X\) " and " \(Y\) " channels.

A counter sequences through eight offset positions each time a "page" (erase) signal is received. These offsets are added to the " \(X\) " and " \(Y\) " inputs to uniformly exercise the phosphor on all parts of the screen.

\section*{FEATURES}
- Each channel has three differential voltage inputs and one single ended voltage output.
- Two logic inputs ( \(A, B\) ) are provided for differential voltage input.
- Provision for origin shifting the display for increased phosphor life is provided.

\section*{BLOCK DIAGRAM/PIN CONNECTIONS}


ABSOLUTE MAXIMUMS*
\begin{tabular}{|c|c|c|c|}
\hline IDENTIFICATION & NOTES & VALUES & SYMBOLS \\
\hline Offset Voltage & All channels & \(\pm 90\) & mV \\
\hline Bias Current & All channels & 12 & \(\mu \mathrm{A}\) \\
\hline Input Resistance & All channels (Minimum value) & 0.88 & M \(\Omega\) \\
\hline Common mode range & & \(\pm 1.0\) & V \\
\hline Crosstalk & All channels & -60 & dB \\
\hline Voltage between \(\mathrm{V}+\) and V terminals & Channel 1X, 1Y & \(\pm 7.0\) & V \\
\hline Voltage between \(\mathrm{V}+\) and V terminals & Channel 2X, 2Y, 3X, 3Y & \(\pm 7.0\) & V \\
\hline Input risetime and falltime & All channels & 10 & \(\mu \mathrm{S}\) \\
\hline Digital input current & \begin{tabular}{l}
\[
V_{\text {in }}=0 \text { volts, } T_{A}=75^{\circ} \mathrm{CA}, B,
\] \\
and Page Inputs
\end{tabular} & -1.6 & mA \\
\hline Digital input current & \(\mathrm{V}_{\text {in }}=5\) volts, \(\mathrm{T}_{\mathrm{A}}=75^{\circ} \mathrm{C}\) & 40 & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}
* \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) unless otherwise noted.

\section*{ELECTRICAL CHARACTERISTICS}
\begin{tabular}{|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & MIN & MAX & UNITS \\
\hline \(l_{\text {cc }}\) & Power Supply Current Note 1 & & \(+30\) & mA \\
\hline \(I_{E E}\) & Power Supply Current Note 1 & -25 & & mA \\
\hline \(V_{\text {OUT(OS }}\) & Output Offset Voltage Note 1 & -90 & \(+90\) & mV \\
\hline \(\mathrm{A}_{V}\) & Voltage Gain Channel 1X, 1 Y Note 2 & & \(1.25 \pm 5 \%\) & \\
\hline \(\mathrm{A}_{V}\) & Voltage Gain Channel 2X, 2Y, 3X, 3Y Note 3 & & \(1.0 \pm 5 \%\) & \\
\hline \(\mathrm{G}_{\text {(LIN) }}\) & Gain Linearity Notes 2, 3, 4 & -20 & +20 & mV \\
\hline \(\mathrm{V}_{\text {SHIFT }}\) & X Origin Shift Note 5 & 6.2 & 14.4 & mV \\
\hline \(\mathrm{V}_{\text {SHIFT }}\) & Y Origin Shift Note 5 & 7.7 & 18.8 & mV \\
\hline \(\mathrm{V}_{\text {SHIFT(MAX }}\) & \(X\) Origin Shift (Max.) Note 5 & 57.6 & 86.4 & mV \\
\hline \(\mathrm{V}_{\text {SHIFT(MAX) }}\) & Y Origin Shift (Max.) Note 5 & 72 & 108 & mV \\
\hline
\end{tabular}

NOTE 1: \(\quad V_{C C}=+15 \mathrm{~V}\)
\(V_{E E}=-12 \mathrm{~V}\)
\(\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}\)
\(\mathrm{V}_{\text {RESET }}=+5 \mathrm{~V}\)
\(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\)

NOTE 2: \(\quad V_{C C}=+15 \mathrm{~V}\)
\(V_{\mathrm{EE}}=-12 \mathrm{~V}\)
\(\mathrm{V}_{\mathrm{IN}}= \pm 2.0 \mathrm{~V}, \pm 4.0 \mathrm{~V}\)
\(\mathrm{V}_{\text {RESET }}=+5 \mathrm{~V}\)
\(\mathrm{V}_{\mathrm{A}}, \mathrm{V}_{\mathrm{B}}\), See Truth Table
\(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\)
\(A_{V}=\frac{V_{\text {OUT }}-V_{\text {OUTIOS) }}}{V_{\text {IN }}}\)
\(V_{\text {IN }}\) to one differential input. The other input is at ground. Input pair selected by \(\mathrm{V}_{\mathrm{A}}, \mathrm{V}_{\mathrm{B}}\) decode control.

NOTE 3: \(\quad V_{C C}=+15 \mathrm{~V}\)
\(\mathrm{V}_{\mathrm{EE}}=-12 \mathrm{~V}\)
\(\mathrm{V}_{\mathrm{IN}}= \pm 2.5 \mathrm{~V}, \pm 5.0 \mathrm{~V}\)
\(\mathrm{V}_{\text {RESET }}=+5 \mathrm{~V}\)
\(\mathrm{V}_{\mathrm{A}}, \mathrm{V}_{\mathrm{B}}\), See Truth Table
\(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\)
\(A_{V}=\frac{V_{\text {OUT }}-V_{\text {OUTIOS }}}{V_{\text {IN }}}\)
\(\mathrm{V}_{\text {IN }}\) to one differential input. The other input is at ground. Input pair selected by \(\mathrm{V}_{\mathrm{A}}, \mathrm{V}_{\mathrm{B}}\) decode control.

\section*{TRUTH TABLE}
\begin{tabular}{cccc}
\(\mathbf{V}_{\mathbf{A}}(\mathbf{3})\) & \(\mathbf{V}_{\mathbf{B}}\) (4) & \(\mathbf{V}_{\text {IN(PIN\#S) }}\) & \(\mathbf{V}_{\text {out(PIN\#S) }}\) \\
\hline\(H\) & \(H\) & 18,19 & 2 \\
\(H\) & \(H\) & 14,13 & 10 \\
\(H\) & \(L\) & 16,17 & 2 \\
\(H\) & L & 16,15 & 10 \\
\(L\) & \(X\) & 20,1 & 2 \\
L & \(X\) & 12,11 & 10
\end{tabular}

\footnotetext{
\(H=+5 V\)
\(\mathrm{L}=0 \mathrm{~V}\)
}

NOTE 4: Gain linearity is the difference in transfer function slope between 0\% to 50\% and \(50 \%\) to \(100 \%\) signal.

CH 1X, 1Y CH 2X, 2Y, 3X, 3Y
\(A_{V}=1.25\) nominal. \(\quad A_{V}=1.0\) nominal
\(V_{\mathrm{IN}_{\text {(MAX })}}= \pm 4.0 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{IN(MAX)}}= \pm 5.0 \mathrm{~V}\)
\(V_{\operatorname{IN}(A)}=0 \mathrm{~V} \quad V_{\operatorname{IN}(\mathrm{A})}=0 \mathrm{~V}\)
\(\mathrm{V}_{\mathrm{IN}(\mathrm{B})}=2.0 \mathrm{~V} \quad \mathrm{~V}_{\operatorname{IN(B)}}=2.5 \mathrm{~V}\)
\(V_{\mathrm{V}_{\mathrm{N}(\mathrm{C})}}=4.0 \mathrm{~V} \quad \mathrm{~V}_{\operatorname{IN}(\mathrm{C})}=5.0 \mathrm{~V}\)
\(\mathrm{G}_{(\mathrm{LIN})}=\mathrm{V}_{\mathrm{OUT}(\mathrm{C})}-2 \mathrm{~V}_{\mathrm{OUT}(\mathrm{B})}-V_{\mathrm{OUT}(\mathrm{A})}\)

NOTE 5: \(\quad \mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}\)
\(V_{E E}=-12 \mathrm{~V}\)
\(\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}\)
\(V_{\text {RESET }}\) See Timing Diagram
\(V_{\text {PAGE }}\)
\(\mathrm{t}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\)

\section*{TIMING DIAGRAM}

Origin shift maximum ( \(\mathrm{V}_{\text {SHIFT(MAX) }}\) ) is the output offset voltage, seven page pulses after the reset line goes high. \(\mathrm{V}_{\text {SHIFT }}\) is with respect to the un-shifted output, as measured with the reset line held low. Origin shift \(\left(\mathrm{V}_{\text {SHIFT }}\right)\) is the output voltage change caused by a single page pulse.



\section*{APPLICATIONS INFORMATION}

\section*{Input Protection}

Amplifier sections 1X, 1Y, 2X, 2Y, 3X, and 3Y:
-Applied differential voltage at inputs; \(\leqslant 7.0\) volts.
Logic inputs A, B, Page, and Reset:
—Maximum Logic 0 current at \(\mathrm{V}_{\mathrm{IN}}=0\) Volts; \(\mathrm{I}_{\mathbb{N}}<-1.6 \mathrm{~mA}\)
—Maximum Logic 1 current at \(\mathrm{V}_{\mathrm{IN}} 5\) Volts; \(\mathrm{I}_{\mathrm{IN}}<40 \mu \mathrm{~A}\)

All inputs should have \(5 \mathrm{~K} \Omega\) series limiting during high temperature testing \(\left(\mathrm{T}_{\mathrm{A}}>75^{\circ} \mathrm{C}\right)\).

\section*{Output Loading}

Output Loading \(\leqslant \pm 1 \mathrm{~mA}\)
Applied output potential \(\leqslant \pm 5\) Volts

\section*{Power Supply Turn-On/Turn-Off Sequence}

Turn "on" sequence
First . . . . . . . . . . . . . . . . . . - 12/-15
Second ................... +15
Turn "off" sequence
First ...................... +15
Second ................... - 12/-15

\section*{Handling Procedures}

All leads should be equipotential during handling to protect internal MOS cap structures.

Standard DIP mounting techniques should be employed.

\section*{Reliability Statement}
\[
\begin{aligned}
& \lambda, \text { failure rate } \leqslant .14 \% / 1 \mathrm{~K} \text { hours at } 75^{\circ} \mathrm{CTj} \\
& \theta_{\mathrm{JA}}=97.5^{\circ} \mathrm{C} / \mathrm{W}
\end{aligned}
\]

\section*{TV SYNC GENERATOR}

\section*{DESCRIPTION}

This monolithic silicon (CMOS) device is a multi-standard broadcast television synchronous generator. It provides broadcast quality timing signals for TV test equipment.

\section*{FEATURES}
- Programmed for timing standards
- NTSC
- PAL
- PAL M
- Output signals include
- synchronous signals required for TV broadcasting
- timing for various test signals
- synchronous counter chain from 64 H to H
- CMOS silicon gate technology
- 40 Pin Ceramic DIP

ABSOLUTE MAXIMUMS
\begin{tabular}{l|l|c}
\hline Voltage on any pin relative to \(\mathrm{V}_{\mathrm{ss}}\) & -0.3 to +12 & V \\
\hline Operating Temperature (Ambient) & 0 to 75 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Power Dissipation & 0.1 & W \\
\hline Operating Junction Temperature & 0 to +80 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}


TERMINAL IDENTIFICATION
\begin{tabular}{|c|c|c|c|}
\hline PIN \# & NAME & INPUT/OUTPUT & DESCRIPTION \\
\hline 1 & \(V_{D D}\) & & 10 V Supply \\
\hline 2 & \(\mathrm{I}_{\mathrm{VB}}\) & Input & Inhibit Vertical Blanking \\
\hline 3 & 1/2 V & Output & 1/2 V Field Delay \\
\hline 4 & \(3 / 4 \mathrm{~V}\) & Output & 3/4 V Field Delay \\
\hline 5 & FSW & Output & Field Square Wave \\
\hline 6 & PAL & Input & PAL/PALM System Select \\
\hline 7 & R & Input & Reset Vertical Counter \\
\hline 8 & NTSC & Input & NTSC System Select \\
\hline 9 & WND & Output & Window \\
\hline 10 & \(\mathrm{V}_{\text {SS }}\) & & Ground \\
\hline 11 & RV & Input & Reset V Divide \\
\hline 12 & S/F & Input & Slow Lock \\
\hline 13 & A/R & Input & Advance/Retard for Slow Lock \\
\hline 14 & CLK & Input & 5 MHz Clock \\
\hline 15 & V1 & Output & Field One Indicator \\
\hline 16 & \(\mathrm{V} / 2\) & Output & \\
\hline 17 & 64 H & Output & High Frequency Divider \\
\hline 18 & 16 H & Output & High Frequency Divider \\
\hline 19 & 8 H & Output & High Frequency Divider \\
\hline 20 & 4 H & Output & High Frequency Divider \\
\hline 21 & RHF & Input & High Frequency Reset/Disable \\
\hline 22 & 2 H & Output & High Frequency Divider \\
\hline 23 & \(\mathrm{H}^{*}\) & Output & High Frequency Divider \\
\hline 24 & H & Output & High Frequency Divider \\
\hline 25 & H/4 & Output & \\
\hline 26 & H/2 & Output & \\
\hline 27 & RH & Input & Reset H Divide \\
\hline 28 & RHC & Input & Reset Horizontal Counter \\
\hline 29 & AHD & Input & Advance Horizontal Drive \\
\hline 30 & 20 H & Output & Horizontal Convergence \\
\hline 31 & 15 V & Output & Vertical Convergence \\
\hline 32 & CBG & Output & Color Burst Gate \\
\hline 33 & HD & Output & Horizontal Drive \\
\hline 34 & CS & Output & Composite Sync \\
\hline 35 & 3/4H & Output & 3/4 Line Delay \\
\hline 36 & VD & Output & Vertical Drive \\
\hline 37 & CB & Output & Composite Blanking \\
\hline 38 & VB & Output & Vertical Blanking \\
\hline 39 & AVB & Input & Advance Vertical Blanking \\
\hline 40 & AHB & Input & Advance Horizontal Blanking \\
\hline
\end{tabular}

\section*{PIN CONNECTIONS}


ELECTRICAL CHARACTERISTICS
\begin{tabular}{|c|c|c|c|c|}
\hline SYMBOL & IDENTIFICATION & MIN & MAX & UNITS \\
\hline \(\mathrm{V}_{\mathrm{IH}}\) & Input High Voltage & . \(7 \mathrm{~V}_{\text {DD }}\) & & V \\
\hline \(\mathrm{V}_{\text {IL }}\) & Input Low Voltage & & . \(15 \mathrm{~V}_{\text {D }}\) & V \\
\hline \(\mathrm{I}_{11}\) & Input Low Current \(\mathrm{V}_{\text {IN }}=0^{*}\) & & \(\pm 40\) & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{I}_{\text {IH }}\) & Input High Current (Except Clock) \(\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}{ }^{*}\) & & \(\pm 10\) & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{I}_{\text {H (CLK) }}\) & Clock Input High Current \(V_{I N}=V_{D D}{ }^{*}\) & & \(\pm 10\) & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{I}_{\mathrm{OL}}\) & Output Low Current \(\mathrm{V}_{\mathrm{OL}}=.4 \mathrm{~V}^{*}\) & & 1.5 & mA \\
\hline \(\mathrm{I}_{\mathrm{OH}}\) & Output High Current
\[
V_{O H}=V_{D D}-.5 \mathrm{~V}^{*}
\] & & 1.5 & mA \\
\hline \(V_{\text {ss }}\) & Supply Voltage & Ground & & \\
\hline \(V_{D D}\) & Supply Voltage & 9.5 & 10.5 & V \\
\hline \(I_{D D}\) & Static. All resets activated* & & 7 & mA \\
\hline \(I_{\text {DD }}\) & Dynamic-All resets disabled* & & 11 & mA \\
\hline
\end{tabular}

NOTE: * \(V_{D D}=10 \mathrm{~V}\)

AC PARAMETERS
\begin{tabular}{|c|c|c|c|c|}
\hline SYMBOL & IDENTIFICATION & MIN & MAX & UNITS \\
\hline \(\tau_{\text {R }}\) & Output Rise Time
\[
\begin{aligned}
& 10 \% \rightarrow 90 \% V_{D D}=10 \mathrm{~V} \\
& C_{L}=50 \mathrm{pF}
\end{aligned}
\] & & 60* & nS \\
\hline \(\tau_{\text {F }}\) & Output Fall Time
\[
\begin{aligned}
& 10 \%-90 \% V_{D D}=10 \mathrm{~V} \\
& C_{L}=50 \mathrm{pF}
\end{aligned}
\] & & 60* & nS \\
\hline \(\tau_{\Delta}(\mathrm{HF})\) & Differential Delay Between Outputs
\[
\mathrm{C}_{\mathrm{L} 1}=\mathrm{C}_{\mathrm{L} 2}
\] & & \(100 \dagger\) & nS \\
\hline \(\tau_{\Delta}\) & Differential Delay Between 64H and any of the \(16 \mathrm{H}, 8 \mathrm{H}, 4 \mathrm{H}, 2 \mathrm{H}, \mathrm{H}^{*}\), and H Outputs & & \(\pm 10 \dagger\) & nS \\
\hline \(\Delta_{\text {r }}\) & Change in \(\tau_{\Delta}\) with Time and Temperature \(0^{\circ} \mathrm{C} \leqslant\) Temp \(\geqslant 75^{\circ} \mathrm{C}\) & & 10t & nS \\
\hline \(\tau_{\text {cs }}\) & Composite Sync Pulse Width 50\% Point \(\mathrm{f}_{\mathrm{CLK}}=5.034 \mathrm{MHz}\) & 4.65 & 4.72** & nS \\
\hline \(\mathrm{f}_{\text {CLK }}\) & Clock Input Frequency & & 5.034 (Nom) & MHz \\
\hline \(\tau_{\text {CLK }}\) & \(\tau_{\mathrm{R}}\) and \(\tau_{\mathrm{F}}\) at Clock Input \(10 \% \rightarrow 90 \%\) & & 20 & nS \\
\hline \(\tau_{0}\) & Delay from Clock to Output 50\% Point & & 120 & nS \\
\hline
\end{tabular}

NOTES: *Value guaranteed by calculating from DC current measurement
\(\dagger\) Measurement on typical part; worst case calculated to be less than maximum value
**Values assume clock is a perfect square wave

DC PARAMETERS
\begin{tabular}{|c|c|c|c|c|}
\hline SYMBOL & IDENTIFICATION & MIN & MAX & UNITS \\
\hline \(\mathrm{V}_{\mathrm{IH}}\) & Input High Voltage & . \(7 \mathrm{~V}_{\text {D }}\) & & \\
\hline \(V_{\text {IL }}\) & Input Low Voltage & & . \(15 \mathrm{~V}_{\mathrm{DD}}\) & \\
\hline IIL & Input Low Current \(\mathrm{V}_{\text {IN }}=0^{*}\) & & \(\pm 10\) & \(\mu \mathrm{A}\) \\
\hline \(I_{\text {IH }}\) & Input High Current (Except Clock) \(V_{I N}=V_{D O}{ }^{*}\) & & 40 & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{I}_{\mathrm{H} \text { (CLK) }}\) & Clock Input High Current*
\[
V_{I N}=V_{D D}
\] & & \(\pm 10\) & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{I}_{\mathrm{OL}}\) & Output Low Current \(\mathrm{V}_{\text {OL }}=.4 \mathrm{~V}^{*}\) & & 1.5 & mA \\
\hline \(\mathrm{IOH}_{\mathrm{OH}}\) & Output High Current*
\[
V_{O H}=V_{D O}-.5 \mathrm{~V}
\] & & 1.5 & mA \\
\hline
\end{tabular}
\(* V_{D D}=10 V\)


APPLICATIONS INFORMATION


\section*{RELIABILITY}
\(\lambda, .061 \% / 1 \mathrm{~K}\) hours at \(75^{\circ} \mathrm{C} \mathrm{Tj}\)
\(\theta_{\mathrm{DC}}=25^{\circ} \mathrm{C} /\) Watt

\section*{TRIGGER CIRCUIT}

\section*{DESCRIPTION}

This integrated circuit is a trigger for oscilloscopes \(\geqslant 100 \mathrm{MHz}\) bandwidth. It includes an operational amplifier with open-loop gain of 500 .

\section*{FEATURES}
- Slope selection
- Gate output and gate output are ECL levels
- Hysteresis adjustment
- Trigger level centering
- Free run input
- Trigger view outputs
- 5 mV sensitivity
- Five inputs
- 310 mW power dissipation


\section*{ABSOLUTE MAXIMUMS}
\begin{tabular}{|c|c|}
\hline Storage Temperature ( \(\mathrm{T}_{\text {SG }}\) ) & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
\hline Operating Ambient Temperature ( \(\mathrm{T}_{\mathrm{A}}\) ) & \(-15^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) \\
\hline Maximum Power Dissipation ( \(\mathrm{P}_{\mathrm{D}}\) ) & 462 mW \\
\hline Derating Factor (Above \(70{ }^{\circ} \mathrm{C}\) Ambient) & \(10.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\) \\
\hline \(V_{c c}(\) Pin \#16) & \(+5.25 \mathrm{~V}\) \\
\hline \(\mathrm{V}_{\mathrm{EE}}\) (Pin \#6) & \(-5.25 \mathrm{~V}\) \\
\hline Trigger Input Voltage & \(+0.7 \mathrm{~V}\) \\
\hline (Pins \#1, \#3 \#4, \#5, and \#7) & \(-2.0 \mathrm{~V}\) \\
\hline Trigger Level Input Voltage (Pin \#9) & \(+0.7 \mathrm{~V}\) \\
\hline & -2.0 V \\
\hline Free-Run Input Voltage (Pin \#2) & 0 to \(\mathrm{V}_{\mathrm{cc}}\) \\
\hline Slope Select Input Voltage (Pin \#8) & \(\pm 5.5 \mathrm{~V}\) \\
\hline Reset Input Voltage (Pin \#17) & 0 V to \(\mathrm{V}_{\mathrm{cc}}\) \\
\hline
\end{tabular}

PIN CONNECTIONS


ELECTRICAL CHARACTERISTICS
\begin{tabular}{|c|c|c|c|c|}
\hline PIN \# & PARAMETER & MIN & MAX & UNITS \\
\hline 16 & \(\mathrm{V}_{\mathrm{cc}}\) Power Supply Current & 41.5 & 77 & mA \\
\hline 6 & \(V_{\text {EE }}\) Power Supply Current & 8.5 & 15.5 & mA \\
\hline - & Logic Test & \multicolumn{3}{|l|}{Refer to (Truth Table)} \\
\hline 14 & Gate Output High Voltage ( \(\mathrm{V}_{\mathrm{OH}}\) ) & 3.7 & 4.2 & V \\
\hline 14 & Gate Output Low Voltage ( \(\mathrm{V}_{\mathrm{OL}}\) ) & 2.75 & 3.25 & V \\
\hline 15 &  & 3.7 & 4.2 & V \\
\hline 15 & \(\overline{\text { Gate }}\) Output Low Voltage ( \(\mathrm{V}_{\mathrm{oL}}\) ) & 2.75 & 3.25 & V \\
\hline 1, 3, 4, 5, 7 & Trigger Input Bias Current & 0 & 30 & \(\mu \mathrm{A}\) \\
\hline 10, 11 & Trigger View Output Offsets & \(-50\) & \(+50\) & mV \\
\hline 10,11 & Trigger View Output Gain, + Slope & 4 & 6.5 & - - \\
\hline 10, 11 & Trigger View Output Gain, - Slope & 4 & 6.5 & - - \\
\hline 10, 11 & Trigger View Output Swing & . 5 & 1.5 & V \\
\hline 1,3,4, 5, 7 & Trigger Input Leakage Currents & 0 & 10 & \(\mu \mathrm{A}\) \\
\hline 9 & Trigger Level Input Bias Current & 0 & 50 & \(\mu \mathrm{A}\) \\
\hline 2 & Free Run Input Current & . 5 & 1.5 & mA \\
\hline 8 & Slope Select Input Current & . 2 & . 6 & mA \\
\hline 17 & Reset Input Current & 0 & 1.0 & mA \\
\hline 19, 20 & Operational Amplifier Gain & 9.5 & 10.5 & - \\
\hline 19 & Operational Amplifier Input Offset & -40 & \(+40\) & mV \\
\hline 19 & Operational Amplifier Input Bias Current & 0 & 10 & \(\mu \mathrm{A}\) \\
\hline 20 & Operational Amplifier Output Swing & 1.0 & —— & V \\
\hline 1,9 & +Trigger Slope Absolute Offset & -60 & 60 & mV \\
\hline 1,9 & + Slope Hysteresis & 0 & 10 & mV \\
\hline 1,9 & - Trigger Slope Absolute Offset & -60 & 60 & mV \\
\hline 1,9 & -Slope Hysteresis & 0 & 10 & mV \\
\hline 1,9 & + Slope to -Slope Offset & -25 & 25 & mV \\
\hline
\end{tabular}

\section*{APPLICATIONS INFORMATION}

PRODUCT PRECAUTIONS
Input Protection
\(-3 \mathrm{~V} \leqslant\) Trigger Inputs (For Trigger Level Input at Ground)
\(\mathrm{V}_{\mathrm{EE}} \leqslant\) Slope Select Input \(\leqslant \mathrm{V}_{\mathrm{CC}}\)
\(-3 V \leqslant\) Free Run Input \(\leqslant V_{C c}\)
\(0 \mathrm{~V} \leqslant\) Reset Input \(\leqslant \mathrm{V}_{\mathrm{CC}}\)
\(-3.7 \mathrm{~V} \leqslant\) OP Amplifier Input \(\leqslant+3.7 \mathrm{~V}\)

\section*{Output Loading}

DO NOT short Trigger View Outputs to \(\mathrm{V}_{\mathrm{EE}}\).
Trigger View Output \(\leqslant+3 \mathrm{~V}\).
DO NOT short gate output and gate output to ground or \(\mathrm{V}_{\mathrm{EE}}\).
DO NOT allow DC output loading on Trigger View outputs, gate output, and gate output to exceed 6 mA . DO NOT short OP Amplifier output to \(\mathrm{V}_{\mathrm{CC}}\).

\section*{Power Supply Turn-On/Turn-Off Sequence}

Two power supplies; NO power supply turn-on/turn-off sequence sensitive.

\section*{Handling Procedures}

No special static precautions are necessary.



\section*{Logic Levels for Truth Table}
\begin{tabular}{l|l|l}
\hline \multicolumn{1}{c|}{ PIN NAME } & \multicolumn{1}{c}{ LOGICAL "0"" LOGICAL "1" } \\
\hline \hline Slope Select Input & -1.0 V & +1.0 V \\
Reset Input & 3.25 V & 4.0 V \\
Free Run Input & 500 mV & - \\
Inputs \#1-\#5 & -2.0 V & +50 mV \\
Gate Output & \(2.75 \mathrm{~V}-3.25 \mathrm{~V}\) & \(3.7 \mathrm{~V}-4.2 \mathrm{~V}\) \\
Gate Output & \(2.75 \mathrm{~V}-3.25 \mathrm{~V}\) & \(3.7 \mathrm{~V}-4.2 \mathrm{~V}\) \\
\hline
\end{tabular}

TYPICAL APPLICATION


\section*{RELIABILITY}
\(\lambda\) failure rate \(\leqslant .02 \% / 1 \mathrm{~K}\) hours at \(75^{\circ} \mathrm{C} \mathrm{T}_{\mathrm{j}}\)
Thermal resistance, \(\theta_{\text {DA }} \quad 97^{\circ} \mathrm{C} / \mathrm{W}\)

\section*{LOGIC ANALYZER INPUT CIRCUIT}

\section*{DESCRIPTION}

The 155-0215-00 is a Logic Analyzer Input circuit with glitch latch capability. The circuit is packaged in a 16-pin DIP.

\section*{FEATURES}
- Differential input and delay line port.
- Data latch and output.
- Word recognizer with control of syn/asyc and Hi/Off/Lo.
- Second order glitch detection with on/off control.
- A pipeline mode which uses the glitch memory for data, with an extra stage of latch, in lieu of the glitch detector. This matches instrument characteristics for synchronous data acquisition.


ABSOLUTE MAXIMUM
\begin{tabular}{|c|l|l|c|c|}
\hline SYMBOL & \multicolumn{1}{|c|}{ IDENTIFICATION } & \multicolumn{1}{|c|}{ NOTES } & VALUES & UNITS \\
\hline \hline \(\mathrm{T}_{\mathrm{SG}}\) & Storage Temperature & & -55 to 125 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{T}_{\mathrm{A}}\) & Operating Temperature & & -15 to 80 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{P}_{\mathrm{D}}\) & Power Dissipation & at \(80^{\circ} \mathrm{C}\) Ambient & 470 & mW \\
\hline \(\mathrm{~V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}\) & Supply Voltage & Maximum Pos Voltage & +5.5 & V \\
\hline \(\mathrm{~V}_{1}\) & Input Voltage & All input pins & \(\mathrm{V}_{\mathrm{EE}}\) to \(\mathrm{V}_{\mathrm{CC}}\) & \\
\hline \(\mathrm{I}_{\mathrm{O}}\) & Output Current & \(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=5.0 \mathrm{~V}\) any output & 15.0 & mA \\
\hline \(\mathrm{~T}_{J}\) & & Maximum & 125 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

PIN CONNECTIONS


ELECTRICAL CHARACTERISTICS*
\begin{tabular}{|c|c|c|c|c|}
\hline PIN \# & PARAMETER & MIN & MAX & UNITS \\
\hline 13 & Power Supply Current (Note 1) \({ }^{\mathrm{V}_{\text {EE }}}\) & \[
\begin{array}{r}
20 \\
0
\end{array}
\] & \[
\begin{aligned}
& 70 \\
& 25
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{mA} \\
& \mathrm{~mA}
\end{aligned}
\] \\
\hline 11 & Delay Line Output Logical Low Level (Note 3) & 3.0 & 3.4 & V \\
\hline 3 & Data Output Logical Low Level (Note 3) & 3.0 & 3.4 & V \\
\hline 2 & Glitch/Pipeline Output Logical Low Level (Note 3) & 3.0 & 3.4 & V \\
\hline 14 & Glitch Recognizer Logical Low Level (Note 3) & 3.0 & 3.4 & V \\
\hline 8 & Word Recognizer Output Logical Low Level (Note 3) & 3.0 & 3.4 & V \\
\hline 11 & Delay Output Logical High Level (Note 2) & 4.0 & 4.3 & V \\
\hline 3 & Data Output Logical High Level (Note 2) & 4.0 & 4.3 & V \\
\hline 2 & Glitch/Pipeline Output Logical High Level (Note 2) & 4.0 & 4.3 & V \\
\hline 14 & Glitch Recognizer Output Logical High Level (Note 2) & 4.0 & 4.3 & V \\
\hline 8 & Word Recognizer Output Logical High Level (Note 2) & 4.0 & 4.3 & V \\
\hline 10 & Data Input Bias Current (Note 4) \(\mathrm{V}_{\mathbb{I N}}=3.895 \mathrm{~V}\) & 3 & 25 & \(\mu \mathrm{A}\) \\
\hline 9 & Negative Input Bias Current (Note 4) \(\mathrm{V}_{\mathrm{iN}}=3.895 \mathrm{~V}\) & 3 & 25 & \(\mu \mathrm{A}\) \\
\hline 12 & Delay Line Input Bias Current (Note 4) \(\mathrm{V}_{\mathbb{N}}=3.895 \mathrm{~V}\) & 3 & 25 & \(\mu \mathrm{A}\) \\
\hline 1 & Clock Input Bias Current (Note 4) \(\mathrm{V}_{\text {IN }}=3.895 \mathrm{~V}\) & 3 & 25 & \(\mu \mathrm{A}\) \\
\hline 7 & Word Recognizer Off/On Input Bias Current (Note 4) \(\mathrm{V}_{\mathrm{IN}}=4.00 \mathrm{~V}\) & 3 & 500 & \(\mu \mathrm{A}\) \\
\hline 6 & Data High/Low Input Bias Current (Note 4)
\[
V_{\mathrm{IN}}=4.00 \mathrm{~V}
\] & 3 & 500 & \(\mu \mathrm{A}\) \\
\hline 15 & Glitch Recognizer Off/On Input Bias Current (Note 4) \(\mathrm{V}_{\mathrm{IN}}=4.00 \mathrm{~V}\) & 3 & 500 & \(\mu \mathrm{A}\) \\
\hline 5 & Sync/Async Select Input Bias Current (Note 4)
\[
V_{I N}=2.40 \mathrm{~V}
\] & 3 & 410 & \(\mu \mathrm{A}\) \\
\hline 16 & Pipeline/Glitch Select Input Bias Current (Note 4)
\[
\mathrm{V}_{\mathrm{IN}}=2.40 \mathrm{~V}
\] & —— & 410 & \(\mu \mathrm{A}\) \\
\hline 1,3 & Clock to Data Out & 2.5 & 5.5 & nS \\
\hline 1,2 & Clock to Glitch/Pipeline Out (Mode = Glitch) & 2.5 & 5.5 & nS \\
\hline 1,2 & Clock to Pipeline Out (Mode = Pipeline) & 2.5 & 5.5 & nS \\
\hline 2 & Minimum Recognizable Glitch Width, first order measured or second order measured from first to second transition, at 50\% amplitude points-differential inputs swinging from \(V_{C C}=0.9 \pm 0.1 \mathrm{~V}\) to \(\mathrm{V}_{\mathrm{CC}}=1.6 \mathrm{~V} \pm\) 0.1 V & 4 & —— & nS \\
\hline 2 & Minimum Recognizable Glitch Width, second order measured from second to third transition, at 50\% amplitude points-differential inputs swinging from \(\mathrm{V}_{\mathrm{CC}}=\) \(0.9 \mathrm{~V} \pm 0.1 \mathrm{~V}\) to \(\mathrm{V}_{\mathrm{CC}}=1.6 \mathrm{~V} \pm 0.1 \mathrm{~V}\) & 5 & - - & nS \\
\hline
\end{tabular}

Unless otherwise noted, \(\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \mathrm{mV}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}\).

\section*{NOTE 1}

All outputs in logical low state, load conditions \(=100 \Omega\) to \(+\mathbf{3 V} . \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{Volts} . \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\).

\section*{NOTE 2}
\(R_{1}=100 \Omega\) to +3.0 volts. Desired output set to high state. Measure voltage on pin specified. \(V_{c c}\) must be accurate to \(\pm 10 \mathrm{mV}\).

\section*{NOTE 3}
\(R_{1}=100 \Omega\) to \(\mathbf{3}\) volts. All outputs in low state. Measure voltage on pin specified. \(\mathbf{V}_{\mathrm{cc}}\) must be accurate to \(\pm 10 \mathrm{mV}\).
NOTE 4
Same input conditions as Note \#1. Measure current on pin specified.

In order to detect a glitch, the first and second R-S Flip Flops both have to be set. Therefore, two tests are necessary to detect the minimum set time in (either of) the first R-S Flip Flops or the second R-S Flip-Flop.


APPLICATIONS INFORMATION
\begin{tabular}{l|l|c|c|}
\hline SYMBOL & \multicolumn{1}{|c|}{ FUNCTION } & \begin{tabular}{c} 
MEASURED \\
TYPICAL
\end{tabular} & \begin{tabular}{c} 
CALCULATED \\
WORST CASE
\end{tabular} \\
\hline \hline\(T_{C D}\) & Clock to Data Out & 4.5 nS & 7.6 nS \\
\hline\(T_{\text {DAWR }}\) & Data to Async Word Recognizer Out & 3.5 nS & 6.1 nS \\
\hline\(T_{\text {CSR }}\) & Clock to Synchronous Recognizer Out & 5.4 nS & 8.5 nS \\
\hline\(T_{C G}\) & Clock to Glitch Pipeline Out & 4.4 nS & 9.0 nS \\
\hline\(T_{\text {CGR }}\) & Clock to Glitch Recognizer Out & 4.3 nS & 9.8 nS \\
\hline\(T_{\text {PIPE }}\) & Clock to Pipeline Out & 4.6 nS & 8.6 nS \\
\hline\(T_{\mathrm{DS}}\) & \begin{tabular}{l} 
Data Set-up Time \\
Delay line input to clock input
\end{tabular} & 0.5 nS & 0.5 nS \\
\hline\(T_{D H}\) & \begin{tabular}{l} 
Data Hold Time \\
Clock input to delay line input
\end{tabular} & 0.0 nS & 0.0 nS \\
\hline\(T_{\text {DDL }}\) & Data In to Delay Line Driver Out & 1.9 nS & 2.7 nS \\
\hline
\end{tabular}

\section*{APPLICATIONS INFORMATION (cont)}

\section*{Application Symbol Definition}
\(T_{C D}, T_{D A W R}, T_{C S R}, T_{C G}, T_{C G R}, T_{\text {PIPE }}\), and \(T_{D D L}\) : Time delays from data or clock input to stated output change
\(T_{0 s}\) : Data set-up time. Time before clock edge for which stationary input data will produce matching data output after the clock edge.
\(\mathrm{T}_{\mathrm{DH}}\) : Time after clock edge for which data must be held stationary in order not to affect the data output after clock edge.

\section*{Calculated Worst Case Assumptions}

Spice computer modeled
\(\mathrm{T}_{\mathrm{j}}=110^{\circ} \mathrm{C}\)
Beta Max \(=200\) (For maximum \(F_{T}\) and maximum base resistance)
Resistor Tolerance \(=+30 \%\)
Maximum Junction Capacitance

\section*{PRODUCT PRECAUTIONS}

\section*{Input Protection}

DO NOT exceed \(V_{c C}\) supply on any input at any time.

Output Loading
DO NOT short outputs to \(V_{E E}\).
DO NOT allow output capacitance to exceed 200 pF.
Power Supply Turn On/Turn Off Sequence
Single Supply-DO NOT exceed absolute maximum rating.

\section*{RELIABILITY}
\(\lambda\), Failure Rate \(\leqslant .0413 \% / 1 \mathrm{~K} \mathrm{Hrs}\). at \(75^{\circ} \mathrm{C} \mathrm{T}_{\mathrm{j}}\) Thermal resistance junction to case.
\(\theta_{\mathrm{jc}}=94^{\circ} \mathrm{C} / \mathrm{W}\)

\section*{INPUT AMPLIFIER}

\section*{DESCRIPTION}

The 155-0217-00 is a transconductance amplifier with gain control, and provision is made for offset and positioning control.

\section*{FEATURES}
- Variable gain control
- Offset and positioning control inputs
- 16 pin dual-in-line package

\begin{tabular}{l|l|l|c}
\multicolumn{3}{l}{ ABSOLUTE MAXIMUMS } \\
\hline \multicolumn{1}{l}{ SYMironmental } \\
\hline \hline \(\mathrm{T}_{\text {stg }}\) & IDENTIFICATION & VALUES & UNITS \\
\hline \(\mathrm{T}_{\mathrm{a}}\) & \begin{tabular}{l} 
Storage Temperature \\
Range
\end{tabular} & -55 to +125 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{Electrical}
\begin{tabular}{l|l|l|c}
\hline \(\mathrm{BV}_{\text {EBO }}\) & Emitter-Base Breakdown Voltage & 5.8 & V \\
\hline \(\mathrm{~V}_{\mathrm{CE}}\) & Collector-Emitter Voltage & 15 & V \\
\hline \(\mathrm{BV}_{\mathrm{CS}}\) & \begin{tabular}{l} 
Positive Voltage on pins 8, 9, and 11 \\
W.R.T. Pin 5
\end{tabular} & 30 & V \\
\hline & Pin 13 Voltage W.R.T. Pin 7 & 10 & V \\
\hline \begin{tabular}{l} 
Voltage on Pins 10 and 12 W.R.T. Pin \\
7
\end{tabular} & 5 & V \\
\hline \(\mathrm{P}_{\mathrm{D}}\) & Total Current from Pin 8 or Pin 9 & 20 & mA \\
\hline
\end{tabular}

\section*{PIN CONNECTIONS}
Input emitter 1B

ELECTRICAL CHARACTERISTICS
\begin{tabular}{l|l|l|c|c|l}
\hline \begin{tabular}{l} 
Parameter \\
Symbol
\end{tabular} & \begin{tabular}{l} 
Parameter Name and Conditions \\
of Measurement
\end{tabular} & \begin{tabular}{c} 
Min \\
Value
\end{tabular} & \begin{tabular}{c} 
Max \\
Value
\end{tabular} & \begin{tabular}{c} 
Unit of \\
Meas.
\end{tabular} & \begin{tabular}{c} 
Pin \\
Meas.
\end{tabular} \\
\hline \hline \(\mathrm{R}_{\mathrm{E}}\) & Emitter Bulk Resistance (typ. 3.5 \(\Omega\) ) & & & \(\Omega\) & \(1,2,15,16\) \\
\hline \(\mathrm{~V}_{\text {IOS }}\) & Input Offset Voltage (see note 1) & & \(\pm 5.0\) & mV & 3 \\
\hline \(\mathrm{I}_{\text {IOS }}\) & Input Offset Current (see note 1) & & 50 & \(\mu \mathrm{~A}\) & 3,14 \\
\hline \(\mathrm{~h}_{\text {fb }}\) & Common-Base Forward Current Gain & 0.95 & & & \begin{tabular}{l}
\(8 \& 9 \mathrm{Gnd}\). \\
1,16 or 2, 15
\end{tabular} \\
\hline \(\mathrm{t}_{\mathrm{r}}\) & Risetime (typical 800 ps) & & & ps & \\
\hline\(I_{\text {O.D. }}\) & Output Current Differential (Null Supp.) & & \(\pm 33.0\) & \(\mu \mathrm{~A}\) & 8,9 \\
\hline \(\mathrm{I}_{\text {G.C.NORM }}\) & Gain Control Current (Max. Norm.) & 200 & 350 & \(\mu \mathrm{~A}\) & 12 \\
\hline \(\mathrm{I}_{\text {G.C.INV. }}\) & Gain Control Current (Max. Inv.) & -350 & -200 & \(\mu \mathrm{~A}\) & 12 \\
\hline \(\mathrm{I}_{\text {Z.G. }}\) & Gain Control Current (Zero Gain) & & \(\pm 48\) & \(\mu \mathrm{~A}\) & 12 \\
\hline\(V_{\text {A.C. }}\) & Position Control Voltage & & \(\pm 50\) & mV & 10 \\
\hline
\end{tabular}

NOTE 1:


\section*{Input Offset Voltage}

Set differential output voltage (Pins \(8 \& 9\) ) to zero, measure Pin 3 voltage.

\section*{Input Offset Current}

Insert current measuring devices in leads of Pins 3 \& 14. Set differential output voltage to zero, measure ABSOLUTE current difference between Pin 3 and Pin 14.

\section*{Output Current Differential}

Apply input offset voltage to Pin 3. Then measure output current differential at any gain setting (Pin 12).

\section*{Position Control Voltage}

Source Pin 6 with 2 mA . Set voltage at Pin 10 such that differential output current is zero. Measure voltage at Pin 10.

\section*{Reliability}
\(\lambda\) Failure rate \(\leqslant .02 \% / 1 \mathrm{~K}\) hours at \(75^{\circ} \mathrm{C} \mathrm{T}_{\mathrm{j}}\)
\(\theta_{\text {jd }}\) junction to case, \(50^{\circ} \mathrm{C} / \mathrm{W}\)

\section*{VERTICAL OUTPUT DRIVER}

\section*{DESCRIPTION}

The 155-0218-00 is a vertical output driver for use in up to 150 mHz instruments. As such it provides all current gain for the vertical output system. Commonbase output followers and load resistors (re. 155-0219-00) interface the part to a Crt.

The 155-0218-00 is virtually identical to the die used in the 155-0077-00 and 155-0115-00. The only difference being a doubling of second and third stage nichrome emitter values in the 155-0218-00. This change increases linearity at the lower bias currents appropriate for \(50-150 \mathrm{MHz}\) application.

\section*{FEATURES}
- Cost effective vertical output
- 80mA output current
- Low power
- 1 nS Risetime

Schematic (Figure 1)


PACKAGE PINOUT FOR 20 PIN DIP

\section*{ABSOLUTE MAXIMUMS}

Unless stated otherwise, ambient temperature \(=25^{\circ} \mathrm{C}\).

Currents are referenced positive into each port.

Pins 5, 6, 10, 15, and 16 are connected to circuit ground.

Uniess otherwise designated, all voltages are referenced to circuit ground.
\begin{tabular}{|c|c|c|c|c|c|}
\hline SYMBOLS & IDENTIFICATIONS & NOTES & MIN & MAX & UNITS \\
\hline Ti & Junction temperature, operating & & -15 & +125 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(T_{\text {stg }}\) & Storage temperature & & -62 & +125 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{P}_{\mathrm{o}}\) & Total-device power dissipation, junction to case & Derate by 40 mW for each \({ }^{\circ} \mathrm{C}\) by which \(\mathrm{T} 5,6\), 15,16 exceeds \(25^{\circ} \mathrm{C}\). & & 4.0 & W \\
\hline \(\mathrm{I}_{2}\) or \(\mathrm{I}_{19}\) & Output emitter current. & & & 80 & mA \\
\hline \(\mathrm{I}_{9}\) or \(\mathrm{I}_{12}\) & Input collector current. & & & -40 & mA \\
\hline \(V_{1}\) & Internal supply voltage. & & & 12.5 & V \\
\hline \(\mathrm{V}_{\mathrm{cIO}}\) & Collector to substrate voltage. & Any transistor. & & 30.0 & V \\
\hline \(\mathrm{V}_{\text {CBO }}\) & Collector to base voltage. & Any transistor. & & 15.0 & V \\
\hline \(\mathrm{V}_{\text {cEO }}\) & Collector to emitter voltage. & Any transistor. & & 5.0 & V \\
\hline \(V_{\text {EBO }}\) & Emitter to base voltage. & Any transistor. & & 4.0 & V \\
\hline \(I_{C}\) & Collector current. & Q1 through Q6 Q7 through Q14 & & \[
\begin{aligned}
& 80 \\
& 40
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{mA} \\
& \mathrm{~mA}
\end{aligned}
\] \\
\hline \(\mathrm{T}_{\mathrm{L}}\) & Lead temperature during soldering & \(\leqslant 10 \mathrm{sec}\) & & 240 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\theta \mathrm{j}\) c & Thermal resistance (junction to case) & Case temperature center tab temp. & & 25 & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline
\end{tabular}


\section*{ELECTRICAL CHARACTERISTICS}

Unless noted otherwise, ambient temperature \(=25^{\circ} \mathrm{C}\).

Subscripts correspond to 155-0218-00 pin numbers. Pins 5, 6, 10, 15, and 16 are connected to ground.

\section*{PARAMETRIC DEFINITIONS}

The following Parametric Summary is based on the application shown schematically in Figure 2. Recognize that this represents only one application. Other biasing arrangements are possible as long as the Absolute Maximum Ratings are not violated.

All currents are referenced positive into the device. Unless noted otherwise, voltages are referenced to ground.

ELECTRICAL CHARACTERISTICS
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & NAME & NOTES & MIN. & TYP. & MAX. & UNITS \\
\hline \(V_{1}\) & Internal supply voltage. & & & 9.13 & & V \\
\hline \(\mathrm{I}_{1}\) & Internal supply current. & & & 39.7 & & mA \\
\hline \(\mathrm{I}_{2}\) or \(\mathrm{I}_{19}\) & Output idle current. & \[
\begin{aligned}
& V_{\text {in }}+=V_{\text {in }}-= \\
& 0 V
\end{aligned}
\] & 37 & 40.8 & 45 & mA \\
\hline \(\mathrm{I}_{2}-\mathrm{I}_{19}\) & Output offset current & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{in}}+=\mathrm{V}_{\mathrm{in}}-= \\
& 0 \vee
\end{aligned}
\] & & & 4.1 & mA \\
\hline \[
\begin{aligned}
& V_{3}, V_{4} \\
& V_{17} \text { or } V_{18}
\end{aligned}
\] & Third stage emitter voltage & & & 7.91 & & V \\
\hline \(V_{7}\) or \(V_{14}\) & 1st stage collector voltage & & & 4.46 & & V \\
\hline \(\mathrm{I}_{8}\) or \(\mathrm{I}_{13}\) & Input bias current. & \[
\begin{aligned}
& 80 \leqslant \text { device } \beta \leqslant \\
& 200
\end{aligned}
\] & 40 & 65 & 100 & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{I}_{9}\) or \(\mathrm{I}_{12}\) & Input emitter current & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{in}}+=\mathrm{V}_{\mathrm{in}}-= \\
& 0 \mathrm{~V}
\end{aligned}
\] & & -8.13 & & mA \\
\hline \(V_{11}\) & Common mode bias voltage & & 3.9 & 4.1 & 4.3 & V \\
\hline \(I_{11}\) & Common mode bias current & \[
\begin{aligned}
& 80 \leqslant \text { device } \beta \leqslant \\
& 200
\end{aligned}
\] & & 140 & & \(\mu \mathrm{A}\) \\
\hline \(V 20\) & 3rd stage base voltage & & & 7.91 & & V \\
\hline \(\mathrm{I}_{20}\) & 3rd stage base current & \[
\begin{aligned}
& 80 \leqslant \text { device } \beta \leqslant \\
& 200
\end{aligned}
\] & & 330 & & \(\mu \mathrm{A}\) \\
\hline \[
\frac{I_{19}-I_{2}}{\left(I_{m 1}+\right)-\left(I_{m}-\right)}
\] & Small signal differential current gain & \[
\begin{aligned}
& \left\|_{2} l-\right\|_{10} d=0 \\
& \left\|_{2}\right\|-\|_{19} d=24.5 \mathrm{~mA}
\end{aligned}
\] & 7.1 & \[
\begin{aligned}
& 8.18 \\
& 8.02
\end{aligned}
\] & 9.4 & \\
\hline \[
\frac{\text { Test } 1 \text {-Test } 2}{\text { Test } 1}
\] & Small signal gain linearity & Corresponds to \(\pm 3.5\) div on screen. & 0 & -2 & \(-3.5\) & \% \\
\hline \(\mathrm{T}_{\text {* }}{ }^{*}\) & Risetime & In test fixture & 0.5 & 1.0 & 2.0 & ns \\
\hline
\end{tabular}

\footnotetext{
*This parameter is listed for characterization information only. It is NOT a production test. If new users seek
} guaranteed risetime for their application they must renegotiate this spec with ICM.

\section*{APPLICATIONS INFORMATION}

\section*{Application Aids}

Refer to Figures 1 and 2 for the following discussion:
The input sensitivity of the amplifier is \(1 \mathrm{~mA} /\) div differentially ( \(+0.5 \mathrm{~mA} / \mathrm{div},-0.5 \mathrm{~mA} /\) div \()\). Output current drive is nominally \(8.18 \mathrm{mV} / \mathrm{div}\) differentially. Input emitters are exploited for DC balancing, delay line compensation, gain-temperature compensation and high speed "spiking" to overcome CRT plate RC rolloff. Adequate dynamic range, \(\pm 16\) divisions first stage, \(\pm 14\) divisions second stage and \(\pm 10\) divisions 3rd stage is designed in to allow for the current overshoot with "spiking". Overall current gain is custom tailored by choice of input emitter resistance and 1st stage collector load resistance. Output quiescent current is programmed by choice of 3rd stage emitter resistor long tails. Thermal distortion is compensated in the third stage emitters. The op-amp automatically biases the 3rd stage \(\mathrm{f}_{\mathrm{T}}\) doubler.

Although designed for minimum power dissipation in a 100 MHz system, the part has sufficient margin in power dissipation capability to be derated at higher currents and voltages for higher bandwidth or higher performance applications. For example, \(\mathrm{V}_{11}\) can be increased to provide higher VCE margins throughout the amplifier. In no case, however, should \(\mathrm{V}_{11}\) nominally exceed 5.6 V or \(\mathrm{V}_{1}\) exceed 12 V . Output quiescent currents of up to \(80 \mathrm{~mA}\left(\mathrm{I}_{2}\right.\) or \(\left.\mathrm{I}_{19}\right)\) are available with a proper choice of 3 rd stage emitter resistors.

Circuit layout for this part is CRITICAL. Input and output circuitry should be isolated from one another. Fortunately, this is facilitated by the location of the four grounded pins in the center of the part. Extensive ground plane should be run to and through the center of the part connecting to all four heat sinking pins. Ground plane should only be cut away beneath the input emitter circuitry 1st stage load resistors and output lines.

Package lead inductance is sufficient (particularly on the end pins) to require that any high speed input compensation be placed directly adjacent to the input end of the part. Similarly, the output cascode devices MUST be connected as directly as possible to the output (Pins 2 and 19).

Note that although case power dissipation is high, power dissipation is highly dependent on the leadframe to ambient thermal resistance.

2363 VERTICAL OUTPUT AMPLIFIER


\section*{Product Precautions}

\section*{Input Protection}

A short to ground at package pins 3, 4, 17, and/or 18 will instantly destroy the component when it is under bias.

\section*{Reliability}

\section*{Reliability Goal}
\(\lambda\), Failure rate \(\leqslant 7.41 \% / 1 \mathrm{~K}\) hours at \(150^{\circ} \mathrm{C} \mathrm{T}_{\mathrm{j}}\). \(\lambda\), Failure rate \(\leqslant .02 \% / 1 \mathrm{~K}\) hours at \(75^{\circ} \mathrm{C} \mathrm{T}_{\mathrm{j}}\).

\section*{Thermal Characteristics}

The special leadframe (195-0072-02) used in this otherwise standard 20 pin DIP facilitates heat transfer from the die to the center four IC pins (Pins 5, 6, 15, 16). The temperature of the ground plane immediately adjacent to these pins must be controlled if the full power dissipation capability of the package is to be realized.

The part was characterized by using junction pulse techniques to measure junction temperature ( T j ) while monitoring center leadframe temperature (Tc) at the point where it exits the plastic. \(\theta \mathrm{jc}=22^{\circ} \mathrm{C} / \mathrm{W}\).

\section*{INTERFACE LOGIC}

\section*{DESCRIPTION}

The 155-0244-00 is a monolithic silicon (CMOS) device which is a display sequencer integrated circuit. This circuit implements real-time logic functions within an oscilloscope that are, in general, too fast or not appropriate for microprocessor implementation.

\section*{FEATURES}
- Data is serially shifted from the \(\mu \mathrm{P}\). ( 55 bits)
- Clock divider divides down \(f_{\text {clock }}\) for use with chop clock, calibrator, and control holdoff.
- Horizontal display select.
- Vertical display select.
- Chop select.
- Display blanking.
- Trigger source select.
- Trigger status.
- Trigger holdoff.
- Holdoff counter.
- Display intensity.
- Trace separation.

\begin{tabular}{l|l|l|c}
\multicolumn{4}{c}{ ABSOLUTE MAXIMUMS } \\
\hline SYMBOLS & \multicolumn{1}{c}{ IDENTIFICATION } & VALUES & UNITS \\
\hline \hline & Voltage on any pin relative to \(V_{E E}\) & -0.3 to \(V_{D D}+0.3\) & V \\
\hline\(T_{A}\) & Operating Temperature (Ambient) & -15 to +85 & \({ }^{\circ} \mathrm{C}\) \\
\hline\(T_{S}\) & Storage Temperature & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline\(P_{D}\) & Power Dissipation & 0.1 & \({ }^{\circ} \mathrm{W}\) \\
\hline\(T_{\mathrm{i}}\) & Operating Junction Temperature & -15 to +90 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

PIN CONNECTIONS

\section*{ELECTRICAL CHARACTERISTICS}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{PARAMETER/CONDITIONS} & MIN. & MAX. & UNITS \\
\hline \multicolumn{5}{|c|}{Voltage Supply (Operating)} \\
\hline \(\mathrm{V}_{\text {SS }}\) (ground) & & Ground & Ground & \\
\hline \(\mathrm{V}_{\mathrm{DD}}(+5 \mathrm{~V}\) no & minal) & 4.75 & 5.25 & V \\
\hline \multicolumn{5}{|c|}{Static Power Dissipation} \\
\hline \begin{tabular}{l}
\(\mathrm{F}_{\text {CLOCK }}=0\) \\
\(\mathrm{I}_{\mathrm{DD}}\), current fro
\end{tabular} & utputs Open Circuit \(V_{D D}\) & & 20.0 & mA \\
\hline \multicolumn{5}{|c|}{Dynamic Power Dissipation} \\
\hline \multicolumn{2}{|l|}{\[
\mathrm{F}_{\mathrm{CLOCK}}=5 \mathrm{MHz} \mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}
\] (all outputs)
\[
\underline{I}_{D D}
\]} & & 25.0 & mA \\
\hline SYMBOL & PARAMETER/CONDITIONS & MIN. & MAX. & UNITS \\
\hline \multicolumn{5}{|c|}{Digital Inputs and Outputs} \\
\hline \(\mathrm{V}_{\mathrm{IH}}\) & Input High Voltage (except -SGM and -SGD) & 2.0 & 一一 & V \\
\hline \(\mathrm{V}_{\text {IL }}\) & Input Low Voltage & - - & 0.8 & V \\
\hline \(\mathrm{I}_{\text {N }}\) & Input Current & -10 & +10 & \(\mu \mathrm{A}\) \\
\hline \(V_{\text {HYST }}\) & Hysteresis Voltage on -CC and -TSS & 0.1 & —— & V \\
\hline \(\mathrm{I}_{\text {OL }}\) & Output Low Current
\[
\left(\mathrm{V}_{\text {OUT }}=0.4 \mathrm{~V}\right)
\] & 1.6 & -— & mA \\
\hline \(\mathrm{l}_{\mathrm{OH}}\) & Output High Current (except THO)
\[
\left(V_{\text {OUT }}=V_{D D}-.4 \mathrm{~V}\right)
\] & —— & -200 & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{IOH}-\mathrm{THO}^{\text {a }}\) & Output High Current for
\[
\mathrm{THO}\left(\mathrm{~V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{DD}}-.14 \mathrm{~V}\right)
\] & -- & -100 & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS (cont)
\begin{tabular}{|c|c|c|c|c|}
\hline SYMBOL & PARAMETER/CONDITIONS & MIN. & MAX. & UNITS \\
\hline \multicolumn{5}{|c|}{Analog Inputs and Outputs} \\
\hline \(\mathrm{I}_{\mathrm{L}}\) & Leakage Current (off state) & -10 & \(+10\) & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{R}_{\text {INT }}\) & \begin{tabular}{l}
Resistance to Bright from Dl or ROI \\
\(\left(\mathrm{V}_{\mathrm{BRIGHT}}=\mathrm{GND}\right)\)
\end{tabular} & - & 500 & \(\Omega\) \\
\hline \(\mathrm{R}_{\text {TS } 1}\) & Resistance from TSI to TS1
\[
\mathrm{TSI}=1.0 \mathrm{~V} \mathrm{I}_{\mathrm{IN}^{2}}=100 \mu \mathrm{~A}
\] & - - & 300 & \(\Omega\) \\
\hline \(\mathrm{R}_{\text {TS2 }}\) & Resistance from TSI to TS2 TSI \(=1.0 \mathrm{~V}\)
\[
\mathrm{I}_{\mathbb{N}}=100 \mu \mathrm{~A}
\] & - - & 600 & \(\Omega\) \\
\hline \(V_{\text {REF }}\) & Voltage at \(I_{\text {REF }}\) Input \(\left(I_{\text {REF }}=160 \mu \mathrm{~A}\right)\) & 400 & 900 & mV \\
\hline \(I_{\text {DAC }}\) & Current from MSB of DAC \(I_{\text {REF }}=160 \mu \mathrm{~A}\) (Bright Output) ( -200 mV
\[
\left.<\mathrm{V}_{\text {out }}\right) \leqslant 200 \mathrm{mV}
\] & -685 & -595 & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{I}_{\text {LIN }}\) & Linearity of DAC Current & -17.5 & +17.5 & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{V}_{\text {NOP }}\) & Positive going threshold on HRR Input & 2.5 & 3.5 & V \\
\hline \(\mathrm{V}_{\text {HON }}\) & Negative going threshold on HRR Input & 1.5 & 2.5 & V \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{Delay Times} \\
\hline \(\tau_{\text {DV }}\) & Delay from end of sweep to change in Vertical Outputs \(\left(\mathrm{V}_{\mathrm{S} 1}-\mathrm{V}_{\mathrm{S} 4}\right)\) & - - & \[
\begin{aligned}
& 150+ \\
& 3 T_{\text {CLK }}
\end{aligned}
\] & nS \\
\hline \(T_{\text {OV }}\) & Delay from end of sweep to change in Horizontal Outputs (HSD, HSB, DS, MAG) & -— & 600 & nS \\
\hline T \({ }_{\text {DVE }}\) & \multirow[t]{2}{*}{\begin{tabular}{l}
Delay from change in Vertical Output to \\
Assertion/Deassertion Blanking during chop.
\end{tabular}} & - & 50 & nS \\
\hline \(\mathrm{T}_{\text {DNVE }}\) & & 111 & - & nS \\
\hline \({ }^{\text {T DTS }}\) & Delay from end of sweep to change in Trigger Source Outputs & - & \[
\begin{aligned}
& 200+ \\
& 2 T_{\text {CLK }}
\end{aligned}
\] & nS \\
\hline \(\tau_{\text {DTHO }}\) & Delay from end of sweep to Assertion of THO & 100 & 300 & nS \\
\hline \({ }^{\text {DTSO }}\) & Delay from - TSS to Valid Data on TSO & —— & 300 & nS \\
\hline \({ }^{\top}\) SCD & Valid Data Setup Time & 300 & - & nS \\
\hline \(\tau_{\text {HCD }}\) & Valid Data Hold Time & 0 & 一一 & nS \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS (cont)
\begin{tabular}{|c|c|c|c|c|}
\hline SYMBOL & PARAMETER/CONDITIONS & MIN. & MAX. & UNITS \\
\hline \multicolumn{5}{|c|}{Pulse Widths} \\
\hline \({ }^{\tau}\) CLK & Period of TC & 200 & —— & nS \\
\hline \(\tau_{\text {PW }}\) & Positive or negative pulse width of TC & 90 & - - & nS \\
\hline \({ }^{\tau}{ }_{\text {SG }}\) & Duration of Sweep Gates & 50 & —— & nS \\
\hline \({ }^{T} \mathrm{CB}\) & Chop Blanking Width
\[
\tau_{\mathrm{CLK}}=200 \mathrm{nS}
\] & & 150 & nS \\
\hline \({ }^{\tau}\) SH & Strobe High Width (TSS and CC) & 700 & -- & nS \\
\hline \({ }^{\top}\) SL & Strobe Low Width (TSS and CC) & 300 & —— & nS \\
\hline
\end{tabular}


ELECTRICAL CHARACTERISTICS (cont)
\begin{tabular}{|c|c|c|c|c|}
\hline SYMBOL & PARAMETER/CONDITIONS & MIN. & MAX. & UNITS \\
\hline \multicolumn{5}{|c|}{Readout Timing (cont)} \\
\hline & (ROR to BLANK)— (ROR to VSX) & -- & 34 & nS \\
\hline & (ROR to BLANK)— (ROR to -HSX) & - - & -39 & nS \\
\hline & (ROR to -VSX)— (ROB to -BLANK) & —— & 280 & nS \\
\hline & (ROR to -HSX)(ROB to -BLANK) & —— & 134 & nS \\
\hline & \begin{tabular}{l}
(ROB to BLANK)- \\
(-ROR • ROB to VSX)
\end{tabular} & - & 34 & nS \\
\hline & \begin{tabular}{l}
(ROB to BLANK)- \\
(-ROR • ROB to HSX)
\end{tabular} & —— & -39 & nS \\
\hline & \begin{tabular}{l}
-BLANK to VSX \\
-ROR•ROB Going True
\end{tabular} & 140 & - - & nS \\
\hline & \begin{tabular}{l}
- BLANK to HSX \\
-ROR • ROB Going True
\end{tabular} & 286 & - - & nS \\
\hline & -ROR • ROB to -ROA & -- & 900 & nS \\
\hline & -ROR • ROB to BLANK \(2 \tau_{\text {CLK }}\) & \(-100\) & \(3 \tau_{\text {CLK }+400}\) & nS \\
\hline & (-ROR to -BLANK)(ROB to BLANK) & \(-100\) & +100 & nS \\
\hline \multicolumn{5}{|c|}{Settling Time-Analog Circuitry} \\
\hline \(\tau_{\mathrm{SB}}\) & Settling Time to \(\pm 5 \mu \mathrm{~A}\) of Bright after change in Horizontal Select & -— & 500 & nS \\
\hline \(\tau_{\text {STS }}\) & Settling Time to \(\pm 10 \mathrm{mV}\) of TS1 or TS2 after change in Horizontal Select & -— & 300 & nS \\
\hline
\end{tabular}

\section*{APPLICATIONS INFORMATION}

\section*{Input Register}

Data is serially shifted into the \(155-0244-00\) from the \(\mu \mathrm{P}\). This data ( 55 bits) determines the functionality of 155-0244-00. Transitions of the control clock shifts data in, clears the divider chain, and initiates a signal "Control Hold-Off" that blanks the CRT and prevents triggering for at least \(\tau_{\text {CLOCK }} \times 10^{3}\) after the last control clock goes high.

\section*{Clock Divider and Calibrator}

Clock divider divides down \(\mathrm{f}_{\text {CLock }}\) for use with chop clock, calibrator, and control hold-off. The calibrator gives a square wave output whose frequency is some multiple of \(\mathrm{f}_{\mathrm{CLOCK}}\).

\section*{Horizontal Display Select}

The two outputs HSA and HSB select one of four horizontal displays; DS selects one of two sweep delays; and Mag selects the horizontal amplification factor.

The horizontal display changes at the end of each Main Sweep.

In single sequence mode, each selected horizontal state is accessed once for each selected vertical state, then hold-off remains asserted until 155-0244-00 is updated by the system controller.

\section*{Vertical Display Selection}

Four outputs from Vertical Display select drive inputs on the vertical channel switch, selecting one of the four vertical channels. The vertical display changes state at the end of the horizontal display sequence or at each positive transition of the chop clock.

\section*{Chop Clock Select}

This circuitry selects source of vertical clock for either chop or alternate mode.

Selects chop clock rate, varying between \(f_{\text {CLOCK }}\) and \(\frac{f_{\text {CLOCK }}}{100,000}\)

Adds one extra count to clock divider every sweep every other 50,000. Timing clock to provide skew in chop clock.

\section*{Display Blanking}

Chop Blanking—Blank asserted for \(\frac{\tau_{C L O c k}}{2}\) during transitions of vertical select when display being chopped.

Allows ROB input to control blanking during Readout.

\section*{APPLICATIONS INFORMATION (cont)}

Provides blanking interval of approximately 400 nS at end of Readout, during which horizontal and vertical outputs are reasserted and allowed to settle for waveform display.

Generates ROA signal in response to ROR or end of sweep to indicate when the Readout is active.

\section*{Trigger Source Select}

The trigger source is determined by three outputs: SROM, SR1M and SR2M.

The data on these outputs is identical to a three-bit code on the control register and is static except when the code is " 111 ". At this time, the trigger sources dynamically follow the selected vertical display.

\section*{Trigger Status}

Trigger status monitors the activity on the sweep and trigger inputs. This data is latched and then output in a serial fashion on command from the system controller.

Each time the input shift register is updated, or each time the data is read out, data is transferred from the primary latches to the storage latches, and the primary latches are cleared.

Main sweep gates are counted and read out along with the trigger status data.

One bit of the data indicates when the single sequence is completed.

Trigger Hold-Off
At the end of sweep, trigger hold-off (THO) is initiated by 155-0244-00. At the same time, an on-chip oscillator is started. After a programmed number of oscillations, THO ends.

Also at the end of sweep, readout is enabled, as indicated by ROA.

\section*{Hold-Off Counter}

This counter counts up to 500,000 periods of the HO Oscillator for generating the programmable Hold-off time.

The last three decades of the counter are used to count sweep gates when the interval is less than 5000 .

This sweep count is read by the controller along with trigger status data.

\section*{APPLICATIONS INFORMATION (cont)}

\section*{Display Intensity}

Display intensity multiplexes currents from the Display intensity and Readout intensity inputs onto the bright output.

It also adds current to the output from a 4 1/2-bit DAC during the display intensity interval.

Separate DAC's are included for main and delayed sweep.

\section*{Trace Separation}

Two analog switches transfer a voltage from input TSIN to either outputs TS1 or TS2.

These signals drive the vertical output amplifier to provide up to \(\pm 5\) divisions of offset.

\title{
APPLICATIONS INFORMATION (cont) \\ INPUT REGISTER BIT ORDER \\ Data shifts in with Bit 54 first, Bit 0 last
}

\section*{BIT}

FUNCTION
\begin{tabular}{|c|c|}
\hline 0 & MS10, Main Sweep Intensity Code LSB \\
\hline 1 & MS11 \\
\hline 2 & MS12 \\
\hline 3 & MS13 \\
\hline 4 & MS14, Main Sweep Intensity Code MSB \\
\hline 5 & DS14, Delayed Sweep Intensity Code MSB \\
\hline 6 & DS13 \\
\hline 7 & DS12 \\
\hline 8 & DS11 \\
\hline 9 & DS10, Delayed Sweep Intensity Code LSB \\
\hline 10 & TH4, Trigger Hold-off Code MSB \\
\hline 11 & TH3 \\
\hline 12 & TH2 \\
\hline 13 & TH1 \\
\hline 14 & THO, Trigger Hold-off Code LSB \\
\hline 15 & Extend Sweep Count Capacity \\
\hline 16 & Delayed Ends Main \\
\hline 17 & Display Blank \\
\hline 18 & ATSO, Add Unit of Trace Separation During Horizontal Display State, HDS2 and HDS6 \\
\hline 19 & ATS1, Add Unit of Trace Separation During Horizontal Display State HDS6 \\
\hline 20 & ICT, Inhibit Chop While Triggerable \\
\hline 21 & ICS, Inhibit Chop During Sweep \\
\hline 22 & Single Sequence \\
\hline 23 & Include Vertical Display State VDS1 \\
\hline 24 & Include Vertical Display State VDS2 \\
\hline
\end{tabular}

\section*{APPLICATIONS INFORMATION (cont)}
\begin{tabular}{|c|c|}
\hline 25 & Include Vertical Display State VDS12 \\
\hline 26 & Include Vertical Display State VDS3 \\
\hline 27 & Include Vertical Display State VDS4 \\
\hline 28 & MX, Magnify X/Y Display \\
\hline 29 & MD, Magnify Delayed Sweep Horizontal Display \\
\hline 30 & MM, Magnify Main Sweep Horizontal Display \\
\hline 31 & Include Horizontal Display State HDS1 \\
\hline 32 & Include Horizontal Display State HDS2 \\
\hline 33 & Include Horizontal Display State HDS3 \\
\hline 34 & Include Horizontal Display State HDS5 \\
\hline 35 & Include Horizontal Display State HDS6 \\
\hline 36 & Include Horizontal Display State HDS7 \\
\hline 37 & Slave Delta Time to First Two Included Vertical Display States \\
\hline 38 & VTO, Vertical Display State Timing Code LSB \\
\hline 39 & VT1 \\
\hline 40 & VT2 \\
\hline 41 & CSROM, Main Trigger Source Code LSB \\
\hline 42 & CSR1M \\
\hline 43 & CSR2M \\
\hline 44 & CSROD, Delayed Trigger Source Code LSB \\
\hline 45 & CSR1D \\
\hline 46 & CSR2D \\
\hline 47 & Counter Test \\
\hline 48 & CPO, Calibration Period Code LSB \\
\hline
\end{tabular}

\title{
APPLICATIONS INFORMATION (cont)
}

CHL, Control Hold-Off Time Code LSB
CHM, Control Hold-Off Time Code MSB

\section*{PRODUCT PRECAUTIONS}

\section*{Input Protection}

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is strongly advised that special handling precautions be taken to avoid application of any voltage higher than the maximum rated voltage to this high impedance circuit.

For the proper operations, it is recommended that all inputs and outputs be constrained as follows:
Inputs constrained to the range of \(\mathrm{V}_{\mathrm{SS}} \leqslant \mathrm{V}_{\mathrm{IN}} \leqslant \mathrm{V}_{\mathrm{DD}}\).

Outputs constrained to the range of \(\mathrm{V}_{\mathrm{SS}} \leqslant \mathrm{V}_{\mathrm{OUT}} \leqslant \mathrm{V}_{\mathrm{DD}}\).

\section*{Handling Procedures}

All CMOS devices should be stored or transported in conductive material so that all exposed leads are shorted together. CMOS devices should NOT be inserted into the conventional plastic "snow" or plastic trays of the type used for storage and transportation of other semiconductor devices.

All CMOS devices should be placed on a grounded bench surface and the operator should be grounded prior to handling the devices. This is done most effectively by having the operator wear a conductive wrist strap.

Whenever handling a CMOS circuit, DO NOT WEAR ANY NYLON CLOTHING.

DO NOT insert or remove CMOS devices from test sockets with the power applied. Check all of the power supplies to be used for testing CMOS devices and be certain that there are no voltage transients present.

When any lead straightening or hand soldering is necessary, provide ground straps for the apparatus used.

\section*{APPLICATIONS INFORMATION (cont)}

DO NOT exceed the maximum electrical voltage ratings specified.

Double check the test equipment setup for the proper polarity of the voltage BEFORE conducting parametric or functional testings.

Cold chambers using \(\mathrm{CO}_{2}\) for cooling should be equipped with baffles and devices MUST be contained on or in conductive material.

\section*{OPERATING TEMPERATURE RANGE}

This component is tested at \(25^{\circ} \mathrm{C}\) but is guaranteed to operate continuously, as specified, over \(-15^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) ambient temperature.

Junction temperatures are less than \(5^{\circ} \mathrm{C}\) greater than the ambient temperature.

\section*{TAPE DRIVE CONTROLLER}

\section*{DESCRIPTION}

The 155-0247-00 provides a means of interfacing a microprocessor to a data cartridge tape drive, with few external components. The tape controller receives control information and data from the processor in parallel form. The data is multiple buffered, serialized, encoded, then driven directly from the 155-0247-00 to the heads.

\section*{FEATURES}
- Performs all drive data and control functions
- 32 kilobit/second operation
- Interrupt allows system multitasking
- On chip CRC-16 error detection
- 2 tracks selectable
- Compatible with current 8 -bit microprocessors
- Users manual available by contacting Applications Engineering

BLOCK DIAGRAM

\begin{tabular}{|c|c|}
\hline & ABSOLUTE MAXIMUMS \\
\hline Voltage on Any Pin Relative to \(V_{S S}\) & \(-0.3 V\) to +5.5 V \\
\hline Operating Temperature, \(\mathrm{T}_{\mathrm{A}}\) (Ambient) & \(0^{\circ} \mathrm{C}\) to \(+60^{\circ} \mathrm{C}\) \\
\hline Storage Temperature & \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\) \\
\hline Power Dissipation & 0.2 Watt \\
\hline Operating Junction Temperature, Tj & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

PIN CONNECTIONS


\section*{ELECTRICAL CHARACTERISTICS}

DC Parameters ( \(\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 0.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0.0 \mathrm{~V}\) )
\begin{tabular}{l|l|c|c|c}
\hline \multicolumn{1}{c|}{ Symbol } & \multicolumn{1}{|c|}{ Identification } & Min & Max & \multicolumn{1}{c}{ Units } \\
\hline \hline\(V_{I H}\) & Input High Voltage (Except Clock) & 2.0 & -- & Volts \\
\hline\(V_{\mathrm{IL}}\) & Input Low Voltage & -- & 0.8 & Volts \\
\hline \(\mathrm{V}_{\mathrm{ICH}}\) & Clock Input High Voltage & 2.8 & -- & Volts \\
\hline \(\mathrm{I}_{\mathrm{IN}}\) & Input Current & -- & \(\pm 10\) & \(\mu \mathrm{~A}\) \\
\hline \(\mathrm{~V}_{\mathrm{OL}}\) & Output Low Voltage at 2.4 mA Sink & -- & 0.4 & Volts \\
\hline \(\mathrm{V}_{\mathrm{OH}}\) & Output High Voltage at \(-100 \mu \mathrm{~A}\) Source & & 2.4 & -- \\
\hline \(\mathrm{I}_{\text {INTER }}\) & Interrupt Output Current at 0.7 Volt & 0.5 & 5 & mA \\
\hline
\end{tabular}

This applies to Data Bus \(\mathbf{0}\) to 7, Bit Clock, Rdata Out, Pdata Out, Track B/ \(\overline{\mathbf{A}}\), and Increase Threshold Outputs. If Write \(\mathrm{V}_{\mathrm{DD}}=5.0 \pm 0.25 \mathrm{~V}\), this also applies to Write A+, Write A-, Write B+, Write B- outputs.
Servo Fast, Servo Slow, and Reverse/Forward outputs are open for a logic 1 output.

AC Parameters
\begin{tabular}{|c|c|c|c|c|}
\hline Symbol & Identification & Min & Max & Units \\
\hline TCYC & Clock Cycle Time & 950 & 10,000 & nS \\
\hline TCH & Clock High Time & 450 & -—— & nS \\
\hline TCL & Clock Low Time & 450 & - & nS \\
\hline TR & Clock Rise Time & 0 & 100 & nS \\
\hline TF & Clock Fall Time & 0 & 100 & nS \\
\hline TSS & Select Set-up Time & 0 & ——— & nS \\
\hline TSH & Select Hold Time & 0 & - & nS \\
\hline TAS & Address Set-up Time & 50 & - & nS \\
\hline TAH & Address Hold Time & 30 & 一 & nS \\
\hline TRDAC & Read Data Access Time & ——— & 300 & nS \\
\hline TRDH & Read Data Hold Time & 0 & 200 & nS \\
\hline TWR & Write Pulse Width & 350 & ——— & nS \\
\hline TWDS & Write Data Set-up Time & 130 & ——— & nS \\
\hline TWDH & Write Data Hold Time & 30 & ——— & nS \\
\hline
\end{tabular}

NOTE: All outputs are measured to standard \(\mathrm{V}_{\mathrm{OL}}\) and \(\mathrm{V}_{\mathrm{OH}}\) levels loaded with \(\mathbf{1 0 0} \mathrm{pF}\) to \(\mathbf{V}_{\mathrm{ss}}\).

The reset pin is provided by the processor and must be held at a valid Logic One until after the \(V_{D D}\) supply reaches 4.75 volts. The input lines CNIP, HOLE DETECT, CAMP FAIL, GAP DETECT, WRITE INHIBIT, and PEAK DATA are assumed to be coming from a DC 100 tape drive and are very slow, asynchronous signals. Propagation delays through the 155-0247-00 are not defined.

\section*{APPLICATIONS INFORMATION}

NOTE: In order to make use of this part in new designs, the following documents should be consulted:
155-0247-00 Tape Chip Users Manual
DC 100 Tape Drive Manual
The following information gives only a bare description of how the part is used.

\section*{Addressing}
\begin{tabular}{lcc} 
& A1 & A0 \\
Data Register & X & 0 \\
Command 1 Register & 0 & 1 \\
Command 2 Register & 1 & 1 \\
Status Register & \(X\) & 1
\end{tabular}

Command and Status Register
COMMAND 1/ADDRESS 01
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline IT & TB/A & R/F & SS & SF & \begin{tabular}{c} 
WRITE \\
\((\overline{R E A D})\)
\end{tabular} & SYNC & SYNS \\
\hline
\end{tabular}

COMMAND 2/ADDRESS 11
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline ED1 & ED2 & EDS & GDA & WCO & CRCC & CRCS & CRCN \\
\hline
\end{tabular}

STATUS/ADDRESS 01
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline LF & HDET & CNIP & GDET & \begin{tabular}{c} 
WINH \\
\(-O V R\)
\end{tabular} & SYN & DS2 & DS1 \\
\hline
\end{tabular}

> - can cause interrupts

\section*{Bit 7}

\section*{EXPLANATION}

\section*{Command 1}

0-SYNS . . . . . . . . . . . . . . . . Immediately strobes SYNC into SYN (Pulse)
1-SYNC . . . . . . . . . . . . . . . Intended Future Condition of SYN chronized
2-WRITE/READ . . . . . . . . . Intended Mode
3-SF . . . . . . . . . . . . . . . . . . . Motor Control Bit. Set to 00 by LF or HDET
4-SS . . . . . . . . . . . . . . . . . . Motor Control Bit. Set to 00 by LF or HDET
5-R/F . . . . . . . . . . . . . . . . . . Reverse or Forward Motor Direction
6-TB/ \(\bar{A}\). . . . . . . . . . . . . . . . Track B or A on Tape
7-IT . . . . . . . . . . . . . . . . . . . . Increase Threshold OR Write Both Tracks

\section*{Command 2}
\begin{tabular}{|c|c|}
\hline 0 CRCN & Set CRC Mode Now (With CRCS) (Pulse) \\
\hline 1 CRCS & Set CRC Mode at Next SYNC Pulse (Pulse) \\
\hline 2 CRCC & Intended CRC mode-Changes after three data services \\
\hline 3 WCO & Write Current ON; For Writing Gaps \\
\hline 4 GDA & Gap Detect Interrupt Allow-Allows Tape Movement With or Without Gap \\
\hline 5 EDS & External Data Command Strobe (Pulse) \\
\hline 6 ED1 & External Data Command Bit 1 \\
\hline 7 ED2 & External Data Command Bit 2 \\
\hline
\end{tabular}

\section*{Status Register}
\begin{tabular}{|c|c|}
\hline 0 DS1 & Indicates number of data services (Reads or Writes) necessary. 00, none; 01, 10, service once or twice; 11, overflow \\
\hline 1 DS2 & Indicates number of data services (Reads or Writes) necessary. 00, none; 01, 10, service once or twice; 11, overflow \\
\hline 2 SYN & . Set if sync counter is running \\
\hline 3 WINH/OVR & . Cartridge Write inhibit • \(\overline{\text { SYN }}+\) Overrun \(\cdot\) SYN \\
\hline *4 GDET & . Inter-record gap in tape data detected \\
\hline *5 CNIP & . Cartridge not in place \\
\hline *6 HDET & . Tape hole detected \\
\hline *7 LF & . Hold Detect Lamp Failure \\
\hline
\end{tabular}
*Also: The DSI (data service interrupt) latches are set at each SYNC pulse, which also increments DS1 and 2.

\section*{* = Causes interrupts}



READ TIMING



\section*{CLOCK TIMING}

\section*{RELIABILITY}
\(\lambda\), Failure rate \(\leqslant .1 \% / 1 \mathrm{~K}\) hours at \(75^{\circ} \mathrm{C} \mathrm{Tj}\)
Thermal resistance, die to case \(25^{\circ} \mathrm{C} / \mathrm{W}\)

\section*{HIGH SPEED SCHMITT TRIGGER}

\section*{DESCRIPTION}

The 155-0253-00 is a high speed Schmitt trigger. The hysteresis and output current are adjustable. Accepts balanced or unbalanced input signals. Fabricated using the SH III process.

\section*{FEATURES}
- 1.25 GHz
- Differential input and output
- Adjustable hysteresis and output current
- Trimmable gain resistor on die

\begin{tabular}{|c|c|c|c|}
\hline SYMBOLS & IDENTIFICATION & Values & UNITS \\
\hline \(\mathrm{T}_{\text {stg }}\) & Storage Temperature & -55 to +125 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{T}_{\text {A }}\) & Operating Temperature & -15 to +70 & \begin{tabular}{l}
\({ }^{\circ} \mathrm{C}\) \\
Ambient
\end{tabular} \\
\hline \(P_{\text {D }}\) & Power Dissipation (at \(70^{\circ} \mathrm{C}\) ) & 270 & mW \\
\hline \(\mathrm{V}_{\mathrm{c}}\) & Supply Voltages & 6 & v \\
\hline \(\mathrm{V}_{\text {IN }}\) & Input Voltages & -1.0 to +1.0 & v \\
\hline & Bias Current ( 14 ) orl (16) (5) & \[
\begin{aligned}
& -8.0 \\
& -16.0
\end{aligned}
\] & \[
\underset{\mathrm{mA}}{\mathrm{~mA}}
\] \\
\hline Ti & Maximum & 120 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

PIN CONNECTIONS


ELECTRICAL CHARACTERISTICS
\begin{tabular}{|c|c|c|c|c|}
\hline SYMBOL & PARAMETER/CONDITIONS & MIN & MAX & UNITS \\
\hline \(\mathrm{I}_{\mathrm{C}}\) & Supply Current, I into pin 10 at 9.5 V & 14.5 & 16.8 & mA \\
\hline \(I_{B 1}\) & First Cascode Bias Current 1 into pin 15 at 2.0 V & 90 & 420 & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{I}_{\mathrm{B} 2}\) & Second Cascode Bias Current I into pin 7 at 4.8 V & 90 & 420 & \(\mu \mathrm{A}\) \\
\hline 1 & Q1 Input Bias Current Measure I into pin 11 at 0.0 V & 45 & 210 & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{I}_{2}\) & Q2 Input Bias Current Measure I into pin 3 at 0.0 V & 45 & 210 & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{I}_{\text {L1L }}\) & \begin{tabular}{l}
Output 1 Lo Current \\
Measure I into pin 8 at 6.0 V with pin \\
2: +400 mV pin 3: -400 mV
\end{tabular} & & & \\
\hline \(I_{\text {L2H }}\) & Output 2 High Current Measure I into pin 6 at 6.0 V with pin \(2:+400 \mathrm{mV}\) pin 3: -400 mV & 14.8 & 16.7 & mA \\
\hline \(I_{\text {LH }}\) & \begin{tabular}{l}
Output 1 High Current \\
Measure I into pin 8 at 6.0 V with pin \\
2: -400 mV pin 3: +400 mV
\end{tabular} & 14.8 & 16.7 & mA \\
\hline \(\mathrm{I}_{\mathrm{L} 2 \mathrm{~L}}\) & \begin{tabular}{l}
Output 2 Low Current \\
Measure \(I\) into pin 6 at 6.0 V with pin \\
2: -400 mV pin 3: +400 mV
\end{tabular} & 0 & 20 & \(\mu \mathrm{A}\) \\
\hline S & Sensitivity & 139.4 & 200.6 & mV \\
\hline \(\mathrm{V}_{\text {OS }}\) & Input Offset Voltage & -7 & \(+7\) & mV \\
\hline
\end{tabular}

\subsection*{6.2 Typical,* But Untested Performance Parameters}

The input sensitivity will be up 3 dB at 500 MHz . The circuit cannot be triggered past 1.25 GHz .
*NOT GUARANTEED

\section*{APPLICATIONS INFORMATION}

It is recommendd that pin 10 be well bypassed.

Pins 7 and 15 should have about \(100 \Omega\) resistance before bypassing.

\section*{PRODUCT PRECAUTIONS}

\section*{Input Protection}

Being a bipolar circuit, the 155-0253-00 is not particularly sensitive to static. However, care should be taken not to exceed any of the SHF-3 breakdown limits, especially \(B V_{E B O}\) and \(B V_{C B O}(4.5 \mathrm{~V}\) and 14 V , respectively).

Note that there is a short between pins 2 and 11 and also between pins 3 and 12. Application of an unlimited voltage source between these pins may destroy metal runs on the die.

\section*{Output Loading}

Do not exceed the maximum output supply voltage ( 6 V ) on pins 6,8 , and 10 . Excessive voltage will cause excessive power dissipation.

\section*{Power Supply Turn-on/Turn-off Sequence}

In order to prevent reverse biasing junctions, turn on the power supplies in the following sequence:
1. Substrate Voltage (pin 4)
2. Output Supplies (pins 6, 8)
3. \(V C(\operatorname{pin} 10)\)
4. VB2 \((\operatorname{pin} 7)\)
5. VB1 (pin 15)
6. Bias Current

Turn off the power supplies in the reverse order of turn-on sequence.

\section*{Handling Procedure}

The 16-pin Tek mini-pac is easily damaged by rough handling. The pins bend easily, and they pull out of the molded plastic body.

\section*{RELIABILITY}
\(\lambda\), Failure rate \(\leqslant .02 \% / 1 \mathrm{~K}\) hours at \(75^{\circ} \mathrm{C} \mathrm{T}_{\mathrm{j}}\) Thermal resistance, \(\theta \mathrm{j} \mathrm{A} \quad 85^{\circ} \mathrm{C} / \mathrm{W}\)

\section*{AMPLIFIER}

\section*{DESCRIPTION}

The 155-0273-00 is a monolithic integrated circuit originally designed as an Oscilloscope Vertical Amplifier.

The circuit is a differential in, differential out amplifier with variable gain capabilities. By cross-coupling the output collectors, the circuit is basically a multiplier. DC voltages applied to the control inputs can be used to vary gain from the nominal (maximum) gain through zero to the negative nominal gain. Diodes are provided on the control inputs to linearize the gain characteristics.

\section*{FEATURES}
- Nominal voltage gain set by external resistor.
- Gain variable from nominal (either polarity) to zero.
- Available in three versions:

155-0078-10 (Minipak) (Fastest)
155-0273-00 (14 pin DIP w/o nichrome resistors)
155-0274-00 (14 pin DIP)

\section*{SCHEMATIC}


ABSOLUTE MAXIMUMS
\begin{tabular}{|c|c|c|c|c|}
\hline SYMBOLS & IDENTIFICATIONS & NOTES & VALUES & UNITS \\
\hline \(V_{\text {out-sub MAX }}\) & Maximum voltage of the outputs (pins 13, 10, 12, 9) relative to the substrate (pin \(6)\). & Prevents collector-substrate breakdown of Q5, Q6, Q7, Q8. & 19 & V \\
\hline \(V_{\text {out-cont MAX }}\) & Maximum voltage of the outputs (pins 13, 10, 12, 9) relative to the control inputs (pins 7, 14). & Prevents collector-base breakdown of Q5, Q6, Q7, Q8. & 7 & V \\
\hline \(\mathrm{V}_{\text {cont-input MAX }}\) & Maximum voltage at the control inputs (pins 7, 14) relative to inputs (pins 4,5). & Prevents collector-base breakdown of Q1 and Q2. & 8 & V \\
\hline \(V_{\text {sub-input Max }}\) & Maximum voltage of the substrate (pin 6) relative to the inputs (pins 4,5). & Substrate voltage must be held more negative than any collector in circuit. & 0 & V \\
\hline \(\mathrm{V}_{\text {R03 Max }}\) & Maximum voltage from pin 11 to pin 7 or 14. & Maximum steering diode reverse voltage to avoid degradation. & 2 & V \\
\hline \(V_{\text {R11-R12 MAX }}\) & Maximum voltage from pin 7 to 14 or from pin 14 to pin 7. & Maximum steering diode reverse voltage to avoid degradation. & 2.5 & V \\
\hline \(V_{\text {Eb Max }}\) & Maximum voltage from pin 2 to pin 4 or from pin 3 to pin 5. & Maximum base-emitter reverse voltage to avoid degradation. & 2 & V \\
\hline \(\mathrm{I}_{\text {MAX }}\) & Maximum current, pins 2 and 3. & Sum of pin 2 and pin 3 current. & \(36 *\) & mA \\
\hline \(\mathrm{P}_{\text {MAX }}\) & Maximum power dissipation. & \(75^{\circ} \mathrm{C}\) ambient. & 270 & mW \\
\hline \(\mathrm{T}_{\text {OPERAting }}\) & Operating temperature range. & & 0 to 80 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{T}_{\text {Storage }}\) & Storage temperature range. & & \[
\begin{aligned}
& -55 \text { to } \\
& +125
\end{aligned}
\] & \({ }^{\circ} \mathrm{C}\) \\
\hline \(T_{j \text { Max }}\) & Maximum junction temperature. & & 125 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\footnotetext{
* Contact Applications Engineering, IC Manufacturing, if 20 mA is to be exceeded, pin 2 or pin 3.
}

\section*{PIN CONNECTIONS}

*Depends on polarity conventions-not indicated here.
ELECTRICAL CHARACTERISTICS
Specifications assume \(32 \Omega\) gain setting resistor (pins 2 to 3 )
\begin{tabular}{l|c|c|l}
\hline \multicolumn{1}{c|}{ PARAMETER/CONDITIONS } & MIN & MAX & \multicolumn{1}{c}{ UNITS } \\
\hline \hline BV \(_{\text {CEO }}\) Q1, Q2, at \(200 \mu \mathrm{~A}\) & 4.4 & & Volts \\
\hline BV \(_{\text {CEO }}\) Q5, Q6, Q7, Q8 at \(200 \mu \mathrm{~A}\) & 4.4 & & Volts \\
\hline BV \(_{\text {CEO Sus Q1, Q2 at } 10 \mathrm{~mA}}\) & 4.9 & & Volts \\
\hline BV \(_{\text {CEO sus }}\) Q5, Q6, Q7, Q8 at 10 mA & 4.9 & & Volts \\
\hline SUBSTRATE VOLTAGE in operating configuration & & -15 & Volts \\
\hline INPUT BIAS CURRENT Q1 or Q2 (16 mA emitter current) & 64 & 225 & \(\mu \mathrm{~A}\) \\
\hline NORMAL OFFSET & -14 & +14 & mV \\
\hline INVERT OFFSET & -14 & +14 & mV \\
\hline NORMAL GAIN & 2.68 & 2.96 & \\
\hline INVERT GAIN & 2.68 & 2.96 & \\
\hline NORMAL-INVERT GAIN MATCH & -0.5 & +0.5 & \(\%\) \\
\hline NULL OFFSET & -10 & +10 & mV \\
\hline NULL GAIN & -.14 & +.14 & \\
\hline 50\% GAIN & .49 & .51 & \(\mathrm{X}(\mathrm{AV}\) NORM) \\
\hline OFF FEEDTHRU & -200 & +200 & \(\mu \mathrm{~V}\) \\
\hline
\end{tabular}

\section*{PARAMETRIC DEFINITIONS}

The 155-0273-00 is specified in three different operating conditions: NORMAL, INVERT, and NULL.
In the NORMAL condition, Q5 and Q8 are conducting and Q6 and Q7 are not.
In the INVERT condition, Q6 and Q7 are conducting and Q5 and Q8 are not.
In the NULL condition, Q5, Q6, Q7 and Q8 are all conducting equally.

\section*{APPLICATIONS INFORMATION}

\section*{Output Stage Considerations}

Pin 7 and 14 can be voltage driven and pin 11 left open (Figure 1) if gain linearity as a function of control voltage is not critical. The voltage applied on pins 7 or 14 should be 1.2 to 3.7 volts above the quiescent voltage on pins 4 or 5 for conducting output transistors. For nonconducting output transistors pins 7 or 14 can be at a lower potential than this. Absolute maximum ratings must be observed, however. For the case of pin7 and 14 voltage driven and pin 11 open, gain is given by:
\[
\begin{aligned}
& A_{V}=A_{V \text { NORM }} {\left[\frac{\exp \left(\frac{q V_{14}}{k T}\right)-\exp \left(\frac{q V_{7}}{k T}\right)}{\exp \left(\frac{q V_{14}}{k T}\right)+\exp \frac{\left(q V_{7}\right)}{k T}}\right] } \\
& \text { where } A_{V ~ N O R M}=\text { Normal Gain } \\
& V_{7}=\text { voltage applied on pin } 7 \\
& V_{14}=\text { voltage applied on pin } 14 \\
& \frac{k T}{q}=26 \mathrm{mV} \text { at room temperature }
\end{aligned}
\]

If gain linearity as a function of control voltage is critical, pins 7 and 14 should be current driven and pin 11 returned to a voltage so as to set pins 7 and 14 voltage to the proper level as mentioned above. Figure 2 shows this type hookup. Current driving these inputs linearizes the gain by making use of the exponential current-voltage relationship of the diodes Q3 and Q4 to cancel that of the output transistors. The gain is given by:
\[
\begin{aligned}
& A_{V}=A_{V \text { NORM }}\left[\frac{I_{14}-I_{7}}{I_{14}+I_{7}}\right] \\
& \text { where } I_{7}=\text { current into pin } 7 \\
& I_{14}=\text { current into pin } 14
\end{aligned}
\]

If variable gain of only a single polarity is desired, one pair of outputs can be used and the other pair connected to separate unused loads as in Figure 3.

If fixed maximum gain is desired, one pair of outputs can be left open as in Figure 4.

In applications where the output is to be switched from one output pair to another, the difference in offset voltage between the two outputs should not be spec'd any tighter than 28 mV (the sum of normal and invert offset specs).


\section*{Input Stage Considerations}

The bias current (pin 2 and 3 current) should not exceed 20 mA per side or a decrease in the life of the part may result.


\section*{PRODUCT PRECAUTIONS}

\section*{Input Protection}

Input base-emitter voltages should not exceed 2 volts
in the negative direction and 1 volt in the positive direction.

\section*{Output Loading}

Outputs should be limited to less than those listed in Absolute Maximum Ratings.

\section*{Power Supply Turn-On/Turn-Off Sequence}

Substrate voltage should be turned on coincident with or before the other voltages.

\section*{Handling Procedures}

Static sensitive handling procedures should be implemented for this part.

\section*{AMPLIFIER}

\section*{DESCRIPTION}

The 155-0274-00 is a monolithic integrated circuit originally designed as an Oscilloscope Vertical Amplifier.

The circuit is a differential in, differential out amplifier with variable gain capabilities. By crosscoupling the output collectors, the circuit is basically a multiplier. DC voltages applied to the control inputs can be used to vary gain from the nominal (maximum) gain through zero to the negative nominal gain. Diodes are provided on the control inputs to linearize the gain characteristics.

\section*{FEATURES}
- Nominal voltage gain 2.82 ( 50 ohm source and loads). Set primarily by an on-chip nichrome resistor.
- Gain variable from nominal (either polarity) to zero.
- Available in three versions: 155-0078-10 (Minipak) (Fastest) 155-0273-00 (14 pin DIP w/o nichrome resistors) 155-0274-00 (14 pin DIP)

\section*{SCHEMATIC}


\section*{ABSOLUTE MAXIMUMS}
\begin{tabular}{|c|c|c|c|c|}
\hline SYMBOLS & IDENTIFICATION & NOTES & VALUES & UNITS \\
\hline \(V_{\text {out-sub Max }}\) & Maximum voltage of the outputs (pins 13, 10, 12, 9) relative to the substrate (pin 6). & Prevents collector-substrate breakdown of Q5, Q6, Q7, Q8. & 19 & Volts \\
\hline \(V_{\text {out-cont MAX }}\) & Maximum voltage of the outputs (pins 13, 10, 12, 9) relative to the control inuts (pins 7, 14). & Prevents collector-base breakdown of Q5, Q6, Q7, Q8. & 7 & Volts \\
\hline \(\mathrm{V}_{\text {cont-input MAX }}\) & Maximum voltage at the control inputs (pins 7, 14) relative to inputs (pins 4, 5). & Prevents collector-base breakdown of Q1 and Q2. & 8 & Volts \\
\hline \(V_{\text {sub-input MAX }}\) & Maximum voltage of the substrate (pin 6) relative to the inputs (pins \(4,5)\). & Substrate voltage must be held more negative than any collector in circuit. & 0 & Volts \\
\hline \(V_{\text {RO3 MAX }}\). & Maximum voltage from pin 11 to pin 7 or 14. & Maximum steering diode reverse voltage to avoide degradation. & 2 & Volts \\
\hline \(V_{\text {R11-R12 MAX }}\) & Maximum voltage from pin 7 to 14 or from pin 14 to pin 7. & Maximum steering diode reverse voltage to avoid degradation. & 2.5 & Volts \\
\hline \(V_{\text {EB MAX }}\) & Maximum voltage from pin 2 to pin 4 or from pin 3 to pin 5. & Maximum base-emitter reverse voltage to avoid degradation. & 2 & Volts \\
\hline \(I_{\text {Max }}\) & Maximum current, pins 2 and 3. & Sum of pin 2 and pin 3 current. & 36* & mA \\
\hline \(\mathrm{P}_{\text {MAX }}\) & Maximum power dissipation. & \(75^{\circ} \mathrm{C}\) ambient. & 270 & mW \\
\hline Toperating & Operating temperature range. & & 0 to 80 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{T}_{\text {Storage }}\) & Storage temperature range. & & \[
\begin{aligned}
& -55 \text { to } \\
& +125
\end{aligned}
\] & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{T}_{\text {IMAX }}\) & Maximum junction temperature. & & 125 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\footnotetext{
* Contact Applications Engineering, IC Manufacturing, if 20 mA is to be exceeded for pin 2 or pin 3.
}

PIN CONNECTIONS

*Depends on polarity chosen for inputs and outputs-Not indicated here

ELECTRICAL CHARACTERISTICS
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ PARAMETER/CONDITIONS } & MIN. & MAX. & UNITS \\
\hline \hline BV \(_{\text {CEO }}\) Q1, Q2, at \(200 \mu \mathrm{~A}\) & 4.4 & & Volts \\
\hline BV \(_{\text {CEO }}\) Q5, Q6, Q7, Q8 at \(200 \mu \mathrm{~A}\) & 4.4 & & Volts \\
\hline BV \(_{\text {CEO SUS }}\) Q1, Q2 at 10 mA & 4.9 & & Volts \\
\hline BV \(_{\text {CEO Sus }}\) Q5, Q6, Q7, Q8 at 10 mA & 4.9 & & Volts \\
\hline SUBSTRATE VOLTAGE in operating configuration & & -15 & Volts \\
\hline INPUT BIAS CURRENT Q1 or Q2 (16 mA \\
emitter current) & 64 & 225 & \(\mu \mathrm{~A}\) \\
\hline NORMAL OFFSET & -14 & +14 & mV \\
\hline INVERT OFFSET & -14 & +14 & mV \\
\hline NORMAL GAIN & 2.68 & 2.96 & \\
\hline INVERT GAIN & 2.68 & 2.96 & \\
\hline NORMAL-INVERT GAIN MATCH & -0.5 & +0.5 & \(\%\) \\
\hline NULL OFFSET & -10 & +10 & mV \\
\hline NULL GAIN & -.14 & +.14 & \\
\hline 50\% GAIN & .49 & .51 & \(\mathrm{X}\left(\mathrm{AV} \mathrm{N}_{\text {NORM }}\right)\) \\
\hline OFF FEEDTHRU & -200 & +200 & \(\mu \mathrm{~V}\) \\
\hline
\end{tabular}

\section*{PARAMETRIC DEFINITIONS}

The 155-0274-00 is specified in three different operating conditions: NORMAL, INVERT, and NULL.
In the NORMAL condition, Q5 and Q8 are conducting and Q6 and Q7 are not.
In the INVERT condition, Q6 and Q7 are conducting and Q5 and Q8 are not.
In the NULL condition, Q5, Q6, Q7, and Q8 are all conducting equally.

\section*{APPLICATIONS INFORMATION}

\section*{Output Stage Considerations}

Pins 7 and 14 can be voltage driven and pin 11 left open (Figure 1) if gain linearity as a function of control voltage is not critical. The voltage applied on pins 7 or 14 should be 1.2 to 3.7 volts above the quiescent voltage on pins 4 or 5 for conducting output transistors. For nonconducting output transistors pin 7 or 14 can be at a lower potential than this. Absolute maximum ratings must be observed however. For the case of pin 7 and 14 voltage driven and pin 11 open, gain is
\[
A_{V}=A_{V \text { NORM }}\left[\frac{\exp \left(\frac{q V_{14}}{k T}\right)-\exp \left(\frac{q V_{7}}{k T}\right)}{\exp \left(\frac{q V_{14}}{k T}\right)+\exp \left(\frac{q V_{7}}{k T}\right)}\right]
\]
where \(A_{V \text { NORM }}=\) Normal Gain
\[
\begin{aligned}
& V_{7}=\text { voltage applied on pin } 7 \\
& V_{14}=\text { voltage applied on pin } 14 \\
& \frac{\mathrm{tf}^{2}}{\mathrm{q}}=26 \mathrm{mV} \text { at room temperature }
\end{aligned}
\]

If gain linearity as a function of control voltage is critical, pins 7 and 12 should be current driven and pin 11 returned to a voltage so as to set pins 7 and 12 voltage to the proper level as mentioned above. Figure 2 shows this type hookup. Current driving these inputs linearizes the gain by making use of the exponential current-voltage relationship of the diodes Q3 and Q4 to cancel that of the output transistors. The gain is given by:
\(A_{V}=A_{V \text { NORM }}\left[\frac{I_{14}-I_{7}}{I_{14}+I_{7}}\right]\)
where \(\mathrm{I}_{7}=\) current into pin 7
\[
\mathrm{I}_{14}=\text { current into pin } 14
\]

If variable gain of only a single polarity is desired, one pair of outputs can be used and the other pair connected to separate unused loads as in Figure 3.

If fixed maximum gain is desired, one pair of outputs can be left open as in Figure 4.

In applications where the output is to be switched from one output pair to another, the difference in offset voltage between the two outputs should not be specified any tighter than 28 mV (the sum of normal and invert offset specifications).

\section*{Input Stage Considerations}

The bias current (pin 2 and 3 current) should not exceed 18 mA per side or a decrease in the life of the part may result.

\section*{Typical Performance Graph}
(not a specification, for information only)

> Typical Performance Graph (not a specification, for information only)
> 155-0274 GAIN Vs TEMPERATURE


TEMPERATURE

\section*{PRODUCT PRECAUTIONS}

\section*{Input Protection}

Input base-emitter voltages should not exceed 2 volts in the negative direction and 1 volt in the positive direction.

\section*{Output Loading}

Outputs should be limited to less than those listed in Absolute Maximum Ratings.

\section*{Power Supply Turn-on/Turn-Off Sequence}

Substrate voltage should be turned on coincident with or before the other voltages.

\section*{Handling Procedures}

Static sensitive handling procedures should be implemented for this part.

\section*{VIDEO MULTIPLIER}

\section*{DESCRIPTION}

The \(155-0283-00\) is a two quadrant analog multiplier/unity gain amplifier. Two signal inputs ( \(\mathrm{Y}, \mathrm{Z}\) ) and one gain/control input \((X)\) are provided.

\section*{FEATURES}
- \(\pm 10 \mathrm{~V}\) supplies
- Unity gain buffer function
- Two quadrant multiplier function
- 16 pin ceramic package
- \(50 \Omega\) Nichrome resistors

ABSOLUTE MAXIMUMS
\begin{tabular}{l|l|l|c}
\hline \multicolumn{1}{c|}{ SYMBOLS } & \multicolumn{1}{|c|}{ IDENTIFICATION } & VALUE & UNITS \\
\hline \hline\(T_{J}\) & \begin{tabular}{l} 
Operating Junction \\
Temperature
\end{tabular} & -15 to +125 & \({ }^{\circ} \mathrm{C}\) \\
\hline\(T_{\text {STG }}\) & Storage Temperature & -15 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline VCC10 & +10 V Supply & -12 to 0 & V \\
\hline VEE10 & -10 V Supply & -2 to +2 & V \\
\hline VIN (X, Y, Z) & Input Voltage & 2 K to INF & \(\Omega\) \\
\hline RLoad & Output Load Impedance & 0 to 20 & pF \\
\hline CLoad & Output Load Capacitance &
\end{tabular}


PIN CONNECTIONS
\begin{tabular}{c|l|l|l}
\hline PIN \# & NAME & INPUT/OUTPUT & \multicolumn{1}{c}{ DESCRIPTION } \\
\hline \hline 1 & GND & Supply & Ground \\
2 & Y1 & Input & Y Video + Input \\
3 & D1 & - & Decoupling Capacitor \\
4 & Y2 & Input & Y Video - Input \\
5 & +10 V & Supply & +10 V Supply \\
6 & D3 & - & Decoupling Capacitor \\
7 & X1 & Input & Control Input \\
8 & -10 V & Supply & -10 V Supply \\
9 & COMPC & - & External Compensation \\
10 & Q25 & Output & Q25 Output Collector \\
11 & COMPA & - & External Compensation \\
12 & COMPB & - & External Compensation \\
13 & V6 & Output & Q1 Emitter Output \\
14 & Z2 & Input & Z Input \\
15 & D2 & - & Decoupling Capacitor \\
16 & Z1 & Input & Z Input \\
\hline
\end{tabular}

PIN CONNECTIONS

\(\sim\)

ELECTRICAL REQUIREMENTS
\begin{tabular}{|c|c|c|c|c|c|}
\hline NO. & SYMBOL & CONDITIONS & MIN & MAX & UNITS \\
\hline 1 & -- & 10 V supply current & 14.0 & 20.4 & mA \\
\hline 2 & -- & -10 V supply current & \(-11.0\) & -17.6 & mA \\
\hline 3 & Zoffset & \[
\begin{aligned}
& \mathrm{Z} \text { offset voltage } \\
& \mathrm{X}=-0.2 \mathrm{~V} \\
& \mathrm{Y}=\mathrm{Z}=0 \mathrm{~V}
\end{aligned}
\] & -5.0 & 5.0 & mV \\
\hline 4 & Yoffset & \[
\begin{aligned}
& Y \text { offset voltage } \\
& X=1.2 \\
& Y=Z=0 V
\end{aligned}
\] & \(-5.0\) & 5.0 & mV \\
\hline 5 & BOW & \begin{tabular}{l}
\[
X=.5 \mathrm{~V}, \mathrm{Y}=\mathrm{Z}=0 \mathrm{~V}
\] \\
BOW \(=\) Vo-(Yoffset + \\
Zoffset)/2
\end{tabular} & \(-3.0\) & 3.0 & mV \\
\hline 6 & -- & \[
\begin{aligned}
& Y \text { Scale factor } \\
& \Delta \text { Vol. } 8 \\
& X=.1 \text { to } .9 \mathrm{~V} \\
& Z=0 \mathrm{~V}, \mathrm{Y}=1 \mathrm{~V}
\end{aligned}
\] & . 98 & 1.02 & -- \\
\hline 7 & -- & \[
\begin{aligned}
& \mathrm{Z} \text { scale factor } \\
& \Delta \mathrm{Vol} .8 \\
& \mathrm{X}=.1 \text { to } .9 \mathrm{~V} \\
& \mathrm{Z}=1 \mathrm{~V}, \mathrm{Y}=6 \mathrm{~V}
\end{aligned}
\] & \(-1.02\) & -. 98 & - \\
\hline 8 & Zmic & \[
\begin{aligned}
& Z \text { midpoint } \\
& \mathrm{X}=.6 \mathrm{~V} \\
& \mathrm{Y}=0 \mathrm{~V} \\
& \mathrm{Z}=1 \mathrm{~V}
\end{aligned}
\] & . 485 & . 515 & -- \\
\hline 9 & Ygain & \[
\begin{aligned}
& Y \text { follower gain } \\
& X=1.1 \mathrm{~V}, Z=0 \mathrm{~V} \\
& Y=-1 \mathrm{~V} \text { to }+1 \mathrm{~V} \\
& \text { Gain }=\Delta \mathrm{Vo} / 2
\end{aligned}
\] & . 997 & 1.003 & -- \\
\hline 10 & Zgain & \[
\begin{aligned}
& \mathrm{Z} \text { follower gain } \\
& \mathrm{X}=.1 \mathrm{~V}, \mathrm{Y}=0 \mathrm{~V} \\
& \mathrm{Z}=-1 \mathrm{~V} \text { to }+1 \mathrm{~V} \\
& \text { Gain }=\Delta \mathrm{Vo} / 2
\end{aligned}
\] & . 997 & 1.003 & -- \\
\hline
\end{tabular}

ELECTRICAL REQUIREMENTS (cont)
\begin{tabular}{l|l|l|l|l|c}
\hline \multicolumn{1}{c|}{ NO. } & \multicolumn{1}{|c|}{ SYMBOL } & \multicolumn{1}{|c|}{ CONDITIONS } & \multicolumn{1}{c|}{ MIN } & MAX & UNITS \\
\hline \hline 11 & Yshift & \begin{tabular}{l} 
Y shift \\
\(X=1.1 \mathrm{~V}\) \\
\(Y=Z=0 \mathrm{~V}\) \\
Measure COMPC pad voltage.
\end{tabular} & & 12.0 & mV \\
& & & -12.0 & & \\
\hline 12 & & Zshift & \(\mathrm{X}=-.1 \mathrm{~V}\) \\
& & \(\mathrm{Y}=\mathrm{X}=0 \mathrm{~V}\) \\
& & Measure COMPC pad voltage. & & & \\
\hline 14 & & Input clipping level & -12.0 & 12.0 & mV \\
& & \(\mathrm{X}=0.1 \mathrm{~V}\) \\
\(\mathrm{Y}=0.2 \mathrm{~V}\) & & & \\
\hline
\end{tabular}

\section*{RELIABILITY}

Failure rate
\(0.02 \% / 1000 \mathrm{hrs}\).
Reference junction temperature Activation energy
\(75^{\circ} \mathrm{C}\)
1 eV

\section*{PLATINUM TEMP PROBE}

\section*{DESCRIPTION}

The platinum temperature probe utilizes a \(100 \Omega\) temperature sensitive resistor produced by depositing a platinum film on an oxidized wafer.

\section*{FEATURES}
- \(100 \Omega \pm .2 \Omega\) at \(0^{\circ} \mathrm{C}\)
- Resistance changes ~ \(37 \Omega /{ }^{\circ} \mathrm{C}\)
- Laser Trimmed
- -70 to \(+240^{\circ} \mathrm{C}\) temperature range
- Withstands 1000 g shock

PT TEMPERATURE PROBE


\section*{ABSOLUTE MAXIMUMS}

\section*{Electrical}
\begin{tabular}{|c|c|}
\hline Maximum Current Through Resistor & mA \\
\hline For Accurate Measurements & \(<2 \mathrm{~mA}\) \\
\hline Maximum Temperature, Operating & \(240^{\circ} \mathrm{C}\) \\
\hline Maximum Temperature, Storage & \(120^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

Environmental
The 206-0248-03 MUST NOT be immersed in any liquids incompatible with the following materials: Morton 410BSG and Beryllium Oxide (BeO).

\section*{Mechanical}
```

Maximum Axial Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 lbs
Maximum Normal Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . }20\mathrm{ Ibs
Axial Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . }1\mathrm{ ft-mb
Normal Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 ft-lb
Shock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1000 g's, 1/2 sine, 5 mS, 1 mS, and
2 mS duration, 3 shocks, each axis,
18 total

```

\section*{PACKAGING}


PACKAGING


\footnotetext{
SECTION A-A
}

PARAMETRIC SUMMARY
\begin{tabular}{l|c|c|c}
\hline PARAMETER/CONDITIONS & MIN & MAX & UNITS \\
\hline \hline Input Current & - & 10 & mA \\
\hline Temperature Range & -70 & +240 & \({ }^{\circ} \mathrm{C}\) \\
\hline Temperature, Storage & -55 & +120 & \({ }^{\circ} \mathrm{C}\) \\
\hline Altitude-Operating & & 15,000 & ft \\
Storage & & 15,000 & ft \\
\hline
\end{tabular}

\section*{DEFINITIONS}

The "functional relationship of resistance with temperature" is defined by the boundary conditions of:
\(R_{T}=100( \pm .2 \%)+.3700 t( \pm .8 \%)-8.900( \pm 12 \%) \cdot 10^{-5} t^{2}\)
over the specified operating range.

The probe is to have a "resistance" equal to \(100 \Omega \pm .2 \Omega\) at \(0^{\circ} \mathrm{C}\).

Temperature as a function of resistance may be determined by:
\(T_{R}=-251.449+2.3252 \cdot R+1.89 \cdot 10^{-3} \cdot R^{2}\)

\section*{APPLICATIONS INFORMATION}

\(\begin{array}{ll}\text { NOTE: } & \begin{array}{l}\text { The above circuit is NOT the only circuit in which the Pt Temperature Probe will perform as a } \\ \text { temperature measuring device. This circuit is shown only to give a reasonable idea of circuit } \\ \text { complexity needed for calibrated probe operation. }\end{array}\end{array}\)


Typical decrease in device case temperature due to probe heat-sinking effect on various case sizes.
\(\mathrm{T}_{\text {SENSOR }}-\mathrm{T}_{\text {AMBIENT }} \approx \mathbf{9 7 . 9 \%}\left(\mathrm{T}_{\text {SURFACE }}-\mathrm{T}_{\text {Ambient }}\right)\)


THERMAL GRADIENT EFFECT ON TEMPERATURE MEASUREMENT
Thermal gradient is a "steady state" error that occurs when measuring the surface temperature, and is caused by the steady state gradient associated with the flow of heat from the surface being measured to the main probe body. Thus the temperature of the sensor will differ from the final surface temperature. This steady state error is dependent upon the final surface temperature above ambient. Naturally, this error does not occur when the entire probe is elevated to the temperature being measured.


Typical allowable rf signal limits at the probe tip


Self heating. Rise in sensor temperature due to instrument sensing current (at ambient \(=\mathbf{2 5}{ }^{\circ} \mathrm{C}\) ).


DIE (DATA SHEETS)
PageNo.
SECTION 6 DIE (DATA SHEETS)
203-0084-90 Differential/variable/invert amplifier ..... 6-1
203-0089-91 Vertical output amplifier ..... 6-7
203-0155-9 4-bit 80 MHz clock flash A/D converter ..... 6-17
203-0177-90 5-bit DAC ..... 6-23
203-0211-90 Channel switch ..... 6-29
203-0212-90 Vertical output ..... 6-33
203-0213-90 \(\quad 600 \mathrm{MHz}\) trigger ..... 6-43
203-0214-90 Sweep DAC \& logic ..... 6-53
203-0216-90 Z-axis, autofocus amplifier ..... 6-61
203-0227-90 Z-axis driver ..... 6-67
203-0229-90 \(\quad 300 \mathrm{MHz}\) trigger amplifier ..... 6-73
203-0231-90 Sweep integrator ..... 6-81

\section*{AMPLIFIER DIE}

\section*{DESCRIPTION}

The 203-0084-90 is an integrated circuit orignally designed as an Oscilloscope Vertical Amplifier.

The circuit is a differential in, differential out amplifier with variable gain capabilities. By cross-coupling the output collectors, the circuit is basically a multiplier. DC voltages applied to the control inputs can be used to vary gain from the nominal (maximum) gain through zero to the negative nominal gain. Diodes are provided on the control inputs to linearize the gain characteristics.

\section*{FEATURES}
- Nominal voltage gain 2.82 ( \(50 \Omega\) source and loads). Set primarily by an on-chip nichrome resistor.
- Gain variable from nominal (either polarity) to zero.
- Nominal bandwidth.
- Available in three versions:

155-0078-10 (Minipak) 155-0273-00 (14 pin DIP w/o nichrome resistors) 155-0274-00 (14 pin DIP)

\section*{SCHEMATIC}


ABSOLUTE MAXIMUMS
\begin{tabular}{|c|c|c|c|c|}
\hline SYMBOLS & IDENTIFICATION & NOTES & VALUES & UNITS \\
\hline \(\mathrm{V}_{\text {out-sub }}\) MAX & Maximum voltage of the outputs (pads 5, 6, 8, 9) relative to the substrate (pad 4). & Prevents collector-substrate breakdown of Q5, Q6, Q7, Q8. & 19 & V \\
\hline \(\mathrm{V}_{\text {out-cont }} \mathrm{MAX}\) & Maximum voltage of the outputs (pads 5, 6, 8, 9) relative to the control inputs (pads 11, 12). & Prevents collector base breakdown of Q5, Q6, Q7, Q8. & 7 & V \\
\hline \(\mathrm{V}_{\text {cont-input }} \mathrm{MAX}\) & Maximum voltage at the control inputs (pads 11, 12) relative to the inputs (pads 1, 13, 14, 16). & Prevents collector base breakdown of Q1 and Q2. & 8 & V \\
\hline \(\mathrm{V}_{\text {sub-input }}\) MAX & Maximum voltage of the substrate (pad 4) relative to the inputs (pads 1, 13, 14, 16). & Substrate voltage must be held more negative than any collector in the circuit. & 0 & V \\
\hline \(V_{\text {RO3 }}\) MAX & Maximum voltage from pad 7 to pad 11 or 12. & Maximum steering diode reverse voltage to avoid degradation. & 2 & V \\
\hline \(\mathrm{V}_{\text {R11-12 }} \mathrm{MAX}\) & Maximum voltage from pad 11 to 12 or from pad 12 to pad 11. & Maximum steering diode reverse voltage to avoid degradation. & 2.5 & V \\
\hline \(V_{\text {EB }}\) MAX & Maximum voltage from pad 2 to pads 13 or 16; or from pad 3 to pads 1 or 14 . & Maximum base-emitter reverse voltage to avoid degradation. & 2 & V \\
\hline 1 MAX & Maximum current, pads 2 and 3. & Sum of pad 2 current and pad 3 current. & \(20^{\text {a }}\) & mA \\
\hline Tj MAX & Maximum junction temperature. & & 125 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}
aContact Applications Engineering, IC Manufacturing if \(\mathbf{2 0} \mathbf{~ m A} /\) pad is to be exceeded.

PAD IDENTIFICATION
\begin{tabular}{c|l|c|l}
\hline Pad No. & \multicolumn{1}{|c|}{ Function } & Pad No. & \multicolumn{1}{|c}{ Function } \\
\hline \hline 1 & INPUT (Q2 Base) & 10 & NO PAD 10 \\
2 & BIAS (Current Source-Q1 Emitter) & 11 & GAIN ADJUST \\
3 & BIAS (Current Source-Q2 Emitter) & 12 & GAIN ADJUST \\
4 & SUBSTRATE & 13 & INPUT (Q1 Base) \\
5 & OUTPUT (Q8 Collector) & 14 & INPUT (Q2 Base) \\
6 & OUTPUT (Q6 Collector) & 15 & NO PAD 15 \\
7 & GAIN ADJUST Diodes & 16 & INPUT (Q1 Base) \\
8 & OUTPUT (Q7 Collector) & 17 & Q1 COLLECTOR \\
9 & OUTPUT (Q5 Collector) & 18 & Q2 COLLECTOR \\
\hline
\end{tabular}

\section*{ELECTRICAL CHARACTERISTICS}
\begin{tabular}{|c|c|c|c|}
\hline PARAMETER/CONDITIONS & MIN & MAX & UNITS \\
\hline BV \({ }_{\text {CEO }}\) Q1, Q2, at \(200 \mu \mathrm{~A}\) & 4.4 & & V \\
\hline \(\mathrm{BV}_{\text {CEO }}\) Q5, Q6, Q7, Q8 at \(200 \mu \mathrm{~A}\) & 4.4 & & V \\
\hline \(\mathrm{BV}_{\text {CEO SUS }} \mathrm{Q1}, \mathrm{Q} 2\) at 10 mA & 4.9 & & V \\
\hline \(B V_{\text {CEO Sus }}\) Q5, Q6, Q7, Q8 at 10 mA & 4.9 & & V \\
\hline INPUT BIAS CURRENT Q1 or Q2 (16 mA emitter current) & 64 & 225 & \(\mu \mathrm{A}\) \\
\hline NORMAL OFFSET & -14 & +14 & mV \\
\hline INVERT OFFSET & -14 & +14 & mV \\
\hline NORMAL GAIN & 2.68 & 2.96 & \\
\hline INVERT GAIN & 2.68 & 2.96 & \\
\hline NORMAL-INVERT GAIN MATCH & -0.5 & \(+0.5\) & \% \\
\hline NULL OFFSET & \(-10\) & +10 & mV \\
\hline NULL GAIN & \(-.14\) & \(+.14\) & \\
\hline 50\% GAIN & . 49 & . 51 & \(X\left(A V_{\text {NORM }}\right)\) \\
\hline OFF FEEDTHRU & \(-200\) & \(+200\) & \(\mu \mathrm{V}\) \\
\hline
\end{tabular}

\section*{PARAMETRIC DEFINITIONS}

The 203-0084-90 is specified in three different operating conditions: NORMAL, INVERT, and NULL.

In the NORMAL condition, Q5 and Q8 are conducting and Q6 and Q7 are not.

In the INVERT condition, Q6 and Q7 are conducting and Q5 and Q8 are not.

In the NULL condition, Q5, Q6, Q7 and Q8 are all conducting equally.

\section*{APPLICATIONS INFORMATION}

\section*{Output Stage Considerations}

Pads 7 and 12 can be voltage driven and pad 11 left open (Figure 1) if gain linearity as a function of control voltage is not critical. The voltage applied on pads 7 or 12 should be 1.2 to 3.7 volts above the quiescent voltage on pads \(1,14,13,16\) for conducting output transistors. For nonconducting output transistors pad 7 or 12 can be at a lower potential than this. Absolute maximum ratings must be observed however. For the case of pad 7 and 12 voltage driven and pad 11 open, gain is given by:
\(A_{V}=A_{V \text { NORM }}\left[\frac{\exp \left(\frac{q V_{14}}{k T}\right)-\exp \left(\frac{q V_{7}}{k T}\right)}{\exp \left(\frac{q V_{14}}{k T}\right)+\exp \left(\frac{q V_{7}}{k T}\right)}\right]\)
where \(A_{V \text { nORM }}=\) Normal Gain
\(\mathrm{V}_{7}=\) voltage applied on pin 7
\(\mathrm{V}_{14}=\) voltage applied on pin 12
\(\frac{k t^{4}}{q}=26 \mathrm{mV}\) at room temperature

If gain linearity as a function of control voltage is critical, pins 7 and 12 should be current driven and pin 11 returned to a voltage so as to set pins 7 and 14 voltage to the proper level as mentioned above. Figure 2 shows this type hookup. Current driving these inputs linearizes the gain by making use of the exponential current-voltage relationship of the diodes Q3 and Q4 to cancel that of the output transistors. The gain is given by:
\(A_{V}=A_{V \text { NORM }}\left[\frac{I_{14}-I_{7}}{I_{14}+I_{7}}\right]\)
where \(I_{7}=\) current into pin 7
\(I_{14}=\) current into pin 12

If variable gain of only a single polarity is desired, one pair of outputs can be used and the other pair connected to separate unused loads as in Figure 3.

If fixed maximum gain is desired, one pair of outputs can be left open as in Figure 4.

In applications where the output is to be switched from one output pair to another, the difference in offset voltage between the two outputs should not be specified any tighter than 28 mV (the sum of normal and invert offset specifications).

\section*{APPLICATIONS INFORMATION (cont)}

\section*{Input Stage Considerations}

The bias current (pin 2 and 3 current) should not exceed 18 mA per side or a decrease in the life of the part may result.


TEMPERATURE

\section*{PRODUCT PRECAUTIONS}

\section*{Input Protection}

Input base-emitter voltages should not exceed 2 V in the negative direction and 1 V in the positive direction.

\section*{Output Loading}

Outputs should be limited to less than those listed in Absolute Maximum Ratings.

\section*{Power Supply Turn-On/Turn-Off Sequence}

Substrate voltage should be turned on coincident with or before the other voltages.

\section*{Handling Procedures}

Static sensitive handling procedures should be implemented for this part.

\section*{VERTICAL OUTPUT DIE}

\section*{DESCRIPTION}

\section*{FEATURES}

The 203-0089-91 is a high frequency, 3 stage current gain amplifier. The circuit has differential inputs and outputs and is designed to be driven from a balanced \(50 \Omega\) source. It is capable of supplying large output current swings.
- 3 stage current gain amplifier
- Ft doublers
- 600 MHz bandwidth
- 160 mA output current


ABSOLUTE MAXIMUMS
\begin{tabular}{|c|c|c|c|c|}
\hline SYMBOLS & IDENTIFICATIONS & NOTES & VALUES & UNITS \\
\hline \[
\begin{aligned}
& V_{3.4 .9 \& 10} \\
& \text { MAX }
\end{aligned}
\] & Maximum voltage to be applied from pad 3, 4, \(9 \& 10\) to pad 14 (ground). & & 12.5 & V \\
\hline \begin{tabular}{l}
\(V_{5.8 \text { Sub }}\) \\
MAX
\end{tabular} & Maximum voltage allowable from pad 5 to substrate or from pad 8 to substrate. & Substrate is back of die. & 15.5 & V \\
\hline \begin{tabular}{l}
\[
V_{5.4 .10}
\] \\
MAX
\end{tabular} & Maximum voltage allowable from pad 5 to pad 4 or 10. & Maximum C-E voltage of output transistors Q2 \& Q4. & 4.0 & V \\
\hline \[
\begin{aligned}
& V_{B-3.9} \\
& \text { MAX }
\end{aligned}
\] & Maximum voltage allowable from pad 8 to pad 3 or 9 . & Maximum C-E voltage of output transistors Q1 \& Q3. & 4.0 & V \\
\hline \[
\begin{array}{r}
V_{12.13} \\
16-1 \\
\text { MAX }
\end{array}
\] & Maximum voltage allowable on pad 13 with respect to pad 2 or on pad 16 with respect to pad 1. & Maximum reverse bias on B-E junction of Q13 \& Q14. & 2.0 & V \\
\hline I Out MAX & Maixmum output current pad 5 or pad 8. & & 160 & mA \\
\hline TJ & Operating junction temperature & & \[
\begin{aligned}
& -15 \text { to } \\
& +125
\end{aligned}
\] & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{T}_{\text {STG }}\) & Storage temperature & & \[
\begin{aligned}
& -55 \text { to } \\
& +125
\end{aligned}
\] & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{Maximum Assembly Temperature}
\begin{tabular}{llll} 
Die Attach & 1 Minute Maximum & 400 & \({ }^{\circ} \mathrm{C}\) \\
Die Attach Adhesive Cure & 2 Hours Maximum & 150 & \({ }^{\circ} \mathrm{C}\) \\
Wire Bond & 1 Minute Maximum & 350 & \({ }^{\circ} \mathrm{C}\) \\
Bake Out/Lid Attach & 2 Hours Maximum & 175 & \({ }^{\circ} \mathrm{C}\)
\end{tabular}

\section*{PAD IDENTIFICATION}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Pad \# Description} \\
\hline 1 & - signal input \\
\hline 2 & 1st stage collector supply \\
\hline 3 3 & 3rd stage emitter current source \\
\hline 5 & + signal output \\
\hline 6 & 3rd stage bias \\
\hline 7 & \(V_{c c}\) \\
\hline 8
9 & - signal output \\
\hline 10 \} & 3rd stage emitter current source \\
\hline 11 & 1st stage collector supply \\
\hline 12 & + signal input \\
\hline 13 & 1st stage emitter current source \\
\hline 14 & substrate gnd \\
\hline 15 & 2nd stage bias \\
\hline 16 & 1st stage emitter current source \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS
\begin{tabular}{l|l|c|c|c}
\hline \multicolumn{1}{c|}{ SYMBOL } & \multicolumn{1}{c|}{ PARAMETER } & MIN & MAX & UNITS \\
\hline \hline \(\mathrm{I}_{\mathrm{OS}}\) & \begin{tabular}{l} 
Output Offset Current \(\left(\mathrm{I}_{5}-\mathrm{I}_{8}\right)\) \\
Input Current \(=0\)
\end{tabular} & -8.2 & 8.2 & mA \\
\hline \(\mathrm{Ai}_{0}\) & \begin{tabular}{l} 
Current Gain (Ctr. Screen) \\
Input Current \(=0+\Delta\) \\
See Note 1
\end{tabular} & 13.85 & 20.65 & \\
\hline \(\mathrm{Ai}_{1}\) & \begin{tabular}{l} 
Current Gain (Top Screen) \\
Input Current \(=1.5 \mathrm{~mA}+\Delta\) \\
See Note 1
\end{tabular} & 13.85 & 20.65 & \\
\hline \(\mathrm{Ai}_{2}\) & \begin{tabular}{l} 
Current Gain (Bot. Screen) \\
Input Current \(=1.5 \mathrm{~mA}+\Delta\) \\
See Note 1
\end{tabular} & 13.85 & 20.65 & \\
\hline \(\mathrm{Ai}_{1}\) & \begin{tabular}{l} 
Gain Linearity
\end{tabular} & -5.0 & +5.0 & \(\%\) \\
\hline \(\mathrm{Ai}_{2}\) & Gain Linearity & -5.0 & +5.0 & \(\%\) \\
\hline & \(\mathrm{f}_{\mathrm{T}}\) of test key transistor at \(\mathrm{V}_{\mathrm{CE}}=4 \mathrm{~V}\), & 1.5 & 4 & GHz \\
\(\mathrm{I}_{\mathrm{C}}=80\) mA
\end{tabular}

NOTE 1: As tested in the Test Circuit.

\section*{DEFINITIONS}

\section*{Output Offset Current, IOS}

The difference in current flowing in the two outputs with zero input current.

\section*{Current Gain, Ai}

For determining current gain the die is assumed to be differentially driven by a current source. Current flowing into one input flows out the other input ( \(I_{B}=I_{A}\) in Figure 2 ). The current "loops" through the amplifier and is known as "Input Loop Current".

Three gains are specified, with different quiescent input currents:
\begin{tabular}{l|c|c|l} 
& \multicolumn{3}{c}{\begin{tabular}{c} 
Quiescent Input \\
Loop Current
\end{tabular}} \\
\hline (Center Screen) & \(\mathrm{Ai}_{0}\) & 0 & \begin{tabular}{l} 
Change in Input Loop Current ( \(\Delta\) ) \\
Change (2 mA pk to pk signal)
\end{tabular} \\
\hline (Top Screen) & \(\mathrm{Ai}_{1}\) & 1.0 mA to -1.0 mA & \begin{tabular}{l}
+1.0 mA to -1.0 mA \\
Change (2 mA pk to pk signal)
\end{tabular} \\
\hline (Bottom Screen) & \(\mathrm{Ai}_{2}\) & -1.5 mA & \begin{tabular}{l}
+1.0 mA to -1.0 mA \\
Change (2 mA pk to pk signal)
\end{tabular} \\
\hline
\end{tabular}

All parameters are specified per the schematic diagram and are valid only at \(25^{\circ} \mathrm{C}\) ambient temperature. This circuit approximates the usage in the 155-0077-00 part number as used in the 7704A instrument. The load is assumed to provide current paths from a positive supply to the outputs. The op-amp automatically balances the circuit. This could alternately be done manually by varying the voltage at pad 10 for maximum gain. The \(50 \Omega\) resistors on the inputs are considered to be an integral part of the amplifier. That is, the inputs are defined to be the points indicated as "input" in Figure 1.



FIGURE 2

\section*{DEFINITIONS (continued)}

Currents \(I_{C}\) and \(I_{D}\) of Figure 2 always flow into the die as they are collector currents of transistors. With no signal applied to the input, the output currents should be equal except for offset currents. With input applied, the output currents swing above and below their quiescent value with one current change, \(\Delta I_{C}\) or \(\Delta I_{D}\) ( \(\Delta I_{C}=\Delta I_{D}\) nominally), appears to flow in a loop into one output and out the other. The term "Output Loop Current" is used to describe variations in the output currents from quiescent conditions.

Current gain is defined as:
\(A i_{0}=\frac{\Delta I_{C}-\Delta I_{D}}{\Delta I_{\mathrm{A}}+\Delta I_{\mathrm{B}}}\)

\section*{Gain Linearity}

Sometimes called gain compression or expansion. This parameter measures the change in small signal gain as a function of input quiescent current, expressed as a percent.
\(\Delta A i_{1}=\frac{A i_{1}-A i_{0}}{A i_{0}} \times 100 \%\)
\(\Delta A i_{2}=\frac{A i_{2}-A i_{0}}{A i_{0}} \times 100 \%\)

\section*{APPLICATIONS INFORMATION}

\section*{Typical Bias Configuration}

Figure 3 shows a typical biasing scheme for the device.

\section*{Electrical Considerations}

Typical DC operating voltages and currents are indicated in Figure 3.


NOTE: The circuit was designed for optimum performance at these bias voltages. Caution should be exercised in making significant changes from these levels.

FIGURE 3

\section*{APPLICATIONS INFORMATION (cont)}

\section*{Biasing}

In general, the biasing is accomplished as follows:
1. Apply 12 volts to pad 11 and approximately 10.25 volts to pad 10 .
2. Decide on the standing output current on pads 9 and 12. This current should not exceed 80 mA per side. Choose the resistors on pads \(7,8,14,15\) to provide half of this current at each emitter (not to exceed 40 mA ). The voltage at these points is about one \(V_{B E}\) drop below the pad 10 voltage or about 9.5 volts.
3. The currents flowing out of the emitters from pads 2 and 4 through resistors to the negative supplies are chosen. These currents are referred to as the "tail" currents.
4. Apply approximately 5.75 volts to pad 3.
5. Choose the biasing networks on pads 6 and 16 to provide a voltage of approximately 6 volts. This voltage must be approximately .25 volt higher than that applied at pad 3 to provide equal currents in Q1 and Q8 and in Q9 and Q10. The current flowing into pads 6 and 16 is approximately the pad 2 and 4 tail current multiplied by .98 (Q13, Q14 \(\times\) Q11, Q12 \(\simeq .98\) ).

NOTE: The circuit was designed for optimum performance at these bias voltages. Caution should be exercised in making significant changes from these levels.

\section*{Gain Polarity}

The gain polarity is as follows:
An increase in current into pad 1, or a decrease in current into pad 5, causes the current flowing into pad 12 to increase and the current flowing into pad 9 to decrease.

\section*{APPLICATIONS INFORMATION (cont)}

\section*{Typical Load Configuration}

The typical application is in a hybrid used to drive the vertical deflection plates of a CRT. Two discrete output transistor chips are included in the hybrid to provide the large voltage swings necessary.


FIGURE 4
APPLICATION TO DRIVE CRT DEFLECTION PLATES

It should be noted, that although this die is capable of delivering up to 80 mA per side, application of these capabilities becomes dependent on the output discrete transistors packaged in the hybrid(s). Device history shows that vertical output applications of 100 MHz BW driving a small screen (portable) oscilloscope are not drive limited. However, large screen and/or 250 MHz BW instruments do not always make gain/aberration (bandwidth requirements with acceptable plant yields).

The minimum gain has been adjusted so that the die plus discrete output transistors with Beta \(\geqslant 30\) will pass the hybrid spec of 13.85 to 20.65 .

\section*{4-BIT PARALLEL A/D CONVERTER}

\section*{DESCRIPTION}

The 203-0155-91 is a 17 level digitizer, designed for use in parallel-series A/D converter systems. It consists of 16 comparator cells, digital encoding, circuitry, and output drivers.

\section*{FEATURES}
- 80 MHz Maximum Clock Rate
- 850 mW Power Dissipation
- ECL Output
- Two 203-0155-01's may be combined for a 5-bit parallel A/D converter
- 5 MHz Input Bandwidth

\section*{BLOCK DIAGRAM}


ABSOLUTE MAXIMUMS
\begin{tabular}{|c|c|c|c|}
\hline Symbol & Limits & Units & Notes \\
\hline \(\mathrm{V}_{\mathrm{cc}}\) & 0 to +6 & V & \\
\hline \(\mathrm{V}_{\mathrm{BB}}\) & 0 to +6 & V & \\
\hline \(V_{\text {EELIN }}\) & -6 to 0 & V & \\
\hline \(V_{\text {EEDIG }}\) & -6 to 0 & V & \\
\hline \(V_{C C}-V_{B B}\) & 0 to 6 & V & \\
\hline \(V_{\text {IN }}\) & -1.65 to 3.2 & V & \\
\hline \(\mathrm{Vi}, \mathrm{i}=1-16\) & -1.65 to 3.2 & V & \\
\hline \(V_{\text {IN }}-\mathrm{Vi}, 1=1-16\) & 0 to 3.3 & V & See Note \\
\hline 1 (ECL OUT) & 0 to 10 & mA & Output Current From
\[
B_{0}, B_{1}, B_{2}, B_{3}, B_{x}
\] \\
\hline \(V_{\text {SP }}\) & -2 to -4 & V & \\
\hline \(V_{S N}\) & -2 to -4 & V & \\
\hline
\end{tabular}

NOTE: Maximum differential voltage between \(\mathrm{V}_{\mathrm{IN}}\) and any \(\mathbf{V i}(\mathbf{i}=1-16)\) should not exceed 3.3 V . Larger voltages may degrade the current gain of input transistors which will affect offset voltage. This results from reverse bias of emitter-base diodes.

\section*{MAXIMUM STORAGE TEMPERATURES}

Non-Destructive (In Clean, Dry Environment) \(75^{\circ} \mathrm{C}\)

\section*{OPERATING JUNCTION TEMPERATURES}
a. Accelerated Burn In After Assembly Into Hybrid \(125^{\circ} \mathrm{C}\)
b. In Product Service
\(125^{\circ} \mathrm{C}\)

\section*{Assembly}
\begin{tabular}{lll} 
Die Attach & 1 Minute Maximum & \(400^{\circ} \mathrm{C}\) \\
Wire Bond & 1 Minute Maximum & \(350^{\circ} \mathrm{C}\) \\
Bake Out/Lid Attach & 2 Hours Maximum & \(175^{\circ} \mathrm{C}\)
\end{tabular}

TERMINAL IDENTIFICATION
\begin{tabular}{|c|c|c|c|}
\hline Pad No. & Name & Input/Output & Description \\
\hline 1 & \(V_{S N}\) & Input & Negative Strobe \\
\hline 2 & \(\mathrm{V}_{\text {SP }}\) & Input & Positive Strobe \\
\hline 3 & \(V_{\text {EELIN }}\) & Supply & Negative Analog Supply \\
\hline 4 & \(V_{1}\) & Input & Reference Voltage (Lowest) \\
\hline 5 & \(V_{2}\) & Input & Reference Voltage \\
\hline 6 & \(V_{3}\) & Input & Reference Voltage \\
\hline 7 & \(V_{4}\) & Input & Reference Voltage \\
\hline 8 & \(V_{5}\) & Input & Reference Voltage \\
\hline 9 & \(\mathrm{V}_{6}\) & Input & Reference Voltage \\
\hline 10 & \(\mathrm{V}_{7}\) & Input & Reference Voltage \\
\hline 11 & \(V_{8}\) & Input & Reference Voltage \\
\hline 12 & \(\mathrm{V}_{9}\) & Input & Reference Voltage \\
\hline 13 & \(\mathrm{V}_{10}\) & Input & Reference Voltage \\
\hline 14 & \(V_{11}\) & Input & Reference Voltage \\
\hline 15 & \(V_{12}\) & Input & Reference Voltage \\
\hline 16 & \(\mathrm{V}_{13}\) & Input & Reference Voltage \\
\hline 17 & \(V_{14}\) & Input & Reference Voltage \\
\hline 18 & \(\mathrm{V}_{15}\) & Input & Reference Voltage \\
\hline 19 & \(\mathrm{V}_{16}\) & Input & Reference Voltage (Highest) \\
\hline 20 & \(\mathrm{V}_{\text {IN }}\) & Input & Analog Input \\
\hline 21 & GND-LIN & Supply & Analog Ground \\
\hline 22 & \[
V_{c c}
\] & Supply & Positive Supply \\
\hline 23 & GND-DIG & Supply & Digital Ground \\
\hline 24 & \(\mathrm{B}_{3}\) & Output & MSB \\
\hline 25 & \(\mathrm{B}_{\mathrm{x}}\) & Output & Over-Range \\
\hline 26 & \(\mathrm{B}_{0}\) & Output & LSB \\
\hline 27 & \(\mathrm{B}_{1}\) & Output & LSB +1 \\
\hline 28 & \(\mathrm{B}_{2}\) & Output & LSB +2 \\
\hline 29 & \(\mathrm{V}_{\text {EE }}\)-DIG & Supply & Negative Digital Supply \\
\hline 30 & \(V_{B B}\) & Supply & Base Bias Supply \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS
\begin{tabular}{|c|c|c|c|c|}
\hline Parameter/Conditions & Symbol & Min & Max & Units \\
\hline Positive Supply (5.0 V) & \(\mathrm{V}_{\mathrm{cc}}\) & 4.8 & 5.5 & V \\
\hline Base Supply (3.7 V) & \(V_{B B}\) & \(\mathrm{V}_{\text {IN }}+0.7\) & 3.7 & V \\
\hline Negative LIN Supply (-5.2 V) & \(\mathrm{V}_{\text {EE }}\)-LIN & -5.5 & -5.0 & V \\
\hline Negative DIG Supply (-5.2 V) & \(\mathrm{V}_{\text {EE }}-\mathrm{DIG}\) & -5.5 & \(-5.0\) & V \\
\hline Positive Supply Current (Nominal Supply Voltages) & \(1\left(V_{c c}\right)\) & 60 & 100 & mA \\
\hline Base Supply Current (Nominal Supply Voltages) & \(1\left(V_{B E}\right)\) & 0.1 & 0.8 & mA \\
\hline Negative LIN Supply Current (Nominal Supply Voltages) & \(1\left(\mathrm{~V}_{\text {EELIN }}\right)\) & 28 & 52 & mA \\
\hline Negative DIGITAL Supply Current (Nominal Supply Voltages) & \[
\begin{aligned}
& \mathrm{I}_{\mathrm{C}} \\
& \mathrm{I}_{\mathrm{EE}}\left(\mathrm{~V}^{-\mathrm{DIG})}\right.
\end{aligned}
\] & 23 & 45 & mA \\
\hline Input Range & \(\mathrm{V}_{\text {IN }}\) & -1.536 & +1.536 & V \\
\hline Reference Input Range & \[
\begin{aligned}
& \mathrm{Vi} \\
& i=116
\end{aligned}
\] & -1.536 & +1.536 & V \\
\hline Differential Input Range & \(V_{\mathbb{1 N}}-\mathrm{Vi}\) & \(-3.2\) & 3.2 & V \\
\hline Strobe Levels & \[
\begin{aligned}
& V_{S P} \\
& V_{S N}
\end{aligned}
\] & -3.35 & \(-3.15\) & V \\
\hline Analog Input Bias Current & \(1\left(V_{\text {IN }}\right)\) & 15 & 160 & \(\mu \mathrm{A}\) \\
\hline Reference Input Current & \[
\begin{aligned}
& I\left(V_{\mathbb{N}}\right) \\
& i=116
\end{aligned}
\] & 1.0 & 10 & \(\mu \mathrm{A}\) \\
\hline ECL-OUT Low & \(\mathrm{V}_{\text {Out }}(\mathrm{LO})\) & -2.0 & -1.6 & V \\
\hline ECL-OUT High & \(\mathrm{V}_{\text {OUT }}(\mathrm{HI})\). & -0.98 & \(-0.7\) & V \\
\hline Differential Offset Non-Linearity Guaranteed over \(\mathrm{V}_{\mathbb{I N}}\) Range & \(\Delta V_{\text {os }}\) & \[
\begin{aligned}
& -5 \\
& -1.5
\end{aligned}
\] & \[
\begin{aligned}
& +5 \\
& +1.5
\end{aligned}
\] & \[
\begin{aligned}
& m V \\
& V
\end{aligned}
\] \\
\hline
\end{tabular}
\(f_{T}\) of test key transistors: \(\mathbf{1 . 8} \mathbf{G H z}\) min. at \(V_{C E}=4 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=\mathbf{2 m A}\).

\section*{Applications Information}

To function properly, it is required that the reference voltage inputs be monotonically increasing from \(V_{1}\) to \(V_{16}\). The binary output code "rolls over" from 01111 to 10000 when \(V_{\text {IN }}\) is greater than \(V_{16}\).

Two chips may be connected together to form a 5 -bit parallel A/D converter. The referenece voltage inputs are stacked in series while the analog input and strobe lines are connected in parallel. The four lower order bits may be wired together by pairs with the over range bit of the lower chip becoming the MSB.

Careful attention to layout is essential as the part is susceptible to interaction of the strobe signals and input and references. A small ( \(22 \Omega\) ) resistor in the input line is helpful. Bypassing close to the circuit is needed.
\(V_{B B}\) should not come up before \(V_{C C}\).

\section*{ECL D/A DIE}

\section*{DESCRIPTION}

The 203-0177-90 is designed for use with the 203-0155-00 in parallel serial A/D converter systems. Five precision binary scaled current sources are independently switched to either I or \(\overline{1}\), two supplementary current outputs. Switching is done by an emitter coupled pair driven differentially by an amplifier which converts the single ended input to a level-shifted differential drive.

\section*{FEATURES}
- 5 BIT DAC
- Settling time to 8 bits \(20 \mathrm{~ns}(240 \Omega, 10 \mathrm{pF}\) load)
- Power Supply - 5.2 volts
- Input ECL compatible
- Two unswitched LSB current sources

BLOCK DIAGRAM


\section*{ABSOLUTE MAXIMUMS}
\begin{tabular}{l|c|c}
\hline \begin{tabular}{c} 
ELECTRICAL \\
SYMBOL
\end{tabular} & VALUE & UNITS \\
\hline \hline \(\mathrm{B}_{1}\) & -4 to 0 & V \\
\(\mathrm{~B}_{2}\) & -4 to 0 & V \\
\(\mathrm{~B}_{4}\) & -4 to 0 & V \\
\(\mathrm{~B}_{8}\) & -4 to 0 & V \\
\(\mathrm{~B}_{16}\) & -4 to 0 & V \\
\(\mathrm{Bias}^{\mathrm{I}}\) & -12 to -2 & V \\
l & -2 to +5 & V \\
l & -2 to +5 & V \\
\(\mathrm{I}_{1 \mathrm{~A}}\) & -2 to +5 & V \\
\(\mathrm{l}_{1 \mathrm{~B}}\) & -2 to +5 & V \\
\(\mathrm{~F}_{\mathrm{B}}\) & -2 to +5 & V \\
\(\mathrm{~V}_{\mathrm{EE}}\) & -6 to 0 & V \\
\hline
\end{tabular}

Emitter connections \(R_{1}, R_{1 A}, R_{1 B}, R_{2}, R_{4}, R_{8}, R_{R 8}\), and \(R_{16}\) should never be more positive than Bias.
Bypass must not be pulled down externally below -1.5 volts.

TERMINAL IDENTIFICATION
\begin{tabular}{|c|c|c|c|}
\hline PIN NUMBER & NAME & INPUT/OUTPUT & DESCRIPTION \\
\hline 1 & \(\mathrm{R}_{1 \mathrm{~B}}\) & Current Source & ILSB A Current \\
\hline 2 & \(\mathrm{R}_{1}\) & Current Source & ILSB A Current \\
\hline 4 & \(\mathrm{R}_{2}\) & Current Source & 2ILSB Current \\
\hline 5 & \(\mathrm{R}_{8}\) & Current Source & 8ILSB Current \\
\hline 6 & \(\mathrm{R}_{\text {R8 }}\) & Current Source & Emitter Reference Current \\
\hline 7 & BIAS & Output & \\
\hline 8,9 & \(\mathrm{R}_{16}\) & Current Source & 16 ILSB (MSB) Current \\
\hline 10 & IREF & Input & Collector Reference Current \\
\hline 11 & \(\mathrm{R}_{4}\) & Current Source & 4ILSB Current \\
\hline 12 & İ & Output & Supplementary Current Output \\
\hline 13 & 1 & Output & Current Output \\
\hline 14 & GND & & Ground \\
\hline 15 & VEE & Neg. Supply & \\
\hline 16 & \(\mathrm{B}_{4}\) & Input & LSB + 2 Input \\
\hline 17 & \(\mathrm{B}_{16}\) & Input & MSB Input \\
\hline 18 & \(\mathrm{B}_{8}\) & Input & LSB + 3 Input \\
\hline 19 & \(\mathrm{B}_{2}\) & Input & LSB + 1 Input \\
\hline 20 & \(\mathrm{B}_{1}\) & Input & LSB Input \\
\hline 21 & Bypass & Output & Bypass Capacitor \\
\hline 22 & ILSB B & Output & Utility LSB Current Output-B \\
\hline 23 & ILSB A & Output & Utility LSB Current Output-A \\
\hline 24 & \(\mathrm{R}_{1 \mathrm{~A}}\) & Current Source & ILSB B Current \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS
\begin{tabular}{|c|c|c|c|c|}
\hline PARAMETER/CONDITIONS & SYMBOL & MIN & MAX & UNITS \\
\hline Logical "Low" to Inputs \(B_{1}, B_{2}, B_{4}, B_{8}, B_{16}\), & ECL (Lo) & -2.0 & -1.62 & V \\
\hline Logical "High" to Inputs \(\mathrm{B}_{1}, \mathrm{~B}_{2}, \mathrm{~B}_{4}, \mathrm{~B}_{8}, \mathrm{~B}_{16}\), & ECL (Hi) & -0.96 & -0.7 & V \\
\hline Negative Supply & \(V_{\text {EE }}\) & \(-5.5\) & -5.0 & V \\
\hline Nominal \(=6.4 \mathrm{~mA}\) Reference Current & \(\mathrm{I}_{\text {REF }}\) & & 8 & mA \\
\hline \begin{tabular}{l}
Nominal \(=12.8 \mathrm{~mA}\) \\
Most Significant Bit Current
\end{tabular} & \(\mathrm{I}_{\text {MSB }}\) & & 16 & mA \\
\hline Output Compliance & \[
\begin{aligned}
& \mathrm{I} \\
& \overline{\mathrm{I}}
\end{aligned}
\] & -1.6 & 3.5 & V \\
\hline Output Compliance & \[
\begin{aligned}
& \mathrm{I}_{1 \mathrm{~A}} \\
& \mathrm{I}_{1 B}
\end{aligned}
\] & -1.6 & 3.5 & V \\
\hline Bias for Current Sources & Bias & \(-9\) & -2.7 & V \\
\hline Power Supply Current \(V_{E E}\) (Dig) & \(\mathrm{I}\left(\mathrm{V}_{\mathrm{EE}}-\mathrm{D}\right)\) & -15 & -10 & mA \\
\hline Non-Linearity (Full Scale)* & Error & & 0.025 & \% Error \\
\hline Non-Linearity (Full Scale)* & Error & & 0.1 & \% Error \\
\hline
\end{tabular}
*Non-linearity is defined to be sure of absolute values and therefore must be non-negative.

\section*{APPLICATIONS INFORMATION}

The part is designed to operate with a reference of +3.072 volts or \(\pm 1.536\) volts. Full scale output current is then 25.6 mA . A -5.2 volt digital supply is needed to set up the reference current. Digital inputs are ECL compatible and sink 1 mA each.

The component is tested to have linearity better than \(\pm 0.05 \%\) ( \(\pm 1 / 2\) LSB at 10 bits). More specifically, the 4 LSB currents ratio binarily to the MSB current within \(\pm 0.05 \%\) of full scale where full scale is defined to be twice the MSB current. Differential non-linearity is also tested so that each 1-bit transition causes an output change of \(1 / 32\) of full scale \(\pm 0.05 \%\) full scale. A final check of overall linearity is made by testing that the sum of the absolute values of each bit current error is less than \(0.1 \%\) of full scale. This guarantees an overall non-linearity of less than \(\pm 0.05 \%\).

Because of the finite and variable output resistance, maximum accuracy will be achieved by operating the output into a fixed voltage. It is expected that this will be necessary to achieve 10-bit accuracy.

Greatest accuracy may be attained by functional trimming the emitter current setting hybrid resistors. The trimming should be done with output voltage constant.

To minimize the effect of emitter-base diode offsets and drifts a large voltage should be maintained across the emitter current setting resistors. At least 1 V for 8 -bit accuracy and 4 V for 10-bit.

In connecting the biasing feedback loop, it should be observed that there is an inverting gain within the IC and the op-amp inputs must be as indicated in the figure below.


BIASING CIRCUIT FOR 203-0177-90

Pin 21 (bypass) is a voltage supply derived on the IC (about -1.9 V ). Slightly faster setting of the output may be realized by bypassing this node with a capacitor (about \(0.1 \mu \mathrm{~F}\) ) to ground.

Digital input signals should not exceed the ECL range, -0.7 V to -2.0 V during operation to avoid saturating transistors within the IC.

The utility current sources ILSBA and ILSBB are designed to carry one LSB current and are provided for a specific application. They may be used as required. If unused, it is recommended that the emitters be connected to Bias (Pin 7) and the collectors to Bypass (Pin 21).
\(6\)

\section*{CHANNEL SWITCH DIE}

\section*{DESCRIPTION}

The 203-0211-90 is a four input one output channel switch and amplifier intended for 300 MHz vertical deflection systems. Four TTL compatible control pins allow selection of any one of the four inputs or the sum of CH 1 and CH 2 .

\section*{FEATURES}
- 600 MHz bandwidth
- Output intended to drive \(150 \Omega\) load
- \(\mathrm{CH} 1 \& \mathrm{CH}_{2}\)
- Current driven
- Differential transresistance
( 75 mV per Div/ 25 mA
per Div) is \(300 \Omega \pm 3 \%\)
- \(\mathrm{CH} 3,4, \& 5\)
- Voltage driven
- Voltage gain \(.75 \pm 2 \%\)


ABSOLUTE MAXIMUMS
\begin{tabular}{l|l|c|c|c}
\hline SYMBOLS & \multicolumn{1}{|c|}{ IDENTIFICATION } & MIN & MAX & UNITS \\
\hline \hline \(\mathrm{T}_{J}\) & Operating Junction Temperature & -15 & +125 & C \\
\hline \(\mathrm{T}_{\text {SIG }}\) & Storage Temperature & -62 & +125 & C \\
\hline V-VS & \begin{tabular}{l} 
Maximum Input Voltage -VS1, \\
-VS2, -VS3, -VS4 Maximum \\
Input Range \\
CH1 \& CH2 Differential Inputs \\
CH3 \& CH4 \& CH5 Maximum Input \\
range
\end{tabular} & -.3 & VCC5 +.3 & V \\
& \begin{tabular}{l} 
Maximum Input Current Range \\
CH1 \& CH2 Differential Inputs
\end{tabular} & \(+\mathbf{1 . 5}\) & \(+\mathbf{+ 1 . 5}\) & V \\
\hline \begin{tabular}{ll} 
I-CH1] \\
ICH2
\end{tabular} & +5 V Supply & -24 & mA \\
\hline V-CC5 & -5 V Supply & -0.3 & 7.0 & V \\
\hline V-EE5 & HFADJ Voltage & +0.3 & -7.0 & V \\
\hline V-HFADJ & IBIAS Voltage & -5.0 & +5.0 & V \\
\hline V-IBIAS & & & +5.0 & V \\
\hline
\end{tabular}

\section*{Assembly}
\begin{tabular}{lll} 
Die Attach & 1 minute maximum & \(400^{\circ} \mathrm{C}\) \\
Wire Bond & 1 minute maximum & \(350^{\circ} \mathrm{C}\) \\
Bake Out/Lid Attach & 2 hours maximum & \(175^{\circ} \mathrm{C}\)
\end{tabular}

TERMINAL IDENTIFICATION
\begin{tabular}{|c|c|c|c|}
\hline PAD \# & NAME & INPUT/OUTPUT & DESCRIPTION \\
\hline 1 & CH5- & Input & CH5 Inverting Input \\
\hline 2 & CH4- & Input & CH4 Inverting Input \\
\hline 3 & CH4+ & Input & CH4 Noninverting Input \\
\hline 4 & CH3- & Input & CH3 Inverting Input \\
\hline 5 & CH3+ & Input & CH3 Noninverting Input \\
\hline 6 & CH5+ & Input & CH5 Noninverting Input \\
\hline 7 & + Out & Output & + Differential Output \\
\hline 8 & Gnd & & Ground Terminal \\
\hline 9 & CH3/Not & Input & CH3 Select \\
\hline 10 & CH4/Not & Input & CH 4 Select \\
\hline 11 & HFADJ & Bias & High Frequency Adjust \\
\hline 12 & VCC5 & Bias & +5V Supply \\
\hline 13 & Bypass & & Bypass ( \(.01 \mu \mathrm{~F}\) to GND) \\
\hline 14 & CH2- & Input & CH 2 Inverting Input \\
\hline 15 & CH2+ & Input & CH2 Noninverting Input \\
\hline 16 & CH1- & Input & CH1 Inverting Input \\
\hline 17 & \(\mathrm{CH} 1+\) & Input & CH1 Noninverting Input \\
\hline 18 & CH1/Not & Input & CH1 Select \\
\hline 19 & \(\mathrm{CH} 2 / \mathrm{Not}\) & Input & CH2 Select \\
\hline 20 & V31 & Test & Test Point \\
\hline 21 & VEE5 & Bias & \(-5 \vee\) Supply \\
\hline 22 & IBIAS & Bias & Bias Input \\
\hline 23 & GND & & Ground Terminal \\
\hline 24 & -Out & Output & - Differential Output \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS
\begin{tabular}{|c|c|c|c|c|}
\hline NUMBER & CONDITIONS & MIN & MAX & UNITS \\
\hline 1 & DC Channel Isolation & 300:1 & & \\
\hline 2 & \(\mathrm{CH} 1, \mathrm{CH} 2\) Differential Transresistance mV Output/mA Input 75 mV per div/. 25 mA per div & 292.5 & 307.5 & \(\Omega\) \\
\hline 3 & CH1 \& CH2 Small Signal Gain w/300 mV output. (\% of center screen gain) & 98.2 & 99.5 & \% \\
\hline 4 & CH3 \& CH4 \& CH5 Differential Voltage Gain & . 735 & . 765 & \\
\hline 5 & CH1 \& CH2 Gain Mismatch & \(-.5\) & . 5 & \% \\
\hline 6 & CH3 \& CH4 \& CH5 Gain Mismatch Calculated & -. 5 & . 5 & \% \\
\hline 7 & CH1 or CH 2 to \(\mathrm{CH} 3, \mathrm{CH} 4, \mathrm{CH} 5\) Mismatch (gain) & \(-3.0\) & 3.0 & \% \\
\hline 8 & \(\mathrm{CH} 1, \mathrm{CH} 2\) add mode, difference from CH 1 mode gain & \(-1.0\) & 1.0 & \% \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS (cont)
\begin{tabular}{|c|c|c|c|c|}
\hline NUMBER & CONDITIONS & MIN & MAX & UNITS \\
\hline 9 & CH1, CH2 Input Common Mode bias voltage at - 12 mA common mode bias current & \(-0.350\) & \(-0.500\) & V \\
\hline 10 & CH5 Input Resistance, each side Pad 1 to 8, Pad 6 to 8 & 15K & & \(\Omega\) \\
\hline 11 & CH5 Bias Current at 0 V input Pads \(1 \& 6\) & \(-10.0\) & 100 & \(\mu \mathrm{A}\) \\
\hline 12 & \begin{tabular}{l}
VS1, VS2, VS3, VS4 \\
Bias current at 0.4 V input Bias current at 2.4 V input VIL Valid Range for Low Data VIH Valid Range for High Data
\end{tabular} & \[
\begin{aligned}
& -0.60 \\
& -10.0 \\
& -.30 \\
& 2.0
\end{aligned}
\] & \[
\begin{aligned}
& +0.0 \\
& +10.0 \\
& +.80 \\
& \text { VCC5 }+.3
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{mA} \\
& \mu \mathrm{~A} \\
& \mathrm{~V} \\
& \mathrm{~V}
\end{aligned}
\] \\
\hline 13 & CH3, CH4 Common Mode Bias Voltage Inputs Open Pads \(2 \& 3,4\) \& 5 & -50 & \(+50\) & mV \\
\hline 14 & Output Common Mode Voltage Pads 7 \& 25 & -50 & +50 & mV \\
\hline 15 & VEE5 Current Range Pad 23 & -90 & -140 & mA \\
\hline 16 & VCC5 Current Range Pad 12 & 100 & 140 & mA \\
\hline 17 & Input Resistance Differential Input CH1 (Pads 17 \& 18) CH2 (Pads 15 \& 16) CH3 (Pads \(4 \& 5\) ) CH4 (Pads 2 \& 3) & \[
\begin{aligned}
& 145 \\
& 147
\end{aligned}
\] & \[
\begin{aligned}
& 153 \\
& 153
\end{aligned}
\] & \(\Omega\)

\(\Omega\) \\
\hline 18 & \begin{tabular}{l}
Output Resistance \\
Each side of differential output Pads 7 \& 24
\end{tabular} & 73.5 & 76.5 & \(\Omega\) \\
\hline 19 & Output Offset for Channels 1, 2, 3, 4 & \(-37.5\) & \(+37.5\) & mV \\
\hline 20 & Output Offset for Channel 5 & -20.0 & \(+20.0\) & mV \\
\hline 21 & Output Offset, Add ( \(\mathrm{CH} 1+\mathrm{CH} 2)\) Mode & -75 & \(+75\) & mV \\
\hline 22 & IBIAS, Bias Voltage Range & \(-0.100\) & \(+0.100\) & V \\
\hline 23 & HFADJ, Bias Voltage Range & \(-3.65\) & -4.75 & V \\
\hline 24 & Power Dissipation (For Reference Only) & & 1.2 & W \\
\hline
\end{tabular}

\section*{VERTICAL OUTPUT AMPLIFIER}

\section*{DESCRIPTION}

The 203-0212-90 is a high bandwidth, high gain, high linearity, low thermal distortion, vertical output amplifier. The IC is configured as a two stage differential input/differential output transconductance block utilizing the cascomp error correcting topology in each stage. It is intended to drive a common base output stage to provide necessary voltage compliance.

\section*{FEATURES}
- Potentiometer controlled gain
- Centering adjustments
- Trace separation amp
- Beam find
- TTL compatible gating
- Low power dissipation
- SHIII process
- DC to 660 MHz bandwidth

\section*{BLOCK DIAGRAM}


ABSOLUTE MAXIMUMS
\begin{tabular}{|c|c|c|c|c|}
\hline SYMBOL & IDENTIFICATION & MIN & MAX & UNITS \\
\hline TJ & Operating Junction Temperature & -15 & \(+150\) & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{T}_{\text {Sto }}\) & Storage Temperature & -55 & +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Pad 1 Pad 2 & Input "A" & \(V_{\text {EE }}-0.3\) & \(V_{c c 5}+0.3\) & v \\
\hline \begin{tabular}{l}
Pad 27 \\
Pad 28
\end{tabular} & Input "B" & \(\mathrm{V}_{\mathrm{EE}}-0.3\) & \(\mathrm{V}_{\mathrm{cc5} 5}+0.3\) & V \\
\hline & Maximum Differential Voltage Input "A" to Input "B" & -1.0 & 1.0 & v \\
\hline Pad 3 & TSEP OUT & \(\mathrm{V}_{\mathrm{EE}}-0.3\) & \(\mathrm{v}_{\text {cc5 }}+0.3\) & v \\
\hline Pad 4 & "B" & \(\mathrm{V}_{\mathrm{EE}}-0.3\) & \(\mathrm{v}_{\mathrm{ccs}}+0.3\) & V \\
\hline Pad 5 & \begin{tabular}{l}
TSEP IN \\
Maximum Differential \\
Voltage, "B" to TSEP IN or TSEP OUT
\end{tabular} & \[
\begin{aligned}
& V_{\mathrm{EE}}-0.3 \\
& -1.0
\end{aligned}
\] & \[
\begin{aligned}
& V_{C C 5}+0.3 \\
& 2.0
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{V} \\
& \mathrm{v}
\end{aligned}
\] \\
\hline Pad 6 & \(V_{\text {EE5 }}\) & -7.0 & \(+0.3\) & v \\
\hline Pad 7 & "C" & \(\mathrm{V}_{\mathrm{cc}}-0.3\) & \(\mathrm{V}_{\mathrm{cc5}}+0.3\) & v \\
\hline Pad 8 & GA & \(\mathrm{V}_{\mathrm{EE}}-0.3\) & \(v_{\text {ccs }}+0.3\) & V \\
\hline Pad 9 & BWLBLO & GND & +15 & v \\
\hline Pad 20 & BWLALO & GND & +15 & v \\
\hline Pad 12 & BWLAHI & \(\mathrm{V}_{\text {cc5 }}\) & +12 & v \\
\hline Pad 19 & BWLBHI & \(\mathrm{V}_{\text {cc5 }}\) & +12 & v \\
\hline Pad 10 & IS & \(\mathrm{V}_{\mathrm{EE}}-0.3\) & \(\mathrm{V}_{\mathrm{cc5} 5}+0.3\) & V \\
\hline Pad 11 & GND & \(\mathrm{V}_{\mathrm{EE}}-0.3\) & \(\mathrm{V}_{\mathrm{cc5}}+0.3\) & v \\
\hline Pad 13 & OUT "B" & \(\mathrm{V}_{\text {cc5 }}\) & +25 & v \\
\hline Pad 14 & OUT "A" & \(\mathrm{V}_{\text {ccs }}\) & 25 & V \\
\hline
\end{tabular}

ABSOLUTE MAXIMUMS (cont)
\begin{tabular}{l|l|l|l|c}
\hline \multicolumn{1}{c|}{ SYMBOL } & \multicolumn{1}{|c|}{ IDENTIFICATION } & \multicolumn{1}{c|}{ MIN } & MAX & UNITS \\
\hline Pad 15 & \(\mathrm{V}_{\mathrm{CC} 14}\) & \(\mathrm{~V}_{\mathrm{CC} 5}-0.3\) & 25 & V \\
\hline Pad 16 & \(\mathrm{V}_{\mathrm{CC} 5}\) & \(\mathrm{~V}_{\mathrm{EE}}-0.3\) & \(\mathrm{~V}_{\mathrm{CC} 14}+0.3\) & V \\
\hline Pad 17 & TA & \(\mathrm{V}_{\mathrm{CC5}}\) & \(\mathrm{~V}_{\mathrm{CC} 14}+0.3\) & V \\
\hline Pad 18 & 415 & \(\mathrm{GND}-0.3\) & \(\mathrm{~V}_{\mathrm{CC} 5}+0.3\) & V \\
\hline Pad 21 & \(\mathrm{V}_{\mathrm{CC} 12}\) & GND & \(\mathrm{V}_{\mathrm{CC} 5}+0.3\) & V \\
\hline Pad 22 & BWLO/O & -1 & \(\mathrm{~V}_{\mathrm{CC} 5}+0.3\) & V \\
\hline Pad 23 & BF & -1 & \(\mathrm{~V}_{\mathrm{CC} 5}+0.3\) & V \\
\hline Pad 24 & Bypass Common & \(\mathrm{V}_{\mathrm{EE}}-0.3\) & \(\mathrm{~V}_{\mathrm{CC} 5}+0.3\) & V \\
\hline
\end{tabular}

\section*{CAUTION NOTES:}
1. No input may fall below \(\mathbf{V}_{\text {EE5 }}-.3\) to avoid latch-up and possible destruction.
2. All supplies should retain their relative polarities on power-up.

TERMINAL IDENTIFICATION
\begin{tabular}{|c|c|c|c|}
\hline PIN NUMBER & NAME & INPUT/OUTPUT & DESCRIPTION \\
\hline 1 & Input A & Input & Main Signal Input Left \\
\hline 2 & Input A & Input & Main Signal Input Left \\
\hline 3 & TSEP OUT & Output & Trace Separation Buffer Out \\
\hline 4 & B & Test & 1st Stage Error Amp Bias Test Point \\
\hline 5 & TSEP IN & Input & Trace Separation Buffer In \\
\hline 6 & VEE5 & Supply & Minus 5 V Supply \\
\hline 7 & C & Input & Centering Input \\
\hline 8 & GA & Input & Gain Adjust Input \\
\hline 9 & BWLALO & Output & A Bandwidth Limit Filter Out \\
\hline 10 & IS & Test & 1st Stage Bias Test Point \\
\hline 11 & GND & Supply & Ground \\
\hline 12 & BWLA HI & Input & A Bandwidth Limit Filter Input \\
\hline 13 & OUT A & Output & Main Stage Output Left \\
\hline 14 & OUT B & Output & Main Stage Output Right \\
\hline 15 & VCC14 & Supply & +14.3 V Supply \\
\hline 16 & VCC5 & Supply & +5 V Supply \\
\hline 17 & TA & Bias & Thermal Adjust Resistor Pad \\
\hline 18 & 415 & Bias & Output Bias Current Setting Resistor \\
\hline 19 & BWLB HI & Input & B Bandwidth Limit Filter Input \\
\hline 20 & BWLB LO & Output & B Bandwidth Limit Filter Output \\
\hline 21 & VCC/2 & Test & 1st Stage CB Stage Bias Test Point \\
\hline 22 & BWL O/O & Input & Bandwidth Limit Mode On/Off \\
\hline 23 & BF & Input & Beam Find Mode On/Off \\
\hline 24 & Bypass Common & Bias & Optional Input Common Bypass \\
\hline 25 & AUXOUT A & Output & Nonfunctional \\
\hline 26 & AUX O/O & Input & Aux. Amp On/Off (Non-Functional) \\
\hline 27 & Input B & Input & Main Signal Input Right \\
\hline 28 & Input B & Input & Main Signal Input Right \\
\hline
\end{tabular}

\section*{ELECTRICAL CHARACTERISTICS}

Unless otherwise specified, the following operating conditions shall apply:
```

VCC14 (PAD \#15) between 14 and 14.6 V
VCC5 (PAD \#16) between 4.9 and 5.1 V
VEE5 (PAD \#6) between -5.1 and -4.9 V
OUTA and OUTB (PADS \#13 and 14) no lower than VCC14
R415 = 1700 \Omega 土 1%
RTA =2200\Omega 土 10%

```
\begin{tabular}{|c|c|c|c|c|c|}
\hline PAD & SYMBOL & CONDITIONS & MIN & MAX & UNITS \\
\hline 1 & \(\mathrm{I}_{\text {ccout }}\) & \begin{tabular}{l}
+15 V DC Applied to Pins 13 \& 14. \\
Bias Current
\end{tabular} & 109 & 132 & mA \\
\hline 2 & ICC14 & +14 V DC Supply Bias Current (Pad 15) & Nominal & 35 & mA \\
\hline 3 & ICC5 & VCC5 Bias Current (Pad 16) & 12 & 18 & mA \\
\hline 4 & IEE5 & -5 V Supply Bias Current (Pad 6) & -80 & \(-120\) & mA \\
\hline 6 & IOBF & Output Current-Beam Find Zero Bias Current into either Output A or Output B with Beam Find Pin "HI" & 29 & 105 & mA \\
\hline 7 & IIGA & Gain Adjust Bias Current Current Flowing into Gain Adjust Pin with \(\mathrm{V}(\mathrm{GA})=\mathrm{VCC5}\) & Nominal & 40 & \(\mu \mathrm{A}\) \\
\hline 9 & \begin{tabular}{l}
VIHBWL \\
VILBWL
\end{tabular} & \begin{tabular}{l}
BWL Gate Input Voltage Range (HI) \\
BWL Gate Input Voltage Range (LO)
\end{tabular} & \[
2.0
\] & \[
\begin{aligned}
& - \\
& 0.8
\end{aligned}
\] & \(V\)
\(V\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS
\begin{tabular}{|c|c|c|c|c|c|}
\hline PAD & SYMBOL & CONDITIONS & MIN & MAX & UNITS \\
\hline 10 & \begin{tabular}{l}
IIHBWL \\
IILBWL
\end{tabular} & \begin{tabular}{l}
BWL Gate Input Bias Current (HI) \\
BWL Gate Input Bias Current (LO)
\end{tabular} & Nominal & \[
10
\]
\[
-400
\] & \begin{tabular}{l}
\(\mu \mathrm{A}\) \\
\(\mu \mathrm{A}\)
\end{tabular} \\
\hline 11 & \begin{tabular}{l}
VIHBF \\
VILBF
\end{tabular} & \begin{tabular}{l}
Beam Find Input Voltage (HI) \\
Input Voltage (LO) (Pad 23)
\end{tabular} & \[
2.4
\] & \[
0.8
\] & \\
\hline 12 & \begin{tabular}{l}
IIHBF \\
IILBF
\end{tabular} & \begin{tabular}{l}
Beam Find Bias Current (HI) \\
Bias Current \\
(LO) Bias Current
\end{tabular} & \begin{tabular}{l}
Nominal \\
0
\end{tabular} & 10
\[
-400
\] & \begin{tabular}{l}
\(\mu \mathrm{A}\) \\
\(\mu \mathrm{A}\)
\end{tabular} \\
\hline 13 & IOMAX & \begin{tabular}{l}
Main Output Current \\
Magnitude of Differential Output Current Output A to Output B (Pad 13 to Pad 14). Input Differential Voltage of 2 V applied to Pads \(1 \& 28\). Beam Find Input LO.
\end{tabular} & 42.2 & 51 & mA \\
\hline 14 & IOMAXBF & \begin{tabular}{l}
Main Output Current \\
Same conditions as \#14 with BF \((\operatorname{Pad} 23) \mathrm{HI}\).
\end{tabular} & 3.0 & 25.2 & mA \\
\hline 15 & VOMAXTS & \begin{tabular}{l}
Trace Sep Control Voltage \\
Output Voltage at Pad 3 with External Divider Network attached and +5 V and -5 V applied to Input Pad 5, respectively.
\end{tabular} & 1.9 & -. 425 & V \\
\hline 16 & GMMMIN & \begin{tabular}{l}
Main Stage Gain VGA \(=0 \mathrm{~V}\) \\
Ratio of Diff. Output Current (Pad 13 to Pad 14) to the Diff. Input Voltage
\[
V(I N) A-V(I N) B
\] \\
(Pads 1, 2 to Pads 27, 28) 1 Div. deflection at Output Offset subtracted.
\end{tabular} & - - & . 166 & MHO \\
\hline 17 & GMMNOM & \begin{tabular}{l}
Main Stage Gain VGA \(=2.5 \mathrm{~V}\) \\
Same as \#21 above
\end{tabular} & . 166 & . 257 & MHO \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS (cont)
\begin{tabular}{|c|c|c|c|c|c|}
\hline PAD & SYMBOL & CONDITIONS & MIN & MAX & UNITS \\
\hline 18 & GMMMAX & \begin{tabular}{l}
Main Stage Gain \(\mathrm{VGA}=5.0 \mathrm{~V}\) \\
Same as \#21 above
\end{tabular} & . 257 & —— & MHO \\
\hline 19 & 10C28 + & \begin{tabular}{l}
Output Current \\
Diff. Output Current Out. A Ref. to Out B \(\mathrm{GMM}=.166 \mathrm{VC}=0 \mathrm{VIN}=0\) (Pad 13 to Pad 14)
\end{tabular} & —— & -4.7 & mA \\
\hline 20 & 10C28 - & \begin{tabular}{l}
Output Current \\
Diff. Output Current Out. A Ref to Out B
\[
\begin{aligned}
& \mathrm{GMM}=.166, \mathrm{VC}=-5 \mathrm{~V} \\
& \mathrm{VIN}=0 \mathrm{~V} \\
& (\mathrm{Pad} 13 \text { to Pad 14) }
\end{aligned}
\]
\end{tabular} & 4.7 & - & mA \\
\hline 21 & \(10 \mathrm{C} 43+\) & \begin{tabular}{l}
Output Current \\
Diff. Output Current Out. A Ref to Out B
\[
\begin{aligned}
& \mathrm{GMM}=.257, \mathrm{VC}=0 \mathrm{~V} \\
& \mathrm{VIN}=0 \mathrm{~V} \\
& (\mathrm{Pad} 13 \text { to } \operatorname{Pad} 14)
\end{aligned}
\]
\end{tabular} & —— & \(-6.04\) & mA \\
\hline 22 & 1OC43- & \begin{tabular}{l}
Output Current \\
Diff. Output Current Out. A Ref to Out B
\[
\begin{aligned}
& \mathrm{GMM}=.257, \mathrm{VC}=-5 \mathrm{~V} \\
& \mathrm{VIN}=0 \mathrm{~V} \\
& (\mathrm{Pad} 13 \text { to } \operatorname{Pad} 14)
\end{aligned}
\]
\end{tabular} & 6.04 & —— & mA \\
\hline 23 & AVTS & Trace Sep Gain Small-Signal Voltage Gain at TSEP OUT Referenced to TSEP In with a \(500 \Omega\) Load to Ground on TSEP Out and a \(500 \Omega\) Source Resistance & . 92 & 1.00 & - - \\
\hline 24 & AVBWL & Gain Change in BWL Mode. Ratio of Main Stage Gain w/BWL Input Low to Main Stage Gain w/BWL Input HI. & . 986 & . 999 & - - \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS (cont)
\begin{tabular}{l|l|l|l|l|c}
\hline PAD & SYMBOL & \multicolumn{1}{|c|}{ CONDITIONS } & MIN & MAX & UNITS \\
\hline \hline 25 & LM & \begin{tabular}{l} 
Main Stage Linearity. Ratio of \\
the Differential Input Voltage \\
causing a Diff. Output Current \\
change from +3 Div to +4 Div \\
(or -4 Div to +3 Div) to the Diff. \\
Input Voltage causing a Diff. \\
Output Voltage change from -1 \\
Div to +1 Div.
\end{tabular} & .98 & 1.01 & - \\
\hline
\end{tabular}

NOTE: Specifications 26 through 33 are guaranteed by the Fab Process and are not tested at Die Sort.
\begin{tabular}{l|l|l|l|l|c}
\hline 26 & ZBWL & \begin{tabular}{l} 
BWLHI (1), BWLHI (2) Input \\
Impedance. Small signal Low \\
Freq Input impedance
\end{tabular} & 70 & 90 & \(\Omega\) \\
\hline 27 & ZINTS & \begin{tabular}{l} 
Trace Separation small signal \\
impedance
\end{tabular} & 50 & -- & \(\mathrm{K} \Omega\) \\
\hline 28 & IINTS & \begin{tabular}{l} 
Quiescent Trace Separation \\
Input Bias Current, VTS \(=0\)
\end{tabular} & 7.0 & 20.5 & \(\mu \mathrm{~A}\) \\
\hline 29 & ZINC & Centering Input Impedance & 3.5 & 7.0 & \(\mathrm{~K} \Omega\) \\
\hline 30 & VCOC & \begin{tabular}{l} 
Open Circuit Centering Pad \\
Voltage
\end{tabular} & -2.7 & -2.3 & V \\
\hline 31 & ZINVCC/2 & \begin{tabular}{l} 
VCC/2 Input Impedance Small \\
Signal
\end{tabular} & 750 & 1300 & \(\Omega\) \\
\hline 32 & VCC/20C & Open Circuit VCC/2 Pad Voltage & 1.9 & 2.2 & V \\
\hline 33 & ZOBWLLO & \begin{tabular}{l} 
Small Signal Differential Output \\
Impedance, BWLALO to \\
BWLBLO
\end{tabular} & 20 K & -- & \(\Omega\) \\
\hline
\end{tabular}

\section*{APPLICATION INFORMATION}

\section*{203-0212 Block diagram showing typical application}


\section*{SHF III TRIGGER}

\section*{DESCRIPTION}

The 203-0213-90 die operates in several modes to provide sweep triggers or to shape the input for digital functions. It processes signals from DC to 600 MHz . The circuit dynamically selects the trigger sources in response to source code inputs. Slope, coupling, and mode are determined by a serially loaded control register.
- Bandwidth DC to 600 MHz
- 5 Signal Source Trigger Circuit (CH1-CH5)
- Control Register
- Signal Level Detection Modes
- Sweep Trigger Mode
- Slow Compare Mode
- Fast Compare Mode
- Strobed Fast Compare Mode

\section*{(0)}

\section*{ABSOLUTE MAXIMUMS}
\begin{tabular}{l|l|c|c|c}
\hline SYMBOLS & \multicolumn{1}{|c|}{ IDENTIFICATION } & MIN & MAX & UNITS \\
\hline \hline \(\mathrm{T}_{J}\) & Operating Junction Temperature & -25 & +125 & \({ }^{\circ} \mathrm{C}\) \\
\(\mathrm{T}_{\text {STG }}\) & Storage Temperature & -50 & +150 & \({ }^{\circ} \mathrm{C}\) \\
& Digital Inputs With Common Parameters & & & \\
& -CC, CD, -DS, -SR0, -SR1, -SR2 & & & V \\
& Safe Input Range & -0.3 & \((\) VCC5 \\
& & & \(+0.3)\) & \(\mu \mathrm{A}\) \\
VCC5 & Maximum Bias Current & -0.3 & +7.0 & V \\
VEE5 & Maximum Voltage Range & +0.3 & -7.0 & V \\
CH1, CH2, & Maximum Voltage Range & - & \(\pm 2.0\) & V \\
CH3, CH4, & & & & \\
CH5 & & & & \\
\hline
\end{tabular}

TERMINAL IDENTIFICATION
\begin{tabular}{|c|c|c|c|}
\hline PAD & NAME & INPUT/OUTPUT & DESCRIPTION \\
\hline 1 & VEE & SUPPLY & -5 Volt Supply \\
\hline 2 & EVCC & SUPPLY & Extra Contact to DVCC \\
\hline 3 & -SR2 & INPUT & Not Bit 2 Source Select \\
\hline 4 & -SR1 & INPUT & Not Bit 1 Source Select \\
\hline 5 & -SRO & INPUT & Not Bit 0 Source Select \\
\hline 6 & -DS & INPUT & Not Delay Select \\
\hline 7 & CD & INPUT & Control Data Input \\
\hline 8 & -CC & INPUT & Not Control Clock Input \\
\hline 9 & -STB & INPUT & Not Fast Compare Strobe \\
\hline 10 & DGND & SUPPLY & Digital Ground \\
\hline 11 & IST & -- & External Pulldown to -5 Volts \\
\hline 12 & -TSO & OUTPUT & Not Trigger Status Output \\
\hline 13 & -TG & OUTPUT & Not Trigger Gate Output \\
\hline 14 & TG & OUTPUT & Trigger Gate Output \\
\hline 15 & DVCC & SUPPLY & Digital +5 Volts Supply \\
\hline 16 & THO & INPUT & Trigger Holdoff \\
\hline 17 & AGND & SUPPLY & Analog Ground \\
\hline 18 & TL & INPUT & Trigger Level Input \\
\hline 19 & CP & —— & Compensation Capacitor \\
\hline 20 & LF & - & LF Capacitor \\
\hline 21 & AC & -- & AC Capacitor \\
\hline 22 & SS & OUTPUT & Source Selector Output \\
\hline 23 & AVCC & SUPPLY & Analog +5 Volt Supply \\
\hline 24 & CH3 & INPUT & CH3 Input \\
\hline 25 & CH 1 & INPUT & CH1 Input \\
\hline 26 & CH2 & INPUT & CH2 Input \\
\hline 27 & CH 4 & INPUT & CH4 Input \\
\hline 28 & CH5 & INPUT & CH5 Input \\
\hline
\end{tabular}

TABLE 1
ELECTRICAL CHARACTERISTICS
\begin{tabular}{|c|c|c|c|c|}
\hline PARAMETER & CONDITIONS & MIN & MAX & UNITS \\
\hline Trigger Source & Source Code Change To Corresponding Change In Trigger Selection & - - & 100 & nS \\
\hline Coupling & 20 Hz Filter Cut Off Frequency 50 Hz Filter Cut Off Frequency Residual Sinewave Amplitude & \[
\begin{aligned}
& 10 \\
& 36 \\
& \ldots
\end{aligned}
\] & \[
\begin{array}{r}
30 \\
70 \\
2
\end{array}
\] & \begin{tabular}{l}
Hz \\
kHz \\
\%
\end{tabular} \\
\hline Slope Select & Time For Trigger Slope Selection to Change & -- & 10 & nS \\
\hline Trigger Level & Trigger Range & 1.146 & 1.374 & V \\
\hline Trigger Level & Trigger Offset & -— & \(\pm 50\) & mV \\
\hline Trigger Level & Trigger Gain Non-Linearity Effect On Trigger Level Max Sinewave Freq. Effect on Trigge Level & . 99 & 1.01 & \\
\hline Trigger Level & \begin{tabular}{l}
DCN to 1 kHz \\
1 MHz to 50 MHz \\
50 MHz to 300 MHz
\end{tabular} &  & \[
\begin{aligned}
& \pm 1 \\
& +2 \\
& -10 \\
& +2 \\
& -50
\end{aligned}
\] & \[
\%
\]
\[
\%
\]
\[
\%
\]
\[
\%
\]
\% \\
\hline Trigger Level & Trigger Hysteresis & 5.25 & 8 & mV \\
\hline Trigger Level & Trigger Hysteresis Noise REJECT Selected & 14 & 24 & mV \\
\hline Trigger Mode & Propagation Delay in SWEEP TRIGGER Mode & —— & 3 & nS \\
\hline Trigger Mode & Propagation Delay Variation SWEEP TRIGGER Mode (Jitter) & -- & 50 & pS \\
\hline Trigger Mode & Maximum Trigger Repetition Rate, SLOW COMPARE Mode & 25 & —— & MHz \\
\hline Trigger Mode & Maximum Trigger Repetition Rate, FAST COMPARE MODE & 300 & - - & MHz \\
\hline
\end{tabular}

TABLE 1 (cont)
\begin{tabular}{|c|c|c|c|c|}
\hline PARAMETER & CONDITIONS & MIN & MAX & UNITS \\
\hline Trigger Mode & Maximum Trigger Repetition Rate, STROBED FAST COMPARE Mode & 300 & - & MHz \\
\hline Trigger Mode & Minimum Time Trigger Strobe & -- & 2 & nS \\
\hline \begin{tabular}{l}
Digital Inputs \\
SR0, SR1, SR2,
\[
-C C,-D S
\]
\end{tabular} & VIL & -0.3 & \(+0.8\) & V \\
\hline \begin{tabular}{l}
Digital Inputs \\
SR0, SR1, SR2,
\[
-C C, C D,-D S
\]
\end{tabular} & VIH & \(+2.0\) & \(\mathrm{VCC} 5+0.3\) & V \\
\hline \begin{tabular}{l}
Digital Inputs \\
SR0, SR1, SR2, \\
\(-C C, C D,-D S\)
\end{tabular} & Input Current & -10 & \(+50\) & \(\mu \mathrm{A}\) \\
\hline \begin{tabular}{l}
Digital Inputs \\
SR0, SR1, SR2, \\
\(-C C, C D,-D S\)
\end{tabular} & Capacitance & —— & 5 & pF \\
\hline Digital Input
THO & VIL & \(-0.3\) & \[
\begin{aligned}
& \text { VCC5 } \\
& -1.675
\end{aligned}
\] & V \\
\hline Digital Input
THO & VIH & \[
\begin{aligned}
& \text { VCC5 } \\
& -1.035
\end{aligned}
\] & \(\operatorname{VCC5}+0.3\) & V \\
\hline Digital Input
THO & IIH (Input Current) & -10 & \(+50\) & \(\mu \mathrm{A}\) \\
\hline Digital Input
-STB & VIL & \(-0.3\) & VCC5 - 1.44 & V \\
\hline Digital Input
-STB & VIH & \[
\begin{aligned}
& \text { VCC5 } \\
& -1.035
\end{aligned}
\] & \(\mathrm{VCC} 5+0.3\) & V \\
\hline Digital Input
-STB & Input Current & +10 & -50 & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

TABLE 1 (cont)
\begin{tabular}{|c|c|c|c|c|}
\hline PARAMETER & CONDITIONS & MIN & MAX & UNITS \\
\hline Digital Input
-STB & Capacitance & - & 5 & pF \\
\hline Digital Input
\[
C D
\] & Valid Data Set-up Time & 0 & —— & nS \\
\hline Digital Input
\[
-C C
\] & - CC Pulse Width & 300 & —— & nS \\
\hline Digital Input
\[
-\mathrm{CC}
\] & -CC Hysteresis & 0.1 & - - & V \\
\hline Analog Input
\[
\begin{aligned}
& \mathrm{CH} 1, \mathrm{CH} 2, \mathrm{CH} 3, \\
& \mathrm{CH} 4, \mathrm{CH} 5
\end{aligned}
\] & Input Current & -10 & \(+25\) & \(\mu \mathrm{A}\) \\
\hline Analog Input TL & TL Input Resistance & 2 & 3 & \(\mathrm{K} \Omega\) \\
\hline VCC5 & Supply Current & 90 & 180 & mA \\
\hline VEE5 & Supply Current & -50 & -100 & mA \\
\hline Output
\[
T G,-T G
\] & VOL & 3.1 & 3.38 & V \\
\hline Output
\[
\mathrm{TG},-\mathrm{TG}
\] & VOH & 3.95 & 4.3 & V \\
\hline Output
\[
-T S
\] & VOL & +0.1 & -0.25 & V \\
\hline Output
-TS & 1 OH & -- & 2 & \(\mu \mathrm{A}\) \\
\hline Output
-TS & IOL, Output Current For - TS \(\mathrm{V}_{\text {OUT }}=5\) Volts & 8.0 & 12.0 & mA \\
\hline
\end{tabular}

\section*{Applications Information}

\section*{TRIGGER FEATURES}

The Trigger circuit has five signal sources \((\mathrm{CH} 1, \mathrm{CH} 2, \mathrm{CH} 3, \mathrm{CH} 4\), and CH 5\()\).

Dynamic trigger selection code signals (-SR0, -SR1, -SR2) determine the trigger sources:
\begin{tabular}{c|c|c|c}
\hline -SR2 & -SR1 & -SR0 & TRIGGER SELECTION \\
\hline \hline 0 & 0 & 0 & CH 5 \\
0 & 0 & 1 & CH 1 \\
0 & 1 & 0 & CH 2 \\
0 & 1 & 1 & CH 1 and CH 2 (SUM) \\
1 & 0 & 0 & CH 5 \\
1 & 0 & 1 & CH 3 \\
1 & 1 & 0 & CH 4 \\
1 & 1 & 1 & CH 1 and CH 2 (SUM) \\
\hline
\end{tabular}

\section*{CONTROL REGISTER}

Data shifts into the Control Register from the control input at not Control Clock Low to High Transitions, Bit 7 first and Bit 0 last. Active level is high at digital input.
\begin{tabular}{c|l}
\hline BIT & \multicolumn{1}{c}{ FUNCTION } \\
\hline \hline 0 & -TM0, Not Trigger Mode LSB \\
1 & -TSM1, Not Trigger Mode MSB \\
2 & -FR, Not Free Run, Continuous Trigger Gate \\
3 & -HFR, Not Insert 50 kHz Low Pass \\
4 & -LFR, Not Insert 50 kHz High Pass \\
5 & -AC, Not Insert 20 Hz High Pass \\
6 & SL1, Slope for Not Delay Select \(=1\) \\
7 & SL0, Slope for Not Delay Select \(=0\) \\
\hline
\end{tabular}

\section*{TRIGGER SIGNAL COUPLING}

The independently selected input for each trigger may be coupled to the trigger level comparator directly or through independently selected filters. Noise reject is actually an increased trigger hysteresis, rather than a filter. Control data inserts the filters.
\begin{tabular}{c|c|c|l}
\hline AC & LFR & HFR & \multicolumn{1}{|c}{ COUPLING SELECTED } \\
\hline \hline 0 & 0 & 0 & Direct (DC) \\
0 & 0 & 1 & 50 kHz Low Pass (HFR) \\
X & 1 & 0 & 50 kHz High Pass (LFR) \\
0 & 1 & 1 & Direct, Noise Reject (DC NR) \\
1 & 0 & 0 & 20 Hz High Pass (AC) \\
1 & 0 & 1 & 20 Hz to 50 kHz Bandpass (AC HFR) \\
1 & 1 & 1 & 20 Hz High Pass Noise Reject (AC NR) \\
\hline
\end{tabular}

\section*{TRIGGER SLOPE SELECTION}

Controlled by the Not Delay Select Inputs and Control Data
\begin{tabular}{c|c|c|c}
\hline SL1 & SLO & -DS & SLOPE \\
\hline \hline 0 & 0 & \(X\) & Positive \\
0 & 1 & 0 & Negative \\
0 & 1 & 1 & Positive \\
1 & 0 & 0 & Positive \\
1 & 0 & 1 & Negative \\
1 & 1 & X & Negative \\
\hline
\end{tabular}

\section*{SIGNAL LEVEL DETECTION}

Trigger Gate and Trigger Status Outputs represent the history of the difference voltage between the Selected Trigger Soruce and the Trigger Level. Trigger outputs respond to trigger signals according to the Trigger Hold-Off signal according to Trigger Slope, Control Data, and the Not Delay Select Input, and according to Trigger Mode Control data. TM0 and TM1 establish four modes of Trigger Circuit operation. The Trigger Gate Output (TG) is continuously true when the Free Run Control Bit FR is true.

SIGNAL LEVEL DETECTION (cont)
\begin{tabular}{c|c|l}
\hline TM1 & TMO & \begin{tabular}{l} 
TRIGGER MODE SELECTION
\end{tabular} \\
\hline \hline 0 & 0 & \begin{tabular}{l} 
SWEEP TRIGGER MODE \\
The Trigger Gate sets at the first crossing of the Trigger Level by the Trigger Signal \\
in the direction of the Selected Slope after the Trigger Signal is displaced in the \\
opposite direction in the absence of Trigger Holdoff. The Trigger Gate resets at the \\
assertion of Trigger Holdoff.
\end{tabular} \\
\hline 0 & 1 & \begin{tabular}{l} 
SLOW COMPARE \\
The Trigger Gate sets when the Trigger Status Output has recovered to the false \\
state, and the Trigger Signal is displaced from the Trigger Level in the direction of \\
the selected slope. The Trigger Gate resets when the Trigger Signal is displaced \\
from the Trigger Level in the opposite direction of the selected slope.
\end{tabular} \\
\hline 1 & 0 & \begin{tabular}{l} 
FAST COMPARE MODE
\end{tabular} \\
\hline 1 & 1 & \begin{tabular}{l} 
The Trigger Gate sets when the Trigger Signal is displayed from the Trigger Level in \\
the direction of the selected slope and resets when the Trigger Signal is displaced in \\
the opposite direction.
\end{tabular} \\
\hline \begin{tabular}{l} 
STROBED FAST COMPARE MODE
\end{tabular} \\
\hline \begin{tabular}{l} 
The Trigger Gate sets when the Trigger Strobe is true and the Trigger Signal is \\
displaced from the Trigger Level in the opposite direction of the selected slope. The \\
Trigger Gate resets when the trigger signal is displaced in the opposite direction.
\end{tabular} \\
\hline
\end{tabular}

Trigger Status corresponds directly to Trigger Gate except that Free Run has no effect on Trigger Status and that the Propagation Delay from the Trigger Gate True-to-False transition to the True-to-False transition of Trigger Status output is primarily determined by external circuitry. This enables slower external circuits to respond to very fast trigger events. Internally the Slow Compare Mode cycle rate is limited by the externally determined propagation time of the Trigger Status Output.

In the direction of the Selected Slope, the Trigger Gate resets when the Trigger Strobe is True and the Trigger Signal is displaced.

\section*{RELIABILITY}
\(\lambda\), Failure rate \(\leqslant 0.02 \% / 1000\) hours at \(75^{\circ} \mathrm{C} \mathrm{Tj}\)

\section*{SWEEP INTEGRATOR DIE}

\section*{DESCRIPTION}

\section*{FEATURES}

The 203-0214-90 is part of a Sweep Gate Circuitry, Integrator Current Switches, Sweep Start Regulator, Delay Gate Comparator, Ramp Output Buffer, and a portion of the Sweep Display Delay Circuitry.

When used with the 203-0231-90, a complete Sweep Circuit system is generated with very few external components.
- Ramp Initiation Sweep Gate Circuitry
- Integrator Current Switches
- Sweep Start Regulator
- Delay Gate Comparator
- Buffered Ramp Output
- Sweep Display Delay Circuitry
- \(200 \Omega /\) Sq. BIFET process
- Max sweep speed 5 nS/Div (2.5 V Ramp)
- For electrical characteristics contact Applications Engineering


ABSOLUTE MAXIMUMS
\begin{tabular}{l|l|c|c|c}
\hline SYMBOL & \multicolumn{1}{|c|}{ IDENTIFICATION } & MIN & MAX & UNITS \\
\hline \hline \(\mathbf{T}_{J}\) & Operating Junction Temperature & -15 & \(+115^{\circ} \mathrm{C}\) & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{T}_{\text {STG }}\) & Storage Temperature & -55 & +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Pad 35 & VCC15 +15 V Voltage Range & VCC5 -0.3 & +18 & V \\
\hline Pad 24 & VCC5 +5 V Voltage Range & -0.3 & +7.0 & V \\
\hline Pad 27 & VEE5 -5 V Voltage Range & -7.0 & +0.3 & V \\
\hline Pad 13, 30, 36 & VEE 15 - 15 V & -18 & VEE +0.3 & \\
\hline Pad 1 & Level Shift DAC Current Input & -10 & 0.0 & mA \\
\hline Pad 2 & \begin{tabular}{l} 
Level Shift DAC Reference \\
Current Out \\
Voltage Range at Pad
\end{tabular} & +0.3 & VEE5 & V \\
\hline Pad 3 & \begin{tabular}{l} 
Sweep Start Reference in \\
Voltage Range at Pad
\end{tabular} & -3.5 & +2.0 & V \\
\hline Pad 4 & \begin{tabular}{l} 
Not 5 nS in Voltage Range at \\
Pad
\end{tabular} & -0.3 & VCC5 +0.3 & V \\
\hline Pad 5, 6 & \begin{tabular}{l} 
Not Enable Sweep Gate Voltage \\
Range at Pad
\end{tabular} & -0.3 & VCC5 +0.3 & V \\
\hline \begin{tabular}{l} 
Not 1 nF Select In \\
Not 0.1 \(\mu \mathrm{F}, 1\) FF, 10 \(\mu \mathrm{F}\) Select In \\
Voltage Range at Pad \\
Maximum Voltage Difference \\
Between Pads
\end{tabular} & -0.3 & VCC5 +0.3 & V \\
\hline
\end{tabular}

ABSOLUTE MAXIMUMS (cont)
\begin{tabular}{|c|c|c|c|c|}
\hline SYMBOL & IDENTIFICATION & MIN & MAX & UNITS \\
\hline Pad 8, 9, 10 & Timing Cap Ports & \multicolumn{3}{|l|}{Refer to Note \#1} \\
\hline Pad 17, 18 & Not Aux Trigger In Not Trigger In Voltage Range at Pads & 0.0 & Note \#2 & V \\
\hline Pad 19 & Trigger Holdoff in Voltage Range At Pad & -0.3 & \(\operatorname{VCC} 5+0.3\) & V \\
\hline Pad 20 & \begin{tabular}{l}
VBB In \\
Voltage Range at Pad
\end{tabular} & -0.3 & \(\operatorname{VCC} 5+0.3\) & V \\
\hline Pad 22 & Inhibit Zero Delay in Voltage Range at Pad & VEE5 - 0.3 & VCC5 +0.3 & V \\
\hline Pad 23 & Not Sweep Gate Out Current Out of Pad & -15 & 0 & mA \\
\hline Pad 26 & Not Delay Gate Out Current Out of Pad & \(-10\) & 0 & mA \\
\hline Pad 29 & Bypass Delay Comparator in Voltage Range at Pad & -0.3 & \(\operatorname{VCC5}+0.3\) & V \\
\hline Pad 31 & Delay Reference in Voltage Range at Pad & VEE5 & VCC5 & V \\
\hline Pad 32 & Sweep Delay Offset Reference in Voltage Range at Pad & -3.5 & +3.5 & V \\
\hline Pad 37 & Delay Offset Reference In & VEE15 & VCC15 & V \\
\hline
\end{tabular}

NOTE \#1: With VCC5 regulating (VCC5 \(=5.0 \mathrm{~V} \pm 3 \%\) ) and the voltage at SSR between -1.2 and -1.3 V , the following limits MUST be observed:
-Minimum voltage that may be applied to a selected timing capacitor port:
Pad 8................. +1.1 V
Pads 9/10............ +0.6 V
-Minimum voltage that may be applied to an unselected timing capacitor port:
Pads 8/9/10 ......... -0.8 V
-Maximum voltage that may be applied to the timing capacitor ports is VCC5 +0.3 V .
NOTE \#2: Maximum voltage at "not Trigger" and "Auxiliary Trigger" inputs is VCC5 +0.3 V OR 6.5 V whichever is the smaller.

CAUTION
NOTE:
The Not 1 nF Select Input (Pad 5) and/or the Not 0.1/1/10 \(\mu\) F Select Input (Pad 6) MUST NOT be left open with the power supplies on.

TERMINAL IDENTIFICATION
\begin{tabular}{|c|c|c|c|}
\hline PAD \# & NAME & INPUT/OUTPUT & DESCRIPTION \\
\hline 1 & LSDC & Input & Level Shift DAC Current \\
\hline 2 & LSDRC & Output & Level Shift DAC Ref. Current \\
\hline 3 & SSR & Input & Sweep Start Reference \\
\hline 4 & Not 5 nS & Input & Not 5 nS Select In \\
\hline 5 & Not 1 nF & Input & Not 1 nF Select In \\
\hline 6 & Not & & \\
\hline & \(0.1 \mu / 1 \mu / 10 \mu \mathrm{~F}\) & Input & Not \(0.1 \mu \mathrm{~F} / 1 \mu \mathrm{~F} / 10 \mu \mathrm{~F}\) Select In \\
\hline 7 & Not ESG & Input & Not Enable Sweep Gate Select In \\
\hline 8 & CT0 (100 pF) & & Timing Cap \\
\hline 9 & CT1 (1 nF) & & Timing Cap \\
\hline 10 & CT2 & & \\
\hline & (0.1 \(\mu / 1 \mu / 10 \mu \mathrm{~F})\) & & Timing Cap \\
\hline 11 & SC & & Stabilization Cap \\
\hline 12 & SCS & Output & Stabilization Capacitor Select \\
\hline 13 & VEE15 & Supply & -15 V Supply \\
\hline 14 & ER & Input & Reset Ref. Current In \\
\hline 15 & GND & & Ground \\
\hline 16 & RDA & Input & Reset Delay Adjust \\
\hline 17 & Not Aux Trig & Input & Not Auxiliary Trigger In \\
\hline 18 & Not Trig & Input & Not Trigger In \\
\hline 19 & THO & Input & Trigger Holdoff In \\
\hline 20 & VBBI & Input & VBB (ECL Reference) In \\
\hline 21 & VBBO & Output & VBB (ECL Reference) Out \\
\hline 22 & IZD & Input & Inhibit Zero Delay In \\
\hline 23 & Not SG & Output & Not Sweep Gate Out \\
\hline 24 & VCC5 & Supply & +5 V Supply \\
\hline 25 & RLM & Output & Sweep Reset Latch Monitor \\
\hline 26 & Not DG & Output & Not Delay Gate Out \\
\hline 27 & VEE5 & Supply & \(-5 \vee\) Supply \\
\hline 28 & DGB & Input & Delay Gate Bypass \\
\hline 29 & BDC & Input & Bypass Delay Comparator In \\
\hline 30 & VEE15 & Supply & -15 V Supply \\
\hline 31 & DR & Input & Delay Reference In \\
\hline 32 & SDO & Input & SWP Display Offset Ref. In \\
\hline 33 & GND & & Ground \\
\hline 34 & RO & Output & Ramp Out \\
\hline 35 & VCC15 & Supply & +15 V Supply \\
\hline 36 & VEE15 & Supply & -15 V Supply \\
\hline 37 & DOR & Input & Delay Offset Ref. In \\
\hline
\end{tabular}

\section*{APPLICATIONS INFORMATION}

\section*{Ramp Initiation Sweep Gate Circuitry}

Ramp is initiated by the coincidence of "LO" at the "Not Trigger", "Not Auxiliary Trigger" and "Trigger Holdoff" inputs. Operation corresponding to this set of inputs will be called "Sweep" in future paragraphs. Note that for the 203-0214-00 to ramp by itself (without the aid of the 203-0231-00), one of the three timing capacitor ports must be selected using the procedure given in Table 1, an appropriate capacitor attached to the selected port and an appropriate current source also attached to that port.

If the "Not Enable Sweep Gate" input is "LO", the "Not Sweep Gate" output will be "LO" during "Sweep". If the "Not Enable Sweep Gate" input is "HI", the "Not Sweep Gate" output will always remain "HI".

\section*{APPLICATIONS INFORMATION (cont)}

Ramp is terminated when the internal ramp reaches the End-Of-Sweep threshold (approximately 1.48 V ) or when "Trigger Holdoff" is asserted ("HI" at THO input). At termination, the "Not Sweep Gate" output will go " HI " and the internal ramp will return to the Sweep Start voltage. This sequence is called "Reset". Ramp termination may be delayed, relative to the "Not Sweep Gate" output ("LO" to "HI" transition) by attaching a capcitor to Pad 16 (Reset Delay Adjust RDA). This feature allows the Z-Axis time to blank the CRT before the ramp starts to slow down.

A latch is provided and functions such that when the internal ramp reaches End-Of-Sweep voltage, the latch is set holding the 203-0214-00 in the "Reset" condition. The latch is reset when "Trigger Hold-Off" goes "HI". At this point, the "HI" at "Trigger Hold-Off" maintains the 203-0214-00 in the "Reset" condition. In this manner, the time from "Not Sweep Gate" output "LO" to "HI" transition until "Trigger Hold-Off" input "LO" to " HI " transition can be long allowing for substantial delay through the scope logic circuitry.

\section*{Ramp Initiation Sweep Gate Circuitry}

The internal latch does result in a potential logic trap. After an internal reset "Not Trigger", "Not Auxiliary Trigger" and "Trigger Hold-Off" can all be "LO" and the circuit may not ramp. "Trigger Hold-Off" must always go "HI" (after an internal reset) to clear the latch before the circuit can ramp again.

The internal ramp voltage (mentioned above) differs from the ramp out voltage by the amount of level shift/offset in effect at that specific sweep. Refer to Section on "Sweep-Display Delay Circuitry".

\section*{Integrator Current Switches}

There are three current switches in the 203-0214-00 (one for each timing cap port). Only the current switch corresponding to the selected timing capacitor is active. The tail current to the other two current switches is " 0 ". The tail current to the active current switch is always greater than the maximum timing current. During "reset", the current available to discharge the timing capacitor is equal to the current switch tail current minus the timing current. When the internal ramp reaches the sweep start voltage (during "Reset"), the "Sweep Start Regulator" supplies this differential current. Refer to section on Sweep Start Regulator.

During "Sweep", the current switch tail current is switched into a supply, allowing the timing current to flow into the timing cap.

\section*{Sweep Start Regulator}

During "Reset" this circuit maintains the voltage at the internal ramp output equal to the voltage present at the "Sweep Start Reference (SSR)" input. SSR voltage may range from -1.2 to -1.3 V . Stability of this feedback circuit is insured, for the 100 pF and 1 nF timinig capacitor case, by switching in a 1 nF stabilization capacitor putting a dominant pole near the input portion of the "Sweep Start Regulator" circuitry. When the \(0.1 / 1 / 10 \mu \mathrm{~F}\) timing capacitor is slected, the stabilization cap is switched out and the \(0.1 / 1 / 10 \mu \mathrm{~F}\) timing cap becomes the dominant pole.

During "Sweep" this circuitry is inhibited.

\section*{APPLICATIONS INFORMATION (cont)}

\section*{Delay Gate Comparator}

Normal operation of this circuit occurs when the "IZD" input is open, the "BDC" input is "LO" and the "Not 5 ns " input is "HI" for all sweep speeds (except \(5 \mathrm{nS} /\) Div where it is "LO"). Under these conditions, the "Not Delay Gate" output will remain "HI" until the internal ramp voltage (at the pickoff) becomes more positive than the voltage on the "Delay Reference (DR)" input. When the voltage becomes more positive, the "Not Delay Gate" will go "LO". The comparator is gated such that the function described above can only occur during "Sweep". Delay gate operation is controlled by the "DR" input at all sweep speeds (except the fastest ( \(5 \mathrm{~ns} / \mathrm{Div}\) - "NOT 5 nS input "LO").

At \(5 \mathrm{nS} / \mathrm{Div}\), the comparator gating function is modified such that "Not Delay Gate" will go "LO" immediately ("Zero Delay") after "Not Sweep Gate" goes "LO", regardless of the voltage at "DR". In a two sweep system this "Zero Delay" feature forwards or "pipes" the "Sweep" command through "A" Sweep to "B" Sweep allowing "B" Sweep to be used as the main sweep at \(5 \mathrm{nS} / \mathrm{Div}\). Use of "B" Sweep (at \(5 \mathrm{nS} / \mathrm{Div}\) ) may be desirable because the System Delay Constraints may result in excessive preview time if "A" Sweep were used. The "Zero Delay" feature may be inhibited by putting the "Inhibit Zero Delay (IZD)" input "HI" thus allowing the "DR" input to control the delay gate operation at all sweep speeds.

If the "Bypass Delay Comparator (BDC)" input is "HI", "Not Delay Gate" will go "LO" immediately after "Not Sweep Gate" goes "LO" regardless of the voltage at "DR", "IZD" input or any sweep speed related input ("Not 5 nS , Not 1 nF Select", etc.). "BDC" is used in "B" Sweep to assure that there is a "Gate" available coincident with " \(B\) " Sweep regardless of the setting at the "Not Enable Sweep Gate" input. The "Gate" (of course) appears at the "Not Delay Gate" output. In "A" Sweep, "BDC" is used in conjunction with the "Delay by Events" option and provides a fast path from trigger through the sweep.
"Not Delay Gate" will always go " HI " at the initiation of "Reset".

\section*{Buffered Ramp Output}

Timing cap voltage is buffered by this circuitry consisting of FET source followers and/or NPN emitter followers. Voltage gain through this circuit is one (1), although there are DCN offsets due to the NPN emitter followers.

Buffered outputs from the three timing capacitors are merged at this point. How this is done can best be understood by referring to the Block Diagram or the schematics. When a capacitor is selected, it is necessary, for proper operation, to put the other two (off) timing cap ports at an appropriate voltage. This is normally done by the 203-0231-00. If the 203-0214-00 is to be operated by itself, reference should be made to Table 1 for the appropriate voltages.

\section*{Sweep Display Delay Circuitry}

The Sweep Start Voltage, at "Ramp Out" is offset from "SSR" in proportion to Sweep Speed Setting, the "DOR" input voltage and the "DO" input voltage. Internally, the ramp applied to the delay comparator is offset in proportion to sweep speed setting and "DOR" input voltage. These offsets will result in a delay, since the ramp must run for a period of time before the "Ramp Out" voltages reaches the on screen voltage (approximately SSR) or the ramp voltage applied to the pickoff comparator reaches the available delay comparator range. Because the offsets are in proportion to the sweep speed setting, the delay will be constant for all sweep speeds. Also "DOR" is ganged with the timing reference voltage, so the delay will remain constant even when variable is operated. The delays due to these offsets are about 6 nS at the comparator pickoff point and a maximum of about 20 nS at "Ramp Out". Additionally, by operating "SDO", the delay at "Ramp Out" may be varied from about 20 nS to 10 nS .

\section*{APPLICATIONS INFORMATION (cont)}

Offsetting is done for sweep speeds of \(500 \mathrm{nS} /\) Div or faster. Sweep speeds of \(1 \mu \mathrm{~S} / \mathrm{Div}\) and slower have no offset.

Offset/Delay is used for the following purpose:
- Provide time for the ramp to become linear before it reaches on screen voltage and before it reaches available delay pickoff comparator stage.
- Maintains the unblanked, linear start of the displayed sweep at a nearly constant position for all sweep speeds.
- Allows "A" Sweep delay to be made longer than "B" Sweep delay so that in "B" Starts After Delay scope operating mode, the trigger edge may be viewed with "B" Sweep.

Level shifting is accomplished by passing a current through two series resistors hooked between the ramp buffer and "Ramp Out". The current comes from a DAC (in the 203-0231-00) which is programmed by a control register containing the Sweep Speed information. The reference current for the DAC is proportional to "DOR" and comes from the 203-0214-00 since it must also be related to the sheet resistance of the two level shift resistors. A gain cell, operated by "SDO", proportions the "Ramp Out" offset, but does not affect the offset at the delay pickoff comparator.


\section*{AUTOFOCUS PROCESSOR DIE}

\section*{DESCRIPTION}

The function of this circuit is to process the various intensifying inputs and to generate an appropriate focus function for the MSE type of CRT. Since the perceived intensity of the CRT spot light source is logarithmic and the transfer function from the bright intensity input to the grid drive output is exponential, the resultant perceived transfer function is made linear.
- SHF-III Process
- High \(f_{t}\) at low currents
- Low \(R_{b}\) and \(R_{e}\) for predictable exponential characteristics
- 50 Ohm NiCr Resistors
- Cost effective focus correction for M.S.E. CRT's.


\section*{ABSOLUTE MAXIMUMS}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{VALUE} \\
\hline SYMBOL/PINS & IDENTIFICATION & MIN & MAX & UNITS \\
\hline \(\mathrm{T}_{J}\) & Operating Junction Temperature & -15 & +115 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{T}_{\text {STG }}\) & Storage Temperature & -60 & +125 & \({ }^{\circ} \mathrm{C}\) \\
\hline \[
\begin{array}{r}
\text { Pads } 1,2,3,4,5 \\
6,12,15,16 \\
18,20,21,24
\end{array}
\] & Maximum Input Voltage & -0.3 & \[
\begin{aligned}
& \text { VCC } \\
& +0.3
\end{aligned}
\] & V \\
\hline Pad 8 & Bright Input Current & -2.0 & +2.0 & mA \\
\hline Pad 9 & \begin{tabular}{l}
External Z-Axis \\
Maximum Input Current
\end{tabular} & -20.0 & \(+20.0\) & mA \\
\hline Pad 11 & VEE Voltage & \(-7.0\) & +0.3 & V \\
\hline Pads 14,17,19 & Adjust Inputs & \(-0.3\) & +0.3 & V \\
\hline Pad 22 & VCC Voltage & -0.3 & \(+7.0\) & V \\
\hline Pad 23 & \begin{tabular}{l}
-ZGATE Output \\
Maximum Output Loading
\end{tabular} & & -3.0 & mA \\
\hline
\end{tabular}

This product is sensitive to static charges and care should be taken in handling. Pins interfacing directly to transistor bases are most critical.

\section*{CAUTION}

This product is sensitive to static charges.

TERMINAL IDENTIFICATION
\begin{tabular}{c|l|l|l}
\hline PAD \# & NAME & INPUT/OUTPUT & DESCRIPTION \\
\hline \hline 1 & - SGM & Input & Main Sweep Gate \\
2 & - SGD & Input & Delayed Sweep Gate \\
3 & - HSB & Input & Horizontal Select B \\
4 & TXY & Input & Horizontal Mode XY Logic Triggered XY Mode \\
5 & - HSA & Input & Horizontal Select A \\
6 & II & Input & Intensified Zone Reference Current \\
7 & GND & Supply & Analog Ground \\
8 & IB & Input & Bright Current \\
9 & EXTZ & Input & External Z Current \\
10 & GND & Supply & System Ground \\
11 & VEE & Supply & -5 V Supply \\
12 & IR & Input & 1.0 mA Reference Current \\
13 & RREF & Input & ADJ Reference Register \\
14 & RQ & Input & Q Output Calibration Resistor \\
15 & IRQ & Input & Q Output Reference Current \\
16 & IDQ & Output & Q Exponential Current \\
17 & RMKL & Input & MKL Calibration Resistor \\
18 & IOMKL & Output & MKL Exponential Current \\
19 & RZ & Input & Z Output Calibration Resistor \\
20 & IRZ & Input & Z Output Reference Current \\
21 & IOZ & Output & Z Exponential Current \\
22 & VCC & Supply & 15 V Power Supply \\
23 & - ZGATE & Output & ZGate Logic \\
24 & BLANK & Input & Blank Gate \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS
\begin{tabular}{|c|c|c|c|c|c|}
\hline NUMBER & SYMBOL & CONDITIONS & MIN & MAX & UNITS \\
\hline 1 & ICC & Positive Supply current All Logic Inputs \(=\) " HI " \(\mathrm{IB}=0 \mathrm{VCC}=5.0 \mathrm{~V}\) & 42 & 54 & mA \\
\hline 2 & IEE & Negative Power Supply All Logic Inputs \(=\) " HI "
\[
\mathrm{IB}=0 \mathrm{VEE}=-5.0 \mathrm{~V}
\] & -62 & -46 & mA \\
\hline 3 & VR & IR Input Voltage IREF \(=0.9 \mathrm{~mA}\) & \(-2.0\) & \(-1.0\) & V \\
\hline 4 & VRZ & IRZ Input Voltage
\[
\begin{aligned}
& \mathrm{IRZ}=1.25 \mathrm{~mA} \\
& \mathrm{IB}=0
\end{aligned}
\] & -250 & -0 & mV \\
\hline 5 & VRQ & IRQ Input Voltage
\[
\begin{aligned}
& \mathrm{IRQ}=0.481 \mathrm{~mA} \\
& \mathrm{IB}=0
\end{aligned}
\] & -250 & -40 & \[
\mathrm{mV}
\] \\
\hline 6 & RZ & \begin{tabular}{l}
Z Adjust Resistance
\[
\begin{aligned}
& \mathrm{IOZ}=5.0 \mathrm{~mA}, \mathrm{IRZ}=1.25 \mathrm{~mA} \\
& \mathrm{IB}=1.0 \mathrm{~mA}, \mathrm{RREF}=90 \Omega
\end{aligned}
\] \\
Pad to Gnd Resistance to obtain indicated current.
\end{tabular} & 65 & 100 & \(\Omega\) \\
\hline 7 & RMKL & MKL Adjust Resistance \(\mathrm{IOZ}=2.31 \mathrm{~mA}, \mathrm{RMKL}=50 \mathrm{~K}\) to VCC \(\mathrm{IB}=1.0 \mathrm{~mA}\), RREF \(=90 \Omega\) Pad to Gnd Resistance to obtain indicated current. & 40 & 90 & \(\Omega\) \\
\hline 8 & RQ & \begin{tabular}{l}
Q Adjust Resistance
\[
\mathrm{IOQ}=1.923 \mathrm{~mA}, \mathrm{IRQ}=0.481 \mathrm{~mA}
\] \\
\(\mathrm{IB}=1.0 \mathrm{~mA}\), RREF \(=90 \Omega\) \\
Pad to Gnd Resistance to obtain indicated current.
\end{tabular} & 70 & 100 & \(\Omega\) \\
\hline 9 & RIB & Brite Input Resistance & 150 & 250 & \(\Omega\) \\
\hline 10 & RIZ & External Z Input Resistance & 2.3 & 3.7 & \(\mathrm{K} \Omega\) \\
\hline 11 & IIH & Logic High Input Current
\[
\mathrm{VIH}=5.0 \mathrm{~V}
\] & & 20 & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS (cont)
\begin{tabular}{|c|c|c|c|c|c|}
\hline NUMBER & SYMBOL & CONDITIONS & MIN & MAX & UNITS \\
\hline 12 & IIL & Logic Lo Input Current VIL \(=0 \mathrm{~V}\) BF and Blank Inputs & -100 & & \(\mu \mathrm{A}\) \\
\hline 13 & IIL & \begin{tabular}{l}
Logic Lo Input Current
\[
\mathrm{VIL}=0 \mathrm{~V}
\] \\
All Remaining Logic Inputs
\end{tabular} & -20 & & \(\mu \mathrm{A}\) \\
\hline 14 & VIH & Valid Range High Data & 1.97 & \[
\begin{aligned}
& \text { VCC } \\
& +0.3
\end{aligned}
\] & V \\
\hline 15 & VIL & Valid Range Lo Data & -0.2 & 0.8 & V \\
\hline 16 & VOH & -ZGate Hi Output
\[
\mathrm{IL}=0.5 \mathrm{~mA}
\] & 1.8 & 2.2 & V \\
\hline 17 & VOL & -ZGate Lo Output
\[
\mathrm{IL}=0.5 \mathrm{~mA}
\] & 0.6 & 1.0 & V \\
\hline 18 & IOZM & Minimum IOZ
\[
\mathrm{IB}=0
\] & 0 & 30 & \(\mu \mathrm{A}\) \\
\hline 19 & IIB & Full Scale Brite Input & 0.665 & 0.785 & mA \\
\hline 20 & IIBRO & Readout Brite Input Current
\[
\mathrm{IOZ}=0.923 \mathrm{~mA}
\] & 0.44 & 0.54 & mA \\
\hline 21 & AIOZI & \begin{tabular}{l}
Z Output Intensified Zone \\
Ratio Of \(\frac{\mathrm{IOZI}}{\mathrm{IOZh}}\) \\
IOZI = Value of IOZ with DSG low in main sweep mode and IOZh = Value with DSG high at the same value of IBrite, \(10 Z 1<5.0 \mathrm{~mA}\)
\end{tabular} & 1.60 & 2.10 & A/A \\
\hline 22 & AIEZ & \begin{tabular}{l}
External \(Z\) Axis Gain \\
Equivalent to the change in IBrite divided by the change in IEXT \(Z\) that maintains IOZ at the same \\
Ratio of IOZ with EXT \(Z \mathrm{amp}\) on to IOZ with EXT Z amp off.
\[
\mathrm{IOZ}=1 \mathrm{~mA}
\]
\end{tabular} & -4 & -7 & A/A \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS (cont)
\begin{tabular}{|c|c|c|c|c|c|}
\hline NUMBER & SYMBOL & CONDITIONS & MIN & MAX & UNITS \\
\hline 23 & IOMKLLIN & \begin{tabular}{l}
MIL Output Linearity \\
Difference between the IOMKL minus the \(5 / 3\) power of the IOZ. \\
MKLLIN \(=1 O M K L-k(I O Z)^{5 / 3}\) \\
where: \\
\(k=\) IOMKLfs/(IOZfs) \()^{5 / 3}\) and \(\mathrm{fs}=\) full scale outputs
\end{tabular} & & \(\pm 50\) & \(\mu \mathrm{A}\) \\
\hline 24 & IOQLIN & \begin{tabular}{l}
Q Output Linearity \\
Difference between the IOQ minus the 2.4 power of the IOZ
\[
\mathrm{QLIN}=10 Q-k(I O Z)^{2.4}
\] \\
where
\[
\begin{aligned}
& \mathrm{k}=\mathrm{IOQfs} /(\mathrm{IOZfs})^{2.4} \\
& \mathrm{fs}=\text { full scale outputs }
\end{aligned}
\]
\end{tabular} & & \(\pm 0.05\) & mA \\
\hline 25 & td & Fast Logic Input to ZGate Delay Time & & 2 & nS \\
\hline 26 & td & Slow Logic Input to ZGate Delay. Slow inputs are:
-HSA -HSB TYY BF & & 100 & nS \\
\hline 27 & tdINT & \begin{tabular}{l}
Intensified Zone Delay \\
Delay Time of Intensified Zone is the delay from tr - of DSG to \(50 \%\) of IOZ
\end{tabular} & & 5 & nS \\
\hline 28 & tdEXTZ & External Z Transition Time & & 10 & nS \\
\hline
\end{tabular}

\section*{APPLICATIONS INFORMATION}

This circuit has a peak current gain of 50 at full scale output from the Bright Input and a gain of 300 from the EXTZ input. The bandwidth of 30 MHz results in a gain-bandwidth product of 9000 MHz .

Feedback from the exponential outputs to the inputs must be minimized to prevent oscillations and preserve transient response fidelity. The power supplies are also sensitive and must be bypassed with low inductance capacitors.

The RREF resistor determines the center value of the ADJ resistors. The value also affects the temperature drift of the outputs due to base current change with temperature.

The beam find function is not specified and that pin should be grounded to ensure remaining circuit functionality.

\section*{H.V. TRANSRESISTANCE AMP}

DESCRIPTION
The 203-0227-90 is a shunt feedback gated amplifier designed to drive capacitive loads. The SHHV process is utilized to obtain a \(\mathrm{BV}(\mathrm{CBO})\) of 65 V and an \(\mathrm{F}_{\mathrm{t}}\) of 2 GHz .

FEATURES
- SHHV process
- Class AB amplifier
- All NPN output configuration
- 67 V dynamic output
- 15 ns risetime (22 pF load)
- \(2 \mathrm{GHz} \mathrm{F}_{\mathrm{t}}\)


\section*{ABSOLUTE MAXIMUMS}
\begin{tabular}{|c|c|c|c|}
\hline SYMBOLS & IDENTIFICATION & VALUE & UNITS \\
\hline T & Operating Junction Temperature & -15 to +115 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{T}_{\text {STG }}\) & Storage Temperature & -60 to +125 & \({ }^{\circ} \mathrm{C}\) \\
\hline Pad 1 & VCC5, +5 V Supply & -0.3 to +7.0 & V \\
\hline Pad 2 & IIN, Max Voltage Range & -0.3 to +3.0 & V \\
\hline Pad 2 & IIN, Max Current Range & -10 to 0 & mA \\
\hline Pad 3 & Gate, Max Voltage Range & VCC -0.3 to +0.3 & V \\
\hline Pad 5 & TR Adj, Max Voltage Range & -3.0 to +20 & V \\
\hline Pad 6 & VEE, Max Voltage Range & -7.0 to -0.3 & V \\
\hline Pad 7 & Offset Adj, Max Voltage Range & -15 to VCC15 +0.3 & V \\
\hline Pad 8 & IREF, Max Voltage Range & VEE -0.3 to 0.3 & V \\
\hline Pad 9 & VCC15, Max Voltage Range & -0.3 to +20.0 & V \\
\hline Pad 12 & Bootstrap, Max Current Range & 0 to +15.0 & mA \\
\hline Pad 13 & CL Bypass, Max Voltage Range & VCC87-. 3 to 0 & V \\
\hline Pad 14 & VCC87, Max Voltage Range & -0.3 to +95.0 & V \\
\hline Pad 15 & VREF, Max Voltage Range & -15.0 to +15.0 & V \\
\hline Pad 16 & IREF, Max Voltage Range & -15.0 to +15.0 & V \\
\hline
\end{tabular}

TERMINAL IDENTIFICATION
\begin{tabular}{c|l|l|l}
\hline PAD \# & NAME & INPUT/OUTPUT & DESCRIPTION \\
\hline \hline 1 & VCC5 & Supply & +5 V Supply \\
2 & IIN & Input & Input Current to Amplifier \\
3 & Gate & Input & TTL Not Gate \\
4 & Ground & - & Input Ground \\
5 & TR Adj & Input & Trans Response Voltage Adj \\
6 & VEE & Supply & -5 V Supply \\
7 & VOFF & Input & Quiescent Level Offset Adj \\
8 & IREF & Input & Ref Current for Current Sources \\
9 & VCC15 & Supply & +15 V Supply \\
10 & OUT GND & Ground & Output Ground \\
11 & VO & Output & Amplifier Output \\
12 & BS & Input & Bootstrap \\
13 & CL & Output & Current Linearity Bypass \\
14 & VCC87 & Supply & +87 V Supply \\
15 & VR & Input & Reference Voltage \\
16 & IR & Output & Reference Current for Input \\
\hline
\end{tabular}

PARAMETRIC SUMMARY
\begin{tabular}{|c|c|c|c|c|c|}
\hline NUMBER & SYMBOL & CONDITIONS & MIN & MAX & UNITS \\
\hline 1 & ICC87 & VCC87 source current includes current in external pullup.
\[
\mathrm{IIN}=0 \mathrm{~mA}
\] & 8.0 & 10.0 & mA \\
\hline 2 & ICC87 & VCC87 short current \(\mathrm{IIN}=5 \mathrm{~mA}\) & 16.0 & 27.0 & mA \\
\hline 3 & ICC15 & VCC15 source current \(\mathrm{IIN}=0 \mathrm{~mA}\) & 5.4 & 7.6 & mA \\
\hline 4 & ICC5 & VCC5 source current & 6.4 & 10.6 & mA \\
\hline 5 & IEE5 & VEE5 source current & 19.0 & 30.0 & mA \\
\hline 6 & 110 & Reference current VREF \(=10 \mathrm{~V}\) & 1.0 & 1.5 & mA \\
\hline 7 & VOLO & \begin{tabular}{l}
Output Voltage, Low \(\mathrm{IIN}=0 \mathrm{~mA}\) \\
VOFFSET \(=\) Open
\end{tabular} & 9.0 & 13.0 & V \\
\hline 8 & VOLS & Output Voltage \(\mathrm{IIN}=0 \mathrm{~mA}\) VOFFSET \(=\) VEE & 7.0 & 11.0 & V \\
\hline 9 & VTR + & Output Voltage Change
\[
\mathrm{IIN}=0 \mathrm{~mA}
\]
\[
\mathrm{VTR}=7.5 \text { to } 15 \mathrm{~V}
\] & 0 & \(\pm .55\) & V \\
\hline 10 & VTR - & Output Voltage
\[
\begin{aligned}
& \mathrm{IIN}=0 \mathrm{~V} \\
& \mathrm{VTR}=7.5 \text { to } 0 \mathrm{~V}
\end{aligned}
\] & 0 & \(\pm 0.55\) & V \\
\hline 11 & VBS & Bootstrap Output Voltage \(\mathrm{IIN}=0 \mathrm{~mA}\), with respect to VOLS & 9.5 & 16.5 & V \\
\hline 12 & VIN & IIN Pad input voltage
\[
\begin{aligned}
& \mathrm{IIN}=10 \mathrm{~mA} \\
& \mathrm{VGATE}=2.0 \mathrm{~V}
\end{aligned}
\] & 0.95 & 1.35 & V \\
\hline 13 & VIN & IIN Pad input voltage \(\mathrm{IIN}=5 \mathrm{~mA}\) \(\mathrm{VGATE}=1.0 \mathrm{~V}\) & 0.3 & 0.8 & V \\
\hline 14 & VOH & Output Voltage, HI IIN = 4IR & \[
\begin{aligned}
& \text { VOLS } \\
& +62.0
\end{aligned}
\] & \[
\begin{aligned}
& \text { VOLS } \\
& +67.0
\end{aligned}
\] & V \\
\hline
\end{tabular}

CONDITIONS FOR PARAMETERS 15 THROUGH 19
ADJUST IINO FOR VOUT \(=65 \mathrm{~V} \pm 0.05 \mathrm{~V}\) ABOVE VOL
\begin{tabular}{l|l|l|l|l|c}
\hline 15 & VOLIN1 & \begin{tabular}{l} 
Output linearity \\
IIN1 = 1.05 IIN0
\end{tabular} & 67.95 & 68.55 & V \\
\hline 16 & VOLIN2 & \begin{tabular}{l} 
Output linearity \\
IIN2 \(=.95\) IIN0
\end{tabular} & 61.45 & 62.05 & V \\
\hline 17 & VOLIN3 & \begin{tabular}{l} 
Output linearity \\
IIN3 \(=.90\) IIN0
\end{tabular} & 57.9 & 59.1 & V \\
\hline 18 & VOLIN4 & \begin{tabular}{l} 
Output linearity \\
IIN4 \(=.80\) IIN0
\end{tabular} & 51.4 & 52.6 & V \\
\hline 19 & VOLIN5 & \begin{tabular}{l} 
Output linearity \\
IIN5 \(=.60\) IIN0
\end{tabular} & 37.9 & 40.1 & V \\
\hline 20 & VOTC & \begin{tabular}{l} 
Output voltage change with \\
temperature
\end{tabular} & 0 & \(\pm 1\) & V \\
\hline 21 & VITR & \begin{tabular}{l} 
Transient voltage input range
\end{tabular} & 0 & 15 & V \\
\hline 22 & IITR & VITR = 15 V & 0.4 & 0.95 & mA \\
\hline 23 & VIR & Pad voltage for IR = 1.0 mA & -1.6 & -0.4 & V \\
\hline 24 & VOCL & \begin{tabular}{l} 
Current limit bypass \\
IIN \(=0\) mA \\
VCC87 \(=87\) V
\end{tabular} & 83.5 & 86.5 & V \\
\hline
\end{tabular}

The following parameters apply to H 853 and cannot be measured at die level.
\begin{tabular}{l|l|l|l|l|c}
\hline 25 & Tr & \begin{tabular}{l} 
Rise time \\
IIN = 4IR \\
CLOAD \(=22 \mathrm{pF}\) \\
VOUT \(=10 \%\) to \(90 \%\)
\end{tabular} & \(\leqslant 15\) & ns \\
\hline 26 & Tf & \begin{tabular}{l} 
Fall Time \\
IIN \(=4 \mathrm{IR}\) \\
CLOAD \(=22 \mathrm{pF}\) \\
VOUT \(=90 \%\) to \(10 \%\)
\end{tabular} & \(\leqslant 25\) & ns \\
\hline 27 & Abb & \begin{tabular}{l} 
Aberrations \\
VTR adjusted for optimum \\
CLOAD \(=15 \mathrm{pF}\)
\end{tabular} & 0 & \(\pm 10\) & \(\%\) \\
\hline
\end{tabular}

\section*{APPLICATIONS INFORMATION}

This circuit was designed to drive the Z-Axis and quadrapole electrodes of the T2503 CRT. All power supplies except the +87 V should be bypassed within 1 cm of the circuit with a high quality ceramic capacitor.

Care should be exercised that the output is not connected to a supply that is higher than the desired output. The current limiter protects the circuit only for a short to a voltage lower than the output.

A pullup resistor of 8 k is required that will dissipate 0.64 W . A bootstrap capacitor of 22 pF is required to obtain a fast transient response. The current limiter is bypassed with 3300 pF . A 5.9 k resistor from IREF to +5 V will set up 1 mA for the current sources.

The output should have at least \(50 \Omega\) in series with the capacitive load to preserve stable operation.

The current limiter will limit the circuit to a safe power dissipation during high amplitude sinusoidal outputs.

The stray capacitance on IIN should be less than 2 pF to preserve amplifier stability.

\section*{AUXILIARY PREAMPLIFIER DIE}

\section*{DESCRIPTION}

The 203-0229-90 is a SHIII auxiliary preamplifier. It provides limited signal conditioning for two highspeed, high-impedance inputs when used with FET Impedance Converters.

\section*{FEATURES}
- SHIII Process
- TTL Compatible Gain Switching
- Two Outputs per channel
1. Single-ended without positioning for trigger pick off.
2. Differential with positioning for display.
- On chip limiting for good overdrive recovery.

\section*{BLOCK DIAGRAM}


ABSOLUTE MAXIMUMS
\begin{tabular}{|c|c|c|}
\hline SYMBOLS & IDENTIFICATION & value \\
\hline \(\mathrm{T}_{\mathrm{J}}\) & Operating Junction Temperature & \(-15^{\circ} \mathrm{C}-+115^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{T}_{\text {STG }}\) & Storage Temperature & \(-15^{\circ} \mathrm{C}-+125^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{V}_{\mathrm{cc}}\) & \begin{tabular}{l}
Positive Supply \\
Maximum Voltage Range
\end{tabular} & \(-0.3 \mathrm{~V}-+7.0 \mathrm{~V}\) \\
\hline \(V_{\text {EE }}\) & \begin{tabular}{l}
Negative Supply \\
Maximum Voltage Range
\end{tabular} & \(+0.3 \mathrm{v}--7.0 \mathrm{v}\) \\
\hline \(\mathrm{V}_{\text {(NII-II) }}\) & Maximum Differential Input Voltage NII or II (Pad 13 or 20 to Pad 12 or 21) & \(-2.5 \mathrm{~V}-+2.5 \mathrm{~V}\) \\
\hline \[
V_{(N I I)} V_{(I I)}
\] & Maximum Input Voltage, Nil or II Pads (12 to 13 and 20 to 21) & VEE \(-0.3 \mathrm{~V}-+0.3 \mathrm{~V}\) \\
\hline \(\mathrm{V}_{\text {(LIM) }}\) & Maximum Input Voltage, LIM (Pads 11 and 22) & VEE \(-0.3 \mathrm{~V}-\mathrm{VCC}+1.5 \mathrm{~V}\) \\
\hline \(V_{\text {(GA) }}\) & Maximum Input Voltage, GA (Pads 3 and 4) & VEE \(-0.3 \mathrm{~V}-\mathrm{VCC}+0.3 \mathrm{~V}\) \\
\hline \(\mathrm{V}_{\text {(POS) }}\) & Maximum Input Voltage, POS (Pads 2 and 5) & VEE \(-0.3 \mathrm{~V}-\mathrm{VCC}+0.3 \mathrm{~V}\) \\
\hline \(V_{\text {(RPOW) }}\) & Maximum Input Voltage, RPOW (Pads 16 and 17) & VEE \(-0.3 \mathrm{~V}-\mathrm{VCC}+0.3 \mathrm{~V}\) \\
\hline
\end{tabular}

TERMINAL IDENTIFICATION
\begin{tabular}{l|l|l|l}
\hline PAD \# & NAME & \multicolumn{1}{|c|}{ FUNCTION } & \multicolumn{1}{c}{ DESCRIPTION } \\
\hline \hline 1 & DON4 & Output & CH4 Display Output, Negative \\
2 & POS4 & Input & CH4 Position Input \\
3 & GA4 & Input & CH4 Gain Switch Control \\
4 & GA3 & Input & CH3 Gain Switch Control \\
5 & POS3 & Input & CH3 Position Input \\
6 & DON3 & Output & CH3 Display Output, Negative \\
7 & DOP3 & Output & CH3 Display Output, Positive \\
8 & TPO3 & Output & CH3 Trigger Pickoff Output \\
9 & VCC3 & Supply & CH3 +5 Volt Supply \\
10 & FB3 & Output & CH3 Feedback Output \\
11 & LIM3 & & CH 3 Diode Limiter \\
12 & II3 & Input & CH3 Inverting Input \\
13 & NII3 & Input & CH3 Non-Inverting Input \\
14 & GND3 & Ground & CH3 Ground \\
15 & VEE3 & Supply & CH3 -5 Volt Supply \\
16 & RPOW3 & Bias & CH3 Bias Current \\
17 & RPOW4 & Bias & CH4 Bias Current \\
18 & VEE4 & Supply & CH4 -5 Volt Supply \\
19 & GND4 & Ground & CH4 Ground \\
20 & NII4 & Input & CH4 Non-Inverting Input \\
21 & II4 & Input & CH4 Inverting Input \\
22 & LIM4 & & CH4 Diode Limiter \\
23 & FB4 & & CH4 Feedback Out \\
24 & VCC4 & Supply & CH4 +5 Volt Supply \\
25 & TPO4 & Output & CH4 Trigger Pickoff Output \\
26 & DOP4 & Output & CH4 Display Output, Positive \\
\hline
\end{tabular}

\section*{ELECTRICAL CHARACTERISTICS}

In the following summary refer to Figure 1 schematic for the following inputs and outputs:
\(\mathrm{V}(\mathrm{IN}) \quad \mathrm{TTPO}\) TDOP TDON \(\quad \mathrm{V}(\mathrm{FB}) \quad \mathrm{V}(\mathrm{POS}) \quad \mathrm{V}(\mathrm{GA})\)

NOTE: Power supply tolerances are \(\pm 2 \%\) unless otherwise indicated.
\begin{tabular}{|c|c|c|c|c|c|}
\hline NUMBER & SYMBOL & CONDITIONS & MIN & MAX & UNITS \\
\hline 1 & \(V_{\text {OFF }}\) & Input Offset, NII-II & -10 & \(+10\) & mV \\
\hline 2 & I(II) & Bias Current, II & 2.5 & 25 & \(\mu \mathrm{A}\) \\
\hline 3 & AV(TTPO)
(X1) & Voltage Gain (X1)
\[
V(G A)=L o
\] & -1.55 & -1.45 & \\
\hline 4 & \[
\begin{aligned}
& \text { AV(TTPO) } \\
& (\times 0.2)
\end{aligned}
\] & \[
\begin{aligned}
& \text { Gain }=\frac{V(T T P O)}{V(I N)} \\
& \text { Voltage Gain }(X 0.2) \\
& V(G A)=H i
\end{aligned}
\] & -0.310 & -0.290 & \\
\hline 4A & - - & \begin{tabular}{l}
\[
\text { Gain }=\frac{\mathrm{V}(\mathrm{TTPO})}{\mathrm{V}(\mathrm{IN})}
\] \\
Ratio of X 1 Output to X0.2 Output
\end{tabular} & & & \\
\hline 5 & \(V_{\text {OM }}+(T T P O)\) & \[
\begin{aligned}
& \text { Ratio }=\frac{\mathrm{AV}(\mathrm{TTPO}, \mathrm{X} 1)}{\mathrm{AV}(\mathrm{TTPO}, \mathrm{X0.2})} \\
& \text { TTPO Output } \\
& \text { Positive Voltage Limit } \\
& \mathrm{FB}=+1 \mathrm{~V} \\
& \mathrm{~V}(\mathrm{GA})=\text { "Lo" }
\end{aligned}
\] & 4.90
0.50 & 5.10
0.80 & V \\
\hline 6 & \(\mathrm{V}_{\text {OM }}\) (TTPO) & TTPO Output Negative Voltage Limit
\[
\begin{aligned}
& \mathrm{FB}=-1 \mathrm{~V} \\
& \mathrm{~V}(\mathrm{GA})=\text { "Lo" }
\end{aligned}
\] & -0.80 & -0.50 & V \\
\hline 7 & \(\mathrm{V}_{\text {OOITPO) }}\) & \begin{tabular}{l}
TTPO Change W/"Lo" - " \(\mathrm{Hi}^{\text {" }}\) \\
Transition at \(\mathrm{V}(\mathrm{GA})\) \(\mathrm{V}(\mathrm{GA})=\) Pads 3 and 4
\end{tabular} & -10 & \(+20\) & mV \\
\hline 8 & AV(TDO, X.2) & Voltage Gain
\[
V(G A)=" H I^{"}
\]
\[
\text { Gain }=\frac{V(\text { TDOP })-V(T D O N)}{V(I N)}
\] & 0.580 & 0.620 & \\
\hline 9 & AV(TDO, X1) & Voltage Gain
\[
\begin{aligned}
& V(\mathrm{GA})=" \mathrm{Lo} " \\
& \text { Gain }=\frac{\mathrm{V}(\mathrm{TDOP})-\mathrm{V}(\mathrm{TDON})}{\mathrm{V}(\mathrm{IN})}
\end{aligned}
\] & 2.90 & 3.10 & \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS (cont)


ELECTRICAL CHARACTERISTICS (cont)
\begin{tabular}{|c|c|c|c|c|c|}
\hline NUMBER & SYMBOL & CONDITIONS & MIN & MAX & UNITS \\
\hline 20 & V(GA)LO & GA Valid Data Range-LO Pad 3 or 4 & -0.3 & +0.8 & V \\
\hline 21 & \(\mathrm{V}(\mathrm{GA}) \mathrm{HI}\) & GA Valid Data Range-HI Pad 3 or 4 & 2.0 & VCC +.3 & V \\
\hline 22 & \(V_{\text {OC(POS }}\) & \begin{tabular}{l}
POS Open Circuit Voltage \\
Pad 5 or 2 VEE \(=-5.0\) Volts
\end{tabular} & \(-2.6\) & -2.4 & V \\
\hline 23 & \(Z_{\text {(PPOS) }}\) & POS Input Impedance Pad 5 or 2 & 10 & & \(\mathrm{K} \Omega\) \\
\hline 24 & \(V_{\text {O(RPOW) }}\) & RPOW, Compliance Voltage Pad 16 or 17 & \(-1.40\) & -0.60 & V \\
\hline 25 & \(I_{\text {EE( }-5)}\) & -5 Volts Supply Current Pad 18 & -60 & -45 & mA \\
\hline
\end{tabular}


\section*{APPLICATIONS INFORMATION}

\section*{RELIABILITY}
\(\lambda\), failure rate \(\leqslant 0.02 \% / 1 \mathrm{~K}\) Hours \(@ 75^{\circ} \mathrm{C} \mathrm{T}_{\mathrm{j}}\)

\section*{SWEEP DAC DIE}

\section*{DESCRIPTION}

The 203-0231-90 is part of a sweep circuit system. This die contains circuitry for four separate functions as described under Features.

When used with the 203-0214-90 a complete sweep circuit system is generated with very few external components.

\section*{FEATURES}
- 7 Bit Shift Register and buffer
- Programmable
- Timing Current Generator
- Timing Capacitor Select
- Sweep-Display Delay Level Shift DAC
- \(200 \Omega /\) sq BIFET Process


ABSOLUTE MAXIMUMS
\begin{tabular}{|c|c|c|c|c|}
\hline Symbols & Identification & Minimum & Maximum & Units \\
\hline TJ & Operating Junction Temperature & -15 & +125 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{T}_{\text {STG }}\) & Storage Temperature & -55 & +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Pad 16 & +15 Volts Voltage Range & -0.3 & +18 & V \\
\hline Pad 9 & -15 Volts Voltage Range & -18 & +0.3 & V \\
\hline Pad 8 & + 5 Volts Voltage Range & -0.3 & +7.0 & V \\
\hline Pad 1 & -5 Volts Voltage Range & \(-7.0\) & \(+0.3\) & V \\
\hline Pad 22 & +32 Volt Supply Voltage Range & -0.3 & \(+46\) & V \\
\hline Pad 2 & CD Input Voltage Range at Pad & -0.3 & \[
\begin{aligned}
& \text { VCC5 + } \\
& 0.3
\end{aligned}
\] & V \\
\hline Pad 3 & - CC Input Voltage Range at Pad & -0.3 & \[
\begin{aligned}
& \text { vCC5 + } \\
& 0.3
\end{aligned}
\] & V \\
\hline Pad 7 & ITREF Input Current Into Pad & 0.0 & 400 & \(\mu \mathrm{A}\) \\
\hline Pad 17 & ITR Current Out Voltage Range at Pad & -0.3 & \[
\begin{aligned}
& \text { VCC15 + } \\
& 0.3
\end{aligned}
\] & V \\
\hline Pad 18 & Timing Resistor Current Into Pad & 0.0 & 100 & \(\mu \mathrm{A}\) \\
\hline Pad 19 & Timing Resistor Current Into Pad & 0.0 & 1.0 & mA \\
\hline Pad 20 & Timing Resistor Current Into Pad & 0.0 & 10 & mA \\
\hline \[
\begin{array}{r}
\text { Pad 27, } 28 \\
29,30
\end{array}
\] & Pads With Common Specs Current Out & -1.0 & 0.0 & mA \\
\hline Pad 31 & LVL Shift "DAC" in Current Into Pad & 0.0 & 1.5 & mA \\
\hline Pad 32 & LVL Shift "DAC" Current Out Pad Voltage Range at Pad & \[
\begin{aligned}
& \text { VEE5 } \\
& -0.3
\end{aligned}
\] & \(+0.3\) & V \\
\hline
\end{tabular}

Table 1
ELECTRICAL REQUIREMENTS
(Refer also to Tables 3 and 4)
\begin{tabular}{c|c|c|c|c|c}
\hline No. & Symbol & Conditions & Min & Max & Units \\
\hline \hline \multicolumn{2}{c|}{ POWER SUPPLY CURRENTS } & \\
\hline 1 & ICC32 & +32 Volt Supply Current Range & 1.50 & 4.55 & mA \\
\hline 2 & ICC15 & +15 Volt Supply Current Range & 2.00 & 6.00 & mA \\
\hline 3 & ICC5 & +5 Volt Supply Current Range & 18.0 & 45.0 & mA \\
\hline 4 & IEE5 & -5 Volt Supply Current Range & -9.75 & -2.00 & mA \\
\hline 5 & IEE15 & -15 Volt Supply Current Range & -27.5 & -6.0 & mA \\
\hline
\end{tabular}

LOGIC OUTPUT VOLTAGES REQUIRED TO INTERFACE WITH 203-0214-00
(Refer to Tables 3 and 4)
\begin{tabular}{|c|c|c|c|c|c|}
\hline 6 & ESG-LO & Enable SWP GATE V-OUT (No Load) "LO" State & 2.2 & 2.90 & v \\
\hline 7 & ESG-HI & Enable SWP GATE V-OUT (No Load) "HI" State & 3.36 & 3.8 & v \\
\hline 8 & \[
\frac{.1 / 1 / 10 \mu \mathrm{~F}}{\mathrm{SELLECT}}
\] & V-OUT (No Load) "LO" State & 2.2 & 2.90 & v \\
\hline 9 & \[
\frac{.1 / 1 / 10 \mu \mathrm{~F}}{\text { SELECT }}
\] & V-OUT (No Load) "HI" State & 3.31 & 3.8 & v \\
\hline 10 & \[
\overline{\overline{\mathrm{NNF}}}
\] & V-OUT (No Load) "LO" State & 2.2 & 2.90 & v \\
\hline 11 & \[
\frac{\overline{\mathrm{NNF}}}{\mathrm{SELECT}}
\] & V-OUT (No Load) "HI" State & 3.31 & 3.8 & V \\
\hline 12 & \begin{tabular}{l}
VOUT \\
Hl(1 nF) \\
-VOUT \\
LO \\
(.1/1/10 \(\mu\) f)
\end{tabular} & Calculated from tests 8-11 & 0.52 & & v \\
\hline 13 & \begin{tabular}{l}
VOUT HI \\
(.1/1/10 \(\mu \mathrm{F}\) ) \\
-VOUT \\
LO(1 nf)
\end{tabular} & Calculated from tests 8-11 & 0.52 & & V \\
\hline
\end{tabular}

Table 1 (cont)
(Refer also to Tables 3 and 4)
\begin{tabular}{c|l|l|l|c|c}
\hline No. & Symbol & Conditions & Min & Max & Units \\
\hline \hline 14 & \begin{tabular}{l} 
VOUT HI \\
\((.1 / 1 / 10 \mu \mathrm{~F})\) \\
-VOUT \\
\(\mathrm{HI}(1 \mathrm{nf})\)
\end{tabular} & Calculated from tests 8-11 & -0.12 & +0.12 & V \\
\hline 15 & \(\overline{5 \mathrm{~ns}}\) & VOUT (No Load) "LO" State & 2.2 & 2.90 & V \\
\hline 16 & \(\overline{\text { SELECT }}\) & \(\overline{5 n s}\) & VOUT (No Load) "HI" State & 3.36 & 3.8 \\
\hline
\end{tabular}

TIMING CAPACITOR SELECT(TCS) OUTPUT REQUIREMENTS
\begin{tabular}{c|c|l|l|l|c}
\hline 17 & TCS(HI) & \begin{tabular}{l} 
TCS Output Current "HI" State \\
(into a 0.75 volt supply)
\end{tabular} & 4.0 & 9.8 & mA \\
\hline 18 & TCS(LO) & TCS Output Voltage "LO" State & -2.5 & -2.0 & V \\
\hline
\end{tabular}

Timing Current DAC-Offsets, Current Gain and Current Gain Ratios
(See Table 2 for definition of terms.)
\begin{tabular}{l|l|l|l|l|l}
\hline 19 & \(M(1)\) & \begin{tabular}{l} 
Current Gain (ITREF to ITR) (see \\
Table 2)
\end{tabular} & 1.99 & 2.01 & \\
\hline 20 & \(\frac{M(O H)}{M(1)}\) & Current Gain Ratio (see Table 2) & 1.99 & 2.01 & \\
\hline 21 & \(\frac{M(O L)}{M(1)}\) & Current Gain Ratio (see Table 2) & 1.99 & 2.01 & \\
\hline 22 & \(\frac{M(2)}{M(1)}\) & Current Gain Ratio (see Table 2) & 0.4975 & 0.5025 & \\
\hline 23 & \(\frac{M(3)}{M(1)}\) & Current Gain Ratio (see Table 2) & 0.199 & 0.201 & mV \\
\hline 24 & \(V(\mathrm{OH})\) & Offset (see Table 2) & -80 & 80 & mV \\
\hline 25 & \(\mathrm{~V}(\mathrm{OL})\) & Offset (see Table 2) & -80 & 80 & mV \\
\hline 26 & \(\mathrm{~V}(1)\) & Offset (see Table 2) & -80 & 80 & mV \\
\hline 27 & \(\mathrm{~V}(2)\) & Offset (see Table 2) & -80 & 80 & mV \\
\hline 28 & \(V(3)\) & Offset (see Table 2) & -80 & 80 & \\
\hline
\end{tabular}

Table 1 (cont)

Sweep-Display Delay Level Shift DAC Output Current.
LSDRC (Pad 31) = 1.174 mA . LSDC Measured into -5 V Power Supply for the Following Shift Register T5,T0 Codes.
\begin{tabular}{|c|c|c|c|c|c|}
\hline 29 & & T5, \(\mathrm{TO}=000000\) & 7.654 & 8.000 & mA \\
\hline 30 & & T5, \(\mathrm{TO}^{2}=010000\) & 3.82 & 4.01 & mA \\
\hline 31 & - & T5,T0 \(=100000\) & 1.91 & 2.00 & mA \\
\hline 32 & & T5,T0 \(=000001\) & 759 & 807 & \(\mu \mathrm{A}\) \\
\hline 33 & & T5,T0 \(=000100\) & 759 & 807 & \(\mu \mathrm{A}\) \\
\hline 34 & & T5, \(\mathrm{TO}^{(0)} 010001\) & 370 & 412 & \(\mu \mathrm{A}\) \\
\hline 35 & & T5,T0 \(=010100\) & 370 & 412 & \(\mu \mathrm{A}\) \\
\hline 36 & & T5,T0 \(=100001\) & 176 & 215 & \(\mu \mathrm{A}\) \\
\hline 37 & & T5,T0 \(=100100\) & 176 & 215 & \(\mu \mathrm{A}\) \\
\hline 38 & & T5,T0 \(=000010\) & 61.7 & 94.8 & \(\mu \mathrm{A}\) \\
\hline 39 & & T5,T0 \(=000101\) & 61.7 & 94.8 & \(\mu \mathrm{A}\) \\
\hline 40 & & T5,T0 \(=010101\) & -10 & \(+10\) & \(\mu \mathrm{A}\) \\
\hline 41 & & T5,T0 \(=100101\) & -10 & \(+10\) & \(\mu \mathrm{A}\) \\
\hline 42 & & T5, \(\mathrm{TO}^{(0)} 000110\) & -10 & \(+10\) & \(\mu \mathrm{A}\) \\
\hline 43 & & T5, \(\mathrm{TO}=010110\) & -10 & +10 & \(\mu \mathrm{A}\) \\
\hline 44 & & T5,T0 \(=100110\) & -10 & +10 & \(\mu \mathrm{A}\) \\
\hline 45 & & T5,T0 \(=110110\) & -10 & +10 & \(\mu \mathrm{A}\) \\
\hline 46 & & T5, \(\mathrm{TO}=011001\) & -10 & \(+10\) & \(\mu \mathrm{A}\) \\
\hline 47 & & \(\mathrm{T}, \mathrm{T} 0=011101\) & -10 & \(+10\) & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

INPUT BIAS VOLTAGES AND BIAS CURRENTS
\begin{tabular}{|c|c|c|c|c|c|}
\hline 48 & \(\underline{\square}\) & LSDRC input bias voltage \(100 \mu \mathrm{~A}\) forced into pad 31 & -15 & -8.5 & V \\
\hline 49 & — & \begin{tabular}{l}
Same as \#49 \\
Except force 1.5 mA into pad 31
\end{tabular} & -15 & -8.5 & v \\
\hline 50 & - & Control data bias current from 0.4 volt supply & -5 & +5 & \(\mu \mathrm{A}\) \\
\hline 51 & & Control data bias current from 2.4 volt supply & -5 & \(+35\) & \(\mu \mathrm{A}\) \\
\hline 52 & & Not clock input bias current from 0.4 volt supply & -5 & \(+35\) & \(\mu \mathrm{A}\) \\
\hline 53 & - & Not clock input bias current from +2.4 volt supply & -5 & \(+35\) & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

\section*{Table 1 (cont)}

Timing capacitor port fault catch voltages and "OFF" (port not selected) voltages. "OFF" voltage requirement will be "HI" or "LO" depending on timing capacitor selected (see Tables 3 and 4).
\begin{tabular}{|c|c|c|c|c|c|}
\hline 54 & V-TC(3) & \begin{tabular}{l}
TC(3) (pad 26) fault catch voltage. CTO selected. \\
Timing current \(=5 \mathrm{~mA}\).
\end{tabular} & 5.3 & 6.2 & V \\
\hline 55 & V-TC(2) & TC(2) (pad 25) fault catch voltage. CT1 selected. Timing current \(=2.5 \mathrm{~mA}\). & 5.3 & 6.2 & V \\
\hline 56 & V-TC(1) & TC(1) (pad 24) fault catch voltage. CT2 selected. Timing current \(=2.5 \mathrm{~mA}\). & 5.3 & 6.2 & V \\
\hline 57 & V -TC(1) & TC(1) (pad 24) voltage. "OFF" condition. "LO" state. CT0 selected. Force \(10 \mu \mathrm{~A}\) into pad 24 and measure voltage at pad 24. & \(-1.2\) & -0.5 & V \\
\hline 58 & \(\mathrm{V}-\mathrm{TC}(2)\) & Same as \#57 except pad 25 & -1.2 & -0.5 & V \\
\hline 59 & V-TC(3) & \begin{tabular}{l}
TC(3) (pad 26) voltage. "OFF" condition. "LO" state. CT1 selected.
\[
\mathrm{T} 5, \mathrm{~T} 0=000100
\] \\
Force \(10 \mu \mathrm{~A}\) in pad 26 and measure pad 26 voltage.
\end{tabular} & -1.2 & -0.5 & V \\
\hline 60 & V-TC(3) & TC(3) (pad 26) voltage. "OFF" condition. "LO" state. CT2 and TCS selected. T5, T0 \(=001100\) Force \(10 \mu \mathrm{~A}\) into pad 26 and measure pad 26 voltage. & -1.2 & -0.5 & v \\
\hline 61 & V-TC(1) & TC(1) (pad 24) voltage. "OFF" condition. "HI" state. CT1 selected. T5, T0 = 000100 Force \(10 \mu \mathrm{~A}\) into pad 24 and measure pad 24 voltage. & 5.3 & 6.0 & V \\
\hline 62 & V-TC(2) & TC(2) (pad 25) voltage. "OFF" condition. "HI" state. CT2 and TCS selected. T5, TO \(=001100\) Force \(10 \mu \mathrm{~A}\) into pad 25 and measure pad 25 voltage. & 5.3 & 6.0 & v \\
\hline
\end{tabular}
\(\infty\)

Table 1 (cont)
LEAKAGE CURRENT MEASURED AT TIMING CAPACITOR PORTS
\begin{tabular}{|c|c|c|c|c|}
\hline 63 & \begin{tabular}{l}
Leakage. TR(1), CT2 and TCS selected. T5, \(\mathrm{TO}=001110\). \\
Measure leakage current from pad 24 to 0 volt supply
\end{tabular} & -1.0 & 1.0 & \(n \mathrm{~A}\) \\
\hline 64 & \begin{tabular}{l}
Leakage \\
Same as \#63 except pad 24 to 3.85 volt supply.
\end{tabular} & -1.0 & 1.0 & \(n \mathrm{~A}\) \\
\hline 65 & Leakage. TR(1) and CT1 selected. T5, TO = 000110 (pad 25 output). Measure leakage current from pad 25 to 0 volt supply. & -1.0 & 1.0 & \(n \mathrm{~A}\) \\
\hline 66 & \begin{tabular}{l}
Leakage \\
Same as \#65 except pad 25 to 3.85 volt supply.
\end{tabular} & -1.0 & 1.0 & \(n \mathrm{~A}\) \\
\hline 67 & \begin{tabular}{l}
Leakage TR(1) and CTO selected. \(\mathrm{T}, \mathrm{TO}=000010\). \\
Measure leakage current from pad 26 to 0 volt supply.
\end{tabular} & \(-1.0\) & 10. & \(n \mathrm{~A}\) \\
\hline 68 & \begin{tabular}{l}
Leakage \\
Same as \#67 except pad 26 to 3.85 volt supply
\end{tabular} & -10 & 10 & \(n \mathrm{~A}\) \\
\hline
\end{tabular}

Table 1 (cont)
Large Current Errors-Compares current out at timing capacitor ports with current in at timing resistor ports
\begin{tabular}{|c|c|c|c|}
\hline 69 & \begin{tabular}{l}
Large current error. TR(3) and CTO -0.2 selected. \\
T5, T0 - 000000. \\
Force 8.05 mA into pad 20. \\
Measure current from pad 26 to \\
+3.85 volt supply \\
Calculate error:
\[
\text { Error }=\frac{8.05 \mathrm{~mA}-\mathrm{I}\left(\mathrm{MEAS}^{\prime} \mathrm{D}\right)}{8.05 \mathrm{~mA}} \times 100 \%
\]
\end{tabular} & +0.2\% & \\
\hline 70 & \begin{tabular}{l}
Error @ pad 24. TR(3), CT2 and -0.2 TCS selected. \\
T5, T0 - 001100. \\
Force 4.033 mA into pad 20. \\
Measure pad 24 current to 3.85 volt \\
supply \\
Calculate error:
\[
\text { Error }=\frac{4.033 \mathrm{~mA}-\mathrm{l}\left(\mathrm{MEAS}{ }^{\prime} \mathrm{D}\right)}{4.033 \mathrm{~mA}} \times 100 \%
\]
\end{tabular} & +0.2 & \% \\
\hline 71 & \begin{tabular}{l}
Error @ pad 25. TR(3) and CT1 -0.2 selected. \\
\(\mathrm{T}, \mathrm{TO}=000100\). \\
Force 4.033 mA into pad 20. \\
Measure current from pad 25 to \\
3.85 volt supply. \\
Calculate error:
\[
\text { Error }=\frac{4.033 \mathrm{~mA}-\mathrm{l}\left(\mathrm{MEAS}^{\prime} \mathrm{D}\right)}{4.033 \mathrm{~mA}} \times 100 \%
\]
\end{tabular} & +0.2 & \% \\
\hline 72 & \begin{tabular}{l}
Current error @ pad 24. TR(2) and -0.2 CT2 selected. \\
T5, T0 \(=001001\). \\
Force \(805 \mu \mathrm{~A}\) into pad 19. \\
Measure current from pad 24 to \\
3.85 volt supply. \\
Calculate error:
\[
\text { Error }=\frac{8.05 \mu \mathrm{~A}-\mathrm{I}\left(\mathrm{MEAS}{ }^{\prime} \mathrm{D}\right)}{805 \mu \mathrm{~A}} \times 100 \%
\]
\end{tabular} & +0.2 & \% \\
\hline 73 & \begin{tabular}{l}
Current error @ pad 25. TR(2) and -0.2 CT1 selected. \\
\(\mathrm{T} 5, \mathrm{TO}=000101\). \\
Force \(805 \mu \mathrm{~A}\) into pad 19. \\
Measure current from pad 25 to \\
3.85 volt supply. \\
Calculate error:
\[
\text { Error }=\frac{805 \mu \mathrm{~A}-(\text { IMEAS'D })}{805 \mu \mathrm{~A}} \times 100 \%
\]
\end{tabular} & +0.2 & \% \\
\hline
\end{tabular}

Table 1 (cont)
\begin{tabular}{|c|c|c|c|c|}
\hline 74 & \begin{tabular}{l}
Error @ pad 24. TR(1), CT2, and TCS selected. \\
T5, T0 \(=001110\). \\
Force \(81 \mu \mathrm{~A}\) into pad 18. \\
Measure current from pad 24 to \\
3.85 volt supply \\
Calculate error:
\[
\text { Error } \left.=\frac{81 \mu \mathrm{~A}-(\mathrm{IMEAS}}{}{ }^{81} \mathrm{D}\right) \mathrm{A} \times 100 \%
\]
\end{tabular} & \[
-0.2
\] & \(+0.2\) & \% \\
\hline 75 & \begin{tabular}{l}
Current error @ pad 25. TR(1) and CT1 selected. \\
\(\mathrm{T} 5, \mathrm{~T} 0=000110\). \\
Force \(81 \mu \mathrm{~A}\) into pad 18. \\
Measure current from pad 25 to \\
3.85 volt supply \\
Calculate error:
\[
\text { Error }=\frac{81 \mu \mathrm{~A}-(\text { IMEAS'D })}{81 \mu \mathrm{~A}} \times 100 \%
\]
\end{tabular} & \[
-0.2
\] & \(+0.2 \%\) & \\
\hline \multicolumn{5}{|c|}{Timing Current Sense Feedback (ITF) Continuity Check} \\
\hline 76 & \begin{tabular}{l}
ITF continuity. TR(1) selected. \\
\(\mathrm{T} 5, \mathrm{~T} 0=000110\). \\
Ground pad 25. \\
Force \(10 \mu \mathrm{~A}\) in ITF (pad 21). \\
Measure voltage pad 21 to pad 18.
\[
\mathrm{R}(\mathrm{FET}) \mathrm{ON}=\frac{\mathrm{V}(\mathrm{MEAS})}{10 \mu \mathrm{~A}}
\]
\end{tabular} & 1 & 50 & K \\
\hline 77 & \begin{tabular}{l}
ITF continuity. TR(2) selected. \\
\(\mathrm{T} 5, \mathrm{~T} 0=000101\). \\
Ground pad 25. \\
Force \(15 \mu \mathrm{~A}\) in ITF ( pad 21 ). \\
Measure voltage pad 21 to pad 19.
\[
\mathrm{R}(\mathrm{FET}) \mathrm{ON}=\frac{\mathrm{V}\left(\mathrm{MEAS} \mathrm{~S}^{\prime} \mathrm{D}\right)}{15 \mu \mathrm{~A}}
\]
\end{tabular} & 1 & 50 & K \\
\hline 78 & \begin{tabular}{l}
ITF continuity. TR(3) selected. \\
\(\mathrm{T} 5, \mathrm{TO}=000100\). \\
Ground pad 25. \\
Force \(45 \mu \mathrm{~A}\) in ITF (pad 21). \\
Measure voltage pad 21 to pad 20.
\[
\left.\mathrm{R}(\mathrm{FET}) \mathrm{ON}=\frac{\mathrm{V}(\mathrm{MEAS}}{} \mathrm{MED}^{\prime} \mathrm{D}\right)
\]
\end{tabular} & 1 & 50 & K \\
\hline
\end{tabular}

Table 1 (cont)
CATCH DIODES
\begin{tabular}{|c|c|c|c|c|c|}
\hline 79 & V-ITF & \begin{tabular}{l}
ITF catch voltage \\
43K resistor hooked from ITF (pad \\
24) to gnd. \\
\(\mathrm{T}, \mathrm{TO}=111110\). \\
Pads 18,19 , and 20 open. \\
Measure voltage at ITF.
\end{tabular} & 3.9 & 4.5 & V \\
\hline 80 & V-ITR & ITR catch voltage Force 0.2 mA into ITR (pad 17) \(\mathrm{T} 5, \mathrm{TO}=111110\). Measure voltage at ITR. & 15.2 & 16.2 & V \\
\hline
\end{tabular}

FET PARAMETERS
\begin{tabular}{llllll}
\hline 81 & VP & \begin{tabular}{l} 
FET pinchoff voltage \\
\\
\\
\\
\end{tabular} & Drain voltage \(=-8 \mathrm{~V}\) & 1.0 & 5.0 \\
\hline
\end{tabular}

Table 2
Measurements and Calculations Made to Determine Current Gain, Current Gain Ratios, and Offset of Timing Current DAC
\begin{tabular}{l|c|c|c}
\hline Measure & \begin{tabular}{c} 
Shift Register \\
Code T5, T4
\end{tabular} & \begin{tabular}{c} 
A 38.5K Resistor Connected \\
Between ITREF (Pad 7) \\
and VR. VR as Follows
\end{tabular} & \begin{tabular}{c} 
Voltage at \\
Pad 17
\end{tabular} \\
\hline \hline ITRA(1) & 01 & 9.0 V & 15 V \\
\(\operatorname{ITRB}(1)\) & 01 & 2.7 V & 15 V \\
\(\operatorname{ITRA}(\mathrm{OH})\) & 00 & 9.0 V & 15 V \\
\(\operatorname{ITRA}(\mathrm{OL})\) & 00 & 9.0 V & 7.5 V \\
\(\operatorname{ITRB}(\mathrm{OH})\) & 00 & 2.7 V & 15 V \\
\(\operatorname{ITRB}(\mathrm{OL})\) & 00 & 9.0 V & 7.5 V \\
\(\operatorname{ITRA}(2)\) & 10 & 9.7 V & 15 V \\
\(\operatorname{ITRB}(2)\) & 10 & 15 V \\
\(\operatorname{ITRA(3)}\) & 11 & 2.7 V & 15 V \\
\(\operatorname{ITRB}(3)\) & 11 & 15 V \\
\hline
\end{tabular}
\(\operatorname{CALCULATE:~} \mathrm{M}(\mathrm{X})=\frac{38.5 \mathrm{~K}(\operatorname{ITRA}(\mathrm{X})-\operatorname{ITRB}(\mathrm{X}))}{9-2.7}\)
CALCULATE: \(V(X)=\frac{9 \operatorname{ITRB}(X)-2.7 \operatorname{ITRA}(X)}{\operatorname{ITRA}(X)-\operatorname{ITRB}(X)}\)
Where \(\mathrm{X}=\mathrm{OH}, \mathrm{OL}, 1,2,3\)
NOTE 1: \(M(X)=\) Current Gain
NOTE 2: \(\mathrm{V}(\mathrm{X})=\) Offset

Table 3
Truth Table*
Output and Timing Resistor Port Levels
\begin{tabular}{c|c|c|c|c|c}
\hline \begin{tabular}{c} 
Shift Register \\
Code T6, T0
\end{tabular} & ITR & TR(1) & TR(2) & TR(3) & \\
\hline \hline\(-00-\cdots\) & 1 mA & & & & \\
\(-01---\) & 0.5 mA & & & & \\
\(-10---\) & 0.25 mA & & & & \\
\(-11---\) & 0.1 mA & & & SEL & \\
---00 & & CLP & CLP & CLP & \\
---01 & & CLP & SEL & CLP & \\
\hline---10 & & SEL & CLP & & \\
\hline
\end{tabular}

Table 4
Truth Table
Output and Timing Capacitor Port Levels
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Shift Register Code T6, TO & TCS & CT2 & CT1 & СTO & Not ESG & \begin{tabular}{l}
Not \\
\(0.1 \mu \mathrm{~F}\), \\
\(1 \mu \mathrm{~F}\), \\
\(10 \mu \mathrm{~F}\), \\
SEL
\end{tabular} & Not 1 nf SEL & \begin{tabular}{l}
Not \\
5 nS \\
SEL
\end{tabular} \\
\hline ---00-- & LO & LO & LO & SEL & & HI & HI & \\
\hline ---01-- & LO & HI & SEL & LO & & HI & LO & \\
\hline ---10-- & LO & SEL & HI & LO & & LO & HI & \\
\hline ---11-- & HI & SEL & HI & LO & & LO & HI & \\
\hline 1----- & & & & & LO & & & \\
\hline 0----- & & & & & Hi & & & \\
\hline -000000 & & & & & & & & LO \\
\hline -All other & & & & & & & & HI \\
\hline
\end{tabular}

Tables 3 and 4 Notes:
1. Nominal ITR current with 9.625 V and 38.5 K at ITREF.
2. \(\operatorname{SEL}=\) selected
3. \(C L P=\) clamped
4. Shift register inputs at \(C D\) and \(-C C\) are TTL.
a. \(\operatorname{VIL}(\mathrm{MAX})=0.8 \mathrm{~V}\)
b. \(\operatorname{VIH}(\mathrm{MIN})=2.0 \mathrm{~V}\)
5. ITF output always senses voltage at bottom of selected timing resistor.
6. See Tests 29 through 47 for LSDRCO output truth table.
7. Data from the "CONTROL DATA" input, shifts into the control register (appears at register true outputs) at "NOT CONTROL CLOCK" low to high transitions, bit 6 first and bit 0 last. "Not Control Clock" must be maintained high after last shift to prevent false register oututs.

Table 5
Terminal Identification
\begin{tabular}{|c|c|c|c|}
\hline Pad \# & Name & Input/Output & Description \\
\hline 1 & VEE5 & Supply & -5 Volt Supply \\
\hline 2 & CD & Input & Control Data \\
\hline 3 & -CC & Input & Not Control CLK IN \\
\hline 4 & & & Test FET \\
\hline 5 & & & Test FET \\
\hline 6 & & & Test FET \\
\hline 7 & IT-REF & Input & Timing Current Reference \\
\hline 8 & VCC5 & Supply & +5 Volt Supply \\
\hline 9 & VEE15 & Supply & -15 Volt Supply \\
\hline 10 & GND & & Ground \\
\hline 11 & TCDR (1) & Input & Timing current DAC Resistor \\
\hline 12 & TCDR (2) & Input & Timing current DAC Resistor \\
\hline 13 & TCDR (3) & Input & Timing current DAC Resistor \\
\hline 14 & TCDR (4) & Input & Timing current DAC Resistor \\
\hline 15 & TCDR (5) & Input & Timing current DAC Resistor \\
\hline 16 & VCC15 & Supply & +15 Volt Supply \\
\hline 17 & ITR & Output & Timing Capacitor Ref. Output \\
\hline 18 & TR (1) & & Timing Resistor \\
\hline 19 & TR (2) & & Timing Resistor \\
\hline 20 & TR (3) & & Timing Resistor \\
\hline 21 & ITF & Output & Timing Current Sense Feedback Output \\
\hline 22 & VCC32 & Supply & +32 Volt Supply \\
\hline 23 & TCS & Output & Timing Capacitor Select \\
\hline 24 & CT2 \(.1 \mu \mathrm{~F}, 1 \mu \mathrm{~F}, 10 \mu \mathrm{~F}\) & & Timing Capacitor \\
\hline 25 & CT1 1 nF & & Timing Capcitor \\
\hline 26 & CTO 100 pF & & Timing Capacitor \\
\hline 27 & Not ESG & Output & Not Enable Sweep Gate Output \\
\hline 28 & \begin{tabular}{l}
\[
0.1,1,10 \mu F
\] \\
Not Select
\end{tabular} & Output & Capcitor Not Select Outpuit \\
\hline 29 & 1 nF Not Select & Output & Capacitor Not Select Output \\
\hline 30 & 5 nS Not Select & Output & Capacitor Not Select Output \\
\hline 31 & LSDRC & Input & Level Shift DAC Ref Current In \\
\hline 32 & LSDC & Output & Level Shift DAC Current Out \\
\hline
\end{tabular}

\section*{Applications Information}

\section*{7-Bit Shift Register (see Tables 3 and 4)}

Operation of the sweep circuit system is programmed by clocking a 7-bit code into this register. Parallel outputs are decoded and used to control the various functions of the 203-0231 and the 203-0214. Two of the bits program the timing current DAC, two of the bits select the timing resistor, and two of the bits select the timing capacitor. The seventh bit controls the Enable Sweep Gate function and is sent directly to the 203-0214-00 as "Not Enable Sweep Gate". A "One" at T6 (Enable Sweep Gate) of the register will allow "Not Sweep Gate Output" from the 203-0214-00 during sweep. A "Zero" on T6 inhibits "Not Sweep Gate" outputs.

\section*{Timing Current Generation}

When combined with 10 off chip accurate resistors ( 9 of them are trimmed thick film on the H 851 substrate) and an external op-amp, the 203-0231 provides a current (digitally programmed) that ranges from 5 microamps to 5 milliamps in a \(5,12.5,25,50,125\), etc., sequence. This current can be steered, with limitations, to one of three outputs corresponding to the three timing capacitor ports. The limitations referred to are the maximum current that can flow out of the three ports. The 100 pF port can handle the full 5 mA , the 1 nF port can handle 2.5 mA . The \(0.1 \mu \mathrm{~F}, 1 \mu \mathrm{~F}, 10 \mu \mathrm{~F}\) port can handle up to 2.5 mA .

The timing current ( 5 microamps to 5 milliamps) is generated in two stages. The process is as follows. A reference voltage ( 9.625 V ) is applied to one end of a 38.5 K resistor. The other end of the resistor is attached to the reference input (Pad 7-ITREF) of the timing current DAC. An internal op-amp keeps Pad 7 at zero volts and hence the reference current is approximately 0.25 mA . Scope "Variable Sweep Speed" is obtained by reducing the \(9.625 \vee\) reference.

Output (ITR) of the timing current DAC is \(0.1 \mathrm{~mA}, 0.25 \mathrm{~mA}, 0.5 \mathrm{~mA}\), or 1 mA depending on the input digital code.

Shift register bits T4 and T5 contain the programming information for the timing current DAC. Timing current DAC output (ITR) is mirrored and multiplied by the network consisting of the external op-amp, the timing resistors, and FETS \(A, B\), and \(C\).

Shift register bits T0 and T1 contain the timing resistor select information.

\section*{Timing Capacitor Select (Refer to the Block Diagram)}

The timing current \((5 \mu \mathrm{~A}\) to 5 mA\()\) is now steered to the appropriate timing cap port by FETS D, E, and F.

Shift register bits T2 and T3 contain the timing cap port select information. When the timing cap select (TCS) output from the 203-0231 and an external transistor (G) are used, a four timing capacitor system is realized.

\section*{Sweep-Display Delay Level Shift DAC (Refer to the Block Diagram)}

See explanation in 203-0214-00 for a description of how the delay function works.

The level shift DAC in the 203-0231 requires a reference current which is supplied by the 203-0214. Max current from the level shift DAC occurs when the \(5 \mathrm{~ns} / \mathrm{div}\) sweep speed is selected. Under this condition the current out of the level shift DAC is 6.667 times the reference current.

At \(10 \mathrm{~ns} /\) div the current out of the level shift DAC is \(1 / 2\) of the maximum. At \(20 \mathrm{~ns} / \mathrm{div}\) the current out of the level shift DAC is \(1 / 4\) of the maximum. At \(50 \mathrm{~ns} /\) div the current out of the level shift DAC is \(1 / 10\) of the maximum. Output current continues to decrease in this manner for sweep speeds of \(5 \mathrm{~ns} / \mathrm{div}\) through \(500 \mathrm{~ns} / \mathrm{div}\).

For sweep speeds of \(1 \mu \mathrm{~s} /\) div and slower the current out is zero.

\section*{COSTING}

\section*{TRANSFER COSTS FOR NEW USAGE OF AN EXISTING MONOLITHIC PACKAGED PART}

If you are planning to use an existing monolithic packaged part in a new instrument design, please call ICM Applications Engineering (phone 627-1037). A significant increase in existing monolithic part volume may change the equipment required to manufacture it and it may affect the transfer cost.

Projected transfer costs up to 4 years beyond the present Fiscal Year can be obtained through a formal request to ICM Applications Engineering.

It is recommended that component use decisions for new applications of existing components be based on incremental cost (sometimes called variable cost). Variable cost is the labor, material, and variable burden portions of the transfer cost. Overhead (fixed cost) is subtracted and the incremental cost with yield loss is derived.

Incremental cost information also can be obtained by a formal request through ICM Applications Engineering.

More information on costing policies and definitions can be obtained from your Division cost accountant.

Fully burdened transfer costs are available from ICM Applications Engineering. They include yield loss and all overhead (fixed cost), and are reviewed quarterly and adjusted when appropriate.
PageNo.
SECTION 8 PACKAGE INFORMATION
14-Pin DIP ..... 8-1
16-Pin DIP ..... 8-2
16-Pin MINIPAC ..... 8-3
20-Pin DIP ..... 8-4
24-Pin Power
Plastic ..... 8-5
16-Pin DIP CER ..... 8-6
40-Pin DIP CER ..... 8-7

\section*{14 PIN DIP}


16 PIN DIP


16 PIN MINI PAC


20 PIN DIP


24 PIN POWER PLASTIC

4. Msek Pce 1cm-20.16

\section*{16 PIN CER}


40 PIN CER

\(8\)

Tektronix```


[^0]:    *Limited supply-process capability does not exist.

