TEK-MADE INTEGRATED CIRCUITS CATALOG

COMPANY CONFIDENTIAL

The contents of this catalog are for the exclusive use of TEKTRONIX, INC. employees. Any unauthorized use may constitute a theft.

PURPOSE AND USE

This catalog contains integrated circuits that have had a Component Engineering Release by the publication date.

Data sheets are included for parts that are recommended for new designs. The data sheets, with a few exceptions, are intended to contain sufficient information so that a part may be designed into a new instrument design. For further applications information please call (phone 627-1037).

CORRECTIONS AND SUGGESTIONS

Corrections or suggestions for improvement are encouraged at any time. Mail to delivery station 59-355. A special form for this purpose is included in this catalog.

CATALOG DISTRIBUTION

Catalog distribution is automatic to all Electrical Engineers and E.E. managers. If you are not in this job category, please write to Applications Engineering, delivery station 59-355—include name, payroll code, and delivery station.

TEK-MADE I.C. QUESTIONNAIRE

We want to serve you better. If you are considering using a TEK-made I.C. for a new instrument design, we would like to hear from you.

I.C. Part Number	
Do you need any additional information? Yes D No D	
Information Needed	
Name	
Delivery Station Phone	
Projected volume of new application	/yr
Approximate introduction date	
Send to: ICM Application Engineering Delivery Station 59-355	

TEK-MADE I.C. QUESTIONNAIRE

We want to serve you better. If you are considering using a TEK-made I.C. for a new instrument design, we would like to hear from you.

I.C. Part Number	
Do you need any additional information? Y	′es □ No □
Information Needed	
Name	
Delivery Station	Phone
Projected volume of new application	/yr
Approximate introduction date	
Send to: ICM Application Engineering Delivery Station 59-355	

If we have slipped up and you feel there is room for improvement, please tell us at once. You will be doing us a great favor if you call a problem to our attention.

our ame	Address	Phone
RORS, OMISSIONS	, SUGGESTIONS:	
······································		
	SEND TO: IC	CM APPLICATIONS ENGINEERING D.S. 59-355
Jser		
Jser	If we have slipped up and you	will be doing us a great favor if you
Jser Feedback	If we have slipped up and you please tell us at once. You	will be doing us a great favor if you
Jser Seedback	If we have slipped up and you please tell us at once. You	will be doing us a great favor if you on.
Jser Seedback	If we have slipped up and you please tell us at once. You call a problem to our attentio	will be doing us a great favor if you on.
Jser Seedback	If we have slipped up and you please tell us at once. You call a problem to our attentio	will be doing us a great favor if you on.
Jser Seedback	If we have slipped up and you please tell us at once. You call a problem to our attentio	will be doing us a great favor if you on.
Jser Seedback	If we have slipped up and you please tell us at once. You call a problem to our attentio	will be doing us a great favor if you on.
Jser Seedback	If we have slipped up and you please tell us at once. You call a problem to our attentio	will be doing us a great favor if you on.
Jser Seedback	If we have slipped up and you please tell us at once. You call a problem to our attentio	will be doing us a great favor if you on.
Jser eedback	If we have slipped up and you please tell us at once. You call a problem to our attentio	
User Feedback	If we have slipped up and you please tell us at once. You call a problem to our attentio	will be doing us a great favor if you on.
Jser eedback	If we have slipped up and you please tell us at once. You call a problem to our attentio	will be doing us a great favor if you on.
Jser eedback	If we have slipped up and you please tell us at once. You call a problem to our attentio	will be doing us a great favor if you on.

D.S. 59-355

TABLE OF CONTENTS

·

.

TABLE OF CONTENTS

Page No.

SECTION 1	TABLE OF CONTENTS
	Index by Function
	Index by Part Number
	Index by M Number
SECTION 2	NEW DESIGN INFORMATION
	Preferred for New Designs
	Suitable for New Designs 2-2
	Do Not Use for New Designs 2-3
	Call Applications Engineering Before Using 2-4
SECTION 3	Q. A. PROGRAM
	Q. A. Program
SECTION 4	RELIABILITY
	Reliability

SECTION 5 PACKAGED PARTS (DATA SHEETS)

PREFERRED FOR NEW DESIGNS-COST EFFECTIVE OR STATE-OF-THE-ART

Page No.

Packaged Parts

155-0012-00	Z axis signal conditioner	
155-0022-00	2 input channel switch Ins Rt	5-7
155-0035-00	Quad Op Amps, 80 MHz gain bandwidth	5-11
155-0038-02	5-bit precision D/A	5-17
155-0048-01	5 MHz trigger and 1 V/µs sweep	5-21
155-0049-02	Sweep control	5-27
155-0055-00	5 MHz trigger and 1 V/µs sweep	5-35
155-0057-00	Dual Op Amp, current source	5-41
155-0067-02	DC to DC controller	5-47
155-0078-10	Differential/variable/invert amplifier	5-53
155-0109-01	350 MHz trigger	5-61
155-0116-00	Quad Op Amps, 80 MHz gain bandwidth	5-6 9
155-0122-00	Sweep control	5-75
155-0123-00	50 ns sweep and delay pickoff	5-81
155-0124-00	5 ns/div horizontal preamplifier	5-87
155-0144-00	TV sync stripper	5-93
155-0145-00	Controlled risetime amplifier	5-99
155-0152-01	Magnetic deflected CRT geometry correction	5-103
155-0154-00	3-input multiplexer	5-111
155-0188-00	TV sync generator	5-117
155-0196-00	100 MHz trigger	5-125
155-0215-00	Logic analyzer input	
155-0217-00	Amplifier	
155-0218-00	100 MHz vertical output	

TABLE OF CONTENTS (cont)

Page No.

SECTION 5 PACKAGED PARTS (DATA SHEETS) (cont)

155-0244-00	Scope logic interface 5	-149
155-0247-00	Tape controller	-163
155-0253-00	Schmitt trigger 5	-171
155-0273-00	Differential/variable/invert amplifier 5	-175
155-0274-00	Differential/variable/invert amplifier 5	-181
155-0283-00	Video multiplier	-187
206-0248-00	Platinum temperature probe tip5	-193

SECTION 6 DIE (DATA SHEETS)

203-0084-90	Differential/variable/invert amplifier
203-0089-91	Vertical output amplifier 6-7
203-0155-91	4-bit 80 MHz clock flash A/D converter
203-0177-90	5-bit DAC 6-23
203-0211-90	Channel switch
203-0212-90	Vertical output
203-0213-90	600 MHz trigger 6-43
203-0214-90	Sweep DAC & logic 6-53
203-0216-90	Z-axis, autofocus amplifier 6-61
203-0227-90	Z-axis driver
203-0229-90	300 MHz trigger amplifier 6-73
203-0231-90	Sweep integrator 6-81

SECTION 7 COSTING

SECTION 8	PACKAGE INFORMATION
	14-Pin DIP
	16-Pin DIP
	16-Pin MINIPAC
	20-Pin DIP
	24-Pin Power Plastic 8-5
	16-Pin DIP CER 8-6
	40-Pin DIP CER

INDEX BY FUNCTION

Part Number		N 1	Deshawa	D
Packaged Parts or Die	Description	New Design	Package Style	Page No.
	GENERAL CIRCUITS			
155-0022-00	Channel Switch	Ρ	16 DIP	5-7
155-0022-01	Channel Switch	S	16 DIP	а
155-0031-01	Quad Timing	х	16 DIP	а
155-0047-00	Dual Output Amplifier	С	16 DIP	а
155-0067-02	Power Supply Controller	Р	16 DIP	5-47
155-0091-00	Channel Switch	S	16 Lead TO 8	а
155-0106-00	Normalizing Circuit	х	24 DIP	а
155-0111-01	LED Array	Х	Special	а
155-0112-01	Phototransistor Array	х	Special	а
155-0145-00	Pulse Output Amplifier	Р	16 DIP	5-99
155-0157-00	Digital Storage Vertical Control	Х	40 DIP	а
155-0158-00	Digital Storage Horizontal Control	Х	40 DIP	а
155-0199-00	Vertical Control	х	40 DIP	а
155-0205-00	Channel Switch	х	16 DIP	а
155-0247-00	Tape Controller	Р	40 DIP	5-163
155-0253-00	Hi Speed Schmitt Trigger	Р	16 MINIPAC	5-171
155-0283-00	Video Multiplier	Р	16 DIP CER .	5-187
	OPERATIONAL AMPLIFIERS			
155-0035-00	Quad Op Amp	Р	16 DIP	5-11
155-0057-00	2 Op Amps, 2 Current Sources	P	Plastic	5-41
155-0083-00	Dual Op Amp and 2 Current Sources	S	16 MINIPAC	а
155-0116-00	Quad Op Amp	P	16 DIP CER .	5-69
	OSCILLOSCOPE LOGIC			
155-0009-00	Horizontal Lockout Logic	S	16 DIP	а
155-0010-00	Chop Divider & Blanking	S	10 Lead TO-5	а
155-0011-00	Clock and Chop Blanking	S	16 DIP	а
155-0012-00	Z Axis Logic	P	16 DIP	5-1
155-0013-00	Horizontal Chop & Alt Binary	S	10 Lead TO-5	а
155-0244-00	Scope Logic Interface	Р	40 DIP CER .	5-149
	KNOB READOUT SYSTEM			
155-0014-01	Analog to Digital Converter	S	16 DIP	а
155-0015-01	Data Switch	S	16 DIP	а
155-0017-00	Decade Counter	С	16 DIP	а
155-0018-00	Zero Logic	С	16 DIP	а
155-0019-00	Decimal Point & Spacing	S	16 DIP	а
155-0020-00	Output Assembler	S	16 DIP	а
155-0021-01	Timing Generator	S	16 DIP	а
155-0023-00	Character Generator	S	16 DIP	а
155-0024-00	Character Generator	S	16 DIP	а
155-0025-00	Character Generator	S	16 DIP	а
155-0026-00	Character Generator	S	16 DIP	а
155-0027-00	Character Generator	S	16 DIP	а
155-0086-00	Legend Generator	х	20 DIP	a

NEW DESIGN CODE

زر

 $\begin{array}{l} \mathbf{P} \ = \ \mathbf{Preferred} \\ \mathbf{S} \ = \ \mathbf{Suitable} \\ \mathbf{X} \ = \ \mathbf{Do} \ \mathbf{Not} \ \mathbf{Use} \end{array}$

C = Call Application Engineering before using

155-XXXX = Packaged Parts 203-XXXX = Die

anot included in this catalog.

INDEX BY FUNCTION (cont)

Part Number		New	Package Page
Packaged Parts or Die	Description	Design	Style No.
	KNOB READOUT SYSTEM	(cont)	
155-0087-00	Legend Generator	Х	20 DIP a
155-0088-00	Legend Generator	Х	20 DIP a
155-0104-00	Legend Generator	Х	20 DIP a
155-0105-00	Legend Generator	Х	20 DIP a
155-0110-00	Legend Generator	S	20 DIP a
155-0135-00	Legend Generator	Х	20 DIP a
155-0171-00	4 Decade Counter and Memory	S	16 MINIPAC a
155-0198-00	Knob Readout Counter	х	40 DIP a
	READOUT SYSTEM		
155-0004-01	Beta Computer	х	16 DIP a
155-0005-00	Beta Computer	х	16 DIP a
155-0006-00	Beta Computer	х	16 DIP a
155-0007-01	Readout I	Х	16 DIP a
155-0008-01	Readout II	Х	16 DIP a
155-0114-00	Seven Segment Character Generator	S	16 DIP a
155-0119-00	Five Digit BCD Counter	Х	40 DIP a
	HORIZONTAL SYSTEM	И	
155-0028-00	Miller Integrator & Dly Pickoff	С	10 Lead TO-5 a
155-0028-01	Miller Integrator & Dly Pickoff	С	10 Lead TO-5 a
155-0048-01	Trigger & Sweep	P	16 MINIPAC 5-21
155-0049-02	Sweep Control	Р	20 DIP 5-27
155-0055-00	Trigger & Sweep	Р	16 DIP 5-35
155-0056-00	Sweep Control	С	16 DIP a
155-0109-01	Trigger Circuit	Р	16 DIP 5-61
155-0121-00	Trigger Subsystem	Х	16 DIP a
155-0122-00	Sweep Control	Р	16 DIP 5-75
155-0123-00	Sweep & Pickoff	Р	16 DIP 5-81
155-0124-00	Horizontal Preamplifier	Р	16 DIP 5-87
155-0126-00	Trig Amp, Source Select	Р	20 DIP a
155-0151-00	Trigger Generator	х	20 DIP a
155-0160-00	Trigger Amplifier, Source Select	С	16 MINIPAC a
155-0196-00	Trigger Circuit	Р	20 DIP 5-125
155-0216-00	Amplifier	S	16 DIP a
155-0217-00	Amplifier	Р	16 DIP 5-137
155-0241-00	Horizontal Amplifier	С	Power Pkg a
203-0196-90	Horizontal Clamp	C	a
203-0213-90	600 MHz Trigger	P	6-43
203-0214-90	Sweep DAC & Logic	Р	6-53
203-0229-90	300 MHz Trigger Amplifier	Р	6-73
203-0231-90	Sweep Integrator	Р	6-81

NEW DESIGN CODE

 $\begin{array}{l} \mathsf{P} = \mathsf{Preferred} \\ \mathsf{X} = \mathsf{Suitable} \\ \mathsf{X} = \mathsf{Do} \ \mathsf{Not} \ \mathsf{Use} \end{array}$

C = Call Application Engineering before using

155-XXXX = Packaged Parts 203-XXXX = Die

anot included in this catalog.

INDEX BY FUNCTION (cont)

Part Number				
Packaged Parts		New	Package	Page
or Die	Description	Design	Style	No.
	AD/DA CIRCUITS			
155-0038-01	D/A Converter	S	16 DIP	а
155-0038-02	D/A Converter	Р	16 DIP	5-17
155-0185-00	4 Decade DVM	S	20 DIP CER .	а
203-0155-91	4 Bit Flash A/D Converter	Р		6-17
203-0175-90	Dual High Speed Comparator	С		а
203-0177-90	5 Bit DAC	Р		6-23
	VERTICAL AMPLIFIER	s		
155-0050-01	Vertical Amplifier	S	20 DIP	а
155-0059-00	Gain Trim Amplifier	S	12 Lead TO-8	
155-0061-00	F _t Doubler Amplifier	S	16 DIP	а
155-0078-10	Diff/Var/Inv Amplifier	P	16 MINIPAC	5-53
155-0187-00	Ft Doubler Amplifier	S	12 Lead TO-8	а
155-0207-00	Output Amplifier	x	24 DIP	а
155-0218-00	Output Amplifier	Р	20 DIP	5-141
155-0273-00	Diff/Var/Inv Amplifier	P	14 DIP	
155-0274-00	Diff/Var/Inv Amplifier	P	14 DIP	
203-0080-90	Vertical Output Amplifier	S		
203-0084-00	Differential/Variable/Invert Amplifier	P		_
203-0089-91	Vertical Output Amplifier	P		
203-0122-90	1 GHz Trigger	C		а
203-0126-90	F _t Doubler	S		
203-0130-90	100 MHz Vertical Preamp	Ċ		
203-0178-90	1 GHz Vertical Amplifier	С		а
203-0198-90	Clamp & Sensor	С		а
203-0199-90	1 GHz Input Amplifier	С		а
203-0210-90	Vertical Preamp	С		а
203-0211-90	Channel Switch	Р		6-29
203-0212-90	Vertical Output Amplifier	Р		6-33
	TV and CRT CONTROL CIR	CUITS		
155-0051-00	Z-Axis & HV Regulator	S	20 DIP	а
155-0144-00	Sync Stripper	P ·	16 DIP	5-93
155-0152-01	CRT Geometry Correction	Р	16 DIP	5-103
155-0154-00	Display Multiplexer	Р	20 DIP	5-111
155-0188-00	TV Sync Generator	Р	40 DIP	5-117
203-0216-90	Z Axis Autofocus	Р		
203-0227-90	Z Axis Driver	Р		
	PROBE CIRCUITS	•		
155-0076-00	Input Protection & Probe Logic	С	16 MINIPAC	а
155-0215-00	Logic Analysis Input	P	16 DIP	5-131
206-0186-09	Transistor Temperature Probe	x	Special	a
206-0248-00	Platinum Temperature Probe Tip	P	Special	5-193
203-0096-90	Logic Probe	×		a
	-			

NEW DESIGN CODE

P = PreferredX = Suitable

....

•

* • *

X = Do Not Use

 $\mathbf{C} = \mathbf{Call}$ Application Engineering before using

155-XXXX = Packaged Parts 203-XXXX = Die

anot included in this catalog.

INDEX BY FUNCTION (cont)

Part Number Packaged Parts or Die	Description	New Design	Package Pag Style No	-
	DISCRETES			
151-0659-00	NPN Power Transistor	С	ТО-39 а	ı
151-1139-00	Dual FET	С	Special a	
152-0442-00	Schottky Diode	х	Special a	
152-0442-01	Schottky Diode Pair	х	Special a	,
152-0446-00	Schottky Diode Pair	Х	Special a	1
152-0446-01	Schottky Diode Single	Х	Special a	1
152-0646-00	Schottky Diode Pair	С	Micro T a	1
152-0646-02	Schottky Diode Pair	С	Micro T a	ı
203-0032-90	Schottky Diode	С	a	1
203-0075-90	NPN Transistor	С	a	
203-0206-90	NPN Transistor	С	a	
203-0264-90	Schottky Diode	С	a	,
203-0269-90	EBS Target Diodes	С	a	I

NEW DESIGN CODE

 $\begin{array}{l} \mathsf{P} = \mathsf{Preferred} \\ \mathsf{X} = \mathsf{Suitable} \\ \mathsf{X} = \mathsf{Do} \ \mathsf{Not} \ \mathsf{Use} \end{array}$

C = Call Application Engineering before using

155-XXXX = Packaged Parts 203-XXXX = Die

not included in this catalog.

\$,

INDEX BY PART NUMBER

Part Number PACKAGED PARTS	Description		New Design	Page No.
131-1393-00	Programmed Connector	х		a
131-1394-00	Programmed Connector	X		а
131-1395-00	Programmed Connector	X		а
131-1396-00	Programmed Connector	X		а
131-1659-00	Programmed Connector	x		а
131-1660-00	Programmed Connector	X		а
151-0659-00	NPN Power Transistor	ĉ		а
151-1139-00	Dual FET	ċ		а
152-0442-00	Schottky Diode Pair	x		а
152-0442-01	Schottky Diode Pair	X		а
152-0446-00	Schottky Díode Pair	_		а
152-0446-01	Schottky Diode Pair			а
152-0646-00	Schottky Diode Pair	C		а
152-0646-02	Schottky Diode Pair	č		а
152-0004-01	576 Readout System	x		а
155-0005-00	576 Readout System	X		а
155-0006-01	576 Readout System	X		а
155-0007-01	576 Readout System	X		а
155-0008-01	576 Readout System	X		а
155-0009-00	Horizontal Lockout Logic	S		а
155-0010-00	Chop Divider, Blanking	S		а
155-0011-00	Clock, Chop Blanking	Š		а
155-0012-00	Z Axis Signal Conditioning	P		5-1
155-0013-00	Horizontal, Chop Alt Binary	S		a
155-0014-01	A/D Converter	Š		а
155-0015-01	Data Switch	S		a
155-0017-00	Decade Counter	č		а
155-0018-00	Zero Logic	č		а
155-0019-00	Decade Counter	s		а
155-0020-00	Output Assembler	ŝ		а
155-0021-01	Scan Osc. Logic Timing Gen.	S		а
155-0022-00	2 Input Channel Switch	P		5-7
155-0022-01	2 Input Channel Switch	S		а
155-0023-00	Character Generator	S		а
155-0024-00	Character Generator	S		а
155-0025-00	Character Generator	S		а
155-0026-00	Character Generator	S		а
155-0027-00	Character Generator	S		а
155-0028-00	Miller Integrator	С		а
155-0028-01	Miller Integrator	. C		а
155-0031-01	Quad Timing Unit	X		a
155-0035-00	Quad Op. Amp.	Р		5-11
155-0038-01	5-bit Precision D/A	S		а
155-0038-02	5-bit Precision D/A	Р	 <i>.</i> .	5-17
155-0047-00	Dual Output Amplifier	S		а
155-0048-01	5 MHz Trigger and Sweep	Р		5-21
155-0049-02	Sweep Control	Р		5-27
155-0050-01	Vertical Preamp	S		8
155-0051-00	Z Axis, HV Regulator	S		a
155-0055-00	5 MHz Trigger and Sweep	Р		5-35
	-			

NEW DESIGN CODE

P = Preferred X = SuitableX = Do Not Use

C = Call Application Engineering before using

155-XXXX = Packaged Parts 203-XXXX = Die

anot included in this catalog.

E

INDEX BY PART NUMBER (cont)

Part Number PACKAGED PARTS	Description	New Desigr	Page No.
155-0056-00	Sweep Control	С	
155-0057-00	Dual Op. Amp, Current Source	Ρ	
155-0059-00	Gain Trim Amplifier	S	
155-0061-00	F _t Doubler Amplifier	S	
155-0067-02	DC to DC Inverter Regulator	Ρ	
155-0076-00	Input Protection	С	
155-0078-10	Differential/Variable/Invert Amp	Ρ	
155-0083-00	Dual Op Amp, Current Source	S	
155-0086-00	Legend Generator	Χ	
155-0087-01	Legend Generator	Χ	
155-0088-00	Legend Generator	Χ	^a
155-0091-00	250 MHz Channel Switch	S	
155-0104-00	Legend Generator	Χ	a
155-0105-00	Legend Generator	Χ	а
155-0106-00	Normalizing Circuit	Χ	^a
155-0109-01	350 MHz Trigger	Ρ	5-61
155-0110-00	Legend Generator	S	a
155-0111-01	LED Array	Χ	а
155-0112-01	Photo Transistor Array	Χ	
155-0114-00	7-segment Character Generator	S	а
155-0116-00	Quad Op. Amps.	Ρ	5-69
155-0119-00	5-digit BCD Counter	Χ	
155-0121-00	50 MHz Trigger	Χ	а
155-0122-00	Sweep Control	Ρ	
155-0123-00	50 ns Sweep & Delay Pickoff	Ρ	
155-0124-00	5 ns Horizontal Preamp	Ρ	
155-0126-00	Trigger Amp/Source Select	Ρ	
155-0135-00	Legend Generator	X	
155-0144-00	TV Sync Stripper	Ρ	
155-0145-00	Controlled Risetime Amplifier	Ρ	
155-0151-00	100 MHz Trigger	X	
155-0152-01	Magnetic Deflected CRT Geometry	Χ	
133-0132-01	Correction	Р	5-103
155-0154-00	3 Input Multiplexer	Ρ	
155-0157-00		X	
	Vertical Digital Storage	X	
155-0158-00	Horizontal Digital Storage Trigger Source/Amplifier	C	
155-0160-00 155-0171-00		S	•••
	4 Decade Counter Memory		
155-0185-00	4 Decade DVM	S S	
155-0187-00	F _t Doubler		•••
155-0188-00	TV Sync Generator	Ρ	
155-0196-00	100 MHz Trigger	Ρ	
155-0198-00	Knob Readout Counter	X	
155-0199-00	Vertical Control	Χ	•••
155-0205-00	F _t Doubler	Χ	• • •
155-0207-00	Vertical Output	X	
155-0215-00	Logic Analyzer Input	Ρ	
155-0216-00	Amplifier	S	
155-0217-00	Amplifier	Ρ	
155-0218-00	Vertical Output	Ρ	
155-0241-01	Horizontal Amplifier	С	
155-0244-00	Scope Logic Interface	Ρ	
155-0247-00	Tape Controller	Ρ	5-163

NEW DESIGN CODE

 $\begin{array}{l} {\sf P} = {\sf Preferred} \\ {\sf X} = {\sf Suitable} \\ {\sf X} = {\sf Do} \; {\sf Not} \; {\sf Use} \end{array}$

C = Call Application Engineering before using

155-XXXX = Packaged Parts 203-XXXX = Die not included in this catalog.

INDEX BY PART NUMBER (cont)

Part Number PACKAGED PARTS	Description		New Design	Page No.
155-0253-00	Schmitt Trigger	Р		5-171
155-0273-00	Differential/Variable/Invert Amplifier	P		5-175
155-0274-00	Differential/Variable/Invert Amplifier	P		5-181
155-0283-00	Video Multiplier	P		5-187
DIE		·		0.01
203-0032-90	Schottky Diode	с		а
203-0075-90	NPN Transistor	č		а
203-0080-90	Vertical Output Amplifier	Š		а
203-0084-90	Differential/Variable/Invert Amplifier	P		6-1
203-0089-91	Vertical Output Amplifier	P		6-7
203-0096-90	Logic Probe	x		a -
203-0122-90	1 GHz Trigger	ĉ		а
203-0126-90		ŝ		а
203-0130-90	100 MHz Vertical Preamp	č		а
203-0155-91	4-bit Flash A/D Converter	P		6-17
203-0175-90	Dual Comparator	Ċ		a
203-0177-90	5-bit D/A Converter	P		6-23
203-0178-90,91,92	1 GHz Vertical Amplifier	Ċ		a
203-0196-90	Horizontal Clamp	č		а
203-0197-90	Horizontal Output	č		а
203-0198-90	Clamp & Sensor	Č		а
203-0199-90	1 GHz Input Amplifier	č		а
203-0206-90	NPN Transistor	Č		a
203-0210-90	300 MHz Vertical Preamp	Ċ		а
203-0211-90	300 MHz Channel Switch	Р		6-29
203-0212-90	300 MHz Vertical Output	Р		6-33
203-0213-90	300 MHz Trigger	Р		6-43
203-0214-90	Sweep DAC & Logic	Р		6-53
203-0216-90	Z Axis, Autofocus Amplifier	Р		6-61
203-0227-90	Z Axis Driver	Р		6-67
203-0229-90	300 MHz Trigger	Р		6-73
203-0231-90	Sweep Integrator	P		6-81
203-0264-90	Schottky Diode	С		а
203-0265-90	Schottky Diode	С		а
203-0266-90	Schottky Diode	С		а
203-0268-90	PNP Transistor	Х		а
203-0269-90	EBS Target Diodes	С		а
203-0270-90	NPN Transistor	С		а
203-0271-90	NPN Transistor	С		а
203-0276-90	50 Resistor	Х		а
203-0290-00	Schottky Diode	Х		а
206-0186-09	Transistor Temperature Probe	Х		а
206-0248-00	Platinum Temperature Probe	P		5-193

NEW DESIGN CODE

 $\begin{array}{l} \mathsf{P} = \mathsf{Preferred} \\ \mathsf{X} = \mathsf{Suitable} \\ \mathsf{X} = \mathsf{Do} \ \mathsf{Not} \ \mathsf{Use} \end{array}$

C = Call Application Engineering before using

155-XXXX = Packaged Parts 203-XXXX = Die

M Number vs. Package Part Number

Packaged Part No./Die No.

	·
M01A	155-0009-00
M04	155-0010-00
M12B	155-0011-00
M15B	155-0012-00
M18H	155-0028-00/01
M19F	155-0014-01
M20J	155-0015-01
M22	155-0013-00
M25E	155-0017-00
M26D	155-0018-00
M27B	155-0019-00
M28C	155-0020-00
M29B	155-0021-01
D32A	152-0646-00
M33B	155-0004-01
M34C	155-0005-00
M35B	155-0006-01
M36K	155-0022-00/01
M38C	155-0007-01
M39C	155-0008-01
M42D	155-0056-00
M45D	155-0038-01/02
M402 M47	155-0031-01/
	155-0047-00
	155-0048-00, 155-0055-00
M52G	-
M55E	155-0035-00, 155-0116-00 155-0216-00, 155-0217-00
M65	155-0050-01
M68	155-0051-00
M77A	155-0059-00
M79H	155-0049-02
M80F	203-0080-90
M83	155-0061-00
M84F	155-0078-10, 155-0274-00
M89A	203-0089-91
M91E	155-0067-02
M94B	155-0076-00
M95A	155-0091-00
M96F	203-0096-90
M101B	155-0106-00
M105	155-0083-00
M112A	155-0198-00
D113C	155-0112-01
M115A	155-0199-00
M119	155-0110-00
M120D	155-0109-01
M121D	155-0126-00
M122C	203-0122-90
M123A	155-0119-00
M124A	155-0144-00

NEW DESIGN CODE

P = Preferred

X = SuitableX = Do Not Use

155-XXXX = Packaged Parts 203-XXXX = Die

Γ

M Number vs. Package Part Number (cont)

	Packaged Part No./Die No. (cont)
M126	203-0126-90
M127D	155-0114-00
M130	203-0130-90
M131A	155-0121-00
M132A	155-0122-00
M133A	155-0123-00
M136D	155-0160-00
M138	155-0124-00
M150A	155-0171-00
M151A	155-0145-00
M152D	155-0152-01
M154	155-0154-00
M155B	203-0155-91
M156	155-0288-00
M159	155-0151-00
M160A	155-0023-00
M161A	155-0024-00
M162A	155-0025-00
M163A	155-0026-00
M164A	155-0027-00
M165	155-0086-00
M166	155-0087-00
M167	155-0088-00
M169	155-0104-00
M170	155-0105-00
M171	155-0135-00
M175B	203-0175-90
M177A	203-0177-90
M178A	203-0178-90, 91, 92
M180D	155-0157-00
M181D	155-0158-00
M187A	155-0185-00
M188A	155-0196-00
M192C	155-0188-00
M196A	203-0196-90
M197A	203-0197-90
M198A	203-0198-90
M199A	203-0199-90
D206A	203-0206-90
M207	155-0187-00
M208	155-0205-00
M210C	203-0210-90
M211C	203-0211-90
M212C	203-0212-90
M213C	203-0213-90
M214C M215E	203-0214-90 155-0241-01
M216C	203-0216-90
M217G	155-0244-00
M218A	155-0215-00

NEW DESIGN CODE

 $\begin{array}{l} \mathsf{P} = \mathsf{Preferred} \\ \mathsf{X} = \mathsf{Suitable} \\ \mathsf{X} = \mathsf{Do} \ \mathsf{Not} \ \mathsf{Use} \end{array}$

C = Call Application Engineering before using

155-XXXX = Packaged Parts 203-XXXX = Die

M Number vs. Package Part Number (cont)

	Packaged Part No./Die No. (cont)
M222B	155-0218-00
M223B	155-0247-00
M227C	203-0227-90
M228B	155-0279-00, 155-0283-00
M229C	203-0229-90
M231B	203-0231-90
M232B	155-0277-00
M234B	155-0253-00
M240	203-0240-90
M241B	155-0280-00
M274B	203-0274-90
M289A	155-0273-00
M297A	203-0297-90
M307B	203-0307-90
M312A	155-0282-00

NEW DESIGN CODE

 $\begin{array}{l} \mathsf{P} \ = \ \mathsf{Preferred} \\ \mathsf{X} \ = \ \mathsf{Suitable} \\ \mathsf{X} \ = \ \mathsf{Do} \ \mathsf{Not} \ \mathsf{Use} \end{array}$

C = Call Application Engineering before using

155-XXXX = Packaged Parts 203-XXXX = Die

NEW DESIGN INFORMATION

SECTION 2	NEW DESIGN INFORMATION	Page No.
	Preferred for New Designs	2-1
	Suitable for New Designs	
	Do Not Use for New Designs	
	Call Applications Engineering Before Using	

		Page
Preferred for Ne	ew Designs—Cost Effective or State-of-the-Art	No.
Packaged Parts	i	
155-0012-00	Z axis signal conditioner	5-1
155-0022-00	2 input channel switch Ins Rt	5-7
155-0035-00	Quad Op Amps, 80 MHz gain bandwidth	5-11
155-0038-02	5-bit precision D/A	5-17
155-0048-01	5 MHz trigger and 1 V/µs sweep	5-21
155-0049-02	Sweep control	5-27
155-0055-00	5 MHz trigger and 1 V/µs sweep	
155-0057-00	Dual Op Amp, current source	
155-0067-02	DC to DC controller	5-47
155-0078-10	Differential/variable/invert amplifier	
155-0109-01	350 MHz trigger	5-61
155-0116-00	Quad Op Amps, 80 MHz gain bandwidth	
155-0122-00	Sweep control	
155-0123-00	50 ns sweep and delay pickoff	
155-0124-00	5 ns/div horizontal preamplifier	5-87
155-0126-00	Trigger Amplifier/Source Select	
155-0144-00	TV sync stripper	5-93
155-0145-00	Controlled risetime amplifier	
155-0152-01	Magnetic deflected CRT geometry correction	
155-0154-00	3-input multiplexer	
155-0188-00	TV sync generator	5-117
155-0196-00	100 MHz trigger	
155-0215-00	Logic analyzer input	
155-0217-00	Amplifier	5-137
155-0218-00	100 MHz vertical output	
155-0244-00	Scope logic interface	
155-0247-00	Tape controller	
155-0253-00	Schmitt trigger	
155-0273-00	Differential/variable/invert amplifier	
155-0274-00	Differential/variable/invert amplifier	
155-0283-00	Video multiplier	
206-0248-00	Platinum temperature probe tip	5-193
Die		
203-0084-90	Differential/variable/invert amplifier	6-1
203-0089-91	Vertical output amplifier	
203-0155-91	4-bit 80 MHz clock flash A/D converter	
203-0177-90	5-bit DAC	
203-0211-90	Channel switch	
203-0212-90	Vertical output	
203-0213-90	600 MHz trigger	
203-0214-90	Sweep DAC & logic	
203-0216-90	Z-axis, autofocus amplifier	
203-0227-90	Z-axis driver	
000 0000 00	200 Mile trigger emplifier	6 72

2

anot included in this catalog.

203-0229-90 203-0231-90

. . .

:

And and the set of and the set of a set of the set

2-1

Suitable for New Designs-Older Still Useful Parts

Packaged Parts

203-0080-90	Vertical Output Amplifier
203-0126-90	F _t Doubler

Do Not Use for New Designs—Obsolete Designs, Replaced by Newer Designs, or No Longer a Process in Production

Packaged Parts

, ,

;

.

.

•

101 1000 00	Dragonary and Osmanatan
131-1393-00 131-1394-00	Programmed Connector
	Programmed Connector
131-1395-00	Programmed Connector
131-1396-00	Programmed Connector
131-1659-00	Programmed Connector
131-1660-00	Programmed Connector
152-0314-00	Schottky Diode
152-0442-00	Schottky Diode
152-0442-01	Schottky Diode Pair
152-0446-00	Schottky Diode Pair
152-0446-01	Schottky Diode Single
155-0004-01	576 Readout System
155-0005-00	576 Readout System
155-0006-01	576 Readout System
155-0007-01	576 Readout System
155-0008-01	576 Readout System
155-0031-01	Quad Timing Unit
155-0087-01	Quad Timing Unit
155-0088-00	Legend Character
155-0104-00	Legend Character
155-0105-00	Legend Character
155-0106-00	Normalizing Circuit
155-0111-01	LED Array
155-0112-01	Photo Transistor Array
155-0119-00	5-Digit BCD Counter
155-0121-00	50 MHz Trigger
155-0135-00	Legend Character
155-0151-00	100 MHz Trigger
*155-0157-00	MOS Digital Storage Vertical Control
*155-0158-00	MOS Digital Storage Horizontal Control
*155-0198-00	MOS Knob Readout Counter
*155-0199-00	MOS Vertical Control
155-0205-00	F _t Doubler
*155-0207-00	Vertical Output
206-0186-06	Transistor Temperature Probe
206-0286-11	Transistor Temperature Probe
	1 2 2 2 2 2 2 2

Die

203-0096-90	Logic Probe
203-0268-90	PNP Transistor
203-0276-90	50 Ohm Resistor
203-0290-90	Schottky Diode

*Limited supply-process capability does not exist.

Call Application Engineering Before Using

Packaged Parts

151-0659-00	NPN Power Transistor
151-1139-00	Dual FET
152-0646-00	Schottky Diode Pair
152-0646-02	Schottky Diode Pair
155-0017-00	Decade Counter
155-0018-00	Zero Logic
155-0028-00	Miller Integrator
155-0028-01	Miller Integrator
155-0056-00	Sweep Control
155-0076-00	Input Protection
155-0160-00	Trigger Source/Amplifier
155-0241-00	Horizontal Amplifier
Die	

203-0032-90	Schottky Diode
203-0075-90	NPN Transistor
203-0088-90	Vertical Amplifier
203-0122-90	1 GHz Trigger
203-0130-90	100 MHz Vertical Preamp
203-0175-90	Dual Comparator
203-0178-90	1 GHz Vertical Amplifier
203-0196-90	Horizontal Clamp
203-0197-90	Horizontal Output
203-0198-90	Clamp & Sensor
203-0199-90	1 GHz Input Amplifier
203-0206-90	NPN Transistor
203-0210-90	300 1MHz Vertical Preamp
203-0264-90	Schottky Diode
203-0269-90	EBS Target Diodes
203-0270-90	NPN 3 Watt 2 GHz Transistor
203-0271-90	NPN 5 Watt 150 V .5 GHz Transistor
203-0265-90	Schottky Diode
203-0266-90	Schottky Diode

Q.A. PROGRAM

ICM QUALITY

QUALITY POLICY

Integrated Circuits Manufacturing exists to provide quality products and services to our customers on time at reasonable cost. Quality is meeting all the requirements of the "specification". The standard of performance is complete conformance to the requirements for guaranteed customer satisfaction. Any change in requirements must be officially documented and reflect what we and our customers really need.

Our intent is that quality be built into each product during the design, development, and manufacturing stages of product life. Defect prevention, rather than "inspecting" quality in, is to be emphasized at all times at all organizational levels. Each individual is responsible for the quality of his/her work, and each manager is responsible for the quality of work performed under his/her direction. Correction of major plant and field problems will be given prompt attention and timely resolution.

MANUFACTURING, SCREENING AND INSPECTION for INTEGRATED CIRCUITS

The following flow chart describes the major process steps and the key quality check points for producing hermetic and molded package I.C.'s. All operations are totally specified in product, process, test, and quality assurance specifications.

* Reliability Screens

3-5

HERMETIC PACKAGE PROCESS MOLDED PACKAGE PROCESS

٧I

а

b

c(

FINAL TEST

100% of parts tested to requirements of component specifications: Includes static, dynamic, and functional tests specified temperatures.

QUALITY INSPECTION

Visual confirmation of marking and physical quality. Electrical confirmation of product identity by sample test to a 0.65% AQL. Confirmation of completion of all process steps and required documentation.

SHIP TO WAREHOUSE

Specialized reliability assurance screen tests, such as burn-in, can be developed for a specific application to insure a product's reliability. Initial discussions should be coordinated with an Applications Engineer. Quality and Reliability Engineers are also ready to support you and your application.

RELIABILITY

RELIABILITY

The reliability of a circuit component is the probability of failure-free performance of a required function under stated conditions for a given period of time. It is possible to calculate the probability of successful operation to a specified confidence interval.

The typical failure rate behavior of a device is shown in the figure below:

4

INFANT MORTALITY: Early in the lifetime of a device there can be a relatively large number of failures, due to built-in weakness or defect. These early failures show a decreasing failure rate with respect to a relatively short time period.

USEFUL LIFE: During the middle period of the device lifetime fewer failures occur but it is necessary to know which failure mechanism is the principal determinant of the failure rate under the conditions of interest. In this region, sometimes called the "random failure region" of constant failure rate, the device characteristics are essentially constant and when failure occurs it is usually catastrophic.

WEAR-OUT REGION: As a device reaches the age at which wear-out failure mechanisms are activated it begins to deteriorate rapidly. The instantaneous failure rate increases monotonically and many failures occur. This failure region is called the "wear-out region" and is caused by material degradation, effect of electrical fields, and slow chemical reactions. Integrated circuits do not usually reach the wear-out region in normal operation. Exceptions occur when integrated circuits are exposed to ionizing radiation fields and when the hermeticity of integrated circuit packages is impaired by progressive corrosion. An "intrinsic" wear-out process leads to the ultimate failure of every device.

INTEGRATED CIRCUIT FAILURE MECHANISMS

The physical or chemical process that causes devices to fail is termed the *failure mechanism*. The cause of rejection of any failed device is termed the *failure mode*. Thus, electromigration is an example of a failure mechanism, which can lead to the failure mode of an open interconnection. A further example is given by excess charge near a silicon-oxide interface (failure mechanism) which causes drift of the parameters of a MOS transistor (failure mode).

Failure mechanisms for bipolar integrated circuits can be divided roughly into three groups, namely: (1) dierelated failures, such as oxide defects, metallization defects, and diffusion-related failures; (2) assemblyrelated problems such as die mount, wire bonds, or package failures; and (3) miscellaneous undetermined, or application-induced failures.

DIFFUSION-RELATED FAILURES: Nonuniform current-flow may occur within a device because of dopant diffusion-related causes. These may affect the base width, the emitter resistivity, the curvature of junctions, and other device parameters.

4

OXIDE-RELATED FAILURES: Contamination of oxide, during or after its growth, directly affects its dielectric properties, particularly its breakdown strength. Presence of surface charge, Q_{SS} , at or near an oxide-silicon interface can affect the turn-on voltage, V_{TH} , of a device and other parameters, such as dc gain, and leakage current. Oxide-charge values of large magnitude can cause surface inversion. Other surface-related failures arise because of ion migration in the thermally grown oxide and along its surface, dipole polarization effects or charge trapping effects.

METALLIZATION-RELATED FAILURES: The mass transport of metal atoms by momentum exchange with conducting electrons is called "electromigration". It occurs in metal lines at high current densities and elevated temperatures, and consists of the movement of metal atoms toward the positive end of the conductor, while voids move in the opposite direction. As a consequence, metal disappears from certain regions and ultimately an open-circuit occurs. The degradation of integrated circuits with aluminum metallization operating at high current densities and at elevated temperatures is described by the Arrhenius model. Electromigration occurs for many metals, including aluminum, gold, silver, copper, and platinum. The current density at which reliability problems occur with gold films is substantially higher than that for aluminum films. This has led to the use of gold in circuits requiring high current densities.

Another significant cause of metallization failure is the formation of microcracks, where the metallization passes over an oxide step. It occurs frequently where the oxide step is greater than 6000 Angstrom. Steeper steps lead to thinner metal deposits which have a greater probability of failure under high current stress. Microcracks are not usually detectable with optical microscopes, but may effectively be detected by scanning electron microscopes.

Metallization may also fail because of poor ohmic contacts with silicon, poor bondability to aluminum or gold wires, or poor adhesion to the silicon dioxide.

DIE MOUNT FAILURES: Die to leadframe attachment failures have been attributed to low strength adhesion caused by inadequate process control. Epoxy mounts may fail under temperature stress because the thermal coefficient of expansion of most epoxies exceeds the coefficients of expansion of both the semiconductor die and the leadframe to which it is mounted.

WIRE BOND FAILURES: Gold wire is bonded to the die metallization. Failure of gold wire bonds to aluminum-metallized die may be due to the formation of intermetallic compounds that lead to loss of strength and an increase of resistance.

PACKAGE-RELATED FAILURES: The hermeticity of metal can packages depends on a glass to metal seal that isolates the leads going to the device. The coefficient of expansion is matched to that of the header. Failure may occur due to poor hermeticity due to corrosion of the header.

Plastic packages are formed by molding the device in molten plastic. Failure is usually due to environmental factors; however, with proper design and testing they have a high degree of reliability.

EARLY FAILURES—RELIABILITY SCREENING PROCEDURES

Ideally, reliability screening selects from a lot of devices having superior reliability and rejects those devices that are potential early failures. Assuming that all devices in a lot are intitially within specification, screening is a test procedure that classifies a device as to longevity, based on time-zero or short-time measurements. See the Quality Assurance section flowchart for a description of the reliability screens performed on all parts.

Specialized additional reliability assurance screen tests such as burn-in, are available for your specific applications. Initial discussions should be with an Applications Engineer.

ACCELERATED-STRESS LIFE TESTING

The purpose of a life test is to be able to predict device reliability when the device is operating in a specified environment. Frequently, a device is so reliable under normal operating conditions that years of testing would be required in order to predict its reliability. Hence, there exists a great difficulty, because the greater the reliability of a device, the more difficult it is to determine this reliability.

A solution to this dilemma is to design accelerated-stress life tests in which a device is run at a higher stress level than encountered in normal operation. As a consequence, the device has a shorter life than under normal conditions. Results obtained at more severe stress levels are then extrapolated to normal stress levels so as to obtain an estimate of the life distribution. Accelerated-stress testing typically employs higher than normal temperature as the stress mechanism. The Arrhenius equation to relate the failure rate at one temperature to that at a different temperature is:

Acceleration Factor = $e \frac{Ea}{k} \left[\left\{ \frac{1}{T_1 + 273} - \frac{1}{T_2 + 273} \right\} \right]$

in which Ea = activation energy for the failure mechanism

 $k = Boltzman constant 8.62 \times 10^{-5} EV/°C$

 T_1 = Reference temperature in °C

 $T_2 =$ Stress temperature in °C

NEW PRODUCTS AND PROCESSES

New products and processes are evaluated for reliability before they are transferred to regular production. New circuits, packages and process test devices are subjected to the rigorous electrical and mechanical tests listed below in Table I.

TEST	STRESS	PURPOSE
Mechanical Shock	15 g for .5 sec.	The shock test is intended to determine the suitability of the device for use in equipment that may be subjected to moderately severe shocks encountered in rough handling, transportation or field operation.
Vibration	20 g; 20-1000 cycles	The variable frequency vibration test is performed for the purpose of determining the effect on component parts of vibration in the specified frequency range.
Lead integrity	Lead pull Lead bend Stud Torque	This test provides various tests to determine the integrity of device leads, welds, and seals.
Thermal Shock	55°C to +125°C 100 cycles +20°C to +260°C 10 cycles	The purpose of this test is to determine the resistance of the device to sudden exposure to extreme changes in temperature.
Humidity	 -10°C to +65°C Relative humidity of 95% to 98% 10 cycles of 24 hours each. 	This test is performed to evaluate in an accelerated manner the resistance of the part to the effects of high humidity.
High Temperature Storage	150° for 60 hours	This test is to determine the effect on the device of storage at high temperature without electrical stress applied.
High Temperature Operating Life	Static and dynamic operating life tests at a junction temperature of 150°C.	This life test is performed for the purpose of determining a representative failure rate.

TAE	BLE I
-----	-------

ON-GOING RELIABILITY MONITOR

A Reliability Assurance Monitor program is established that regularly runs accelerated life tests on samples from production output. This monitor is our assurance that integrated circuits continue to maintain their high reliability.

The part numbers for the Reliability Assurance Monitor have been classified according to process and package types. Accelerated life tests are scheduled so that during any period of time, a number of production samples of each classification are on life test. The part numbers run during a year represent 90% of the output volume of Integrated Circuits Manufacturing.

PACKAGED PARTS (DATA SHEETS)

SECTION 5 PACKAGED PARTS (DATA SHEETS)

PREFERRED FOR NEW DESIGNS-COST EFFECTIVE OR STATE-OF-THE-ART

Page No.

Packaged Parts

155-0012-00	Z axis signal conditioner	5-1
155-0022-00	2 input channel switch Ins Rt	
155-0035-00	Quad Op Amps, 80 MHz gain bandwidth	5-11
155-0038-02	5-bit precision D/A	5-17
155-0048-01	5 MHz trigger and 1 V/ μ s sweep	5-21
155-0049-02	Sweep control	5-27
155-0055-00	5 MHz trigger and 1 V/µs sweep	
155-0057-00	Dual Op Amp, current source	
155-0067-02	DC to DC controller	
155-0078-10	Differential/variable/invert amplifier	5-53
155-0109-01	350 MHz trigger	
155-0116-00	Quad Op Amps, 80 MHz gain bandwidth	5-69
155-0122-00	Sweep control	5-75
155-0123-00	50 ns sweep and delay pickoff	5-81
155-0124-00	5 ns/div horizontal preamplifier	
155-0144-00	TV sync stripper	5-93
155-0145-00	Controlled risetime amplifier	5-99
155-0152-01	Magnetic deflected CRT geometry correction	5-103
155-0154-00	3-input multiplexer	5-111
155-0188-00	TV sync generator	5-117
155-0196-00	100 MHz trigger	5-125
155-0215-00	Logic analyzer input	5-131
155-0217-00	Amplifier	5-137
155-0218-00	100 MHz vertical output	5-141
155-0244-00	Scope logic interface	5-149
155-0247-00	Tape controller	5-163
155-0253-00	Schmitt trigger	5-171
155-0273-00	Differential/variable/invert amplifier	5-175
155-0274-00	Differential/variable/invert amplifier	5-181
155-0283-00	Video multiplier	5-187
206-0248-00	Platinum temperature probe tip	5-193

"Z" AXIS LOGIC

DESCRIPTION

The 155-0012-00 is a Z-axis logic control circuit. The part is under the control of the horizontal switch drive. It properly selects A intensity or A intensified by B.

FEATURES

- 4 current inputs
- 1 current output
- 4 logic inputs
- Chopped blanking
- Fast limiting of composite signal.
- Slow sweep speed limiting to prevent CRT phosphor burn.

ABSOLUTE MAXIMUMS

TA

Symbols Identifications Values Units T_{stg} -55 to +125 °C Storage temperature, range. 0 to +70 °C Operating ambient temperature, range.

Environmental

PIN CONNECTIONS

5-3

ELECTRICAL CHARACTERISTICS

PIN #'s	IDENTIFICATION	NOTES AND TEST CONDITIONS	MIN.	МАХ	UNITS
Pin 4	B gate; current	Logical 0	2.3		mA
Pin 4	B gate; current	Logical 1		0.5	mA
Pin 5	Delay control; voltage	Logical 0		0.600	V
Pin 5	Delay control; voltage	Logical 1	0.8		V
Pin 14	A gate; current	Logical 0	2.3	•	mA
Pin 14	A gate; current	Logical 1		0.5	mA
Pin 15	Horizontal binary; voltage	Logical 0		0.2	V
Pin 15	Horizontal binary; voltage	Logical 1	0.7		V
Pin 14	Output (pin 8) risetime; input at A gate (pin 14)			4.6	ns
Pin 4	Output (pin 8) risetime; input at B gate (pin 4)			3.9	ns
Pin 6	Output (pin 8) risetime; input at chop blanking (pin 6)			2.6	ns
Pin 9	Output (pin 8) risetime; input at external input (pin 9)			3.3	ns
_ Pin 14	Output (pin 8) falltime; input at A gate (pin 14)			4.2	ns
Pin 4	Output (pin 8) falltime; input at B gate (pin 4)			3.6	ns
Pin 6	Output (pin 8) falltime; input at chop blanking (pin 6)			2.3	ns
Pin 9	Output (pin 8) falltime; input at external input (pin 9)	· · · · · · · · · · · · · · · · · · ·		1.4	ns
Pins 14-8	Propagation delay, A gate input (inverting)	For negative-slope input transition	<u> </u>	1.9	ns
Pins 4-8	Propagation delay, B gate input (inverting)	For negative-slope input transition	<u> </u>	1.3	ns

ELECTRICAL CHARACTERISTICS (cont)

PIN #'s	IDENTIFICATION	NOTES AND TEST CONDITIONS	MIN	· MAX	UNITS
Pins 6-8	Propagation delay, chop blanking input (inverting)	For negative-slope input transition		1.4	ns
Pins 9-8	Propagation delay, external input (noninverting)	For negative-slope input transition		2.9	ns
Pins 14-8	Propagation delay, A gate input (inverting)	For positive-slope input transition		4.0	ns
Pins 4-8	Propagation delay, B gate input (inverting)	For positive-slope input transition		6.5	ns
Pins 6-8	Propagation delay, chop blanking input (inverting)	For positive-slope input transition		4.4	ns
Pins 9-8	Propagation delay, external input (noninverting)	For positive-slope input transition		0.94	ns
h _{t⊳} Pins 16-8	Current gain from A intensity input	I = 1.0 mA and I = 5.0 mA	.87	1.01	
h _{tb} Pins 1-8	Current gain from B intensity input	I = 1.0 mA and I = 5.0 mA	.87	1.01	
h _{rb} Pins 2-8	Current gain from A intensified by B input	I = 1.0 mA and I = 5.0 mA	.87	1.01	
h _{fb} Pins 9-8	Current gain from external input	I = 1.0 mA and I = 5.0 mA	.89	1.01	
h _{fb} Pins 6-8	Current gain from chop blanking	I = 1.0 mA and I = 5.0 mA	.92	1.01	
h _{fb} Pins 7-8	Current gain from limit	I = 1.0 mA and I = 5.0 mA	.92	1.01	

Reliability

 $\lambda,$ failure rate ${<\!\!<}.02\%/1K$ hours at 75°C Tj

CHANNEL SWITCH

DESCRIPTION

This monolithic integrated circuit selects one or mixes two input analog signals in response to a digital input.

High speed switching between two inputs for "CHOPPED" or "ALTERNATE" operation is possible to frequencies of 1 MHz.

FEATURES

- Signal rise time <2.5 ns.
- Output current swing ±7.5 mA MAX
- Output impedance 100 KΩ NOM
- Input capacitance 2.3 pF NOM
- Output capacitance 5.2 pF NOM
- Differential DC offset between modes 20 mV MAX

ABSOLUTE MAXIMUMS

SYMBOLS	IDENTIFICATIONS	VALUES	UNITS
Т _{stg}	Storage temperature, range	-55 to +125	°C
T _a	Operating ambient temperature range	0 to +70	°C
	Maximum voltage at pins 12 and 13 (referred to pin 3)	+10	v
	Maximum (negative) voltage at pin 11 (referred to pin 3)	-10	v

5-7

SCHEMATIC

(For an ambient temperature of 25°C unless otherwise noted.)			VAL	UES	UNITS
SYMBOLS	IDENTIFICATION	NOTES AND TEST CONDITIONS ¹	MIN	MAX	
V _{L4}	CH 1—Ch 2 switch input, pin 4 voltage. See note 7.	LOW — CH 1 on:	-0.5	+0.2	v
V _{H4}	,	HIGH—CH 2 on;	+0.6	+1.0	V
V _{L14}	ADD switch input, pin 14	LOW-Non-add:	0.5	+1.0	v
V _{H14}	voltage. See note 7.	HIGH—Add	+4.0	+5.0	<u>v</u>
V _{L6} V _{H6}	OFF switch input, pin 6 voltage. See note 7.	LOW—on: HIGH—off:	0.5 +0.5	-0.2 +1.0	V V
Ai	Current gain	See note 2	1.00	1.14	
0 _{MAX}	Output dynamic range	See note 3	-7.5	+7.5	mA
	DC offset between modes	See note 4		12	mV
/ _{OFFSET}	DC offset in any mode	See note 4		50	mV
ADD	ADD mode error	See note 5		1.0	%
IN2	Input current; Pin 2	Connected as shown.		.125	mA
IN15	Input current; Pin 15	Voltage on Pins 2, 15, 7, and 10		.125	mA
IN7	Input current; Pin 7	held at 0 V. Pin 14 to +5 V.		.125	mA
IN10	Input current; Pin 10	Implies beta = 60		.125	mA
T _r	Risetime (CH 1 to OUTPUT; then CH 2 to OUTPUT) See note 6	Connect device as shown.		<2.5	ns

ELECTRICAL CHARACTERISTICS

5

5-9

PIN CONNECTIONS

APPLICATIONS

In its simple application, the 155-0022-00 is a double-pole, double-throw selector of one of two balance input signals. Its more sophisticated role is in providing signal steering in dual-trace vertical and horizontal amplifiers.

It is designed for two balanced input signals of 25 mV/division per side into 50 Ω terminations to ground are external to the package. A current gain of "1" is intended.

The switch output is at or slightly above a +5 volt DC level. It is a current output into a resistance of 50 Ω per side. Side-to-side diodes are included inside the circuit for limiting the differential voltage swing of the output.

The OFF input turns both inputs "off". The ADD input turns both inputs "on". The common mode current output of the signal channel is maintained and constant for the various modes.

RELIABILITY

 λ , Failure rate $\leq 0.02\%/1$ K hours at 75°C T_i

QUAD OPERATIONAL AMPLIFIER

DESCRIPTION

The 155-0035-00 is a silicon monolithic quad operational amplifier. It comes in a plastic 16 pin package.

FEATURES

- ± 5 volt to ± 15 volt power supply range.
- 80 MHz gain bandwidth product.
- 20 mA output bandwidth product.
- No compensation required.
- Open loop gain 3300 typical.
- 5 mV input offset voltage.
- Available in two versions:

5-11

BLOCK DIAGRAM

ABSOLUTE MAXIMUMS

SYMBOLS	IDENTIFICATIONS	VALUES	UNITS
	Difference between V_{cc} and V_{EE}	32	V
	Differential Input Voltage	7	V
Ref	Reference Current	500	μA
l _{Out}	Output Current	20	mA
TSTORAGE		-55 to 125	°C
TOPERATING		0 to 70	°C
P _D	Maximum Power Dissipation	375	mW
Т _ј	Maximum Junction Temperature	125	°C

* Since this device does not have internal current limiting, the circuits being driven by pins 1, 7, 9 and 15 should have some form of current limiting to keep from exceeding the Absolute Maximum Rating (I_{out}) of 20 mA for this device.

PIN CONNECTIONS

5-13

PARAMETER/CONDITIONS*	MIN	MAX	UNITS
V _{cc}	14.25	15.75	Volts
V _{EE}	-14.25	- 15.75	Volts
Open Loop Voltage Amplification Condition: See Figure 1.	1000		
Input Offset Voltage Condition: R _L more than 100KΩ; Input connected to output; (+) Input grounded. Measure output voltage.		±5	mV
Risetime Condition: See Figure 2.	-	60	nS
Closed Loop Voltage Amplification Condition: See Figure 3.	9.70		
Output Voltage Swing Condition: Output voltage swing will not go more than 1.0 volt negative of (-) input.	±12.0		V
Noise Condition: Referred to Input.		100	µV/peak to peak

ELECTRICAL CHARACTERISTICS

 V_{CC} = +15 volts, V_{EE} = -15 volts; I_{REF} = 0.25 mA. All these values ±5.0%. T_A = 0 to +70°C.

5-14

5-15

155-0035-00

APPLICATIONS INFORMATION

RELIABILITY

 $\lambda,$ Failure Rate, .02%/1K hours at 75°C Tj $\theta_{\rm jc}=$ 94°C/W

5

D/A CONVERTER

DESCRIPTION

The 155-0038-02 is a silicon monolithic digital-toanalog converter in a 16 lead dual-in-line hermetic package.

FEATURES

- 5-bit precision current source D/A converter.
- · Current ratios set by external resistors.
- Range of MSB is 5 mA to 30 mA.
- Two packages may be used together for a 10-bit D/A with $\pm 1/2$ LSB accuracy.
- Output is designed to sum into 0 volts.
- Logic inputs are T²L compatible with a low state being true.

SYMBOLS	IDENTIFICATIONS	VALUES	UNITS
T _{stg}	Storage Temperature	-55 to 125	°C
T _A	Operating Ambient Temperature	0 to 70	°C
V _{cc}	Positive Supply Voltage	10	v
V _{EE}	Negative Supply Voltage	-20	V

ABSOLUTE MAXIMUMS

ELECTRICAL CHARACTERISTICS

Values

Electrical characteristics $(T_A = 0 \text{ to } +70^{\circ}\text{C}: V_{EE} = -15 \text{ V} \pm 1.0\%;$ $V_{cc} = +5.0 \text{ V} \pm 1.0\%; \text{ pin 9 current} = 3 \text{ times}$ pin 10 current $\pm 10\%$.

Symbols	Identifications	Notes and Test Conditions	Min	Мах	Units
Pin 8	Negative-supply voltage		-5.0	- 15.5	V
	Negative-supply current		4.5	7.6	mA
Pin 16	Positive-supply voltage		4.75	5.25	V
	Positive-supply current	All logic inputs HIGH	4.5	7.6	mA
		All logic inputs LOW	10	14	mA
Pins 1, 2, 3, 4, and 5	Logic input, voltage and current	Input HIGH	1.8	5.0	v
-, ,,				1.0	μA
		Input LOW	0	0.7	V
				1.5	mA
Pin 11	Current-input voltage	See note 1	-0.5	+0.5	mV
Pin 12	Current-input voltage	See note 1	-1.0	+1.0	mV
Pin 13	Current-input voltage	See note 1	-2.0	+2.0	mV
Pin 14	Current-input voltage	See note 1	-4.0	+4.0	mV
	Current-input current		2.5		μA
Pin 10	Current-input current			5.0	mA
Pin 15	Output voltage		-100	+100	mV
	Output current	All inputs HIGH	0	1.0	μA
	Output-current accuracy	See note 2		0.032	%
Pin 15	Switching Speed	Delay time from the 50% point of a TTL input to the output within \pm 1/2 LSB of desired output.		50	nS

Note 1: Voltage with respect to pin 10.

Note 2: Determine according to:

Output-current accuracy, in percent = $\frac{\left(\frac{X}{31}\right)(I_{TOTAL} - I_{OUT}) (100)}{\left(\frac{X}{31}\right)(I_{TOTAL})}$

where X = step number (decimal equivalent of binary input),

 I_{TOTAL} = current out with all logic inputs LOW,

 I_{OUT} = current measured at pin 15 during selection of all possible combinations of pins 1 through 5.

Input-current conditions are:

RELIABILITY

 λ , Failure rate, $\leq 0.02\%/1$ K hours at 75°C Tj

TRIGGER SWEEP CIRCUIT

DESCRIPTION

The 155-0048-01 is a monolithic integrated circuit. This trigger sweep circuit is for use in low frequency (below 1 MHz) applications.

FEATURES

- Trigger slope/level selection
- Variable sweep rate and length with controlled timing supply
- · High Z BIFET Miller and trigger inputs
- Sweep holdoff
- · Auto trigger with adjustable holdoff
- Z-axis blanking
- Reference voltage outputs for stable sweep control
- External X-axis Input
- Available in 2 package styles minipak (155-0048-01) & DIP (155-0055-00)

SYMBOLS	IDENTIFICATIONS	VALUES	UNITS
V _{cc}	Maximum positive power supply voltage	+6.5	V
/ _{EE}	Maximum negative power supply voltage	-6.5	v
· <u>···</u>	Trigger Input voltage	±4.6	v
/ _z	Current Load	4.75	mA
2θ	Current Load	4.75	mA
D _d	Power dissipation	300	mV
	Miller Out Source Current	2	mA
u, . , u . v	Miller Out Sink Current	0.5	mA
	Voltage on input pins 2, 5, 10*		
T _{STORAGE}	Storage temperature range	-55 to +125	°C
	Operating temperature range	-15 to +70	°C

ABSOLUTE MAXIMUMS

* Must not be less than 2θ or greater than Vz.

SYMBOL	PARAMETER	MIN	МАХ	UNITS		
V _{cc}	Positive Supply Voltage		5.0	6.5	V	
V _{EE}	Negative Supply Voltage	<u>.</u>	-5.0	-6.5	V	
cc	Positive Supply Current	$V_{cc} = +6.5 \text{ V} \text{ V}_{EE} = -6.5 \text{ V}$ Miller sweeping in auto mode		23	mA	
EE	Negative Supply Current	Same as I _{cc}	-23		mA	
V _{ref}	Internal Reference Voltage	Measure V _z pin 14 Measure 2 θ pin 13 I _{VZ} = I _{2θ} = 2.5 mA V _{REF} = V _z - 2 θ	5.8	6.8	V	
V _{os}	Op amp input offset	Force op amp output pin 8 to 0 V Large (>1 M Ω) feedback resistor pin 8 to pin 9 Measure voltage on input pin 9	5	+.5	V	
V _{OSTC}	Op amp input offset temperature coefficient	Same as V _{os} over temperature	5	+.5	mV/°C	
в	Op amp input bias current	Measure current into pin 9 from ground	0	5	nA	
A _{ol}	Op amp open loop gain	DC signal on Pin 9 Measure pin 8 swing $A_{OL} = \frac{\Delta V_0 \text{ pin 8}}{\Delta V_1 \text{ pin 9}}$	80			
V _{OUT+}	+ peak of Miller output	Free run sweep Sweep length pin $10 = -2 V$ Measure + peak at pin 8	1.5	2.5	V	
V _{OUT-}	- peak of Miller output	Same as V _{OUT+} Measure — peak at pin 8	-2.5	-1.5	V	
I _{TL}	Timing supply sink current	Measure from pin 6 during sweep pin 5 = V_z	5		mA	
Vs	Trigger signal sensitivity	1 kHz square wave input ramped up in amplitude until sweep triggers	50		mV	

ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	CONDITION	MIN	ΜΑΧ	UNITS MHz	
F _{TS}	Maximum usable trigger frequency			1		
CFR	Free run timing current	Measure pin 16 current in auto mode	35	65	μA	
7 T	Trigger input impedance		20	30	KΩ	
BT	Trigger input bias current	Measure pin 1 current from ground		5	nA	
Γ ν	Usable trigger input range	Ramp offset of 1 kHz, 50 mV square wave on Input pin 1	-875	+875	mA	
		Measure offset at limits of triggering range				
OLB	Unblanking sink current	Measure pin 4 current during holdoff from V _{cc}	200	450	μA	
/ _{THL}	Timing voltage during holdoff	Voltage on $5 = 2\theta$ Measure pin 6	—. 5	+.5	V	
/ _{тнн}	Timing voltage during holdoff	Voltage on pin 5 = V_z	-4	-2	V	
	Timing voltage during sweep	Voltage on pin 5 = 2θ	5	+.5	V	
/ _{TRH}	Timing voltage during sweep	Voltage on pin 5 = V_z	2.5	3.5	V	
ТН	Timing supply source current	Measure from pin 6 during holdoff		1	mA	
~		pin 5 = V_z				

ELECTRICAL CHARACTERISTICS (cont)

APPLICATIONS INFORMATION

Applications

The internal reference voltage output should be used as sources on control networks for sweep cal, sweep length, and level/slope. These sources will track internal bias shifts over temperature.

When sweep length input is forced higher than 7.2 volts above V_{EE} , trigger is disabled to gating multi and op amp may be used as external X axis amplifier with Z axis unblanked.

When the auto holdoff timing pin is pulled low, the auto trigger is disabled.

When the holdoff timing pin is held high, the trigger to gating multi is disabled and sweep is "held off".

Typical holdoff capacitor value is one-tenth of $C_{\text{TIMING}}.$

Some low frequency applications may experience a timing supply oscillation which can be squelched with a 390 Ω , 87 pF RC series network connected to Miller/op amp output.

Typical temperature coefficient of V_Z -2θ is .03%/°C.

Differentiator capacitor on Pin 11 should be 27 to 100 pF.

Product Precautions

Input Protection

Pins 1 and 9 (BIFET gates) applied voltage should be between -4.6 and +4.6 V.

Pins 2, 5, and 10 applied voltage should be between V_{EE} and $V_{\text{CC}}.$

Output Loading

Voltage on pin 4 should be kept 15 V above 2 θ .

 V_7 and 2 θ outputs should be loaded 4.75 mA each.

Pin 8 loading should be kept 2 mA source and 0.5 mA sink.

Power Supply Turn-On/Turn-Off Sequence

Power on sequence:

First: V_{ee} (-6 V) Second: V_{cc} (+6 V)

Handling Procedures

Standard Mini-Pak mounting techniques should be employed. Removal from socket should be accomplished with force applied to the plastic body rather than the leads.

Parts should be handled and transported with materials approved to dissipate static charges and keep the device leads equipotential.

RELIABILITY

 λ , Failure rate .02%/1k hours at 75°C T.

 $\theta_{\rm ic} = 97.7^{\circ} {\rm C/W}$

5

~

•

SWEEP CONTROL

DESCRIPTION

The sweep control IC contains bright baseline Auto, Single Sweep, and Holdoff logic. Lamp drivers are provided for Single Sweep and Trigger Lights. It also contains Lockout and Main Frame delay mode controls used in 7000 Series Scopes.

FEATURES

- Sweep gate input, 0.125 V differential signal generates a triggered gate.
- Auto bright baseline time constant determined by external R-C.
- Holdoff time constant determined by external R-C.
- · Single sweep mode.
- Auto gate outputs.
- 60 mA drive for trigger and reset light bulbs.

SYMBOLS	IDENTIFICATION	MIN	MAX	UNITS	
Т-А	Operating Ambient Temperature	–15°C	+75°	С	
T-J	Junction Temperature T-A = 75° C Power = 250 mW		+99°	С	
T-STG	Storage Temperature	_55°	+125°	С	
V _{cc}	Positive Supply	+4.00	+6.00	V	
V _{EE}	Negative Supply	-4.00	-6.00	V	
l _c	Sink Current into Lamp Drivers (Pins 7 and 11)		100	mA	
I _c	Sink Current into Hold-Off Out (Pin 10)	<u> </u>	10	mA	

ABSOLUTE MAXIMUMS

PIN CONNECTIONS

ELECTRICAL C	HARACTERISTICS
--------------	----------------

PIN(S)	SYMBOL	NAME	MIN	MAX	UNITS
1&2	DR	DYNAMIC RANGE	-500	500	mV
1&2	I _{LEAK}	INPUT LEAKAGE		50	μA
3	I _{OUT}	OUTPUT CURRENT (Absence of Gate)		100	μA
3	Ι _{ουτ}	OUTPUT CURRENT (Presence of Gate)	2.7	3.7	mA
4	I _{OUT}	OUTPUT CURRENT (Presence of Gate)		100	μΑ
4	Ι _{ουτ}	OUTPUT CURRENT (Absence of Gate)	2.7	3.7	mA
3&4	V _{OUT}	VOLTAGE TO GND	-0.5	5.50	V
5	V _{EE}	NEGATIVE SUPPLY VOLTAGE	-4.8	-5.2	V
5	I _{EE}	-5 VOLT SUPPLY CURRENT	15	35	mA
6	R _{IN}	INPUT IMPEDANCE (while charging)	500		kΩ
8	R _{IN}	INPUT IMPEDANCE (while charging)	1.0		MΩ
6&8	I _{leak}	INPUT LEAKAGE (while charging)		10	μA
6&8	V _{DIS.}	DISCHARGED VOLTAGE $I_c = 1.5 \text{ mA}$		360	mV
7&11	V _{SAT}	TRANSISTOR SATURATION $I_c = 60 \text{ mA}$		700	mV
7&11	I _{LEAK}	OFF CURRENT $V_c = 5$ VOLTS		40	μA
10	V _{SAT.}	TRANSISTOR SATURATION $I_c = 5 \text{ mA}$		400	mV
10	I _{LEAK}	OFF CURRENT $V_c = 5$ VOLTS		10	μΑ
12	V _{IN}	S.S. MODE HI VOLTAGE IN, R_{IN} = 800 Ω MIN.	4.0	5.5	V

5

PIN(S)	SYMBOL	NAME	MIN	MAX	UNITS
12	V _{IN}	S.S. MODE LO VOLTAGE IN R_{IN} = 5 K Ω MIN.	-300	300	mV
13	V _{IN}	M.F. DELAY MODE HI VOLTAGE IN $R_{IN} = 1.5 \text{ K}\Omega \text{ MIN}.$	4.0	5.5	v
13		M.F. DELAY MODE LO VOLTAGE IN $R_{IN} = 1 M\Omega$ MIN.	-300	300	mV
16	V _{IN}	H.O. START HI VOLTAGE IN $R_{IN} = 2 \text{ K}\Omega \text{ MIN}.$	2.2	2.8	V
16	V _{IN}	H.O. START LO VOLTAGE IN $R_{IN} = 1 M\Omega$ MIN.	-300	300	mV
17	V _{OUT}	SWEEP DISABLE HI Nominal Current = 5 mA	1.55		v
17	V _{OUT}	SWEEP DISABLE LO	-1.10	-0.45	v
18	V _{IN}	LOCKOUT HI VOLTAGE IN R_{IN} = 1 K Ω MIN.	2.5	5.5	v
18	V _{iN}	LOCKOUT LO VOLTAGE IN R_{IN} = 1 K Ω MIN.	-300	300	mV
20	V _{cc}	POSITIVE SUPPLY VOLTAGE	4.8	5.2	v
20	I _{cc}	+5 VOLTS SUPPLY CURRENT	12	16	mA

ELECTRICAL CHARACTERISTICS (cont)

APPLICATIONS INFORMATION

Input Features

Sweep Gate Input Pins 1&2—A differential signal of ± 0.125 V from ground will cause the input emitter coupled pair to switch and generate a triggered gate inside the IC.

Auto Timing Pin 6—Refer to Figure 1. The auto bright baseline time constant is determined by an external R-C connected to pin 6 as shown. The switching point needed to determine the R-C is +4.2 V $\pm .3$ V. When the timing reset has been initiated with a trigger, the voltage at pin 6 must recover to less than +1 volt before recharging can begin.

Hold-Off Timing Pin 8—Refer to Figure 2. The hold-off time constant is determined by an external R-C as shown. The switching point occurs at $+4.2 \pm .3$ V.

Single Sweep Mode Pin 12—A nominal +5 volt signal applied to pin 12 places the IC in single sweep mode and allows reset ready lite to be on when the reset button is pushed (pin 15). Open circuit or grounding of pin 12 places the IC in auto or normal triggering mode.

Main Frame Delay Mode Pin 13—A nominal +5 volt signal applied to pin 13 sets the IC to single sweep mode but does not allow lighting of reset ready lite. High also inhibits the auto circuit. Reset to Ready is accomplished with the rise of LOCKOUT (pin 18).

Reset Timing and Reset Start Pins 14 & 15—Refer to Figures 3 and 4. A closure of RESET to ground will generate a reset pulse causing the single sweep latch to be reset and lighting the RESET READY LITE (pin 11).

Hold-Off Start Pin 16—This is the input pin to reset the sweep and initiate holdoff. The incoming waveform is intended to be short with respect to sweep duration as might be supplied from a sweep end comparator. High is +2.5 volts min.

Lockout Pin 18—A minimum of +2.5 volts applied to pin 18 will cause SWEEP DISABLE (pin 17) to go high and will reset the single sweep latch if in main frame delaying mode. LOCKOUT will not reset the single sweep latch in single sweep mode.

Auto Mode Pin 19—This pin is to be grounded for bright baseline auto operation. When pin 19 is grounded and no triggers have been present (pin 1 negative with respect to pin 2) for more than the time constant set at pin 6, then the auto gate occurs at pins 3 and 4.

Auto Gate Outputs Pins 3 & 4—The occurance of an auto gate will cause the differential switching of a nominal 3.2 mA of current from pin 4 to pin 3.

Trigger Lite Pin 7—This pin is pulled to ground to sink 60 mA of lamp current when a trigger gate has occurred.

Hold-Off Pin 10—This is a current sink to ground during hold-off. Maximum sink current is 5 mA.

Reset Ready Lite Pin 11—This pin is pulled to ground to sink 60 mA of lamp current when a high is supplied to pin 12 and no triggers are present (S.S. latch reset and pin 13 low).

Sweep Disable Out Pin 17—This signal is used to reset and holdoff the sweep. A high at this pin will reset the sweep if it is running and the sweep will be held off as long as it is high.

FIGURE 2

Leakage Current: $I \le 10 \ \mu A$ While Charging $R_{IN} : \ge 1 \ Meg.$ Reset Conditions: $I = 1.5 \ mA$ $V_1 \le 350 \ mV$

RELIABILITY

 λ , Failure Rate \leq .02%/1K hours at 75°C Tj

TRIGGER SWEEP CIRCUIT

DESCRIPTION

The 155-0055-00 is a monolithic integrated circuit. This trigger sweep circuit is for use in low frequency (below 1 MHz) applications.

FEATURES

- Trigger slope/level selection
- Variable sweep rate and length with controlled timing supply
- High Z BIFET Miller and trigger inputs
- · Sweep holdoff
- · Auto trigger with adjustable holdoff
- Z-axis blanking
- Reference voltage outputs for stable sweep control
- External X-axis Input
- Available in 2 package styles minipak (155-0048-01) & DIP (155-0055-00)

SYMBOLS	IDENTIFICATIONS	VALUES	UNITS
V _{cc}	Maximum positive power supply voltage	+6.5	v
V _{EE}	Maximum negative power supply voltage	-6.5	V
	Trigger Input voltage	±4.6	v
Vz	Current Load	4.75	mA
20	Current Load	4.75	mA
P _d	Power dissipation	300	mV
	Miller Out Source Current	2	mA
	Miller Out Sink Current	0.5	mA
	Voltage on input pins 2, 5, 10*		
T _{STORAGE}	Storage temperature range	-55 to +125	°C
	Operating temperature range	-15 to +70	°C

ABSOLUTE MAXIMUMS

* Must not be less than 2θ or greater than Vz.

PIN CONNECTIONS

SYMBOL	PARAMETER	CONDITION	MIN	MAX	UNITS
V _{cc}	Positive Supply Voltage		5.0	6.5	V
V _{EE}	Negative Supply Voltage		5.0	-6.5	V
cc	Positive Supply Current	$\label{eq:Vcc} \begin{split} V_{cc} &= +6.5 \text{ V} \text{ V}_{\text{EE}} = -6.5 \text{ V} \\ \text{Miller sweeping in auto} \\ \text{mode} \end{split}$		23	mA
EE	Negative Supply Current	Same as I _{cc}	-23		mA
V _{REF}	Internal Reference Voltage	Measure V _z pin 14 Measure 2 θ pin 13 I _{VZ} = I _{2θ} = 2.5 mA V _{REF} = V _z - 2 θ	5.8	6.8	V
V _{os}	Op amp input offset	Force op amp output pin 8 to 0 V Large (>1 M Ω) feedback resistor pin 8 to pin 9 Measure voltage on input pin 9	5	+.5	V
V _{ostc}	Op amp input offset temperature coefficient	Same as V _{os} over temperature	5	+.5	mV/°C
B	Op amp input bias current	Measure current into pin 9 from ground	0	5	nA
A _{ol}	Op amp open loop gain	DC signal on Pin 9 Measure pin 8 swing $A_{OL} = \frac{\Delta V_0 \text{ pin 8}}{\Delta V_1 \text{ pin 9}}$	80		
V _{OUT+}	+ peak of Miller output	Free run sweep Sweep length pin $10 = -2 V$ Measure + peak at pin 8	1.5	2.5	V
V _{OUT-}	 peak of Miller output 	Same as V _{out+} . Measure – peak at pin 8	-2.5	1.5	V
I _{TL}	Timing supply sink current	Measure from pin 6 during sweep pin 5 = V_z	5		mA
V _s	Trigger signal sensitivity	1 kHz square wave input ramped up in amplitude until sweep triggers	50		mV

ELECTRICAL CHARACTERISTICS

-

**

SYMBOL	PARAMETER	CONDITION	MIN	MAX	UNITS
F _{TS}	Maximum usable trigger frequency			1.	MHz
	Free run timing current	Measure pin 16 current in auto mode	35	65	μA
Z _T	Trigger input impedance		20	30	KΩ
вт	Trigger input bias current	Measure pin 1 current from ground		5	nA
T _v	Usable trigger input range	Ramp offset of 1 kHz, 50 mV square wave on Input pin 1	-875	+875	mA
		Measure offset at limits of triggering range			
I _{OLB}	Unblanking sink current	Measure pin 4 current during holdoff from V _{cc}	200	450	μA
V _{THL}	Timing voltage during holdoff	Voltage on $5 = 2\theta$ Measure pin 6	5	+.5	V
V _{THH}	Timing voltage during holdoff	Voltage on pin 5 = V_z	_4	-2	V
V _{TRL}	Timing voltage during sweep	Voltage on pin 5 = 2θ	5	+.5	V
V _{TRH}	Timing voltage during sweep	Voltage on pin 5 = V_z	2.5	3.5	V
I _{TH}	Timing supply source current	Measure from pin 6 during holdoff		1	mA
		pin 5 = V_z			

ELECTRICAL CHARACTERISTICS (cont)

APPLICATIONS INFORMATION

Applications

The internal reference voltage output should be used as sources on control networks for sweep cal, sweep length, and level/slope. These sources will track internal bias shifts over temperature.

When sweep length input is forced higher than 7.2 volts above V_{EE} , trigger is disabled to gating multi and op amp may be used as external X axis amplifier with Z axis unblanked.

When the auto holdoff timing pin is pulled low, the auto trigger is disabled.

When the holdoff timing pin is held high, the trigger to gating multi is disabled and sweep is "held off".

Typical holdoff capacitor value is one-tenth of C_{TIMING} .

Some low frequency applications may experience a timing supply oscillation which can be squelched with a 390 Ω , 87 pF RC series network connected to Miller/op amp output.

Typical temperature coefficient of V_Z -2θ is .03%/°C.

Differentiator capacitor on Pin 11 should be 27 to 100 pF.

Product Precautions

Input Protection

Pins 1 and 9 (BIFET gates) applied voltage should be between -4.6 and +4.6 V.

Pins 2, 5, and 10 applied voltage should be between V_{EE} and $V_{\text{CC}}.$

Output Loading

Voltage on pin 4 should be kept 15 V above 2 θ .

 V_7 and 2 θ outputs should be loaded 4.75 mA each.

Pin 8 loading should be kept 2 mA source and 0.5 mA sink.

Power Supply Turn-On/Turn-Off Sequence

Power on sequence:

First: V_{ee} (-6 V) Second: V_{ee} (+6 V)

Handling Procedures

Standard Mini-Pak mounting techniques should be employed. Removal from socket should be accomplished with force applied to the plastic body rather than the leads.

Parts should be handled and transported with materials approved to dissipate static charges and keep the device leads equipotential.

RELIABILITY

 λ , Failure rate .02%/1k hours at 75°C T.

 $\theta_{\rm ic} = 97.7^{\circ}{\rm C/W}$

.

5

.

. · ·

DUAL OP. AMP./CURRENT SOURCES

DESCRIPTION

The 155-0057-00 is a dual-operational amplifier with two current sources. The monolithic chip is contained in a 16-pin plastic package.

FEATURES

- ± 5 V to ± 15 V power supply range
- 80 MHz gain bandwidth product
- No compensation required
- Open loop gain 3300 typical
- 5 mV input offset voltage
- 5 mA output current

Symbols	Identifications	Values	Units
T _{stg}	Storage temperature, range	-55 to +125	°C
T _A	Operating ambient temperature, range	-15 to +60	°C
V _{CC} - V _{EE}	Difference between V_{cc} and V_{EE}	20	V
out	Output current (pins 16, 6)	5	mA
V _{in,diff}	Input differential voltage	±7.0	V
REF	Reference Current (pin 3)	500	μA
l _s out	Current Source Output (pins 8, 9, 10 or 12, 13, 14)	3	mA
I _s in	Current Source Input (pin 11)	1.5	mA
lz	Current Source Output Impedance	≥200	ΚΩ
I _{volts}	Voltage Swing of Current Source Output	V_{EE} + 1.5 V to V_{EE} +20 V	V

ABSOLUTE MAXIMUMS

PIN CONNECTIONS

-Input (Section A) 16 Output (Section A) +Input (Section A) 25 15 +V_{cc} Positive Supply Ref. Current (Sections A & B) Output current source 3 14 (Section C) +Input (Section B) 13 Output current source (Section C) -Input (Section B) **()** 12 Output current source 5 (Section C) 11 Output (Section B) Input current source 6 5 (Sections C & D) 10 Output current source -V_{EE} Negative Supply 7 (Section D) Output current source 9 Output current source 8 🖒 (Section D) (Section D)

ELECTRICAL CHARACTERISTICS

٦

	f 2 circuits.) A \pm 1.0%. Test both current sourc	es.		Values			
Symbols	Identifications	Notes and Test Conditions	Min	Тур	Max	Units	
	Stability (Sections A & B)	 – INPUT connected to OUTPUT; + INPUT to GROUND 			g, oscillat indication		
A _o	Open-loop voltage amplification (Sections A & B)	See Figure 1	1,000		3,300		
V _{os}	Section A Input offset voltage Section B	$R_L > 100 K\Omega;$ -INPUT connected to OUTPUT; +INPUT grounded. Measure OUTPUT voltage			±5 ±10	mV	
t,	Risetime (Sections A & B)	See Figure 3			100	ns	
A _c	Closed-loop voltage amplification (Sections A & B)	See Figure 4	9.70				
l _s Out	Output current from current sources. (Sections C & D)	See Figure 5	2.75	3.0	3.25	mA	
	Output-voltage swing (Sections A & B)	 - INPUT connected to OUTPUT; + INPUT connected to adjustable ± 6.5 V supply. See Note 2 	±4.0			v	
	Frequency response (Sections A & B)		See Figure 2		•		
	Noise (Sections A & B)	Referred to input		10	100	μV peak-to peak	

 $^{1}\text{Test-condition}$ tolerances, ±1.0 percent unless shown otherwise.

 $^{2}\mbox{OUTPUT}$ voltage will not go more than 1.0 volt negative of $-\mbox{INPUT}.$

J

4

•

i

FIGURE 2

.

5

.

~

•

•

DC-TO-DC CONTROLLER

DESCRIPTION

The 155-0067-02 is a DC to DC controller for inverter power supplies. It provides circuitry to do all regulation and protection of the inverter system.

Inputs provided to:

- Sense and control secondary voltage faults
- Sense and limit the maximum inverter current
- Sense line voltage fluctuations
- Sense inverter current phase

ABSOLUTE MAXIMUMS

Electrical

MAX RATING

Pin 1 Pin 2 Pin 3 Pin 4	$\begin{array}{r} -6.0 \text{ to } + 2.0 \\ -6.0 \text{ to } + 0.5 \\ -6.0 \text{ to } + 2.0 \\ -6.0 \text{ to } + 2.0 \end{array}$	V V V V
Pin 5	———— GROUND	
Pin 6 NEVER		
APPLY VOLTAGE	8 to 30	mA
TO THIS PIN		
Pin 7	-15.0 to $+6.0$	V
Pin 8	0 to + 10.0	V
Pin 9	0 to + 5.0	v
Pins 10 & 11	±2	mA
Pin 12	0 to + 2.5	v
Pin 13	-6.0 to $+6.0$	v
Pin 14	-0.6 to $+0.6$	V
Pin 15	-0.6 to $+1.0$	V
Pin 16	——— GROUND	

Environmental

Operating Temperature Range	−20°C to +75°C
Storage Temperature Range	_55°C to +125°C

PIN CONNECTIONS

*Short together outside of package.

Pin #	Parameter	Conditions	L	imits	Units
			Min	Max	
1	Over voltage timing	Logic "0" at I1 = .1 mA Logic "1"	0.02	0.30	v
2	Voltage sense null (Fault)	Threshold (neg.) (pos.) If pin $2 > V$ th, then $V1 = logic$ "1"	-210 +150	-150 +210	
		Input bias current: V2 > 210 mV V2 > 150 mV	-25 -1.0	+25 +1.0	μΑ μΑ
3	Stop timing	Logic "0" at 13 = 2 mA Logic "1"	0.02 0.85	0.49 1.10	v v
4	Line sensing (stop delay)	Logic "0" Logic "1"	0.02 0.85	0.30 1.10	V V
		Input bias current: V4 = 0.85 V	0.0	500	μA
5	GROUND	Connect to pin 16 external to package			
6	Vcc (internal)	Drive with an external current source from 9.0 mA to 30.0 mA	7.15	7.75	V
7	Vee (substrate)	Applied voltage lee at V7 = -2.0 V	-3.0 1.8	1.8 4.0	V mA
8	Inverter stop	Logic "0" at 18 = 2 mA Logic "1"	0.02 0.85	0.30 10.0	v v
9	Inverter control	0.5 V source to pin 9 Logic "0" (sinking) Logic "1" (sourcing)	4.0 12.0	8.0 -4.0	mA mA
10/11	Phase triggers	In = -1 mA (logic "0") $In = +1 mA (logic "1")$	-0.85 0.02	0.02 0.85	v v
12	Inverter control timing	Logic "0" at 112 = 1.5 mA Logic "1"	0.15 0.85	0.48 10.0	v v
13	Current sense	Logic "0" Logic "1"	0.0 0.85	0.05 10.0	V V
14	Gain adjust	Resistance to ground	260	400	Ω

ELECTRICAL CHARACTERISTICS

.

Pin # Parameter	Parameter	Conditions	Limits		Units
		Min	Мах		
15	Voltage sense	Logic "0" Logic "1" Input bias current: V15 = logic "1"	1.0 0.3 0.001	-0.2 1.0 10.0	ν ν μΑ
16	Reference ground	Connect to pin 5 external to package			

ELECTRICAL CHARACTERISTICS (cont)

5-50

APPLICATIONS INFORMATION

Functional Description

The power available from the inverter on switching power supplies is dependent on the amount of energy fed to the inverter regulator. The 155-0067-02 allows the regulator to vary the energy delivered to the inverter by controlling the frequency at which the regulator is pulsed. This control is accomplished through the use of a variable pulse-width, monostable multivibrator, initially triggered by current-phase information fed back from the inverter to pins 10 and 11.

The multivibrator charge ramp is applied to pin 12. When this ramp moves through a level set by one of the sensing inputs, the output at pin 9 sinks drive current away from the inverter regulator until the inverter passes through a zero crossing sending a trigger pulse to either pin 10 or in 11 and the output once again is allowed to provide drive to the inverter.

The time during which the ramp at pin 12 is charging determines how long the inverter is held off. The duration of the "on" state of the multivibrator is determined by the voltage level on pin 15. If this level is low, the duration is short. As this voltage increases, the duration increases.

When a fault is detected at either pin 2 or pin 13 a capacitor externally connected to pin 1 begins to charge up. If the fault lasts longer than the time it takes for the ramp at pin 1 to reach 1 Vbe, then Q42 turns on causing a positive inverter stop trigger output at pin 8, and the inverter shuts down.

The discharge rate of the capacitor on pin 1 must be set external to the IC and must be approximately five times the charge rate.

Product Precautions

Input Protection

Reference voltage (pin 6) is developed by current driving pin 6. NEVER apply a voltage source to this pin.

Pins 1, 2, 3, 4, 10 and 11 all connect to the bases of grounded emitter transistors. When voltage driven, the current must be limited in order that damage does not occur.

The substrate voltage applied to pin 7 is typically from $-2 \vee t_0 - 3 \vee t_0$ in all present applications. Internal current sources have a measure of dependence on the substrate voltage. A voltage applied to pin 7 which is outside this range will inhibit the functionality of the device.

Output Loading

This device has two main outputs (pins 8 and 9). Pin 8 should never see a voltage transient greater than 15 V. Pin 9 is a current source/sink output. It must, therefore, be loaded in such a manner so as to perform both the sourcing and sinking functions interchangeably.

Power Supply Turn-on/Turn-off Sequence

Power should come up either simultaneously or with the substrate voltage (pin 7) slightly ahead of the reference current driving pin 6.

The current driving pin 6 should be removed either simultaneously or slightly ahead of the substrate voltage (pin 7).

Handling Procedures

This device is sensitive to static discharge. Care should be taken in handling.

Reliability

 λ failure rate \leq .02%/1K hours at 75°C Tj

AMPLIFIER

DESCRIPTION

The 155-0078-10 is a monolithic integrated circuit originally designed as an Oscilloscope Vertical Amplifier.

The circuit is a differential in, differential out amplifier with variable gain capabilities. By crosscoupling the output collectors, the circuit is basically a multiplier. DC voltages applied to the control inputs can be used to vary gain from the nominal (maximum) gain through zero to the negative nominal gain. Diodes are provided on the control inputs to linearize the gain characteristics.

FEATURES

- Nominal voltage gain 2.82 (50 Ω source and loads). Set primarily by an on-chip nichrome resistor.
- Gain variable from nominal (either polarity) to zero.
- Nominal bandwidth 1.05 GHz.
- Package leads and etched circuit board can be used to obtain T-coil peaking.
- Available in three versions: 155-0078-10 (Minipak) 155-0273-00 (14-pin DIP w/o nichrome resistors) 155-0274-00 (14-pin DIP) (slower)

IDENTIFICATIONS	NOTES	VALUES	UNITS
Maximum voltage of the outputs (pins 5, 6, 8, 9) relative to the substrate (pin 4).	Prevents collector-substrate breakdown of Q5, Q6, Q7, Q8.	19	V
Maximum voltage of the outputs (pins 5, 6, 8, 9) relative to the control inputs (pins 11, 12).	Prevents collector-base breakdown of Q5, Q6, Q7, Q8.	7	V
Maximum voltage at the control inputs (pins 11, 12) relative to inputs (pins 1, 13, 14, 16).	Prevents collector-base breakdown of Q1 and Q2.	8	V
Maximum voltage of the substrate (pin 4) relative to the inputs (pins 1, 13, 14, 16).	Substrate voltage must be held more negative than any collector in circuit.	0	V
Maximum voltage from pin 7 to pin 11 or 12.	Maximum steering diode reverse voltage to avoid degradation.	2.5	V
Maximum voltage from pin 11 to 12 or from pin 12 to pin 11.	Maximum steering diode reverse voltage to avoid degradation.	2.5	V
Maximum voltage from pin 2 to pin 13 or 16; or from pin 3 to pins 1 or 14.	Maximum base-emitter reverse voltage to avoid degradation.	2	V
Maximum current, pins 2 or 3.	40 mA total.	20*	mA
Maximum power dissipation.	75°C ambient.	270	mV
Operating temperature range.		0 to 80	°C
Storage temperature range.		−55 to +125	°C
Maximum junction		125	°C
	Maximum voltage of the outputs (pins 5, 6, 8, 9) relative to the substrate (pin 4). Maximum voltage of the outputs (pins 5, 6, 8, 9) relative to the control inputs (pins 11, 12). Maximum voltage at the control inputs (pins 11, 12) relative to inputs (pins 1, 13, 14, 16). Maximum voltage of the substrate (pin 4) relative to the inputs (pins 1, 13, 14, 16). Maximum voltage from pin 7 to pin 11 or 12. Maximum voltage from pin 11 to 12 or from pin 12 to pin 11. Maximum voltage from pin 2 to pin 13 or 16; or from pin 3 to pins 1 or 14. Maximum current, pins 2 or 3. Maximum power dissipation. Operating temperature range.	Maximum voltage of the outputs (pins 5, 6, 8, 9) relative to the substrate (pin 4).Prevents collector-substrate breakdown of Q5, Q6, Q7, Q8.Maximum voltage of the outputs (pins 5, 6, 8, 9) relative to the control inputs (pins 11, 12).Prevents collector-base breakdown of Q5, Q6, Q7, Q8.Maximum voltage at the control inputs (pins 11, 12).Prevents collector-base breakdown of Q1 and Q2.Maximum voltage of the substrate (pin 4) relative to the inputs (pins 1, 13, 14, 16).Substrate voltage must be held more negative than any collector in circuit.Maximum voltage from pin 7 to pin 11 or 12.Maximum steering diode reverse voltage to avoid degradation.Maximum voltage from pin 11 to 12 or from pin 12 to pin 11.Maximum base-emitter reverse voltage to avoid degradation.Maximum current, pins 2 or 3.40 mA total.Maximum power dissipation.75°C ambient.Operating temperature range.Storage temperature range.	Maximum voltage of the outputs (pins 5, 6, 8, 9) relative to the substrate (pin 4).Prevents collector-substrate breakdown of Q5, Q6, Q7, Q8.19Maximum voltage of the outputs (pins 5, 6, 8, 9) relative to the control inputs (pins 11, 12).Prevents collector-base breakdown of Q5, Q6, Q7, Q8.7Maximum voltage at the control inputs (pins 1, 12) relative to inputs (pins 1, 13, 14, 16).Prevents collector-base breakdown of Q1 and Q2.8Maximum voltage of the substrate (pin 4) relative to the inputs (pins 1, 13, 14, 16).Substrate voltage must be held more negative than any collector in circuit.0Maximum voltage from pin 7 to pin 11 or 12.Maximum steering diode reverse voltage to avoid degradation.2.5Maximum voltage from pin 11 to 12 or from pin 12 to pin 111 to pins 1 or 14.Maximum base-emitter reverse voltage to avoid degradation.2Maximum current, pins 2 or 3.40 mA total.20*Maximum power dissipation.75 °C ambient.270Operating temperature range.0 to 80Storage temperature range55 to +125

ABSOLUTE MAXIMUMS

* Contact Applications Engineering, IC Manufacturing, if 20 mA is to be exceeded.

PIN CONNECTIONS

PARAMETER/CONDITIONS	MIN	МАХ	UNITS
BV _{CEO} Q1, Q2, at 200 μA	4.4		V
BV _{CEO} Q5, Q6, Q7, Q8 at 200 μA	4.4		v
BV _{CEO SUS} Q1, Q2 at 10 mA	4.9		v
BV _{CEO SUS} Q5, Q6, Q7, Q8 at 10 mA	4.9		v
SUBSTRATE VOLTAGE in operating configuration		-15	V
INPUT BIAS CURRENT Q1 or Q2 (16 mA emitter current)	64	225	μΑ
NORMAL OFFSET (OUTPUT)	-14	+14	mV
INVERT OFFSET (OUTPUT)	—14	+14	mV
NORMAL GAIN	2.68	2.96	
INVERT GAIN	2.68	2.96	
NORMAL-INVERT GAIN MATCH	-0.5	+0.5	%
NULL OFFSET (Output offset in null condition)	10	+10	mV
NULL GAIN	—.14	+.14	
50% GAIN TOLERANCE	.49	.51	X(AV _{NORM})
OFF FEEDTHRU (Q5 & Q8 leakage)	200	+200	μV
MEASURED RISETIME Measurement system risetime less than 100 ps	, <u>, , , , , , , , , , , , , , , , </u>	355	ps
			1

ELECTRICAL CHARACTERISTICS

PARAMETRIC DEFINITIONS

The 0078 is specified in three different operating conditions: NORMAL, INVERT and NULL.

In the NORMAL condition, Q5 and Q8 are conducting and Q6 and Q7 are not.

In the INVERT condition, Q6 and Q7 are conducting and Q5 and Q8 are not.

In the NULL condition, Q5, Q6, Q7 and Q8 are all conducting equally.

...

APPLICATIONS INFORMATION

Output Stage Considerations

Pin 11 and 12 can be voltage driven and pin 7 left open (Figure 1) if gain linearity as a function of control voltage is not critical. The voltage applied on pins 11 or 12 should be 1.2 to 3.7 volts above the quiescent voltage on pins 1, 13, 14, or 16 for conducting output transistors. For nonconducting output transistors pin 11 or 12 can be at a lower potential than this. Absolute maximum ratings must be observed, however. For the case of pin 11 and 12 voltage driven and pin 7 open, gain is given by:

$$A_{V} = A_{V \text{ NORM}} \left[\frac{\exp\left(\frac{qV_{12}}{kT}\right) - \exp\left(\frac{qV_{11}}{kT}\right)}{\exp\left(\frac{qV_{12}}{kT}\right) + \exp\left(\frac{qV_{11}}{kT}\right)} \right]$$

where $A_{V NORM} = Normal Gain$

 $\begin{array}{l} V_{11} = \mbox{ voltage applied on pin 11} \\ V_{12} = \mbox{ voltage applied on pin 12} \\ \frac{\mbox{ kT}}{\mbox{ q}} = 26\mbox{ mV at room temperature} \end{array}$

If gain linearity as a function of control voltage is critical, pin 11 and 12 should be current driven and pin 7 returned to a voltage so as to set pin 11 and 12 voltage to the proper level as mentioned above. Figure 2 shows this type hookup. Current driving these inputs linearizes the gain by making use of the exponential current-voltage relationship of the diodes Q3 and Q4 to cancel that of the output transistors. The gain is given by:

$$A_{v} = A_{v \text{ NORM}} \begin{bmatrix} I_{12} - I_{11} \\ I_{12} + I_{11} \end{bmatrix}$$

where I₁₁ = current into pin 11
I₁₂ = current into pin 12

If variable gain of only a single polarity is desired, one pair of outputs can be used and the other pair connected to separate unused leads as in Figure 3.

If fixed maximum gain is desired, one pair of outputs can be left open as in Figure 4.

In applications where the output is to be switched from one output pair to another, the difference in offset voltage between the two outputs should not be specified any tighter than 28 mV (the sum of normal and invert offset specs).

Input Stage Considerations

The bias current (pin 2 and 3 current) should not exceed 20 mA per side or a decrease in the life of the part may result.

For full bandwidth, T-coil peaking must be used. Package and etched circuit board inductances can be used in the realization of this bridged T circuit¹.

Standing current through pin 16 to 13 and pin 1 to 14 will cause a DC drop due to the run and bond wire resistance in their leads. This resistance provides some intentional improvement in gain vs. temperature and may need to be considered in biasing calculations.

Thermal effects due to signal dependent power dissipation changes in Q_1 and Q_2 cause the low frequency gain to exceed mid band gain by $\approx 1\%$ with $Q_1,\,Q_2$ at 15 mA, 2.4 V.

¹See John Addis' article in *Electronics Magazine* June 5, 1972.

5

155-0078 GAIN Vs TEMPERATURE

TEMPERATURE

PRODUCT PRECAUTIONS

Input Protection

Input base-emitter voltages should not exceed 2 volts in the negative direction and 1 volt in the positive direction.

Output Loading

Outputs should be limited to less than those listed in Absolute Maximum Ratings.

Power Supply Turn-On/Turn-Off Sequence

Substrate voltage should be turned on coincident with or before the other voltages.

Handling Procedures

Static sensitive handling procedures should be implemented for this part.

RELIABILITY

λ. failure rate ≤ .02%/1K hours at 75°C Tj.

 $\Theta jc = 87 \circ C/W.$

5

•

TRIGGER CIRCUIT

DESCRIPTION

The 155-0109-01 is a 350 MHz trigger circuit. It can be used by itself or in conjunction with the 155-0126-00 trigger amplifier, channel switch and peak to peak auto I.C.

FEATURES

- 350 MHz operation
- ECL input and output levels (slope input is $T^2 L) \label{eq:constraint}$
- Trigger slope select
- Compatible with the 155-0126-00 trigger amplifier, channel switch

ABSOLUTE MAXIMUMS

Input Voltage Storage Tem Operating An	$\begin{array}{llllllllllllllllllllllllllllllllllll$
Derating Fac	tor (Above 70°C Ambient) 11 mW/°C
NOTE 1:	Maximum Die Temperature NOT To Exceed 125°C.
NOTE 2:	The Trigger Out (Pin 11) is NOT specified herein. It thas the following characteristics:

- The Gain from the Trigger Inputs to Pin 11 is 2.5
- Pin 11 output range is ECL and
- Phase, relative to the Trigger Inputs depends on Slope setting.

PIN CONNECTIONS

ELECTRICAL CHARACTERISTICS

*

PARAMETER	PIN	MIN	МАХ	UNITS
Power Supply Current (note 4)	8	70	120	mA
+ Slope, + Trigger Input Bias Current (note 5)	13	100	100	μΑ
+ Slope, – Trigger Input Bias Current (note 5)	14	-100	100	μΑ
+ Slope, Trigger Input Offset Current (+ Trigger Input Bias Current Less—Trigger Input Bias Current) (computed)	13, 14	-25	25	μΑ
 Slope, + Trigger Input Bias Current (note 6) 	13	-100	100	μΑ
 Slope, – Trigger Input Bias Current (note 6) 	14	-100	100	μΑ
 Slope, Trigger Input Offset Current (+ Trigger Input Bias Current Less—Trigger Input Bias Current (computed) 	13	-25	25	μΑ
Hold-Off Input Current (note 4)	10	-200	200	μΑ
End Sweep Input Current (Note 1) (note 4)	6	-200	200	μΑ
Free Run Input Current (note 7)	16	0	500	μΑ
Slope In Input Current (note 8)	1	-2.0	0	mA
Slope In Input Current (note 9)	1	-40	40	μA

PARAMETER	PIN	CONDITIONS	MIN	MAX	UNITS					
Gate Out (V _{OH}) High Voltage	3	$I_{OH} = -3$ mA, Perform Steps 1 through 3 of the Truth Table, then measure (Ignore Note 2)	4.0	4.3	V					
Gate Out Low Voltage (V _{o∟})	3	$I_{OL} = 1$ mA, Perform Steps 17 through 19 of the Truth Table, then measure (Ignore Note 2)	3.2	3.5	v					
Gate Out High Voltage (V _{он})	4	$I_{OH} = -3$ mA, Perform Steps 17 through 19 of the Truth Table, then measure (Ignore Note 2)	4.0	4.3	v					
Gate Out Low Voltage (V _{oL})	4	$I_{OL} = -1$ mA, Perform Steps 1 through 3 of the Truth Table, then measure (Ignore Note 2)	3.2	3.5	v					
+ Trigger Absolute Offset	13, 14	Perform Steps 1 through 4 of Table 1 repeatedly, adjusting the input 1 and 0 levels independently until the arm and trigger thresholds are determined. The + Trigger Absolute Offset = $(V_{\text{Trigger}} - V_{\text{Arm}})/2$ -3.8 Volts.	-40	+40	mV					
+ Slope Hysteresis	13, 14	Use data obtained in + trigger absolute offset Hysteresis = $V_{\text{Trigger}} - V_{\text{Arm}}$	25	50	mV					
- Trigger Absolute Offset	13, 14	Perform Steps 1 through 4 of Table 2 repeatedly, adjusting the input 1 and 0 levels independently until the arm and trigger thresholds are determined. The – Trigger Absolute Offset = $(V_{Arm} + V_{Trigger})/2$ – 3.8 Volts.	-40	+40	mV					
 Slope Hysteresis 	13, 14	Use data obtained in - trigger absolute offset Hysteresis = $V_{Arm} - V_{Trigger}$	25	50	m					
+ Trigger Slope In, - Trigger Slope Offset	13, 14	(Offset = (+Trigger Slope Absolute Offset less —Trigger Slope Absolute Offset)	-40	+40	mV*					
Propagation Delay (T _{PD+})	3, 13, 14	See Figure 1		4.0	nS					

1

ELECTRICAL CHARACTERISTICS (cont)

*Adjustable to ± 4 mV with offset adjust (Pin 2), with an offset range of 0.5 to 4.5 Volts.

TRUTH TABLE (See Note 3) INPUTS

										·
Step	Function	Slope Pin 1 (T ² L)	End Sweep Pin 6 (ECL)	Holdofi Pin 10 (ECL)	+IN Pin 13	—IN Pin 14	Free Run Pin 16	Gate Pin 3	Gate Pin 4	Notes
1	RESET	0с	1a	1a	0a	1a	Ob	VOL	VOL	Power Supply Pin 5 + 5 V Pin 8 Gnd.
2	ARM	0c	0a	0a	0a	1a	0b	VOL	VOH	
3	+ Trigger	0c	0a	0a	1a	0a	0b	VOH	VOL	
4	LATCH	0c	0a	0a	0a	1a	0b	VOH	VOL	INPUT VOLTAGE LEVEL CODING
5	RESET	0c	1a	0a	0a	1a	0b	VOH	VOL	0a 3.55 V 0b 3.4 V
6	RESET	0c	1a	1a	0a	1a	0b	VOL	VOH	0c 0.8 V 1a 3.95 V
7	ARM	0c	0a	0a	0a	1a	0b	VOL	VOH	
8	DISARM	0c	0a	1a	0a	1a	0b	VOL	VOH	
9	DISARM	0c	1a	1a	0a	1a	0b	VOL	VOH	
10	LATCH	0c	0a	1a	0a	1a	0b	VOL	VOH	
11	+ Trigger	0c	0a	1a	1a	0a	d0	VOH	VOL	OUTPUT VOLTAGE LEVEL CODING VOL 3.2 V to 3.5 V
12	LATCH	0c	0a	1a	0a	1a	0b	VOH	VOL	VOH 4.0 V to 4.3 V
13	RESET	1b	1a	1a	0a	1a	0b	VOL	VOH	(See Note #2)
14	ARM	1b	0a	0a	1a	0a	0b	VOL	VOH	
15	– Trigger	1b	0a	0a	0a	1a	0b	VOH	VOL	
16	LATCH	1b	0a	0a	1a	0a	0b	VОН	VOL	
17	RESET	1b	1a	1a	1a	0a	0b	VOL	VOH	
18	ARM	1b	0a	1a	0a	1a	0b	VOL	VOH	
19	TRIGGER	1b	0a	0a	0a	1a	0b	VOL	VOH	
20	FREE RUN	1b	0a	0a	0a	1a	1a	VOH	VOL	

)

.

			OUTPUTS					
Step Fund	Function	Slope (Pin 1)	End Sweep (Pin 6)	Holdoff (Pin 10)	+ Trigger In (Pin 13)	Trigger In (Pin 14)	Free Run (Pin 16)	Gate (Pin 3)
1	RESET	.8 V	3.95 V	3.95 V	LOGIC 0	3.8 V	3.4 V	3.2 V to 3.5 V
2	ARM	.8 V	3.55 V	3.55 V	LOGIC 0	3.8 V	3.4 V	3.2 V to 3.5 V
3	+ TRIGGER	8 V	3.55 V	3.55 V	LOGIC 1	3.8 V	3.4 V	4.0 V to 4.3 V
4	LATCH	.8 V	3.55 V	3.55 V	LOGIC 0	3.8 V	3.4 V	4.0 V to 4.3 V

TABLE #1

TABLE #2

				OUTPUTS					
Step	Function	Slope (Pin 1)	End Sweep (Pin 6)	Holdoff (Pin 10)	+ Trigger In (Pin 13)	— Trigger In (Pin 14)	Free Run (Pin 16)	Gate (Pin 3)	Gate (Pin 4)
1	RESET	2.0 V	3.95 V	3.95 V	LOGIC 0	3.8 V	3.4 V	3.2 V to 3.5 V	
2	ARM	2.0 V	3.55 V	3.55 V	LOGIC 1	3.8 V	3.4 V	3.2 V to 3.5 V	
3	- TRIGGER	2.0 V	3.55 V	3.55 V	LOGIC 0	3.8 V	3.4 V	4.0 V to 4.3 V	
4	LATCH	2.0 V	3.55 V	3.55 V	LOGIC 1	3.8 V	3.4 V	4.0 V to 4.3 V	

NOTE 1: Gate Out (Pin 3) held at 5 Volts after Power Supply settles at +5 Volts.

NOTE 2: Pins 3 and 4 loaded with a $2k\Omega$ resistor connected from Output Pin to Ground during testing.

NOTE 3: The Truth Table for Parameter 13 to be accomplished without Power Supply interruption.

	+ Trigger In (Pin 13)	 Trigger In (Pin 14) 	Free Run In (Pin 16)	End Sweep In (Pin 6)	Slope In (Pin 1)	Holdoff In (Pin 10)
Note 4	3.55 V	3.95 V	3.4 V	3.95 V	.8 V	3.95 V
Note 5	3.8 V	3.8 V	3.4 V	3.95 V	.8 V	3.95 V
Note 6	3.8 V	3.8 V	3.4 V	3.95 V	2.0 V	3.95 V
Note 7	3.55 V	3.95 V	3.95 V	3.95 V	.8 V	3.95 V
Note 8	3.55 V	3.95 V	3.4 V	3.95 V	0 V	3.95 V
Note 9	3.55 V	3.95 V	3.4 V	3.95 V	2.4 V	3.95 V

CONDITIONS

5

Reliability

λ, failure rate ≤.02%/1K hours at 75°T_j Thermal impedance, $θ_{DA} = 65°C/W$

QUAD OPERATIONAL AMPLIFIER

DESCRIPTION

The 155-0116-00 is a silicon monolithic quad operational amplifier. It comes in a ceramic 16 pin DIP.

FEATURES

- ± 5 V to ± 15 V power supply range
- 80 MHz gain bandwidth product
- 20 mA output bandwidth product
- No compensation required
- Open loop gain 3300 typical
- 5 mV input offset voltage
- Available in two versions: 155-0035-00 (plastic DIP) 155-0116-00 (ceramic DIP)

PIN CONNECTIONS

ELECTRICAL CHARACTERISTICS

PARAMETER/CONDITIONS*	MIN	МАХ	UNITS
V _{cc}	14.25	15.75	v
V _{EE}	- 14.25	-15.75	v
Open Loop Voltage Amplification Condition: See Figure 1	1000		
Input Offset Voltage Condition: R_L more than 100K Ω . Input connected to output; (+) Input grounded. Measure output voltage.		±5	mV
Risetime Condition: See Figure 2.		60	nS
Closed Loop Voltage Amplification Condition: See Figure 3.	9.70		
Output Voltage Swing Condition: Output Voltage Swing will not go more than 1.0 V negative of (-) Input.	± 12.0		v
Noise Condition: Referred to Input.		100	μV/ peak to pea

*The circuit conditions at which these parameter values were tested are: $V_{CC} = +15 V$, $V_{EE} = -15 V$; $I_{REF} = 0.25 mA$. All these values $\pm 5.0\%$. $T_A = 0$ to +70 °C.

5

5-72

SYMBOLS	IDENTIFICATION	VALUES	UNITS	
	Difference between V_{cc} and V_{EE}	32	v	
	Differential Input Voltage	7	V	
I _{REF}	Reference Current	500	μA	
I _{OUT}	Output Current	20	mA	
T _{STORAGE}		-55 to 125	°C	
	· · · · · · · · · · · · · · · · · · ·	0 to 70	°C	
P _D	Maximum Power Dissipation	375	mW	
	Maximum Junction Temperature	125	°C	

ABSOLUTE MAXIMUMS*

*Since this device does not have internal current limiting, the circuits being driven by pins 1, 7, 9 and 15 should have some form of current limiting to keep from exceeding the Absolute Maximum Rating (I_{OUT}) of 20 mA for this device.

APPLICATIONS INFORMATION

Reliability

 $\lambda,$ Failure Rate, .02%/1K hours at 75°C T_i

5-74

155-0116-00

SWEEP CONTROL

DESCRIPTION

The 155-0122-00 is a Monolithic Integrated Sweep Control Circuit designed to interface with the 155-0123-00 Sweep and Delay Pickoff IC and the 155-0196-00 Trigger IC to form a complete Horizontal System.

FEATURES

- Miller hold-off timing circuit
- Single sweep lockout circuit
- Triggered and single sweep ready light lamp drivers
- Single sweep reset debounce circuit
- Auto timing circuit
- "A" gate output

YMBOLS	IDENTIFICATION	VALUE	UNITS
	Input voltage. Pins 1, 4, 5, 6, 10, and 12)	-0.3 to V _{cc}	v
	Input voltage. (pins 2, 3, and 11)	-0.3 to V _{cc} $+0.5$	v
	Output sink current. (Pins 6, 7, 9, and 11)	6.0	mA
	Lamp sink current. (Pins 13 and 15)	100	mA
	Lamp V_{cc} (Pins 13 and 15)	+7.5	V
	Sink current. (Pin 10)	20	mA
	Input current. (Pins 1, 2, 3, 4, 5, 10, and 12)	5	mA
	V _{cc} (Pin 16)	+7.5	V
	Light ground. (Pin 14)	-0.2 to +0.2	v
T _{sg}	Storage temperature	-55 to +125	°C
T _A	Operating ambient temperature	-15 to +85	°C
PD	Maximum power dissipation	250	mW

ABSOLUTE MAXIMUMS

Digitally signed by http://www.aa4df.com

5

PIN CONNECTIONS

5

ELECTRICAL CHARACTERISTICS

PARAMETER/CONDITIONS	MIN	MAX	UNITS
V _{cc} current		35	mA
Input logical "0" current (Pins 1, 4, and 5)	-1.7	-5.0	mA
Input logical "0" voltage (Pins 1, 4, and 5)	0.0	0.5	V.
Input logical "1" current (Pins 1, 4, and 5)	-100	0	μΑ
Single sweep reset positive threshold (Pin 2)	2.6	3.8	v
Timing pin input currents (See note 1) (Pins 2, 3)	0	1.5	μΑ
Auto timing threshold voltage (Pin 3)	2.8	4.0	v
Output logical "0" voltage (Pin 6, in which pin 6 input current $= 4.0$ mA)	0.0	0.5	v
Output logical "1" leakage current (Pin 6, in which pin 6 voltage = 5.6 V)	-300	+300	μΑ
Output logical "0" voltage (Pins 7, 9, in which pins 7, 9 input current $= 2.0$ mA)	0.0	0.5	v
Output logical "1" current (Pin 7, in which pins 7, 9 voltage $= 1.0 \text{ V}$)	-5.0	-1.0	mA
Hold-off timing leakage curent (See note 2) (Pin 10)	-2	+2	μA
Hold-off ramp leakage curent (Pin 11, in which pin 11 voltage = 5.0 V)	- 100	+ 100	μΑ
Hold-off ramp trip point (Pin 11)	1.7	2.3	v
Hold-off start logical "0" voltage (Pin 12)	0.0	0.5	v
Light driver (V_{SAT}) (Pins 13, 15 in which pins 13, 15 current = 60 mA)	0.0	0.6	v
Auto timing source resistance (Pin 3)	20		ΚΩ
Hold-off start propagation delay (See note 3) (Pins 9, 12)	100 (typ)		nSec
A" gate propagation delay (See note 4) (Pins 6, 7)	50 (typ)		nSec
Single sweep reset negative threshold (Pin 2)	1.5	2.5	v

5

NOTE 1: With a 500 k Ω source resistance, the Single Sweep Reset Positive Threshold maximum increases to 4.25 V and the Auto Timing Threshold maximum increases to 4.25 V.

NOTE 2: With 1.7 MΩ OHMS from PIN 10 to +5.0 V, Pin 11 current must be equal to or more than +4.0 mA.

NOTE 3: Delay measured between Pin 12 and Pin 9. See Test Diagram, Figure 1.

NOTE 4: Delay measured between (-) edge of Pin 6 and resulting (+) edge of Pin 7. See Test Diagram, Figure 2.

I

I

۱

ł

5 LOGIC GATE INPUT **12 HOLD OFF START INPUT** 6 AUTO GATE OUTPUT (WITH PULL-UP RESISTOR) 9 TRIGGER RESET OUTPUT **1 SINGLE SWEEP MODE INPUT** 4 AUTO MODE INPUT **10 HOLD OFF RAMP OUTPUT** 11 HOLD OFF RAMP OUTPUT **3 AUTO TIMING INPUT** 1 2 SINGLE SWEEP RESET INPUT **13 TRIGGERED LIGHT OUTPUT** 15 SINGLE SWEEP READY LIGHT OUTPUT 7 'A' GATE OUTPUT NORMAL MODE | AUTO MODE | SINGLE SWEEP

MODE

. .

5

. .

-

· · ·

. .

SWEEP GENERATOR AND DELAY PICKOFF CIRCUIT

DESCRIPTION

The 155-0123-00 is a monolithic integrated sweep generator and delay pickoff circuit. It is used both as a delaying sweep and as a delayed sweep integrated circuit.

FEATURES

- Miller amplifier.
- Delay pickoff.
- Sweep start comparator.
- Sweep switch.
- Sweep end.
- Z axis circuits

SYMBOLS	IDENTIFICATIONS	VALUES	UNITS	
	Input current* (Pins 6, 7, 11, 13)	10	mA	
/ _{cc}	(Pin 15)	+7.5	V	
/ _{EE}	(Pin 8)	-7.5	V	
- STG	Storage temperature range	-55 to 125	°C	
	Operating IC ambient temperature range	-15 to +85	°C	
) _D	Maximum power dissipation	335	mW	
- i	Maximum junction temperature	125	°C	
	Maximum output current (Pin 7 low) (Pin 5)	4.0	mA	

ABSOLUTE MAXIMUMS

*These inputs are to one or more junctions to one of the supplies. Any applied voltage must be current limited.

PIN CONNECTIONS

PARAMETER/CONDITIONS	MIN	МАХ	UNIŢS
I _{cc} Supply Current (Pin 15)	15	35	mA
V _{EE} Supply Voltage (Pin 8)	-5.25	-4.75	V
I _{EE} Supply Current (Pin 8)	-50	25	mA
Delay Time Input Bias Current (Pin 1) V _{IN} = V _{pin 2} + 1 volt	0	2	μA
Delay Time Input Voltage Range (Pin 1)	-5	+5	v
Output Voltage (Pin 10, open) (See note 1) Pin 2 ground (Pin 10)	4	5	V
Output Voltage (Pin 10, open) Low State, Pin 2 ground (Pin 10)	9	6	V
Hold-off Start Output Current During Sweep ($V_{pin} + 5 V$) (Pin 10)	1.5	2.75	mA
Retrace Current During Hold-off Pin 4 = 2 V (Pin 4)	1.16	2.3	mA
Retrace Current During Sweep (See Note 2) Pin 4 = 2 V (Pin 4)	2.25	3.75	mA
Leakage Retrace Current Pin $4 = 2 V$ (Pin 4)	-15	+15	mA
Delay Gate Output Voltage Pin 1 > 1 Volt (Pin 16)	-200	+200	mA
Delay Gate Output Voltage Pin 1 < 1 Volt (Pin 16)	1.2	1.6	V

ELECTRICAL CHARACTERISTICS

5

PARAMETER/CONDITIONS	MIN	MAX	UNITS
Delay Gate Output Voltage Pin $1 > 1$ V Pin 16 voltages = .6 V (Pin 16)	1.68	3.92	mA
Miller Output Bias Current Pin 2 = 0 V (Pin 2)	2.7	5	mA
Miller Output Bias Voltage (Pin 2)	4	5.3	V
Sweep Output Voltage Low, Pin 7 = HI (Pin 5)	-5	-4	V
Sweep Output Voltage High (peak to peak) Pin $7 = Low$ (Pin 5)	4	5.3	V
Sweep Output Current Pin 7 $=$ HI (Pin 5)	2.94	3.74	mA
Sweep Output Peak Voltage Above Ground (Pin 5)	1.7	2.5	V
Constant Current Source Measurement Pin 3, with 4.7 M Ω Resistor to 32 Volts (Pin 3)	1.5	3.5	V
Unblanking Current Pin 14 = Low (See Notes 3, 4) Pin 11 Force 2 mA at -2.6 V (Pin 12)	1.6	2.4	mA
Unblanking Current Pin 14 = High (See Notes 3, 4) Pin 1 Force 5 mA at -2.6 V (Pin 12)	1.9	6.0	mA
Input Voltage (Sweep Run) (Pins 13, 14)	0.0	0.3	V
Input Voltage (Sweep Off) (Pins 13, 14)	1.0	1.4	V
Input Bias Current (Pins 13 or $14 = 1$ Volt) (Pins 13 or 14)	0.0	50.0	μΑ

ELECTRICAL CHARACTERISTICS (cont)

ELECTRICAL CHARACTERISTICS (Note Section)

- Note 1: Pin 10 goes positive at the end of Sweep to start Hold-off.
- Note 2: Retrace Current is 3 mA \pm 20% plus 1/2 of Start Level (Pin 6) Current \pm 20%. After Retrace, and during Hold-off, Current is 1/2 of Start Level Current \pm 20%.
- Note 3: 0 to 3 mA is the normal Unblanking Current. 3 to 6 mA overrides Blanking for XY operation.
- Note 4: Pin 12 Normal Operation Current = Pin 11 Current \pm 25% from 0 mA to 3 mA when in normal operation plus twice the current of any Pin 11 Current over 3 mA \pm 25%.

Pin 12 X-Y Override Condition Current = Pin 11 Current \pm 25% minus 3 mA in the X-Y Override Condition.

APPLICATIONS INFORMATION

PRODUCT PRECAUTIONS

Input Protection

Input current, Pins 6, 7, 11, 13, and 14 less than 10 mA. Negative applied voltage must be greater than -5 Volts.

Output Loading

Load on Pin 5, while in High State, less than 4 mA (High State).

Power Supply Turn-On/Turn-Off Sequence

Turn "on" sequence:

 First
 -5 Volt Supply

 Second
 +5 Volt Supply

Turn "off" sequence:

First	+5 Volt Supply
Second	-5 Volt Supply

RELIABILITY

 λ , failure rate \leq .02%/1K hours at 75°C tj. Thermal resistance junction to case 87°C/W.

HORIZONTAL PREAMPLIFIER

DESCRIPTION

The 155-0124-00 is a monolithic integrated horizontal preamplifier designed to accept single-ended input signals from A sweep, B sweep, horizontal position, X-Y mode and X-input. The output of a 155-0124-00 is a differential current which drives an external horizontal output amplifier.

FEATURES

- Switching between A sweep and B sweep is done internally.
- Switching between the sweep mode and the X-Y mode is done internally.
- An internal preamplifier amplifies the X signal from a vertical channel by a factor of 10. Bandwidth of X preamp is greater than 5 MHz.
- Power dissipation (typical application) = 185 mW in sweep mode and 215 mW in X-Y mode.
- Operates from +5 volt and -5 volt supplies

۰.

SYMBOLS	IDENTIFICATIONS	VALUES	UNITS V	
V _{cc}	(Pin 15)	Ground to 5.5		
V _{EE}	(Pin 4)	Ground to -5.5	v	
	Sweep input voltage (Pins 9 and 10)	+2.4 to -2.6	V	
	I-source reference (Pin 5)	5.0	mA	
	X-input	+.24 to24	v	
	MGF (Magnified) register current (Pins 1 and 8)	3 times I-source		
Г _{sg}	Storage temperature	-55 to 125	°C	
۲ _۸	Operating ambient temperature	+85	°C	
D D	Max power dissipation	235	mW	
Г _ј	Max junction temperature	125	°C	

ABSOLUTE MAXIMUMS

PIN CONNECTIONS

ELECTRICAL CHARACTERISTICS

PARAMETER	MIN	MAX	UNITS
Average Output Level (Test Setup Note #1)	2.17	2.57	mA
Differential Output Level (Test Setup Note #2)	-0.3	+ 0.3	mA
A to B Input Offset (Test Setup Notes #3, 4)	-0.1	+0.1	mA
A to X Input Offset (Test Setup Notes #3, 5)	-0.2	+0.2	mA
X Transconductance (Test Setup Note #6)	4.5		mMHOS/SIDE
A _{in} Transconductance (Test Setup Note #7)	5.0		mMHOS/SIDE
B _{in} Transconductance (Test Setup Note #8)	5.0		mMHOS/SIDE
B _{in} Risetime (Test Setup Note #9)		25.0	nS
A _{in} Risetime (Test Setup Note #10)		25.0	nS
X _{in} Risetime (Test Setup Note #11)		100	nS
Range (Differential) (Test Setup Note #12)	-2.4	+2.4	mA (Differential)
Range (Horizontal Position) (Test Setup Note #13)	-2.4	+2.4	mA (Differential)

ELECTRICAL CHARACTERISTICS (cont)

	POSITIONS		
SW-1	SW-2	SW-3	(Note #1)
Gain	X/Y	A* Sweep	TEST #1 is done to insure that the CRT Average Plate Volts will be 48 V ±4 V (CRT Spec).This limit will be
2	1	1	reached if $\frac{(I_{01} + I_{02})}{2} = 2.37 \pm .225$ mA.
X1* 2	A Sweep* 1	1	(Note #2) TEST #2 is done to insure that the MAG. REGISTER has enough range. This limit will be reached if $I_{01} - I_{02} = \pm .1$ mA.
XI0* 1	A Sweep* 1	1	(Note #3) TEST #3 is done to establish a reference for TESTS #4 and #5. Measure $ I_{01} - I_{02} = A$ offset.
Gain*	В		(Note #4)
X10 1	Sweep* 1	1	TEST #4 is done to measure A/B offset. $I_{01} - I_{02} = B$ offset $ A - B = \le .1$ mA.
Gain*	X* Amp 50 Ω Term. No Sig.		(Note #5) TEST #5 is done to measure A/X offset. $ I_{01} - I_{02} = A - X = \pm .2 \text{ mA}$
2	2	3	
Gain* X1 2	X Amp. 2	3	(Note #6) TEST #6 is done to measure X Amplifier Gain. a) Measure $I_{01} - I_{02}$, no signal in. Apply 100 mV DC to X Input. b) Measure $I_{01} - I_{02}$ c) $ a - b \ge 1$ mA
Gain* X10 1	A* Sweep 1	1	(Note #7) TEST #7 is done to measure A Sweep Gain. a) Measure $I_{01} - I_{02}$, no signal in. b) Apply 100 mV DC to A_{input} , measure $I_{01} - I_{02}$. c) $ a - b \ge 1$ mA
Gain* X10 1	A* Sweep 1	2	(Note #8) TEST #8 is done to measure B Sweep Gain. a) Measure $I_{01} - I_{02}$, no signal in. b) Apply 100 mV DC to B input. Measure $I_{01} - I_{02}$. c) $ a - b \ge 1$ mA
Gain X10* 1	B Sweep* 1	2	(Note #9) TEST #9 is done to measure B_{in} Risetime. a) Apply fast rise pulse (106 Tek Squarewave Generator "example"). $t_p B$ in b) Measure t_r and t_r of I_{01} and I_{02} . t_r and $t_r \leq 25$ nSEC.

5

			Test Set Up Notes		
Gain* B* X10 Sweep* 1 1		1	(Note #10) TEST #10 is done to measure A_{in} Risetime. a) Apply fast rise pulse (Tek 106) to A_{in} b) Measure t _r and t _r of I ₀₁ and I ₀₂ . t _r and t _r \leq 25 nSEC.		
Gain* X1 2	X in* 2	3	(Note #11) TEST #11 is done to measure X_{in} Risetime. a) Apply fast rise pulse (Tek 106) to X_{in} b) Measure t_r and t_r of I_{01} and I_{02} . t_r and $t_f \le 100$ nSEC.		
Gain* X1 2	X _{in} * 2	3	(Note #12) TEST #12 is done to measure Range of the I.C. a) Apply +300 mV DC to X_{in} $I_{01} \ge 3.57 \text{ mA}$ $I_{02} \le 1.17 \text{ mA}$ b) Apply -300 mV DC to X_{in} $I_{01} \le 1.17 \text{ mA}$ $I_{02} \ge 3.57 \text{ mA}$		
2	1	1	(Note #13) TEST #13 is done to measure Position Input Range. a) Apply +2.5 V to Position Input $I_{02} \ge 3.57 \text{ mA}$ $I_{01} \le 1.17 \text{ mA}$ b) Apply -2.4 V to Position Input $I_{02} \le 1.17 \text{ mA}$ $I_{01} \ge 3.57 \text{ mA}$		

ELECTRICAL CHARACTERISTICS (cont)

* The Function of that Switch Position.

RELIABILITY

 λ failure rate \ll .02%/1K hours at 75°C Tj

SYNC STRIP CIRCUIT

DESCRIPTION

The 155-0144-00 generates an output pulse whose leading edge reproduces the timing of the 50% point on the leading edge of the sync pulses contained in a composite video waveform.

FEATURES

- Open collector outputs: Comp sync, soundin-sync, and back porch gate.
- AGC is based upon input sync amplitude. A "test point" is available with inverted comp video reference to 0.8 V sync amplitude.
- Wide input dynamic range with leading sync edge timing preserved.
- Provides a block sync output to be used with sound-in-sync video input.
- Provides a back porch gate suitable for video clamping amplifiers.
- Internal timing, adjustable by external components to accommodate different line rates, creates a window for the acceptance of sync inputs. (This minimizes sensitivity to noise bursts.)
- The gain for the input amplifier (and thus the amplitude of the input sync) can be determined between the AGC voltage and the AGC reference pins.

SYMBOL	IDENTIFICATIONS	VALUES	UNITS	
	Input Current (Pin 16)	±2	mA	
V _{cc}	(Pin 12)	+16	v	
	Back Porch Gate Output (Pin 4)	-4	mA	
	Output Voltage (Pins 4, 5, 7)	+10	v	
	Maximum operating temperature (Results in a 125°C Junction temperature)	80	°C	
	Power Dissipation	400	mW	

ABSOLUTE MAXIMUMS

PIN CONNECTIONS

SYMBOL	PARAMETER/CONDITIONS	MIN	МАХ	UNITS	
V _{TP}	Test Point Voltage (Pin 13)	11.0	13.0	V	
V _{SY}	Sync Out Voltage (Pin 5)	4.9	5.1	V	
V _{BP}	Back porch Gate Out Voltage (Pin 4)	4.9	5.1	V	
V _{ss}	Sound in syncs out voltage (Pin 7)	4.9	5.1	V	
V _{RP}	Ramp timing voltage (Pin 11)	13.6	14.6	V	
V _{AGC}	AGC Voltage (Pin 2)	1.8	2.6	V	
V _{REF}	AGC Reference Voltage (Pin 1)	3.3	3.9	V	
V _{SR}	Sync Ratio Voltage (Pin 6)	12.0	14.0	V	
	Back Porch Gate In Voltage (Pin 8)	9.5	11.5	v	
V _{IN}	Input Voltage (Pin 16)	1.8	2.4	V	
V _{LF}	LF Feedback Voltage (Pin 15)	7.0	9.0	V	
V _{MEM}	Back Porch Memory Voltage (Pin 14)	8.0	10.0	V	
V _{RT}	Retrigger Input Voltage (Pin 10)	0.6	0.8	V	
V _{BPT}	Back Porch Timing Voltage (Pin 9)	0.8	1.4	V	
Τ _{ιο}	Input to Output Delay (V_{gen} to Pin 5) (Figure 1) $V_{gen} = 286$ mV of horizontal Sync. Between 50% points	120		nS	
V _{L0}	Output logic zero levels (Pins 4, 5, 7) (Figure 1)	300	750	mV	
T _x	Trailing edge of test point pulse to leading edge of back porch gate output pulse (Pin 13 to Pin 4) (Figure 1)	100	250	nS	

ELECTRICAL CHARACTERISTICS*

 ${}^{\star}V_{gen} = 0$ volts unless otherwise noted.

÷

5

COMP VIDEO HORIZONTAL BLANKING

COMP SYNC BLANKING

RELIABILITY

 λ failure rate \leq .02%/1K hours at 75°C Tj

PULSE OUTPUT AMPLIFIER

DESCRIPTION

The 155-0145-00 provides a controlled risetime output pulse occurring between ground and a programmable negative level, given a TTL input pulse. Two such amplifiers are provided per package.

FEATURES

- 2 independent amplifiers
- Controlled and matched rise and falltimes, selectable by external capacitor
- TTL compatible inputs
- Output voltage swings from 0 to -8 volts

ABSOLUTE MAXIMUMS

Input Voltage (Pins 4 and 6)	–4.5 V to V _{cc}
Output Sink Current (Pins 9 and 16)	150 mA
Output Source Current (Pins 9 and 16)	30 mA (Under Controlled
	Conditions)
V _{cc} (Pin 13)	+5.25 Volts
V _{EE} (Pin 3)	– 10.25 Volts
Operting Ambient Temperature	0°C - 50°C
Maximum Power Dissipation	550 mW at 50°C
Input Voltage (Pins 2 and 7)	2.0 V to -6.0 Volts
Input Voltage (Pins 1 and 8)	V _{pins 2 and 7} at -2.4 Volts
Maximum Die Temperature	+125°C

Ŀ

ELECTRICAL CHARACTERISTICS

PARAMETER	SYMBOL	MIN	МАХ	UNITS	
Input Logical "0" Voltage	Pins 4, 6		0.8	V	
Input Logical "1" Voltage	Pins 4, 6	2.5		V	
Input Current (For $V_{IN} = 2.5$ Volts)	Pins 4, 6		500	μA	
Charging Current (NOTE 1)	Pins 10, 15	800		μA	
Risetime (NOTE 2)	Pins 9, 16	100		nS	
Upper Output Clamp Voltage	Pins 9, 16	-0.1	+0.1	v	
Lower Output Voltage Differential	V _{Pin 9} -V _{Pin 8}	-0.1	+0.1	V	
	$\rm V_{Pin16}-V_{Pin1}$				

NOTES: 1. Minimum current into or out of pin under static conditions

2. For output loaded with 150 Ω from pin to ground and slewing capacitor of 2 pF.

Reliability

λ, failure rate ≤.02%/1K hours at 75°C Tj Thermal resistance, $θ_{ja}$ 107.4°C/W

GEOMETRY & FOCUS CORRECTION

DESCRIPTION

The 155-0152-01 is a CRT Geometry and Focus Correction Integrated Circuit. It contains two Pre-Amplifiers (for X and Y Axis), whose nonlinear transfer functions compensate for the pin-cushion distortion seen on CRT displays with electromagnetic deflection systems. The amount of correction is set by external resistors. A third amplifier generates an error signal which can be used to correct for defocusing due to spot position on the CRT.

*FEATURES

- Positional Accuracy: Better than ±1% relative to screen diagonal.
- Linearity: Better than ±1% deviation relative to length of line.
- Vector Length Accuracy: Better than $\pm 2\%$ relative to the vector length.
- Speed: Corner to corner jump and settle to 1% in 10 μ s.

*As seen on the 4006-1 Display Terminal with 10", 60 $^\circ$ CRT.

SYMBOLS	IDENTIFICATION	VALUES
	Power Supply Voltage	± 15 V
	Input Voltage	± 5.0 V
Г _{sg}	Storage Temperature	-55°C to +125°C
Γ _A	Operating Ambient Temperature	+70°C
5 D	Maximum Power Dissipation	540 mW
Т _J	Maximum Junction Temperature	+125°C
RL	Minimum Load Resistance	5 ΚΩ
	Maximum Load Capacitance	10 pF

ABSOLUTE MAXIMUMS

PIN CONNECTIONS

Symbol	Parameter*	Conditions	Min	Max	Units
I _{cc}	V _{cc} Supply Current	Note 1	10	18	mA
I _{EE}	V _{EE} Supply Current	Note 1	-18	-12	mA
I _{GND}	Ground Current	Note 1	0	2	mA
A _v	Amplifier Voltage Gain	Notes 2, 4	0.9	1.1	
V(OFFSET)	Output Offset Voltage	Notes 1, 3	- 300	+300	mV
A _{V(ABS)}	Absolute Value Amp. Gain	Notes 1, 8	0.95	+1.05	
VABS(OFFSET)	Absolute Value Amp. Offset	Notes 1, 3	10	+300	mV
V _{CORNER(AVG)}	Average Corner Vector Voltage	Notes 1, 5	4.54	5.54	v
V _{CORNER(DEV)}	Corner Vector Voltage Deviation	Notes 1, 5		5	%
V _{ON-AXIS} (ERROR)	On-Axis Vector Voltage Error	Notes 1, 5, 6		2	%
VON-AXIS (DEV)	On-Axis Vector Voltage Deviation	Notes 1, 5, 6		6	%
V _{F(AVG)}	Average Focus Voltage	Notes 1, 7	3.60	4.70	v
V _{F(OFFSET)}	Focus Offset Voltage	Notes 1, 3	-500	+500	mV
V _{F(DEV)}	Focus Offset Deviation	Notes 1, 7	-	10	%

ELECTRICAL CHARACTERISTICS

*PARAMETRIC DEFINITIONS

 V_{OUT} specifications subtract the Output Offset Voltage.

 $V_{OUT} = V_{OUT(Measured)} - V_{OUT(Offset)}$

For simplicity, a geographic nomenclature will be used in locating X and Y Vectors.

Example: A "NW" (Northwest) Vector would be realized with a negative input on "X" and a positive input on "Y".

ELECTRICAL CHARACTERISTICS (cont)

R_{REF} and R_{BIAS} set Internal Bias Currents.

$$\begin{split} \mathsf{R}_{\mathsf{BIAS}} &= & 115.6 \ \mathrm{K\Omega} \ (\mathsf{V}_{\mathsf{EE}} = -12 \ \mathsf{V}) \\ & 132.0 \ \mathrm{K\Omega} \ (\mathsf{V}_{\mathsf{EE}} = -15 \ \mathsf{V}) \\ \mathsf{R}_{\mathsf{REF}} &= & 14.67 \ \mathrm{K\Omega} \ (\mathsf{V}_{\mathsf{EE}} = -12 \ \mathsf{V}) \\ & 19.63 \ \mathrm{K\Omega} \ (\mathsf{V}_{\mathsf{EE}} = -15 \ \mathsf{V}) \end{split}$$

 $R_{FOCUS} = 37.60 \text{ K}\Omega$

 R_{FOCUS} is chosen so that $V_{FOCUS} = 0 V$ when $V_{IN(X)}$ and $V_{IN(Y)}$ have values corresponding to the corner of the display.

 R_{χ} and R_{γ} are used to set currents to the voltage-to-current converters. All specifications are within 6 K Ω resistors unless otherwise noted. This value will vary with the individual application, and the amount of correction desired.

ELECTRICAL CHARACTERISTICS (Note Section)

NOTE 3

Output Offset Voltages are measured with both inputs, $V_{\chi_{(N)}}$ and $V_{\gamma_{(N)}}$, at 0 V.

NOTE 4

Large Signal Voltage Gain of the X and Y Amplifiers, without Pin Cushion Correction.

 $V_{iN} = \pm 5 V$

 $A_{V} = \frac{\Delta V_{OUT}}{10 \text{ V}}$

5-106

ELECTRICAL CHARACTERISTICS (Note Section cont)

NOTE 5

 $V_{CORNER(AVG)}$ is the average of the four corner Vector Voltages, generated with \pm 5 V inputs.

 $\mathbf{V}_{\text{CORNER}(\text{AVG})} = \frac{\mathbf{V}_{\text{NW}} + \mathbf{V}_{\text{NE}} + \mathbf{V}_{\text{SE}} + \mathbf{V}_{\text{SW}}}{4}$

 $V_{\text{CORNER(DEVIATION)}}$ defines the variation between the four V_{CORNER} voltages.

$$V_{\text{CORNER(DEV)}} = \frac{V_{\text{CORNER(MAX)}} - V_{\text{CORNER(MIN)}} X \ 100}{V_{\text{CORNER(AVG)}}}$$

NOTE 6

 $\begin{array}{l} V_{\text{ON-AXIS(AVG)}} \text{ is the average of the Four Output Vector Voltages } (V_{\text{N}}, V_{\text{S}}, V_{\text{E}}, V_{\text{W}}) \text{ as defined in the table below.} \\ V_{\text{N}} V_{\text{IN}(X)} = 0 V \quad V_{\text{IN}(Y)} = +5 V \\ V_{\text{S}} V_{\text{IN}(X)} = 0 V \quad V_{\text{IN}(Y)} = -5 V \\ V_{\text{E}} V_{\text{IN}(X)} = +5 V \quad V_{\text{IN}(Y)} = 0 V \\ V_{\text{W}} V_{\text{IN}(X)} = -5 V \quad V_{\text{IN}(Y)} = 0 V \\ V_{\text{ON-AXIS(AVG)}} = \frac{V_{\text{N}} + V_{\text{S}} + V_{\text{E}} + V_{\text{W}}}{4} \end{array}$

X_{ON-AXIS(ERROR)} is the percent difference between the V_{ON-AXIS(AVG)} and the V_{ON-AXIS(THEORY)}, as calculated below.

$$V_{\text{ON-AXIS(THEORY)}} = \frac{5\sqrt{2}}{\sqrt{1 + \left(\frac{5\sqrt{2}}{V_{\text{CORNER(AVG)}}}\right)^2}}$$
$$V_{\text{ON-AXIS(ERROR)}} = \left(\frac{V_{\text{ON-AXIS(AVG)}} - V_{\text{ON-AXIS(THEORY)}}}{V_{\text{ON-AXIS(THEORY)}}}\right) X \ 100$$

V_{ON-AXIS(DEVIATION)} defines the variation between the four On-Axis Vector Voltages

$$V_{\text{ON-AXIS(DEV)}} = \frac{V_{\text{ON-AXIS(MAX)}} - V_{\text{ON-AXIS(MIN)}}}{V_{\text{ON-AXIS(AVG)}}} X 100$$

NOTE 7

 $V_{FOCUS(AVG)}$ is the average of the Four Focus Voltages, as generated by $V_{IN(X)}$ and $V_{IN(Y)}$ at \pm 5 V.

$$\mathbf{V}_{\text{FOCUS(AVG)}} = \frac{\mathbf{V}_{\text{F(NW)}} + \mathbf{V}_{\text{F(NE)}} + \mathbf{V}_{\text{F(SE)}} + \mathbf{V}_{\text{F(SW)}}}{4}$$

V_{FOCUS(DEVIATION)} defines the variation between the four V_{FOCUS} Voltages.

$$V_{FOCUS(DEV)} = \frac{V_{FOCUS(MAX)} - V_{FOCUS(MIN)}}{V_{FOCUS(AVG)}} X 100$$

NOTE 8

Large Signal Voltage Gain of the X and Y Absolute Value Amplifiers.

$$V_{IN} = \pm 5 V$$
$$A_{V(ABS)} = \frac{\Delta V_{(ABS)}}{10 V}$$

SYMBOL	PARAMETER/CONDITIONS	TYPICAL	VOLTS
V _{REF]}	V _{Reference-Current]} Pin #2 See Note 1, Electrical Characteristics	-2.8	V
V _{BIAS]}	V _{Bias-Current]} Pin #3 See Note 1, Electrical Characteristics	-8.4	V

APPLICATIONS INFORMATION

If all errors are zero the functions generated by the IC are given below:

$$V_{X(OUT)} = \frac{V_{X(IN)}}{1 + \left(\frac{I_X}{I_{REF}}\right)^2 + \left(\frac{I_Y}{I_{REF}}\right)^2}$$

$$V_{Y(OUT)} = \frac{V_{Y(IN)}}{1 + \left(\frac{I_x}{I_{REF}}\right)^2 + \left(\frac{I_Y}{I_{REF}}\right)^2}$$

$$V_{\text{f(OUT)}} = I_{\text{focus}} - \frac{I_{\text{Ref}}}{3} \sqrt{I + \left(\frac{I_{\text{X}}}{I_{\text{Ref}}}\right)^2 + \left(\frac{I_{\text{Y}}}{I_{\text{Ref}}}\right)^2}$$

 R_{χ} and R_{γ} are external resistors that set I_{χ} and I_{γ}

$$I_{X} = \left| V_{X(IN)} \right|$$
$$I_{Y} = \left| V_{Y(IN)} \right|$$

 R_{REF} = R_{FOCUS} are external resistors that set I_{REF} and I_{FOCUS}

Product Precautions

Input Protection

Do not apply signals of greater than 5.0 V on either input $-V_x$ or V_y .

Output Loading

Output capacitance is to be limited to a maximum of 10 pF on all outputs to avoid oscillation.

Do not short outputs to ground.

Output loads recommended = 10 K Ω , Maximum Load = 5 K Ω .

Power Supply Turn-On/Turn-Off Sequence

Turn-on Sequence

Turn on negative supply first, then turn on the positive supply.

Turn-Off Sequence

Turn off positive supply first, then turn off the negative supply.

Handling Procedures

No special handling or precautions necessary above standard integrated circuits procedures.

Reliability

 λ , Failure Rate \leq .02%/1K hours at 75°C Tj

Thermal Resistance $0_{JC} = 47 \,^{\circ}C/Watt$

5

.

.

•

DISPLAY MULTIPLEXER

DESCRIPTION

The 155-0154-00 transmits one of three sets of inputs (hardcopy, alphanumeric-mode, or vector mode) in accordance with the appropriate two-bit instruction on lines "A" and "B". Each input set has "X" and "Y" channels.

A counter sequences through eight offset positions each time a "page" (erase) signal is received. These offsets are added to the "X" and "Y" inputs to uniformly exercise the phosphor on all parts of the screen.

FEATURES

- Each channel has three differential voltage inputs and one single ended voltage output.
- Two logic inputs (A,B) are provided for differential voltage input.
- Provision for origin shifting the display for increased phosphor life is provided.

IDENTIFICATION	NOTES	VALUES	SYMBOLS
Offset Voltage	All channels	±90	mV
Bias Current	All channels	12	μΑ
Input Resistance	All channels (Minimum value)	0.88	MΩ
Common mode range		±1.0	v
Crosstalk	All channels	-60	dB
Voltage between V+ and V- terminals	Channel 1X, 1Y	±7.0	V
Voltage between V+ and V- terminals	Channel 2X, 2Y, 3X, 3Y	±7.0	V
Input risetime and falltime	All channels	10	μS
Digital input current	$V_{in} = 0$ volts, $T_A = 75^{\circ}C$ A, B, and Page Inputs	1.6	mA
Digital input current	$V_{in} = 5$ volts, $T_A = 75^{\circ}C$	40	μA

ABSOLUTE MAXIMUMS*

 $T_{A} = 25$ °C unless otherwise noted.

SYMBOL	PARAMETER	MIN	MAX	UNITS
I _{cc}	Power Supply Current Note 1		+30	mA
I _{EE}	Power Supply Current Note 1	-25		mA
V _{OUT(OS)}	Output Offset Voltage Note 1	-90	+90	mV
A _v	Voltage Gain Channel 1X, 1Y Note 2		1.25 ±5%	
Av	Voltage Gain Channel 2X, 2Y, 3X, 3Y Note 3		1.0 ±5%	
G _(LIN)	Gain Linearity Notes 2, 3, 4	-20	+20	mV
V _{SHIFT}	X Origin Shift Note 5	6.2	14.4	mV
V _{SHIFT}	Y Origin Shift Note 5	7.7	18.8	mV
V _{SHIFT(MAX)}	X Origin Shift (Max.) Note 5	57.6	86.4	mV
V _{SHIFT(MAX)}	Y Origin Shift (Max.) Note 5	72	108	mV

ELECTRICAL CHARACTERISTICS

$$A_{\rm v} = \frac{V_{\rm OUT} - V_{\rm OUT(OS)}}{V_{\rm IN}}$$

 $V_{\rm IN}$ to one differential input. The other input is at ground. Input pair selected by $V_{\rm A},~V_{\rm B}$ decode control.

$$A_{v} = \frac{V_{\text{out}} - V_{\text{out(OS)}}}{V_{\text{in}}}$$

 V_{IN} to one differential input. The other input is at ground. Input pair selected by V_A , V_B decode control.

TRUTH TABLE

V _A (3)	V ₈ (4)	V _{IN(PIN#S)}	V _{OUT(PIN#S)}
Н	н	18, 19	2
Н	н	14, 13	10
н	L	16, 17	2
н	L	16, 15	10
L	Х	20, 1	2
1	х	12, 11	10

NOTE 4: Gain linearity is the difference in transfer function slope between 0% to 50% and 50% to 100% signal.

CH 1X, 1Y	CH 2X, 2Y, 3X, 3Y
A _v = 1.25 nominal	A _v = 1.0 nominal
$V_{IN(MAX)} = \pm 4.0 V$	$V_{IN(MAX)} = \pm 5.0 V$
$V_{IN(A)} = 0 V$	$V_{IN(A)} = 0 V$
$V_{IN(B)} = 2.0 V$	$V_{IN(B)} = 2.5 V$
$V_{IN(C)} = 4.0 V$	$V_{IN(C)} = 5.0 V$
$G_{(LIN)} = V_{OUT(C)} - 2$	

$$\label{eq:cc} \begin{array}{ll} \underline{\text{NOTE 5:}} & V_{\text{CC}} = +15 \text{ V} \\ & V_{\text{EE}} = -12 \text{ V} \\ & V_{\text{IN}} = 0 \text{ V} \\ & V_{\text{RESET}} & \text{See Timing Diagram} \\ & V_{\text{PAGE}} \\ & t_{\text{A}} = +25^{\circ}\text{C} \end{array}$$

TIMING DIAGRAM

Origin shift maximum ($V_{SHIFT(MAX)}$) is the output offset voltage, seven page pulses after the reset line goes high. V_{SHIFT} is with respect to the un-shifted output, as measured with the reset line held low. Origin shift (V_{SHIFT}) is the output voltage change caused by a single page pulse.

APPLICATIONS INFORMATION

Input Protection

Amplifier sections 1X, 1Y, 2X, 2Y, 3X, and 3Y:

—Applied differential voltage at inputs; <7.0 volts.

Logic inputs A, B, Page, and Reset:

—Maximum Logic 0 current at $V_{IN}=0$ Volts; $I_{IN}<-1.6$ mA —Maximum Logic 1 current at V_{IN} 5 Volts; $I_{IN}<40\,\mu A$

All inputs should have 5 K Ω series limiting during high temperature testing (T_A > 75°C).

Output Loading

Output Loading $\leq \pm 1 \text{ mA}$

Applied output potential $\leq \pm 5$ Volts

Power Supply Turn-On/Turn-Off Sequence

Turn "on" sequence

Turn "off" sequence

Handling Procedures

All leads should be equipotential during handling to protect internal MOS cap structures.

Standard DIP mounting techniques should be employed.

Reliability Statement

λ, failure rate ≤.14%/1K hours at 75°CTj $θ_{jA} = 97.5°C/W$

TV SYNC GENERATOR

DESCRIPTION

This monolithic silicon (CMOS) device is a multi-standard broadcast television synchronous generator. It provides broadcast quality timing signals for TV test equipment.

FEATURES

- Programmed for timing standards
 - NTSC
 - PAL
 - PAL M
- Output signals include
 - synchronous signals required for TV broadcasting
 - timing for various test signals
 - synchronous counter chain from 64H to H
- CMOS silicon gate technology
- 40 Pin Ceramic DIP

ABSOLUTE MAXIMUMS

Voltage on any pin relative to $\rm V_{ss}$	-0.3 to +12	V	
Operating Temperature (Ambient)	0 to 75	°C	
Storage Temperature	-65 to +150	°C	
Power Dissipation	0.1	.w	
Operating Junction Temperature	0 to +80	°C	

5-118

PIN #	NAME	INPUT/OUTPUT	DESCRIPTION	
1	V _{DD}		10 V Supply	
2	I _{VB}	Input	Inhibit Vertical Blanking	
3	1/2 V	Output	1/2 V Field Delay	
4	3/4 V	Output	3/4 V Field Delay	
5	FSW	Output	Field Square Wave	
6	PAL	Input	PAL/PALM System Select	
7	R	Input	Reset Vertical Counter	
8	NTSC	Input	NTSC System Select	
9	WND	Output	Window	
10	V _{ss}		Ground	
11	RV	Input	Reset V Divide	
12	S/F	Input	Slow Lock	
13	A/R	Input	Advance/Retard for Slow Lock	
14	CLK	Input	5 MHz Clock	
15	V1	Output	Field One Indicator	
16	V/2	Output		
17	64H	Output	High Frequency Divider	
18	16H	Output	High Frequency Divider	
19	8H	Output	High Frequency Divider	
20	4H	Output	High Frequency Divider	
21	RHF	Input	High Frequency Reset/Disable	
22	2H	Output	High Frequency Divider	
23	H*	Output	High Frequency Divider	
2 4	н	Output	High Frequency Divider	
25	H/4	Output		
26	H/2	Output		
27	RH	Input	Reset H Divide	
28	RHC	Input	Reset Horizontal Counter	
29	AHD	Input	Advance Horizontal Drive	
30	20H	Output	Horizontal Convergence	
31	15 V	Output	Vertical Convergence	
32	CBG	Output	Color Burst Gate	
33	HD	Output	Horizontal Drive	
34	CS	Output	Composite Sync	
35	3/4H	Output	3/4 Line Delay	
36	VD	Output	Vertical Drive	
37	СВ	Output	Composite Blanking	
38	VB	Output	Vertical Blanking	
39	AVB	Input	Advance Vertical Blanking	
40	AHB	Input	Advance Horizontal Blanking	

TERMINAL IDENTIFICATION

5

PIN CONNECTIONS

SYMBOL	IDENTIFICATION	MIN	MAX	UNITS
V _{IH}	Input High Voltage	.7 V _{DD}		v
V _{IL}	Input Low Voltage		.15 V _{DD}	V
l _{it}	Input Low Current $V_{IN} = 0^*$		±40	μΑ
l _{iH}	Input High Current (Except Clock) $V_{IN} = V_{DD}^{*}$		±10	μΑ
I _{IH (CLK)}	Clock Input High Current $V_{IN} = V_{DD}^{\star}$		±10	μΑ
I _{oL}	Output Low Current $V_{OL} = .4 V^*$		1.5	mA
I _{он}	Output High Current $V_{OH} = V_{DD}5 V^{\star}$		1.5	mA
V _{ss}	Supply Voltage	Ground		
V _{DD}	Supply Voltage	9.5	10.5	v
I _{DD}	Static. All resets activated*		7	mA
I _{dd}	Dynamic—All resets disabled*		11	mA

ELECTRICAL CHARACTERISTICS

NOTE: $V_{DD} = 10 V$

5

AC PARAMETERS

SYMBOL	IDENTIFICATION	MIN	МАХ	UNITS
$ au_{R}$	Output Rise Time $10\% \rightarrow 90\% V_{DD} = 10 V$ $C_L = 50 \text{ pF}$		60*	nS
$ au_{F}$	Output Fall Time $10\% \rightarrow 90\% V_{DD} = 10 V$ $C_L = 50 \text{ pF}$		60*	nS
$ au_{\Delta}(HF)$	Differential Delay Between Outputs $C_{L1} = C_{L2}$		100†	nS
$ au_{\Delta}$	Differential Delay Between 64H and any of the 16H, 8H, 4H, 2H, H*, and H Outputs		±10†	nS
$\Delta_{\tau\Delta}$	Change in τ_{Δ} with Time and Temperature 0°C \leq Temp \geq 75°C		10†	nS
$ au_{ m cs}$	Composite Sync Pulse Width 50% Point $f_{CLK} = 5.034 \text{ MHz}$	4.65	4.72**	nS
f _{c∟κ}	Clock Input Frequency		5.034 (Nom)	MHz
$ au_{\rm CLK}$	$\tau_{\rm R}$ and $\tau_{\rm F}$ at Clock Input 10% \rightarrow 90%		20	nS
$ au_{\text{D}}$	Delay from Clock to Output 50% Point		120	nS

NOTES: *Value guaranteed by calculating from DC current measurement

†Measurement on typical part; worst case calculated to be less than maximum value

**Values assume clock is a perfect square wave

5

DC PARAMETERS

SYMBOL	IDENTIFICATION	MIN	MAX	UNITS
V _{IH}	Input High Voltage	.7 V _{dd}		
V _{IL}	Input Low Voltage		.15 V _{DD}	
IL	Input Low Current $V_{IN} = 0^*$		±10	μΑ
н	Input High Current (Except Clock) V _{IN} = V _{DD} *		40	μΑ
IH (CLK)	Clock Input High Current* $V_{IN} = V_{DD}$		±10	μΑ
OL	Output Low Current $V_{OL} = .4 V^*$		1.5	mA
I _{OH}	Output High Current* $V_{OH} = V_{DD}5 V$		1.5	mA

 $*V_{DD} = 10 V$

APPLICATIONS INFORMATION

RELIABILITY

λ, .061%/1K hours at 75°C Tj

 $\theta_{\rm DC} = 25^{\circ}{\rm C/Watt}$

TRIGGER CIRCUIT

DESCRIPTION

This integrated circuit is a trigger for oscilloscopes \ge 100 MHz bandwidth. It includes an operational amplifier with open-loop gain of 500.

FEATURES

- Slope selection
- · Gate output and gate output are ECL levels
- Hysteresis adjustment
- Trigger level centering
- Free run input
- Trigger view outputs
- 5 mV sensitivity
- Five inputs
- 310 mW power dissipation

ABSOLUTE MAXIMUMS

Storage Temperature (T _{SG}) Operating Ambient Temperature (T _A)	
Maximum Power Dissipation (P_D)	
Derating Factor (Above 70°C Ambient)	
V_{CC} (Pin #16)	
V _{EE} (Pin #6)	
Trigger Input Voltage	
(Pins #1, #3 #4, #5, and #7)	
Trigger Level Input Voltage (Pin #9)	
	-2.0 V
Free-Run Input Voltage (Pin #2)	0 to V _{cc}
Slope Select Input Voltage (Pin #8)	±5.5 V
Reset Input Voltage (Pin #17)	0 V to V _{cc}

PIN CONNECTIONS

PIN #	PARAMETER	MIN	МАХ	UNITS
16	V _{cc} Power Supply Current	41.5	77	mA
6	V _{EE} Power Supply Current	8.5	15.5	mA
·····	Logic Test	Refer to (Tru	th Table)	
14	Gate Output High Voltage (V _{OH})	3.7	4.2	v
14	Gate Output Low Voltage (V _{OL})	2.75	3.25	v
15	Gate Output High Voltage (V _{OH})	3.7	4.2	v
15	Gate Output Low Voltage (V _{OL})	2.75	3.25	v
1, 3, 4, 5, 7	Trigger Input Bias Current	0	30	μΑ
10, 11	Trigger View Output Offsets	50	+50	mV
10, 11	Trigger View Output Gain, +Slope	4	6.5	
10, 11	Trigger View Output Gain, -Slope	4	6.5	
10, 11	Trigger View Output Swing	.5	1.5	V
1, 3, 4, 5, 7	Trigger Input Leakage Currents	0	10	μΑ
9	Trigger Level Input Bias Current	0	50	μΑ
2	Free Run Input Current	.5	1.5	mA
8	Slope Select Input Current	.2	.6	mA
17	Reset Input Current	0	1.0	mA
19, 20	Operational Amplifier Gain	9.5	10.5	·
19	Operational Amplifier Input Offset	-40	+40	mV
19	Operational Amplifier Input Bias Current	0	10	μΑ
20	Operational Amplifier Output Swing	1.0		v
1, 9	+ Trigger Slope Absolute Offset	-60	60	mV
1, 9	+ Slope Hysteresis	0	10	mV
1, 9	-Trigger Slope Absolute Offset	- 60	60	mV
1, 9	- Slope Hysteresis	0	10	mV
1, 9	+Slope to -Slope Offset	-25	25	mV

ELECTRICAL CHARACTERISTICS

5

APPLICATIONS INFORMATION

PRODUCT PRECAUTIONS

Input Protection

 $\begin{array}{l} -3 \ V \leqslant \mbox{Trigger Inputs (For Trigger Level Input at Ground)} \\ V_{EE} \leqslant \mbox{Slope Select Input } \leqslant \mbox{V}_{CC} \\ -3 \ V \leqslant \mbox{Free Run Input } \leqslant \mbox{V}_{CC} \\ 0 \ V \leqslant \mbox{Reset Input } \leqslant \mbox{V}_{CC} \\ -3.7 \ V \leqslant \mbox{OP Amplifier Input } \leqslant +3.7 \ V \end{array}$

Output Loading

DO NOT short Trigger View Outputs to V_{EE}. Trigger View Output $\leq +3$ V. DO NOT short gate output and gate output to ground or V_{EE}. DO NOT allow DC output loading on Trigger View outputs, gate output, and gate output to exceed 6 mA. DO NOT short OP Amplifier output to V_{CC}.

Power Supply Turn-On/Turn-Off Sequence

Two power supplies; NO power supply turn-on/turn-off sequence sensitive.

Handling Procedures

No special static precautions are necessary.

NORMALIZED SENSITIVITY vs FREQUENCY

	う * * * * * * 5 5 # は は 5 5 5 5 1 / / ビ る # E = = = = = = = = = 5 お # E = = = = = = 5 	
1.000 2.000 3.000 4.000 5.000 6.000 7.000 8.000	0 1 0 0 0 0 0 0 0 1 RESET 0 0 0 0 0 0 0 0 0 1 ARM 0 0 0 1 0 0 0 0 1 0 +TRIGGER 0 0 0 0 0 0 0 0 0 1 0 +TRIGGER 1 1 0 0 0 0 0 0 0 0 1 RESET 1 0 0 1 0 0 0 0 0 1 ARM 1 0 0 0 0 0 0 0 1 0TRIGGER 1 0 0 1 0 0 0 0 0 1 0 LATCH	CHECKS INPUT #1
9.000 10.000 11.000 12.000 13.000 14.000 15.000 16.000	0 1 0 0 0 0 0 0 0 1 RESET 0 0 0 0 0 0 0 0 0 0 1 ARM 0 0 0 0 1 0 0 0 1 0 +TRIGGER 0 0 0 0 0 0 0 0 0 1 0 +TRIGGER 1 1 0 0 0 0 0 0 0 0 1 RESET 1 0 0 0 1 0 0 0 0 1 ARM 1 0 0 0 0 0 0 0 0 1 0TRIGGER 1 0 0 0 1 0 0 0 1 0TRIGGER 1 0 0 0 1 0 0 0 1 0LATCH	CHECKS INPUT #2
17.000 18.000 19.000 20.000 21.000 22.000 23.000 24.000	0 1 0 0 0 0 0 0 0 1 RESET 0 0 0 0 0 0 0 0 0 0 1 ARM 0 0 0 0 0 1 0 0 1 0 +TRIGGER 0 0 0 0 0 0 0 0 0 1 0 +TRIGGER 1 1 0 0 0 0 0 0 0 0 1 0 LATCH 1 0 0 0 0 0 1 0 0 1 RESET 1 0 0 0 0 0 0 0 1 0 ARM 1 0 0 0 0 0 1 0 0 1 0 TRIGGER 1 0 0 0 0 1 0 0 1 0 LATCH	CHECKS INPUT #3
25.000 26.000 27.000 28.000 29.000 30.000 31.000 32.000	0 1 0 0 0 0 0 0 0 1 RESET 0 0 0 0 0 0 0 0 0 0 1 ARM 0 0 0 0 0 0 0 1 0 1 0 +TRIGGER 0 0 0 0 0 0 0 0 0 1 0 LATCH 1 1 0 0 0 0 0 0 0 0 1 RESET 1 0 0 0 0 0 0 1 0 1 ARM 1 0 0 0 0 0 0 0 1 0TRIGGER 1 0 0 0 0 0 1 0 1 0 LATCH	CHECKS INPUT #4
33.000 34.000 35.000 36.000 37.000 38.000 39.000 40.000	0 1 0 0 0 0 0 0 0 1 RESET 0 0 0 0 0 0 0 0 0 1 ARM 0 0 0 0 0 0 0 0 1 1 0 +TRIGGER 0 0 0 0 0 0 0 0 1 0 LATCH 1 1 0 0 0 0 0 0 1 0 1 RESET 1 0 0 0 0 0 0 1 0 1 ARM 1 0 0 0 0 0 0 0 1 0TRIGGER 1 0 0 0 0 0 0 1 1 0 LATCH	CHECKS INPUT #5
41.000 42.000 43.000 44.000	0 0 1 1 0 0 0 0 1 0 FREE RUN +5 0 1 1 1 0 0 0 0 0 1 RESET OVER- 1 0 1 1 0 0 0 0 1 0 FREE RUN -5 1 1 1 1 0 0 0 0 0 1 RESET OVER-	RIDE SLOPE

5

r

PIN NAME	LOGICAL "0"	LOGICAL "1"
Slope Select Input	—1.0 V	+1.0 V
Reset Input	3.25 V	4.0 V
Free Run Input	500 mV	<u> </u>
Inputs #1-#5	-2.0 V	+50 mV
Gate Output	2.75 V—3.25 V	3.7 V—4.2 V
Gate Output	2.75 V—3.25 V	3.7 V4.2 V

RELIABILITY

λ failure rate ≤.02%/1K hours at 75°C T_j Thermal resistance, $θ_{DA}$ 97 °C/W

•

LOGIC ANALYZER INPUT CIRCUIT

DESCRIPTION

The 155-0215-00 is a Logic Analyzer Input circuit with glitch latch capability. The circuit is packaged in a 16-pin DIP.

FEATURES

- Differential input and delay line port.
- Data latch and output.
- Word recognizer with control of syn/asyc and Hi/Off/Lo.
- Second order glitch detection with on/off control.
- A pipeline mode which uses the glitch memory for data, with an extra stage of latch, in lieu of the glitch detector. This matches instrument characteristics for synchronous data acquisition.

SYMBOL	IDENTIFICATION	NOTES	VALUES	UNITS
T _{SG}	Storage Temperature		-55 to 125	°C
T _A	Operating Temperature		-15 to 80	°C
PD	Power Dissipation	at 80°C Ambient	470	mW
$V_{CC} - V_{EE}$	Supply Voltage	Maximum Pos Voltage	+5.5	v
V _I	Input Voltage	All input pins	V_{EE} to V_{CC}	
Ι _ο	Output Current	V _{CC} -V _{EE} =5.0 V any output	15.0	mA
TJ		Maximum	125	°C

ABSOLUTE MAXIMUM

PIN CONNECTIONS

5

PIN #	PARAMETER	MIN	MAX	UNITS
13	Power Supply Current (Note 1) $V_{\text{EE}} \over V_{\text{LOAD}}$	20 0	70 25	mA mA
11	Delay Line Output Logical Low Level (Note 3)	3.0	3.4	V
3	Data Output Logical Low Level (Note 3)	3.0	3.4	V
2	Glitch/Pipeline Output Logical Low Level (Note 3)	3.0	3.4	V
14	Glitch Recognizer Logical Low Level (Note 3)	3.0	3.4	V
8	Word Recognizer Output Logical Low Level (Note 3)	3.0	3.4	V
11	Delay Output Logical High Level (Note 2)	4.0	4.3	V
3	Data Output Logical High Level (Note 2)	4.0	4.3	V
2	Glitch/Pipeline Output Logical High Level (Note 2)	4.0	4.3	V
14	Glitch Recognizer Output Logical High Level (Note 2)	4.0	4.3	V
8	Word Recognizer Output Logical High Level (Note 2)	4.0	4.3	v
10	Data Input Bias Current (Note 4) V _{IN} = 3.895 V	3	25	μA
9	Negative Input Bias Current (Note 4) $V_{IN} = 3.895 V$	3	25	μA
12	Delay Line Input Bias Current (Note 4) $V_{IN} = 3.895 V$	3	25	μA
1	Clock Input Bias Current (Note 4) V _{IN} = 3.895 V	3	25	μA
7	Word Recognizer Off/On Input Bias Current (Note 4) $V_{IN} = 4.00 V$	3	500	μΑ
6	Data High/Low Input Bias Current (Note 4) $V_{IN} = 4.00 V$	3	500	μA
15	Glitch Recognizer Off/On Input Bias Current (Note 4) $V_{\rm IN}=4.00$ V	3	500	μA
__ 5	Sync/Async Select Input Bias Current (Note 4) $V_{IN} = 2.40 V$	3	410	μA
16	Pipeline/Glitch Select Input Bias Current (Note 4) $V_{IN} = 2.40 V$		410	μA
1,3	Clock to Data Out	2.5	5.5	nS
1,2	Clock to Glitch/Pipeline Out (Mode = Glitch)	2.5	5.5	nS
1,2	Clock to Pipeline Out (Mode = Pipeline)	2.5	5.5	nS
2	Minimum Recognizable Glitch Width, first order measured or second order measured from first to second transition, at 50% amplitude points—differential inputs swinging from V _{CC} = 0.9 \pm 0.1 V to V _{CC} = 1.6 V \pm 0.1 V	4		nS
2	Minimum Recognizable Glitch Width, second order measured from second to third transition, at 50% amplitude points—differential inputs swinging from V _{CC} = $0.9 V \pm 0.1 V$ to V _{CC} = $1.6 V \pm 0.1 V$ erwise noted, V _{cc} = $+5 V \pm 10 \text{ mV}$, T _A = $25 \degree \text{C}$, V _{EE} = 0 V .	5		nS

NOTE 1

All outputs in logical low state, load conditions = 100 Ω to +3 V. V_{CC} = 5.0 Volts. T_A = 25 °C.

NOTE 2

 $\rm R_1=100~\Omega$ to +3.0 volts. Desired output set to high state. Measure voltage on pin specified. V_{cc} must be accurate to \pm 10 mV.

NOTE 3

 $R_1 = 100 \ \Omega$ to 3 volts. All outputs in low state. Measure voltage on pin specified. V_{CC} must be accurate to ± 10 mV.

NOTE 4

Same input conditions as Note #1. Measure current on pin specified.

In order to detect a glitch, the first and second R-S Flip Flops both have to be set. Therefore, two tests are necessary to detect the minimum set time in (either of) the first R-S Flip Flops or the second R-S Flip-Flop.

APPLICATIONS INFORMATION

SYMBOL	FUNCTION	MEASURED TYPICAL	CALCULATED WORST CASE
T _{CD}	Clock to Data Out	4.5 nS	7.6 nS
T _{DAWR}	Data to Async Word Recognizer Out	3.5 nS	6.1 nS
T _{CSR}	Clock to Synchronous Recognizer Out	5.4 nS	8.5 nS
T _{CG}	Clock to Glitch Pipeline Out	4.4 nS	9.0 nS
T _{CGR}	Clock to Glitch Recognizer Out	4.3 nS	9.8 nS
T _{PIPE}	Clock to Pipeline Out	4.6 nS	8.6 nS
T _{DS}	Data Set-up Time Delay line input to clock input	0.5 nS	0.5 nS
т _{он}	Data Hold Time Clock input to delay line input	0.0 nS	0.0 nS
	Data In to Delay Line Driver Out	1.9 nS	2.7 nS

APPLICATIONS INFORMATION (cont)

Application Symbol Definition

 T_{CD} , T_{DAWR} , T_{CSR} , T_{CG} , T_{CGR} , T_{PIPE} , and T_{DDL} : Time delays from data or clock input to stated output change.

 T_{DS} : Data set-up time. Time before clock edge for which stationary input data will produce matching data output after the clock edge.

T_{DH}: Time after clock edge for which data must be held stationary in order not to affect the data output after clock edge.

Calculated Worst Case Assumptions

Spice computer modeled

 $T_i = 110^{\circ}C$

Beta Max = 200 (For maximum F_T and maximum base resistance)

Resistor Tolerance = +30%

Maximum Junction Capacitance

PRODUCT PRECAUTIONS

Input Protection

DO NOT exceed $\rm V_{\rm CC}$ supply on any input at any time.

Output Loading

DO NOT short outputs to V_{EE}.

DO NOT allow output capacitance to exceed 200 pF.

Power Supply Turn On/Turn Off Sequence Single Supply—DO NOT exceed absolute maximum rating.

RELIABILITY

λ, Failure Rate ≤ .0413%/1K Hrs. at 75°C T_j Thermal resistance junction to case. $θ_{ic} = 94°C/W$

INPUT AMPLIFIER

DESCRIPTION The 155-0217-00 is a transconductance amplifier with

gain control, and provision is made for offset and po-

sitioning control.

FEATURES

- Variable gain control
 - Offset and positioning control inputs
 - 16 pin dual-in-line package

ABSOLUTE MAXIMUMS

Environmental

SYMBOL	IDENTIFICATION	VALUES	UNITS
T _{stg}	Storage Temperature	-55 to +125	°C
T _a	Operating Ambient Temperature Range	0 to 70	°C

Electrical

BV_{EBO}	Emitter-Base Breakdown Voltage	5.8	v	
V _{CE}	Collector-Emitter Voltage	15	V	
BV _{cs}	Positive Voltage on pins 8, 9, and 11 W.R.T. Pin 5	30	V	
	Pin 13 Voltage W.R.T. Pin 7	10	V	
	Voltage on Pins 10 and 12 W.R.T. Pin 7	5	V	
I _{total}	Total Current from Pin 8 or Pin 9	20	mA	
P _D	Total Device Power Dissipation	300	mW	

PIN CONNECTIONS

Parameter Symbol	Parameter Name and Conditions of Measurement	Min Value	Max Value	Unit of Meas.	Pin Meas.
R _E	Emitter Bulk Resistance (typ. 3.5 Ω)			Ω	1, 2, 15, 16
V _{IOS}	Input Offset Voltage (see note 1)		±5.0	mV	3
I _{IOS}	Input Offset Current (see note 1)		50	μA	3, 14
h _{fb}	Common-Base Forward Current Gain	0.95			8 & 9 Gnd. 1, 16 or 2, 15
t _r	Risetime (typical 800 ps)			ps	
I _{O.D.}	Output Current Differential (Null Supp.)		±33.0	μA	8, 9
G.C.NORM	Gain Control Current (Max. Norm.)	200	350	μA	12
I _{G.C.INV.}	Gain Control Current (Max. Inv.)	350	-200	μA	12
I _{z.g.}	Gain Control Current (Zero Gain)		±48	μA	12
V _{A.C.}	Position Control Voltage		±50	mV	10

ELECTRICAL CHARACTERISTICS

Input Offset Voltage

Set differential output voltage (Pins 8 & 9) to zero, measure Pin 3 voltage.

Input Offset Current

Insert current measuring devices in leads of Pins 3 & 14. Set differential output voltage to zero, measure ABSOLUTE current difference between Pin 3 and Pin 14.

Output Current Differential

Apply input offset voltage to Pin 3. Then measure output current differential at any gain setting (Pin 12).

Position Control Voltage

Source Pin 6 with 2 mA. Set voltage at Pin 10 such that differential output current is zero. Measure voltage at Pin 10.

Reliability

λ Failure rate ≤.02%/1K hours at 75°C T_j $θ_{ic}$ junction to case, 50°C/W

VERTICAL OUTPUT DRIVER

DESCRIPTION

The 155-0218-00 is a vertical output driver for use in up to 150 mHz instruments. As such it provides all current gain for the vertical output system. Commonbase output followers and load resistors (re. 155-0219-00) interface the part to a Crt.

The 155-0218-00 is virtually identical to the die used in the 155-0077-00 and 155-0115-00. The only difference being a doubling of second and third stage nichrome emitter values in the 155-0218-00. This change increases linearity at the lower bias currents appropriate for 50—150 MHz application.

FEATURES

- Cost effective vertical output
- 80mA output current
- Low power
- 1 nS Risetime

ABSOLUTE MAXIMUMS

Unless stated otherwise, ambient temperature $= 25^{\circ}$ C.

Currents are referenced positive into each port.

Pins 5, 6, 10, 15, and 16 are connected to circuit ground.

Unless otherwise designated, all voltages are referenced to circuit ground.

SYMBOLS	IDENTIFICATIONS	NOTES	MIN	ΜΑΧ	UNITS
T,	Junction temperature, operating		-15	+125	°C
T _{stg}	Storage temperature		-62	+ 125	°C
P _o	Total-device power dissipation, junction to case	Derate by 40 mW for each °C by which T5, 6, 15, 16 exceeds 25°C.		4.0	W
$I_2 \text{ or } I_{19}$	Output emitter current.			80	mA
I_9 or I_{12}	Input collector current.			-40	mA
V ₁	Internal supply voltage.			12.5	v
V _{cio}	Collector to substrate voltage.	Any transistor.		30.0	v
V _{CBO}	Collector to base voltage.	Any transistor.		15.0	V
V _{CEO}	Collector to emitter voltage.	Any transistor.		5.0	V
V _{EBO}	Emitter to base voltage.	Any transistor.		4.0	v
l _c	Collector current.	Q1 through Q6 Q7 through Q14		80 40	mA mA
T	Lead temperature during soldering	≤10 sec		240	°C
θjc	Thermal resistance (junction to case)	Case temperature center tab temp.		25	°C/W

ELECTRICAL CHARACTERISTICS

Unless noted otherwise, ambient temperature = 25 °C.

Subscripts correspond to 155-0218-00 pin numbers. Pins 5, 6, 10, 15, and 16 are connected to ground.

PARAMETRIC DEFINITIONS

The following Parametric Summary is based on the application shown schematically in Figure 2. Recognize that this represents only one application. Other biasing arrangements are possible as long as the Absolute Maximum Ratings are not violated.

All currents are referenced positive into the device. Unless noted otherwise, voltages are referenced to ground.

SYMBOL	NAME	NOTES	MIN.	TYP.	MAX.	UNITS
V ₁	Internal supply voltage.			9.13		V .
I ₁	Internal supply current.			39.7		mA
$_2$ or I $_{19}$	Output idle current.	$V_{in} + = V_{in} - = 0 V$	37	40.8	45	mA
₂ — I ₁₉	Output offset current	$V_{in} + = V_{in} - = 0 V$			4.1	mA
/ ₃ , V ₄ , / ₁₇ or V ₁₈	Third stage emitter voltage			7.91		V
V_7 or V_{14}	1st stage collector voltage			4.46		V
$_8$ or I $_{13}$	Input bias current.	$80 \le \text{device } \beta \le 200$	40	65	100	μA
₉ or I ₁₂	Input emitter current	$V_{in} + = V_{in} - = 0 V$		-8.13		mA
V ₁₁	Common mode bias voltage		3.9	4.1	4.3	V
11	Common mode bias current	$80 \le \text{device } \beta \le 200$		140		μA
/ ₂₀	3rd stage base voltage			7.91		V
20	3rd stage base current	$80 \le \text{device } \beta \le 200$		330		μA
$I_{19} - I_2$ $I_{in} +) - (I_{in} -)$	Small signal differential current gain	$\begin{aligned} \ _{2} &- \ _{19} = 0\\ \ _{2} &- \ _{19} = 24.5 \text{ mA} \end{aligned}$	7.1	8.18 8.02	9.4	
Test 1-Test 2 Test 1	Small signal gain linearity	Corresponds to \pm 3.5 div on screen.	0	-2	-3.5	%
 ۲	Risetime	In test fixture	0.5	1.0	2.0	ns

ELECTRICAL CHARACTERISTICS

*This parameter is listed for characterization information only. It is NOT a production test. If new users seek guaranteed risetime for their application they must renegotiate this spec with ICM.

APPLICATIONS INFORMATION

Application Aids

Refer to Figures 1 and 2 for the following discussion:

The input sensitivity of the amplifier is 1 mA/div differentially (± 0.5 mA/div, -0.5 mA/div). Output current drive is nominally 8.18 mV/div differentially. Input emitters are exploited for DC balancing, delay line compensation, gain-temperature compensation and high speed "spiking" to overcome CRT plate RC rolloff. Adequate dynamic range, ± 16 divisions first stage, ± 14 divisions second stage and ± 10 divisions 3rd stage is designed in to allow for the current overshoot with "spiking". Overall current gain is custom tailored by choice of input emitter resistance and 1st stage collector load resistance. Output quiescent current is programmed by choice of 3rd stage emitter resistor long tails. Thermal distortion is compensated in the third stage emitters. The op-amp automatically biases the 3rd stage f_T doubler.

Although designed for minimum power dissipation in a 100 MHz system, the part has sufficient margin in power dissipation capability to be derated at higher currents and voltages for higher bandwidth or higher performance applications. For example, V_{11} can be increased to provide higher VCE margins throughout the amplifier. In no case, however, should V_{11} nominally exceed 5.6 V or V_1 exceed 12 V. Output quiescent currents of up to 80 mA (I_2 or I_{19}) are available with a proper choice of 3rd stage emitter resistors.

Circuit layout for this part is CRITICAL. Input and output circuitry should be isolated from one another. Fortunately, this is facilitated by the location of the four grounded pins in the center of the part. Extensive ground plane should be run to and through the center of the part connecting to all four heat sinking pins. Ground plane should only be cut away beneath the input emitter circuitry 1st stage load resistors and output lines.

Package lead inductance is sufficient (particularly on the end pins) to require that any high speed input compensation be placed directly adjacent to the input end of the part. Similarly, the output cascode devices MUST be connected as directly as possible to the output (Pins 2 and 19).

Note that although case power dissipation is high, power dissipation is highly dependent on the leadframe to ambient thermal resistance.

U

2363 VERTICAL OUTPUT AMPLIFIER

Product Precautions

Input Protection

A short to ground at package pins 3, 4, 17, and/or 18 will instantly destroy the component when it is under bias.

Thermal Characteristics

The special leadframe (195-0072-02) used in this otherwise standard 20 pin DIP facilitates heat transfer from the die to the center four IC pins (Pins 5, 6, 15, 16). The temperature of the ground plane immediately adjacent to these pins must be controlled if the full power dissipation capability of the package is to be realized.

The part was characterized by using junction pulse techniques to measure junction temperature (Tj) while monitoring center leadframe temperature (Tc) at the point where it exits the plastic. $\theta_{ic} = 22^{\circ}C/W$.

Reliability

Reliability Goal

λ, Failure rate \le 7.41%/1K hours at 150°C T_j. λ, Failure rate \le .02%/1K hours at 75°C T_j.

5-147

.

INTERFACE LOGIC

DESCRIPTION

The 155-0244-00 is a monolithic silicon (CMOS) device which is a display sequencer integrated circuit. This circuit implements real-time logic functions within an oscilloscope that are, in general, too fast or not appropriate for microprocessor implementation.

FEATURES

- Data is serially shifted from the μ P. (55 bits)
- Clock divider divides down f_{clock} for use with chop clock, calibrator, and control holdoff.
- Horizontal display select.
- Vertical display select.
- Chop select.
- Display blanking.
- Trigger source select.
- Trigger status.
- Trigger holdoff.
- Holdoff counter.
- Display intensity.
- Trace separation.

SYMBOLS	IDENTIFICATION	VALUES	UNITS
	Voltage on any pin relative to $V_{\mbox{\scriptsize E}\mbox{\scriptsize E}}$	-0.3 to V _{DD} +0.3	V
T _A	Operating Temperature (Ambient)	-15 to + 85	°C
T _s	Storage Temperature	-65 to +150	°C
P _D	Power Dissipation	0.1	w
Tj	Operating Junction Temperature	-15 to +90	°C

ABSOLUTE MAXIMUMS

PIN CONNECTIONS

Coded Output to Generate Horizontal	1 🔂	40	Delay Select
Coded Output to Generate Horizontal	2 🚱	() 39	Horizontal Magnification
Z-Axis Blanking	з 🚱	() 38	Timing Clock (5 MHz)
Readout Request	4 🚱	3 7	Vertical Output 1
Readout Blank	5 🚱	6 36	+5 V, ±5% Power Supply
Readout Active	6 ()	(35	Vertical Output 2
Trace Separation Input	7 🚱	(34	Vertical Output 3
Trace Separation Output 2	8 🚱	() 33	Vertical Output 4
Trace Separation Output 1	۹ 🚱 💧	(32	Delayed Trigger Source Select 0
Hold Off Oscillator Input with External 150 pF Capacitor (Internal Active Pull-Down)	10 🚱	(31	Delayed Trigger Source Select 1
Analog Ground	11 🚱	() 30	Delayed Trigger Source Select 2
Digital Ground (V _{ss})	12 🚱	() 29	Main Trigger Source Select 2
Trigger Hold-Off	13 🚱	2 8 28	Main Trigger Source Select 0
Delayed Sweep Gate	14 🚱	O 27	Main Trigger Source Select 1
Main Sweep Gate	15 🚱	2 6	Calibrator Output
Delayed Trigger Status	16 🚱	25	Input Data for Shift Register
Main Trigger Status	17 🚱	6 24	Control Clock for Shift Register Input Data (Hysteresis Input)
Trigger Status Output	18 🚱	() 23	Readout Intensity (Input From Pot)
Trigger Status Strobe (Hysteresis Input)	19 🚱	() 22	Display Intensity (Input From Pot)
Current Reference	20 🚱	O 21	Brightness Control
(Resistor Input from -15 V)			

ELECTRICAL (CHARACTERISTICS
--------------	-----------------

PARAMETE	R/CONDITIONS	MIN.	MAX.	UNITS
	Voltage Supp	ly (Operating	1)	
V _{SS} (ground)		Ground	Ground	
V _{DD} (+5 V n	ominal)	4.75	5.25	v
	Static Powe	Dissipation		
$F_{CLOCK} = 0$ (I_{DD} , current f	Outputs Open Circuit rom V _{DD}		20.0	mA
	Dynamic Pow	er Dissipatio	n	
(all outputs)	MHz $C_L = 20 \text{ pF}$			_
DD			25.0	mA
SYMBOL	PARAMETER/CONDITIONS	MIN.	MAX.	UNITS
	Digital Inputs	and Outputs	3	
VIH	Input High Voltage (except -SGM and -SGD)	2.0		· v
V _{IL}	Input Low Voltage		0.8	V
IIN	Input Current	-10	+10	μA
V _{HYST}	Hysteresis Voltage on —CC and —TSS	0.1		v
I _{OL}	Output Low Current $(V_{OUT} = 0.4 V)$	1.6		mA
I _{он}	Output High Current (except THO) $(V_{OUT} = V_{DD}4 V)$		-200	μA
I _{он-тно}	Output High Current for THO ($V_{OUT} = V_{DD}14 V$)		-100	μA

SYMBOL	PARAMETER/CONDITIONS	MIN.	MAX.	UNITS
	Analog Input	s and Output	s	
 I_	Leakage Current (off state)	—10	+10	μA
R _{INT}	Resistance to Bright from DI or ROI (V _{BRIGHT} = GND)		500	Ω
R _{TS1}	Resistance from TSI to TS1 TSI = $1.0 \text{ V I}_{\text{IN}} = 100 \ \mu\text{A}$		300	Ω
R _{TS2}	Resistance from TSI to TS2 TSI = 1.0 V I _{IN} = $100 \mu \text{A}$		600	Ω
V _{REF}	Voltage at I_{REF} Input ($I_{REF} = 160 \ \mu A$)	400	900	mV
IDAC	Current from MSB of DAC I _{REF} = 160 μ A (Bright Output) (-200 mV < V _{out}) ≤200 mV	685	595	μA
I _{LIN}	Linearity of DAC Current	-17.5	+ 17.5	μA
V _{NOP}	Positive going threshold on HRR Input	2.5	3.5	v
V _{HON}	Negative going threshold on HRR Input	1.5	2.5	v
	Delay	Times		
τdv	Delay from end of sweep to change in Vertical Outputs ($V_{S1} - V_{S4}$)		150 + З Т _{СLК}	nS
τdv	Delay from end of sweep to change in Horizontal Outputs (HSD, HSB, DS, MAG)		600	nS
T _{DVB}	Delay from change in Vertical Output to		50	nS
Т _{DNVB}	Assertion/Deassertion Blanking during chop.	111		nS
TDTS	Delay from end of sweep to change in Trigger Source Outputs	<u>,</u> ,	200 + 2 Т _{СLК}	nS
⁷ DTHO	Delay from end of sweep to Assertion of THO	100	300	nS
TDTSO	Delay from —TSS to Valid Data on TSO		300	nS
TSCD	Valid Data Setup Time	300		nS
	Valid Data Hold Time	0		nS

ELECTRICAL CHARACTERISTICS (cont)

SYMBOL	PARAMETER/CONDITIONS	MIN.	MAX.	UNITS
	Pulse	Widths		
⁷ CLK	Period of TC	200		nS
⁷ PW	Positive or negative pulse width of TC	90		nS
sg	Duration of Sweep Gates	50		nS
СВ	Chop Blanking Width $\tau_{\rm CLK} = 200 \ {\rm nS}$		150	nS
ŚН	Strobe High Width (TSS and CC)	700		nS
⁷ SL	Strobe Low Width (TSS and CC)	300		nS
	Readou	It Timing		
	(-SGM to BLANK)— (SGM - HSX)		-30	nS
	(-SGM to VSX)— (-ROB to -BLANK)		280	nS
	(-SGM to -HSX)— (-ROB to -BLANK)		134	nS
	(ROB to BLANK) or (-ROB to -BLANK)		125	nS
	(ROB to BLANK)— (ROB to VSX) ROA Going False		34	nS
	(ROB to BLANK)— (ROB to HSX) ROA Going False		39	nS
	(ROA to -THO)— (-ROA to VSX) ROA Going False	140		nS
	(ROA toTHO)	286		nS
	Set-up time — ROB to — THO 2 Hock Mode	939	2000	nS
	Set-up time $-ROB$ to $-THO$ 2 Hock Mode Period = 1 μ S	1500	2500	nS
	ROR to ROA		900	nS

.

ELECTRICAL CHARACTERISTICS (cont)

5

SYMBOL	PARAMETER/CONDITIONS	MIN.	MAX.	UNITS
	Readout T	iming (cont)		•
	(ROR to BLANK)— (ROR to VSX)	<u></u>	34	nS
	(ROR to BLANK)— (ROR to -HSX)		-39	nS
	(ROR to -VSX)— (ROB to -BLANK)		280	nS
	(ROR to -HSX) (ROB to -BLANK)		134	nS
	(ROB to BLANK)— (-ROR · ROB to VSX)		34	nS
	(ROB to BLANK)— (-ROR · ROB to HSX)		-39	nS
	-BLANK to VSX -ROR · ROB Going True	140		nS
	-BLANK to HSX -ROR · ROB Going True	286		nS
	-ROR ' ROB to -ROA		900	nS
	-ROR [·] ROB to BLANK 2τ _{CLK}	100	3τ _{CLK+400}	nS
	(-ROR to -BLANK)- (ROB to BLANK)	100	+100	nS
	Settling Time	-Analog Circu	itry	
5 B	Settling Time to $\pm 5 \ \mu A$ of Bright after change in Horizontal Select		500	nS
STS	Settling Time to $\pm 10 \text{ mV}$ of TS1 or TS2 after change in Horizontal Select		300	nS

ELECTRICAL CHARACTERISTICS (cont)

APPLICATIONS INFORMATION

Input Register

Data is serially shifted into the 155-0244-00 from the μ P. This data (55 bits) determines the functionality of 155-0244-00. Transitions of the control clock shifts data in, clears the divider chain, and initiates a signal "Control Hold-Off" that blanks the CRT and prevents triggering for at least $\tau_{CLOCK} \times 10^3$ after the last control clock goes high.

Clock Divider and Calibrator

Clock divider divides down f_{CLOCK} for use with chop clock, calibrator, and control hold-off. The calibrator gives a square wave output whose frequency is some multiple of f_{CLOCK} .

Horizontal Display Select

The two outputs HSA and HSB select one of four horizontal displays; DS selects one of two sweep delays; and Mag selects the horizontal amplification factor.

The horizontal display changes at the end of each Main Sweep.

In single sequence mode, each selected horizontal state is accessed once for each selected vertical state, then hold-off remains asserted until 155-0244-00 is updated by the system controller.

Vertical Display Selection

Four outputs from Vertical Display select drive inputs on the vertical channel switch, selecting one of the four vertical channels. The vertical display changes state at the end of the horizontal display sequence or at each positive transition of the chop clock.

Chop Clock Select

This circuitry selects source of vertical clock for either chop or alternate mode.

Selects chop clock rate, varying between f_{CLOCK} and $\frac{f_{CLOCK}}{100,000}$

Adds one extra count to clock divider every sweep every other 50,000. Timing clock to provide skew in chop clock.

Display Blanking

Chop Blanking—Blank asserted for $\frac{\tau_{\text{CLOCK}}}{2}$ during transitions of vertical select when display being chopped.

Allows ROB input to control blanking during Readout.

Provides blanking interval of approximately 400 nS at end of Readout, during which horizontal and vertical outputs are reasserted and allowed to settle for waveform display.

Generates ROA signal in response to ROR or end of sweep to indicate when the Readout is active.

Trigger Source Select

The trigger source is determined by three outputs: SROM, SR1M and SR2M.

The data on these outputs is identical to a three-bit code on the control register and is static except when the code is "111". At this time, the trigger sources dynamically follow the selected vertical display.

Trigger Status

Trigger status monitors the activity on the sweep and trigger inputs. This data is latched and then output in a serial fashion on command from the system controller.

Each time the input shift register is updated, or each time the data is read out, data is transferred from the primary latches to the storage latches, and the primary latches are cleared.

Main sweep gates are counted and read out along with the trigger status data.

One bit of the data indicates when the single sequence is completed.

Trigger Hold-Off

At the end of sweep, trigger hold-off (THO) is initiated by 155-0244-00. At the same time, an on-chip oscillator is started. After a programmed number of oscillations, THO ends.

Also at the end of sweep, readout is enabled, as indicated by ROA.

Hold-Off Counter

This counter counts up to 500,000 periods of the HO Oscillator for generating the programmable Hold-off time.

The last three decades of the counter are used to count sweep gates when the interval is less than 5000.

This sweep count is read by the controller along with trigger status data.

Display Intensity

Display intensity multiplexes currents from the Display intensity and Readout intensity inputs onto the bright output.

It also adds current to the output from a 4 1/2-bit DAC during the display intensity interval.

Separate DAC's are included for main and delayed sweep.

Trace Separation

Two analog switches transfer a voltage from input TSIN to either outputs TS1 or TS2.

These signals drive the vertical output amplifier to provide up to ± 5 divisions of offset.

INPUT REGISTER BIT ORDER

Data shifts in with Bit 54 first, Bit 0 last

 MS10, Main Sweep Intensity Code LSB MS11 MS12 	
2 MS12	
3 MS13	
4 MS14, Main Sweep Intensity Code MSB	
5 DS14, Delayed Sweep Intensity Code MSB	
6 DS13	
7 DS12	
8 DS11	
9 DS10, Delayed Sweep Intensity Code LSB	
10 TH4, Trigger Hold-off Code MSB	
11 TH3	
12 TH2	
13 TH1	
14 THO, Trigger Hold-off Code LSB	
15 Extend Sweep Count Capacity	
16 Delayed Ends Main	
17 Display Blank	
18 ATSO, Add Unit of Trace Separation During Horizontal Display State, HDS2 and HD	36
19 ATS1, Add Unit of Trace Separation During Horizontal Display State HDS6	
20 ICT, Inhibit Chop While Triggerable	
21 ICS, Inhibit Chop During Sweep	
22 Single Sequence	
23 Include Vertical Display State VDS1	
24 Include Vertical Display State VDS2	

25	Include Vertical Display State VDS12
26	Include Vertical Display State VDS3
27	Include Vertical Display State VDS4
28	MX, Magnify X/Y Display
29	MD, Magnify Delayed Sweep Horizontal Display
30	MM, Magnify Main Sweep Horizontal Display
31	Include Horizontal Display State HDS1
32	Include Horizontal Display State HDS2
33	Include Horizontal Display State HDS3
34	Include Horizontal Display State HDS5
35	Include Horizontal Display State HDS6
36	Include Horizontal Display State HDS7
37	Slave Delta Time to First Two Included Vertical Display States
38	VTO, Vertical Display State Timing Code LSB
39	VT1
40	VT2
41	CSROM, Main Trigger Source Code LSB
42	CSR1M
43	CSR2M
44	CSROD, Delayed Trigger Source Code LSB
45	CSR1D
46	CSR2D
47	Counter Test
48	CPO, Calibration Period Code LSB

49	CP1
50	CP2
51	CP3
52	CP4
53	CHL, Control Hold-Off Time Code LSB
54	CHM, Control Hold-Off Time Code MSB

PRODUCT PRECAUTIONS

Input Protection

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is strongly advised that special handling precautions be taken to avoid application of any voltage higher than the maximum rated voltage to this high impedance circuit.

For the proper operations, it is recommended that all inputs and outputs be constrained as follows:

Inputs constrained to the range of $V_{SS} \leq V_{IN} \leq V_{DD}$.

Outputs constrained to the range of $V_{SS} \leq V_{OUT} \leq V_{DD}$.

Handling Procedures

All CMOS devices should be stored or transported in conductive material so that all exposed leads are shorted together. CMOS devices should NOT be inserted into the conventional plastic "snow" or plastic trays of the type used for storage and transportation of other semiconductor devices.

All CMOS devices should be placed on a grounded bench surface and the operator should be grounded prior to handling the devices. This is done most effectively by having the operator wear a conductive wrist strap.

Whenever handling a CMOS circuit, DO NOT WEAR ANY NYLON CLOTHING.

DO NOT insert or remove CMOS devices from test sockets with the power applied. Check all of the power supplies to be used for testing CMOS devices and be certain that there are no voltage transients present.

When any lead straightening or hand soldering is necessary, provide ground straps for the apparatus used.

DO NOT exceed the maximum electrical voltage ratings specified.

Double check the test equipment setup for the proper polarity of the voltage BEFORE conducting parametric or functional testings.

Cold chambers using CO₂ for cooling should be equipped with baffles and devices MUST be contained on or in conductive material.

OPERATING TEMPERATURE RANGE

This component is tested at 25°C but is guaranteed to operate continuously, as specified, over -15°C to +85°C ambient temperature.

Junction temperatures are less than 5°C greater than the ambient temperature.

TAPE DRIVE CONTROLLER

DESCRIPTION

The 155-0247-00 provides a means of interfacing a microprocessor to a data cartridge tape drive, with few external components. The tape controller receives control information and data from the processor in parallel form. The data is multiple buffered, serialized, encoded, then driven directly from the 155-0247-00 to the heads.

FEATURES

- · Performs all drive data and control functions
- 32 kilobit/second operation
- Interrupt allows system multitasking
- On chip CRC-16 error detection
- 2 tracks selectable
- Compatible with current 8-bit microprocessors
- Users manual available by contacting Applications Engineering

ABSOLUTE MAXIMUMS

Voltage on Any Pin Relative to V _{SS}	
Operating Temperature, T _A (Ambient)	
Storage Temperature	-65°C to +150°C
Power Dissipation	0.2 Watt
Operating Junction Temperature, Tj	0°C to +70°C

Reset Input	₁ 🐼	40 Clock for External Encoding Output
Processor Interrupt Output	2 🚱	🚱 39 V _{DD} 5 V
Processor Bus Read Input	з 🚱	38 High Speed Clock Input
Processor Chip Select Input	4 🚱	37 Gap Detect Read Amp Input
Processor Bus Write Input	5 🚱	🚱 36 NC
Processor Address I Input	6 🚱	35 Peak Data Read Amp Input
Processor Address O Input	7 🚱	34 Read A, Track Select Output
Processor Data Bus 7 Bidirect	8 🚱	33 Increase Read Amp Threshold Output
Processor Data Bus 6 Bidirect	9 🚱	32 Inhibit, Write Current Input
Processor Data Bus 5 Bidirect	10 🔗	31 Track B, Write Negative Output
Processor Data Bus 4 Bidirect	11 🚱	30 Track B, Write Positive Output
Processor Data Bus 3 Bidirect	12 🔗	29 Track A, Write Negative Output
Processor Data Bus 2 Bidirect	13 🚱	28 Track A, Write Positive Output
Processor Data Bus 1 Bidirect	14 🚱	27 Write V _{DD} (5 V Nominal)
Processor Data Bus 0 Bidirect	15 🚱	🔆 26 NC
Processor Servo Fast Output	16 🚱	25 External Data for Write Input
Processor Servo Slow Output	17 🚱	🚱 24 Peak Data Output
Processor Reverse/Forward Output	18	23 Decoded Read Data Output
Processor Ground	19 🚱	22 Lamp Fail From Drive Input
Cartridge Not In Place Input	20 💮	21 Hole Detect From Drive Input

PIN CONNECTIONS

ELECTRICAL CHARACTERISTICS

DC Parameters (V_{DD} = 5.0 V \pm 0.25 V, V_{SS} = 0.0 V)

Symbol	Identification	Min	Max	Units
V _{IH}	Input High Voltage (Except Clock)	2.0		Volts
V _{IL}	Input Low Voltage		0.8	Volts
V _{ICH}	Clock Input High Voltage	2.8		Volts
IN	Input Current		±10	μA
/ _{ol}	Output Low Voltage at 2.4 mA Sink		0.4	Volts
V _{он}	Output High Voltage at -100 µA Source*	2.4		Volts
INTER	Interrupt Output Current at 0.7 Volt	0.5	5	mA

This applies to Data Bus 0 to 7, Bit Clock, Rdata Out, Pdata Out, Track B/\overline{A} , and Increase Threshold Outputs. If Write $V_{DD} = 5.0 \pm 0.25$ V, this also applies to Write A+, Write A-, Write B+, Write B- outputs.

Servo Fast, Servo Slow, and Reverse/Forward outputs are open for a logic 1 output.

Symbol	Identification	Min	Max	Units
ТСҮС	Clock Cycle Time	950	10,000	nS
тсн	Clock High Time	450		nS
TCL	Clock Low Time	450		nS
TR	Clock Rise Time	0	100	nS
TF	Clock Fall Time	0	100	nS
TSS	Select Set-up Time	0		nS
TSH	Select Hold Time	0		nS
TAS	Address Set-up Time	50		nS
TAH	Address Hold Time	30		nS
TRDAC	Read Data Access Time		300	nS
TRDH	Read Data Hold Time	0	200	nS
TWR	Write Pulse Width	350		nS
TWDS	Write Data Set-up Time	130		nS
TWDH	Write Data Hold Time	30		nS

AC Parameters

NOTE: All outputs are measured to standard V_{OL} and V_{OH} levels loaded with 100 pF to V_{SS} .

The reset pin is provided by the processor and must be held at a valid Logic One until after the V_{DD} supply reaches 4.75 volts. The input lines CNIP, HOLE DETECT, CAMP FAIL, GAP DETECT, WRITE INHIBIT, and PEAK DATA are assumed to be coming from a DC 100 tape drive and are very slow, asynchronous signals. Propagation delays through the 155-0247-00 are not defined.

APPLICATIONS INFORMATION

NOTE: In order to make use of this part in new designs, the following documents should be consulted:

155-0247-00 Tape Chip Users Manual

DC 100 Tape Drive Manual

The following information gives only a bare description of how the part is used.

Addressing

	A1	A 0
Data Register	х	0
Command 1 Register	0	1
Command 2 Register	1	1
Status Register	х	1

Command and Status Register

COMMAND 1/ADDRESS 01

IT TB/A R/F SS	SF	WRITE (READ)	SYNC	SYNS
----------------	----	-----------------	------	------

COMMAND 2/ADDRESS 11

ED1	ED2	EDS	GDA	wco	CRCC	CRCS	CRCN
-----	-----	-----	-----	-----	------	------	------

STATUS/ADDRESS 01

LF	HDET	CNIP	GDET	WINH OVR	SYN	DS2	DS1
----	------	------	------	-------------	-----	-----	-----

can cause interrupts

Bit 7

EXPLANATION

Command 1

0-SYNS	. Immediately strobes SYNC into SYN (Pulse)
1-SYNC	. Intended Future Condition of SYN chronized
2-WRITE/READ	. Intended Mode
3-SF	. Motor Control Bit. Set to 00 by LF or HDET
4-SS	. Motor Control Bit. Set to 00 by LF or HDET
5-R/F	. Reverse or Forward Motor Direction
6-TB/A	. Track B or A on Tape
7-IT	. Increase Threshold OR Write Both Tracks

Bit 0

Command 2

0 CRCN	. Set CRC Mode Now (With CRCS) (Pulse)
1 CRCS	. Set CRC Mode at Next SYNC Pulse (Pulse)
2 CRCC	Intended CRC mode—Changes after three data services
3 WCO	Write Current ON; For Writing Gaps
4 GDA	. Gap Detect Interrupt Allow—Allows Tape Movement With or Without Gap
5 EDS	External Data Command Strobe (Pulse)
6 ED1	External Data Command Bit 1
7 ED2	. External Data Command Bit 2

Status Register

0 DS1	Indicates number of data services (Reads or Writes) necessary. 00, none; 01,
	10, service once or twice; 11, overflow
1 DS2	Indicates number of data services (Reads or Writes) necessary. 00, none; 01,
	10, service once or twice; 11, overflow
2 SYN	Set if sync counter is running
3 WINH/OVR	Cartridge Write inhibit · SYN + Overrun · SYN
*4 GDET	Inter-record gap in tape data detected
*5 CNIP	Cartridge not in place
*6 HDET	Tape hole detected
*7 LF	Hold Detect Lamp Failure

*Also: The DSI (data service interrupt) latches are set at each SYNC pulse, which also increments DS1 and 2.

* = Causes interrupts

CLOCK TIMING

RELIABILITY

 $\lambda,$ Failure rate \ll .1%/1K hours at 75°C Tj

Thermal resistance, die to case 25°C/W

HIGH SPEED SCHMITT TRIGGER

DESCRIPTION

The 155-0253-00 is a high speed Schmitt trigger. The hysteresis and output current are adjustable. Accepts balanced or unbalanced input signals. Fabricated using the SH III process.

FEATURES

- 1.25 GHz
- Differential input and output
- Adjustable hysteresis and output current
- Trimmable gain resistor on die

5-171

SYMBOLS	IDENTIFICATION	VALUES	UNITS
T _{stg}	Storage Temperature	-55 to +125	°C
T _A	Operating Temperature	-15 to +70	°C Ambient
P _D	Power Dissipation (at 70°C)	270	mW
V _c	Supply Voltages	6	V
V _{IN}	Input Voltages	-1.0 to +1.0	V
	Bias Current (14) or (16) (5)	8.0 16.0	mA mA
T _j	Maximum	120	°C

ABSOLUTE MAXIMUMS

PIN CONNECTIONS

SYMBOL	PARAMETER/CONDITIONS	MIN	МАХ	UNITS
с	Supply Current, I into pin 10 at 9.5 V	14.5	16.8	mA
B1	First Cascode Bias Current I into pin 15 at 2.0 V	90	420	μA
B2	Second Cascode Bias Current I into pin 7 at 4.8 V	90	420	μΑ
1	Q1 Input Bias Current Measure I into pin 11 at 0.0 V	45	210	μΑ
2	Q2 Input Bias Current Measure I into pin 3 at 0.0 V	45	210	μΑ
LIL	Output 1 Lo Current Measure I into pin 8 at 6.0 V with pin 2: +400 mV pin 3: -400 mV			
L2H	Output 2 High Current Measure I into pin 6 at 6.0 V with pin 2: +400 mV pin 3: -400 mV	14.8	16.7	mA
L1H	Output 1 High Current Measure I into pin 8 at 6.0 V with pin 2: -400 mV pin 3: +400 mV	14.8	16.7	mA
L2L	Output 2 Low Current Measure I into pin 6 at 6.0 V with pin 2: -400 mV pin 3: +400 mV	0	20	μΑ
3	Sensitivity	139.4	200.6	mV
/ _{os}	Input Offset Voltage	-7	+7	mV

ELECTRICAL CHARACTERISTICS

6.2

Typical,* But Untested Performance Parameters

The input sensitivity will be up 3 dB at 500 MHz. The circuit cannot be triggered past 1.25 GHz.

***NOT GUARANTEED**

APPLICATIONS INFORMATION

It is recommended that pin 10 be well bypassed.

Pins 7 and 15 should have about 100 Ω resistance before bypassing.

PRODUCT PRECAUTIONS

Input Protection

Being a bipolar circuit, the 155-0253-00 is not particularly sensitive to static. However, care should be taken not to exceed any of the SHF-3 breakdown limits, especially BV_{EBO} and BV_{CBO} (4.5 V and 14 V, respectively).

Note that there is a short between pins 2 and 11 and also between pins 3 and 12. Application of an unlimited voltage source between these pins may destroy metal runs on the die.

Output Loading

Do not exceed the maximum output supply voltage (6 V) on pins 6, 8, and 10. Excessive voltage will cause excessive power dissipation.

Power Supply Turn-on/Turn-off Sequence

In order to prevent reverse biasing junctions, turn on the power supplies in the following sequence:

- 1. Substrate Voltage (pin 4)
- 2. Output Supplies (pins 6, 8)
- 3. VC (pin 10)
- 4. VB2 (pin 7)
- 5. VB1 (pin 15)
- 6. Bias Current

Turn off the power supplies in the reverse order of turn-on sequence.

Handling Procedure

The 16-pin Tek mini-pac is easily damaged by rough handling. The pins bend easily, and they pull out of the molded plastic body.

RELIABILITY

λ, Failure rate ≤.02%/1K hours at 75°C T_j Thermal resistance, θjA 85°C/W

AMPLIFIER

DESCRIPTION

The 155-0273-00 is a monolithic integrated circuit originally designed as an Oscilloscope Vertical Amplifier.

The circuit is a differential in, differential out amplifier with variable gain capabilities. By cross-coupling the output collectors, the circuit is basically a multiplier. DC voltages applied to the control inputs can be used to vary gain from the nominal (maximum) gain through zero to the negative nominal gain. Diodes are provided on the control inputs to linearize the gain characteristics.

FEATURES

- Nominal voltage gain set by external resistor.
- Gain variable from nominal (either polarity) to zero.
- Available in three versions:

155-0078-10 (Minipak) (Fastest) 155-0273-00 (14 pin DIP w/o nichrome resistors) 155-0274-00 (14 pin DIP)

SYMBOLS	IDENTIFICATIONS	NOTES	VALUES	UNITS
Vout-sub MAX	Maximum voltage of the outputs (pins 13, 10, 12, 9) relative to the substrate (pin 6).	Prevents collector-substrate breakdown of Q5, Q6, Q7, Q8.	19	V
V _{out-cont} MAX	Maximum voltage of the outputs (pins 13, 10, 12, 9) relative to the control inputs (pins 7, 14).	Prevents collector-base breakdown of Q5, Q6, Q7, Q8.	7	V
V _{cont-input MAX}	Maximum voltage at the control inputs (pins 7, 14) relative to inputs (pins 4, 5).	Prevents collector-base breakdown of Q1 and Q2.	8	V
V _{sub-input MAX}	Maximum voltage of the substrate (pin 6) relative to the inputs (pins 4, 5).	Substrate voltage must be held more negative than any collector in circuit.	0	V
V _{R03 MAX}	Maximum voltage from pin 11 to pin 7 or 14.	Maximum steering diode reverse voltage to avoid degradation.	2	V
V _{R11-R12 MAX}	Maximum voltage from pin 7 to 14 or from pin 14 to pin 7.	Maximum steering diode reverse voltage to avoid degradation.	2.5	V
V _{EB MAX}	Maximum voltage from pin 2 to pin 4 or from pin 3 to pin 5.	Maximum base-emitter reverse voltage to avoid degradation.	2	V
Мах	Maximum current, pins 2 and 3.	Sum of pin 2 and pin 3 current.	36*	mA
P _{MAX}	Maximum power dissipation.	75°C ambient.	270	mW
TOPERATING	Operating temperature range.		0 to 80	°C
T _{STORAGE}	Storage temperature range.		55 to +125	°C
T _{j MAX}	Maximum junction temperature.		125	°C

ABSOLUTE MAXIMUMS

* Contact Applications Engineering, IC Manufacturing, if 20 mA is to be exceeded, pin 2 or pin 3.

5

PIN CONNECTIONS

*Depends on polarity conventions-not indicated here.

ELECTRICAL CHARACTERISTICS

Specifications assume 32 Ω gain setting resistor (pins 2 to 3)

PARAMETER/CONDITIONS	MIN	МАХ	UNITS
BV _{CEO} Q1, Q2, at 200 μA	4.4		Volts
BV _{CEO} Q5, Q6, Q7, Q8 at 200 μA	4.4		Volts
BV _{CEO SUS} Q1, Q2 at 10 mA	4.9		Volts
BV _{CEO SUS} Q5, Q6, Q7, Q8 at 10 mA	4.9		Volts
SUBSTRATE VOLTAGE in operating configuration		-15	Volts
INPUT BIAS CURRENT Q1 or Q2 (16 mA emitter current)	64	225	μΑ
NORMAL OFFSET	-14	+14	mV
INVERT OFFSET	-14	+14	mV
NORMAL GAIN	2.68	2.96	
INVERT GAIN	2.68	2.96	
NORMAL-INVERT GAIN MATCH	-0.5	+ 0.5	%
NULL OFFSET	-10	+10	mV
NULL GAIN	14	+.14	
50% GAIN	.49	.51	X(AV _{NORM})
OFF FEEDTHRU	-200	+200	μV

PARAMETRIC DEFINITIONS

The 155-0273-00 is specified in three different operating conditions: NORMAL, INVERT, and NULL.

In the NORMAL condition, Q5 and Q8 are conducting and Q6 and Q7 are not.

In the INVERT condition, Q6 and Q7 are conducting and Q5 and Q8 are not.

In the NULL condition, Q5, Q6, Q7 and Q8 are all conducting equally.

APPLICATIONS INFORMATION

Output Stage Considerations

Pin 7 and 14 can be voltage driven and pin 11 left open (Figure 1) if gain linearity as a function of control voltage is not critical. The voltage applied on pins 7 or 14 should be 1.2 to 3.7 volts above the quiescent voltage on pins 4 or 5 for conducting output transistors. For nonconducting output transistors pins 7 or 14 can be at a lower potential than this. Absolute maximum ratings must be observed, however. For the case of pin7 and 14 voltage driven and pin 11 open, gain is given by:

$$A_{v} = A_{v \text{ norm}} \left[\frac{exp\left(\frac{qV_{14}}{kT}\right) - exp\left(\frac{qV_{7}}{kT}\right)}{exp\left(\frac{qV_{14}}{kT}\right) + exp\frac{(qV_{7})}{kT}} \right]$$

where $A_{V NORM} = Normal Gain$

 $V_7 =$ voltage applied on pin 7

 V_{14} = voltage applied on pin 14

$$\frac{kT}{q} = 26 \text{ mV}$$
 at room temperature

If gain linearity as a function of control voltage is critical, pins 7 and 14 should be current driven and pin 11 returned to a voltage so as to set pins 7 and 14 voltage to the proper level as mentioned above. Figure 2 shows this type hookup. Current driving these inputs linearizes the gain by making use of the exponential current-voltage relationship of the diodes Q3 and Q4 to cancel that of the output transistors. The gain is given by:

$$\begin{split} A_{v} &= A_{v \text{ NORM}} \Bigg[\frac{I_{14} - I_{7}}{I_{14} + I_{7}} \Bigg] \\ & \text{ where } I_{7} = \text{ current into pin 7} \end{split}$$

 I_{14} = current into pin 14

If variable gain of only a single polarity is desired, one pair of outputs can be used and the other pair connected to separate unused loads as in Figure 3.

If fixed maximum gain is desired, one pair of outputs can be left open as in Figure 4.

In applications where the output is to be switched from one output pair to another, the difference in offset voltage between the two outputs should not be spec'd any tighter than 28 mV (the sum of normal and invert offset specs).

Input Stage Considerations

The bias current (pin 2 and 3 current) should not exceed 20 mA per side or a decrease in the life of the part may result.

TEMPERATURE

PRODUCT PRECAUTIONS

Input Protection

Input base-emitter voltages should not exceed 2 volts

in the negative direction and 1 volt in the positive direction.

Output Loading

Outputs should be limited to less than those listed in Absolute Maximum Ratings.

Power Supply Turn-On/Turn-Off Sequence

Substrate voltage should be turned on coincident with or before the other voltages.

Handling Procedures

Static sensitive handling procedures should be implemented for this part.

RELIABILITY

 λ failure rate \leq .025%/1K hours at 75°C Tj.

AMPLIFIER

DESCRIPTION

The 155-0274-00 is a monolithic integrated circuit originally designed as an Oscilloscope Vertical Amplifier.

The circuit is a differential in, differential out amplifier with variable gain capabilities. By crosscoupling the output collectors, the circuit is basically a multiplier. DC voltages applied to the control inputs can be used to vary gain from the nominal (maximum) gain through zero to the negative nominal gain. Diodes are provided on the control inputs to linearize the gain characteristics.

FEATURES

- Nominal voltage gain 2.82 (50 ohm source and loads). Set primarily by an on-chip nichrome resistor.
- Gain variable from nominal (either polarity) to zero.
- Available in three versions: 155-0078-10 (Minipak) (Fastest) 155-0273-00 (14 pin DIP w/o nichrome resistors) 155-0274-00 (14 pin DIP)

ABSOLUTE MAXIMUMS

SYMBOLS	IDENTIFICATION	NOTES	VALUES	UNITS
V _{out-sub MAX}	Maximum voltage of the outputs (pins 13, 10, 12, 9) relative to the substrate (pin 6).	Prevents collector-substrate breakdown of Q5, Q6, Q7, Q8.	19	Volts
V _{out-cont MAX}	Maximum voltage of the outputs (pins 13, 10, 12, 9) relative to the control inuts (pins 7, 14).	Prevents collector-base breakdown of Q5, Q6, Q7, Q8.	7	Volts
V _{cont-input MAX}	Maximum voltage at the control inputs (pins 7, 14) relative to inputs (pins 4, 5).	Prevents collector-base breakdown of Q1 and Q2.	8	Volts
$V_{sub-inputMAX}$	Maximum voltage of the substrate (pin 6) relative to the inputs (pins 4, 5).	Substrate voltage must be held more negative than any collector in circuit.	0	Volts
V _{RQ3 MAX,}	Maximum voltage from pin 11 to pin 7 or 14.	Maximum steering diode reverse voltage to avoide degradation.	2	Volts
V _{R11-R12 MAX}	Maximum voltage from pin 7 to 14 or from pin 14 to pin 7.	Maximum steering diode reverse voltage to avoid degradation.	2.5	Volts
V _{EB MAX}	Maximum voltage from pin 2 to pin 4 or from pin 3 to pin 5.	Maximum base-emitter reverse voltage to avoid degradation.	2	Volts
I _{MAX}	Maximum current, pins 2 and 3.	Sum of pin 2 and pin 3 current.	36*	mA
P _{MAX}	Maximum power dissipation.	75°C ambient.	270	mW
	Operating temperature range.		0 to 80	°C
	Storage temperature range.		−55 to +125	°C
T _{j MAX}	Maximum junction temperature.		125	°C

* Contact Applications Engineering, IC Manufacturing, if 20 mA is to be exceeded for pin 2 or pin 3.

5

PIN CONNECTIONS

Depends on polarity chosen for inputs and outputs-Not indicated here

PARAMETER/CONDITIONS	MIN.	MAX.	UNITS
BV _{CEO} Q1, Q2, at 200 μA	4.4		Volts
BV _{CEO} Q5, Q6, Q7, Q8 at 200 μA	4.4		Volts
BV _{CEO SUS} Q1, Q2 at 10 mA	4.9		Volts
BV _{CEO SUS} Q5, Q6, Q7, Q8 at 10 mA	4.9		Volts
SUBSTRATE VOLTAGE in operating configuration		15	Volts
INPUT BIAS CURRENT Q1 or Q2 (16 mA emitter current)	64	225	μΑ
NORMAL OFFSET	-14	+14	mV
INVERT OFFSET	-14	+14	mV
NORMAL GAIN	2.68	2.96	
INVERT GAIN	2.68	2.96	
NORMAL-INVERT GAIN MATCH	-0.5	+0.5	%
NULL OFFSET	-10	+10	mV
NULL GAIN	14	+.14	
50% GAIN	.49	.51	X (AV _{NORM})
OFF FEEDTHRU	-200	+200	μV

ELECTRICAL CHARACTERISTICS

PARAMETRIC DEFINITIONS

The 155-0274-00 is specified in three different operating conditions: NORMAL, INVERT, and NULL.

In the NORMAL condition, Q5 and Q8 are conducting and Q6 and Q7 are not.

In the INVERT condition, Q6 and Q7 are conducting and Q5 and Q8 are not.

In the NULL condition, Q5, Q6, Q7, and Q8 are all conducting equally.

APPLICATIONS INFORMATION

Output Stage Considerations

Pins 7 and 14 can be voltage driven and pin 11 left open (Figure 1) if gain linearity as a function of control voltage is not critical. The voltage applied on pins 7 or 14 should be 1.2 to 3.7 volts above the quiescent voltage on pins 4 or 5 for conducting output transistors. For nonconducting output transistors pin 7 or 14 can be at a lower potential than this. Absolute maximum ratings must be observed however. For the case of pin 7 and 14 voltage driven and pin 11 open, gain is given by:

$$A_{v} = A_{v \text{ NORM}} \left[\frac{exp\left(\frac{qV_{14}}{kT}\right) - exp\left(\frac{qV_{7}}{kT}\right)}{exp\left(\frac{qV_{14}}{kT}\right) + exp\left(\frac{qV_{7}}{kT}\right)} \right]$$

where $A_{V NORM} = Normal Gain$

$$V_7 =$$
 voltage applied on pin 7
 $V_{14} =$ voltage applied on pin 14
 $\frac{kT}{a} =$ 26 mV at room temperature

If gain linearity as a function of control voltage is critical, pins 7 and 12 should be current driven and pin 11 returned to a voltage so as to set pins 7 and 12 voltage to the proper level as mentioned above. Figure 2 shows this type hookup. Current driving these inputs linearizes the gain by making use of the exponential current-voltage relationship of the diodes Q3 and Q4 to cancel that of the output transistors. The gain is given by:

$$\mathsf{A}_{\mathsf{V}} = \mathsf{A}_{\mathsf{V} \text{ NORM}} \left[\frac{\mathsf{I}_{14} - \mathsf{I}_7}{\mathsf{I}_{14} + \mathsf{I}_7} \right]$$

where $I_7 = current$ into pin 7 $I_{14} = current$ into pin 14

If variable gain of only a single polarity is desired, one pair of outputs can be used and the other pair connected to separate unused loads as in Figure 3.

If fixed maximum gain is desired, one pair of outputs can be left open as in Figure 4.

In applications where the output is to be switched from one output pair to another, the difference in offset voltage between the two outputs should not be specified any tighter than 28 mV (the sum of normal and invert offset specifications).

Input Stage Considerations

The bias current (pin 2 and 3 current) should not exceed 18 mA per side or a decrease in the life of the part may result.

Typical Performance Graph

(not a specification, for information only)

Typical Performance Graph (not a specification, for information only)

TEMPERATURE

PRODUCT PRECAUTIONS

Input Protection

Input base-emitter voltages should not exceed 2 volts in the negative direction and 1 volt in the positive direction.

Output Loading

Outputs should be limited to less than those listed in Absolute Maximum Ratings.

Power Supply Turn-on/Turn-Off Sequence

Substrate voltage should be turned on coincident with or before the other voltages.

Handling Procedures

Static sensitive handling procedures should be implemented for this part.

RELIABILITY

 λ . failure rate \leq .02%/1K hours at 75°C Tj.

5

نت

•

VIDEO MULTIPLIER

DESCRIPTION

The 155-0283-00 is a two quadrant analog multiplier/unity gain amplifier. Two signal inputs (Y, Z) and one gain/control input (X) are provided.

FEATURES

- ±10 V supplies
- Unity gain buffer function
- Two quadrant multiplier function
- 16 pin ceramic package
- 50 Ω Nichrome resistors

SYMBOLS	IDENTIFICATION	VALUE	UNITS
TJ	Operating Junction Temperature	-15 to +125	°C
T _{STG}	Storage Temperature	-15 to +150	°C
VCC10	+10 V Supply	0 to +12	v
VEE10	- 10 V Supply	-12 to 0	v
VIN (X, Y, Z)	Input Voltage	-2 to +2	v
RLoad	Output Load Impedance	2K to INF	Ω
CLoad	Output Load Capacitance	0 to 20	pF

ABSOLUTE MAXIMUMS

5-188

6,

155-0283-00

PIN #	NAME	INPUT/OUTPUT	DESCRIPTION	
1	GND	Supply	Ground	
2	Y1	Input	Y Video + Input	
3	D1		Decoupling Capacitor	
4	Y2	Input	Y Video – Input	
5	+10 V	Supply	+10 V Supply	
6	D3		Decoupling Capacitor	
7	X1	Input	Control Input	
8	—10 V	Supply	-10 V Supply	
9	COMPC		External Compensation	
10	Q25	Output	Q25 Output Collector	
11	COMPA		External Compensation	
12	COMPB		External Compensation	
13	V6	Output	Q1 Emitter Output	
14	Z2	Input	Z – Input	
15	D2		Decoupling Capacitor	
16	Z1	Input	Z + Input	

PIN CONNECTIONS

PIN CONNECTIONS

NO.	SYMBOL	CONDITIONS	MIN	MAX	UNITS
1		10 V supply current	14.0	20.4	mA
2		-10 V supply current	-11.0	-17.6	mA
3	Zoffset	Z offset voltage X = -0.2 V Y = Z = 0 V	-5.0	5.0	mV
4	Yoffset	Y offset voltage X = 1.2 Y = Z = 0 V	-5.0	5.0	mV
5	BOW	X = .5 V, Y=Z=0 V BOW = Vo-(Yoffset + Zoffset)/2	-3.0	3.0	mV
6		Y Scale factor Δ Vo/.8 X = .1 to .9 V Z = 0 V, Y = 1 V	.98	1.02	
7		Z scale factor Δ Vo/.8 X = .1 to .9 V Z = 1 V, Y = 6 V	-1.02	98	
8	Zmic	$ \begin{array}{l} Z \text{ midpoint} \\ X = .6 \text{ V} \\ Y = 0 \text{ V} \\ Z = 1 \text{ V} \end{array} $.485	.515	
9	Ygain	Y follower gain X = 1.1 V, Z = 0 V Y = -1 V to +1 V Gain = $\Delta Vo/2$.997	1.003	
10	Zgain	Z follower gain X = .1 V, Y = 0 V Z = -1 V to $+1$ V Gain = Δ Vo/2	.997	1.003	

ELECTRICAL REQUIREMENTS

NO.	SYMBOL	CONDITIONS	MIN	MAX	UNITS
11	Yshift	Y shift X = 1.1 V Y = Z = 0 V Measure COMPC pad voltage.	12.0	12.0	mV
12	Zshift	Z shift X =1 V Y = X = 0 V Measure COMPC pad voltage.	-12.0	12.0	mV
14		Input clipping level $X = 0.1 V$ Y = 0.2 V	1.0 2.0		V V

ELECTRICAL REQUIREMENTS (cont)

RELIABILITY

Failure rate0.02%/1000 hrs.Reference junction temperature75°CActivation energy1 eV

PLATINUM TEMP PROBE

DESCRIPTION	FEATURES
The platinum temperature probe utilizes a 100 Ω temperature sensitive resistor produced by depositing a platinum film on an oxidized wafer.	 100 Ω ± .2 Ω at 0°C Resistance changes ~ .37 Ω/°C Laser Trimmed -70 to +240°C temperature range Withstands 1000g shock

ABSOLUTE MAXIMUMS

Electrical

Maximum Current Through Resistor	10 mA
For Accurate Measurements	$<2 \mathrm{mA}$
Maximum Temperature, Operating	240°C
Maximum Temperature, Storage	120°C

Environmental

The 206-0248-03 MUST NOT be immersed in any liquids incompatible with the following materials: Morton 410BSG and Beryllium Oxide (BeO).

Mechanical

Maximum Axial Force	20 lbs
Maximum Normal Force	20 lbs
Axial Impact	1 ft-lb
Normal Impact	0.3 ft-lb
Shock	1000 g's, 1/2 sine, 5 mS, 1 mS, and
	2 mS duration, 3 shocks, each axis,
	18 total

PACKAGING

PACKAGING

SECTION A-A

.

PARAMETRIC SUMMARY

PARAMETER/CONDITIONS	MIN	МАХ	UNITS
Input Current		10	mA
Temperature Range	-70	+240	°C
Temperature, Storage	- 55	+ 120	°C
Altitude—Operating Storage		15,000 15,000	ft ft

DEFINITIONS

The "functional relationship of resistance with temperature" is defined by the boundary conditions of: $R_T = 100 (\pm .2\%) + .3700 t (\pm .8\%) - 8.900 (\pm 12\%) \cdot 10^{-5}t^2$ over the specified operating range.

The probe is to have a "resistance" equal to 100 Ω \pm .2 Ω at 0°C.

Temperature as a function of resistance may be determined by:

 $T_{R} = -251.449 + 2.3252 \cdot R + 1.89 \cdot 10^{-3} \cdot R^{2}$

INITIAL CASE TEMPERATURE ABOVE AMBIENT (°C)

Typical decrease in device case temperature due to probe heat-sinking effect on various case sizes.

THERMAL GRADIENT EFFECT ON TEMPERATURE MEASUREMENT

Thermal gradient is a "steady state" error that occurs when measuring the surface temperature, and is caused by the steady state gradient associated with the flow of heat from the surface being measured to the main probe body. Thus the temperature of the sensor will differ from the final surface temperature. This steady state error is dependent upon the final surface temperature above ambient. Naturally, this error does not occur when the entire probe is elevated to the temperature being measured.

....

Typical allowable rf signal limits at the probe tip

Self heating. Rise in sensor temperature due to instrument sensing current (at ambient = 25 °C).

FINAL SURFACE TEMPERATURE ABOVE AMBIENT (°C)

DIE (DATA SHEETS)

Page No.

SECTION 6 DIE (DATA SHEETS)

203-0084-90	Differential/variable/invert amplifier6-1
203-0089-91	Vertical output amplifier
203-0155-91	4-bit 80 MHz clock flash A/D converter
203-0177-90	5-bit DAC
203-0211-90	Channel switch
203-0212-90	Vertical output
203-0213-90	600 MHz trigger 6-43
203-0214-90	Sweep DAC & logic 6-53
203-0216-90	Z-axis, autofocus amplifier 6-61
203-0227-90	Z-axis driver
203-0229-90	300 MHz trigger amplifier 6-73
203-0231-90	Sweep integrator

AMPLIFIER DIE

DESCRIPTION

The 203-0084-90 is an integrated circuit orignally designed as an Oscilloscope Vertical Amplifier.

The circuit is a differential in, differential out amplifier with variable gain capabilities. By cross-coupling the output collectors, the circuit is basically a multiplier. DC voltages applied to the control inputs can be used to vary gain from the nominal (maximum) gain through zero to the negative nominal gain. Diodes are provided on the control inputs to linearize the gain characteristics.

FEATURES

- Nominal voltage gain 2.82 (50 Ω source and loads). Set primarily by an on-chip nichrome resistor.
- Gain variable from nominal (either polarity) to zero.
- Nominal bandwidth.
- Available in three versions:

155-0078-10 (Minipak) 155-0273-00 (14 pin DIP w/o nichrome resistors) 155-0274-00 (14 pin DIP)

SYMBOLS	IDENTIFICATION	NOTES	VALUES	UNITS
V _{out-sub} MAX	MAX Maximum voltage of the outputs (pads 5, 6, 8, 9) relative to the substrate (pad 4). Prevents collector-substrate breakdown of Q5, Q6, Q7, Q8.		19	v
V _{out-cont} MAX	Maximum voltage of the outputs (pads 5, 6, 8, 9) relative to the control inputs (pads 11, 12).	Prevents collector base breakdown of Q5, Q6, Q7, Q8.	7	V
V _{cont-input} MAX			8	V
V _{sub-input} MAX	MAX Maximum voltage of the substrate (pad 4) relative to the inputs (pads 1, 13, 14, 16). Substrate voltage must be held more negative than any collector in the circuit.		0	V
V _{RQ3} MAX	MAX Maximum voltage from pad 7 to pad 11 or 12. Maximum steering diode reverse voltage to avoid degradation.		2	V
V _{R11-12} MAX	MAX Maximum voltage from pad 11 to 12 or from pad 12 to pad 11. Maximum steering diode reverse voltage to avoid degradation.		2.5	V
V _{EB} MAX	Maximum voltage from pad 2 to pads 13 or 16; or from pad 3 to pads 1 or 14.	Maximum base-emitter reverse voltage to avoid degradation.	2	V
I MAX	Maximum current, pads 2 and 3.	Sum of pad 2 current and pad 3 current.	20ª	mA
Tj MAX	Maximum junction temperature.		125	°C

ABSOLUTE MAXIMUMS

aContact Applications Engineering, IC Manufacturing if 20 mA/pad is to be exceeded.

PAD IDENTIFICATION

Pad No.	Function	Pad No.	Function
1	INPUT (Q2 Base)	10	NO PAD 10
2	BIAS (Current Source—Q1 Emitter)	11	GAIN ADJUST
3	BIAS (Current Source-Q2 Emitter)	12	GAIN ADJUST
4	SUBSTRATE	13	INPUT (Q1 Base)
5	OUTPUT (Q8 Collector)	14	INPUT (Q2 Base)
6	OUTPUT (Q6 Collector)	15	NO PAD 15
7	GAIN ADJUST Diodes	16	INPUT (Q1 Base)
8	OUTPUT (Q7 Collector)	17	Q1 COLLECTOR
9	OUTPUT (Q5 Collector)	18	Q2 COLLECTOR

PARAMETER/CONDITIONS	MIN	MAX	UNITS
BV _{CEO} Q1, Q2, at 200 μA	4.4		v
BV _{CEO} Q5, Q6, Q7, Q8 at 200 μA	4.4		V
BV _{CEO SUS} Q1, Q2 at 10 mA	4.9		v
BV _{CEO SUS} Q5, Q6, Q7, Q8 at 10 mA	4.9		v
INPUT BIAS CURRENT Q1 or Q2 (16 mA emitter current)	64	225	μΑ
NORMAL OFFSET	- 14	+14	mV
INVERT OFFSET	-14	+14	mV
NORMAL GAIN	2.68	2.96	
INVERT GAIN	2.68	2.96	
NORMAL-INVERT GAIN MATCH	-0.5	+0.5	%
NULL OFFSET	-10	+10	mV
NULL GAIN	14	+.14	
50% GAIN	.49	.51	X(AV _{NORM})
OFF FEEDTHRU	-200	+200	μV

ELECTRICAL CHARACTERISTICS

PARAMETRIC DEFINITIONS

The 203-0084-90 is specified in three different operating conditions: NORMAL, INVERT, and NULL.

In the NORMAL condition, Q5 and Q8 are conducting and Q6 and Q7 are not.

In the INVERT condition, Q6 and Q7 are conducting and Q5 and Q8 are not.

In the NULL condition, Q5, Q6, Q7 and Q8 are all conducting equally.

APPLICATIONS INFORMATION

Output Stage Considerations

Pads 7 and 12 can be voltage driven and pad 11 left open (Figure 1) if gain linearity as a function of control voltage is not critical. The voltage applied on pads 7 or 12 should be 1.2 to 3.7 volts above the quiescent voltage on pads 1, 14, 13, 16 for conducting output transistors. For nonconducting output transistors pad 7 or 12 can be at a lower potential than this. Absolute maximum ratings must be observed however. For the case of pad 7 and 12 voltage driven and pad 11 open, gain is given by:

$$\mathsf{A}_{\mathsf{V}} = \mathsf{A}_{\mathsf{V} \, \mathsf{NORM}} \Bigg[\frac{\mathsf{exp} \Big(\frac{\mathsf{qV}_{14}}{\mathsf{kT}} \Big) - \mathsf{exp} \Big(\frac{\mathsf{qV}_{7}}{\mathsf{kT}} \Big)}{\mathsf{exp} \Big(\frac{\mathsf{qV}_{14}}{\mathsf{kT}} \Big) + \mathsf{exp} \Big(\frac{\mathsf{qV}_{7}}{\mathsf{kT}} \Big)} \Bigg]$$

where $A_{V NORM} = Normal Gain$

 $V_7 =$ voltage applied on pin 7 $V_{14} =$ voltage applied on pin 12 $\frac{kT}{q} =$ 26 mV at room temperature

If gain linearity as a function of control voltage is critical, pins 7 and 12 should be current driven and pin 11 returned to a voltage so as to set pins 7 and 14 voltage to the proper level as mentioned above. Figure 2 shows this type hookup. Current driving these inputs linearizes the gain by making use of the exponential current-voltage relationship of the diodes Q3 and Q4 to cancel that of the output transistors. The gain is given by:

$$A_{V} = A_{V \text{ NORM}} \left[\frac{I_{14} - I_{7}}{I_{14} + I_{7}} \right]$$

where $I_7 = current$ into pin 7 $I_{14} = current$ into pin 12

If variable gain of only a single polarity is desired, one pair of outputs can be used and the other pair connected to separate unused loads as in Figure 3.

If fixed maximum gain is desired, one pair of outputs can be left open as in Figure 4.

In applications where the output is to be switched from one output pair to another, the difference in offset voltage between the two outputs should not be specified any tighter than 28 mV (the sum of normal and invert offset specifications).

APPLICATIONS INFORMATION (cont)

Input Stage Considerations

The bias current (pin 2 and 3 current) should not exceed 18 mA per side or a decrease in the life of the part may result.

Typical Performance Graph

(not a specification, for information only) 203-0084-90 GAIN Vs TEMPERATURE 2.860 +1%2.840 +36VOLTAGE GAIN 2.820 (32 Ω resistor-Nominal pins 2 to 3) 2.800 -36 -1% 2.780 30°C 10°C ပ္၀ 10 °C 20°C +30°C +60°C 20°C +40°C +50°C 2.760 **TEMPERATURE**

PRODUCT PRECAUTIONS

Input Protection

Input base-emitter voltages should not exceed 2 V in the negative direction and 1 V in the positive direction.

Output Loading

Outputs should be limited to less than those listed in Absolute Maximum Ratings.

Power Supply Turn-On/Turn-Off Sequence

Substrate voltage should be turned on coincident with or before the other voltages.

Handling Procedures

Static sensitive handling procedures should be implemented for this part.

VERTICAL OUTPUT DIE

DESCRIPTION

The 203-0089-91 is a high frequency, 3 stage current gain amplifier. The circuit has differential inputs and outputs and is designed to be driven from a balanced 50 Ω source. It is capable of supplying large output current swings.

FEATURES

- 3 stage current gain amplifier
- Ft doublers
- 600 MHz bandwidth
- 160 mA output current

SYMBOLS	IDENTIFICATIONS	NOTES	VALUES	UNITS
V _{3.4.9. & 10} MAX	Maximum voltage to be applied from pad 3, 4, 9 & 10 to pad 14 (ground).		12.5	V
V _{5.8-Sub} MAX	Maximum voltage allowable from pad 5 to substrate or from pad 8 to substrate.	Substrate is back of die.	15.5	V
V _{5-4.10} MAX	Maximum voltage allowable from pad 5 to pad 4 or 10.	Maximum C-E voltage of output transistors Q2 & Q4.	4.0	v
V _{8-3.9} MAX	Maximum voltage allowable from pad 8 to pad 3 or 9.	Maximum C-E voltage of output transistors Q1 & Q3.	4.0	V
V ₁₂₋₁₃ 16-1 MAX	Maximum voltage allowable on pad 13 with respect to pad 2 or on pad 16 with respect to pad 1.	Maximum reverse bias on B-E junction of Q13 & Q14.	2.0	V
Ι _{ουτ} ΜΑΧ	Maixmum output current pad 5 or pad 8.		160	mA
TJ	Operating junction temperature		−15 to +125	°C
Τ _{stg}	Storage temperature		-55 to +125	°C

ABSOLUTE MAXIMUMS

Maximum Assembly Temperature

Die Attach	1 Minute Maximum	400	°C
Die Attach Adhesive Cure	2 Hours Maximum	150	°C
Wire Bond	1 Minute Maximum	350	°C
Bake Out/Lid Attach	2 Hours Maximum	175	°C

6-9

PAD IDENTIFICATION

Pad #

Description

1 2	 signal input 1st stage collector supply
2 3 4] 5	3rd stage emitter current source
5	+ signal output
6	3rd stage bias
7	V _{cc}
8 9)	 signal output
9) 10)	3rd stage emitter current source
11	1st stage collector supply
12	+ signal input
13	1st stage emitter current source
14	substrate gnd
15	2nd stage bias
16	1st stage emitter current source

ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	MIN	МАХ	UNITS
I _{os}	Output Offset Current $(I_5 - I_8)$ Input Current = 0	-8.2	8.2	mA
Ai _o	Current Gain (Ctr. Screen) Input Current = $0 + \Delta$ See Note 1	13.85	20.65	
Ai ₁	Current Gain (Top Screen) Input Current = $1.5 \text{ mA} + \Delta$ See Note 1	13.85	20.65	
Ai ₂	Current Gain (Bot. Screen) Input Current = $1.5 \text{ mA} + \Delta$ See Note 1	13.85	20.65	
Aiı	Gain Linearity	5.0	+5.0	%
Ai ₂	Gain Linearity	-5.0	+5.0	%
	f_{τ} of test key transistor at $V_{CE}=4$ V, $I_{C}=80$ mA	1.5	4	GHz

NOTE 1: As tested in the Test Circuit.

DEFINITIONS

Output Offset Current, IOS

The difference in current flowing in the two outputs with zero input current.

Current Gain, Ai

For determining current gain the die is assumed to be differentially driven by a current source. Current flowing into one input flows out the other input ($I_B = I_A$ in Figure 2). The current "loops" through the amplifier and is known as "Input Loop Current".

Three gains are specified, with different quiescent input currents:

Quiescent Input				
	Gain	Loop Current	Change in Input Loop Current (Δ)	
(Center Screen)			+1.0 mA to -1.0 mA Change (2 mA pk to pk signal)	
(Top Screen)	Ai ₁	1.5 mA	+1.0 mA to -1.0 mA Change (2 mA pk to pk signal)	
(Bottom Screen)	Ai ₂	— 1.5 mA	+1.0 mA to -1.0 mA Change (2 mA pk to pk signal)	

All parameters are specified per the schematic diagram and are valid only at 25°C ambient temperature. This circuit approximates the usage in the 155-0077-00 part number as used in the 7704A instrument. The load is assumed to provide current paths from a positive supply to the outputs. The op-amp automatically balances the circuit. This could alternately be done manually by varying the voltage at pad 10 for maximum gain. The 50 Ω resistors on the inputs are considered to be an integral part of the amplifier. That is, the inputs are defined to be the points indicated as "input" in Figure 1.

6-11

203-0089-91

DEFINITIONS (continued)

Currents I_c and I_p of Figure 2 always flow into the die as they are collector currents of transistors. With no signal applied to the input, the output currents should be equal except for offset currents. With input applied, the output currents swing above and below their quiescent value with one current change, ΔI_c or ΔI_p ($\Delta I_c = \Delta I_p$ nominally), appears to flow in a loop into one output and out the other. The term "Output Loop Current" is used to describe variations in the output currents from quiescent conditions.

Current gain is defined as:

$$\mathsf{Ai}_{\mathsf{0}} = \frac{\Delta \mathsf{I}_{\mathsf{C}} - \Delta \mathsf{I}_{\mathsf{D}}}{\Delta \mathsf{I}_{\mathsf{A}} + \Delta \mathsf{I}_{\mathsf{B}}}$$

Gain Linearity

Sometimes called gain compression or expansion. This parameter measures the change in small signal gain as a function of input quiescent current, expressed as a percent.

$$\Delta \mathsf{Ai}_1 = \frac{\mathsf{Ai}_1 - \mathsf{Ai}_0}{\mathsf{Ai}_0} \times 100\%$$

$$\Delta \mathsf{Ai}_2 = \frac{\mathsf{Ai}_2 - \mathsf{Ai}_0}{\mathsf{Ai}_0} \times 100\%$$

APPLICATIONS INFORMATION

Typical Bias Configuration

Figure 3 shows a typical biasing scheme for the device.

Electrical Considerations

Typical DC operating voltages and currents are indicated in Figure 3.

203-0089-91

NOTE: The circuit was designed for optimum performance at these bias voltages. Caution should be exercised in making significant changes from these levels.

FIGURE 3

APPLICATIONS INFORMATION (cont)

Biasing

In general, the biasing is accomplished as follows:

- 1. Apply 12 volts to pad 11 and approximately 10.25 volts to pad 10.
- Decide on the standing output current on pads 9 and 12. This current should not exceed 80 mA per side. Choose the resistors on pads 7, 8, 14, 15 to provide half of this current at each emitter (not to exceed 40 mA). The voltage at these points is about one V_{BE} drop below the pad 10 voltage or about 9.5 volts.
- 3. The currents flowing out of the emitters from pads 2 and 4 through resistors to the negative supplies are chosen. These currents are referred to as the "tail" currents.
- 4. Apply approximately 5.75 volts to pad 3.
- 5. Choose the biasing networks on pads 6 and 16 to provide a voltage of approximately 6 volts. This voltage must be approximately .25 volt higher than that applied at pad 3 to provide equal currents in Q1 and Q8 and in Q9 and Q10. The current flowing into pads 6 and 16 is approximately the pad 2 and 4 tail current multiplied by .98 (Q13, Q14 x Q11, Q12 \simeq .98).
- NOTE: The circuit was designed for optimum performance at these bias voltages. Caution should be exercised in making significant changes from these levels.

Gain Polarity

The gain polarity is as follows:

An increase in current into pad 1, or a decrease in current into pad 5, causes the current flowing into pad 12 to increase and the current flowing into pad 9 to decrease.

APPLICATIONS INFORMATION (cont)

Typical Load Configuration

The typical application is in a hybrid used to drive the vertical deflection plates of a CRT. Two discrete output transistor chips are included in the hybrid to provide the large voltage swings necessary.

FIGURE 4

APPLICATION TO DRIVE CRT DEFLECTION PLATES

It should be noted, that although this die is capable of delivering up to 80 mA per side, application of these capabilities becomes dependent on the output discrete transistors packaged in the hybrid(s). Device history shows that vertical output applications of 100 MHz BW driving a small screen (portable) oscilloscope are not drive limited. However, large screen and/or 250 MHz BW instruments do not always make gain/aberration (bandwidth requirements with acceptable plant yields).

The minimum gain has been adjusted so that the die plus discrete output transistors with Beta \geq 30 will pass the hybrid spec of 13.85 to 20.65.

4-BIT PARALLEL A/D CONVERTER

DESCRIPTION

The 203-0155-91 is a 17 level digitizer, designed for use in parallel-series A/D converter systems. It consists of 16 comparator cells, digital encoding, circuitry, and output drivers.

FEATURES

- 80 MHz Maximum Clock Rate
- 850 mW Power Dissipation
- ECL Output
- Two 203-0155-01's may be combined for a 5-bit parallel A/D converter
- 5 MHz Input Bandwidth

Symbol	Limits	Units	Notes
V _{cc}	0 to +6	V	
V _{BB}	0 to +6	v	
VEELIN	-6 to 0	v	
VEEDIG	-6 to 0	v	
$V_{cc} - V_{BB}$	0 to 6	v	
V _{IN}	-1.65 to 3.2	v	
Vi, i = 1-16	-1.65 to 3.2	v	
$V_{IN} - Vi, 1 = 1-16$	0 to 3.3	v	See Note
I (ECL OUT)	0 to 10	mA	Output Current From B_0 , B_1 , B_2 , B_3 , B_x
V _{SP}	−2 to −4	v	
V _{SN}	−2 to −4	v	

ABSOLUTE MAXIMUMS

NOTE: Maximum differential voltage between V_{IN} and any Vi (i = 1-16) should not exceed 3.3 V. Larger voltages may degrade the current gain of input transistors which will affect offset voltage. This results from reverse bias of emitter-base diodes.

75°C

MAXIMUM STORAGE TEMPERATURES

Non-Destructive (In Clean, Dry Environment)

OPERATING JUNCTION TEMPERATURES

Bake Out/Lid Attach

a. Accelerated Burn In A	fter Assembly Into Hybrid		125°C
b. In Product Service			125°C
Assembly	,		
Die Attach	1 Minute Maximum	400°C	
Wire Bond	1 Minute Maximum	350°C	

2 Hours Maximum

175°C

6-18

Pad No.	Name	Input/Output	Description
1	V _{SN}	Input	Negative Strobe
2	V _{SP}	Input	Positive Strobe
3		Supply	Negative Analog Supply
4	V1	Input	Reference Voltage (Lowest)
5	V ₂	Input	Reference Voltage
6	V ₃	Input	Reference Voltage
7	V4	Input	Reference Voltage
8	V ₅	Input	Reference Voltage
9	V ₆	Input	Reference Voltage
10	V ₇	Input	Reference Voltage
11	V ₈	Input	Reference Voltage
12	V ₉	Input	Reference Voltage
13	V ₁₀	Input	Reference Voltage
14	V ₁₁	Input	Reference Voltage
15	V ₁₂	Input	Reference Voltage
16	V ₁₃	Input	Reference Voltage
17	V ₁₄	Input	Reference Voltage
18	V ₁₅	Input	Reference Voltage
19	V ₁₆	Input	Reference Voltage (Highest)
20	V _{IN}	Input	Analog Input
21	GND-LIN	Supply	Analog Ground
22	V _{cc}	Supply	Positive Supply
23	GND-DIG	Supply	Digital Ground
24	B ₃	Output	MSB
25	B _x	Output	Over-Range
26	Bo	Output	LSB
27	B ₁	Output	LSB +1
28	B ₂	Output	LSB +2
29	V _{EE} -DIG	Supply	Negative Digital Supply
30	V _{BB}	Supply	Base Bias Supply

TERMINAL IDENTIFICATION

.

Parameter/Conditions	Symbol	Min	Max	Units
Positive Supply (5.0 V)	V _{cc}	4.8	5.5	V
Base Supply (3.7 V)	V _{BB}	V _{IN} +0.7	3.7	v
Negative LIN Supply (-5.2 V)	V _{EE} -LIN	-5.5	-5.0	V
Negative DIG Supply (-5.2 V)	V _{EE} -DIG	-5.5	-5.0	V
Positive Supply Current (Nominal Supply Voltages)	I(V _{cc})	60	100	mA
Base Supply Current (Nominal Supply Voltages)	I(V _{BB})	0.1	0.8	mA
Negative LIN Supply Current (Nominal Supply Voltages)	I(V _{EELIN})	28	52	mA
Negative DIGITAL Supply Current (Nominal Supply Voltages)	I _c I(V _{EE} -DIG)	23	45	mA
Input Range	V _{IN}	- 1.536	+1.536	v
Reference Input Range	Vi i = 116	-1.536	+1.536	V
Differential Input Range	V _{IN} -Vi	-3.2	3.2	V
Strobe Levels	V _{SP} V _{SN}	-3.35	-3.15	V
Analog Input Bias Current	I(V _{IN})	15	160	μA
Reference Input Current	I(V _{IN}) i = 116	1.0	10	μA
ECL-OUT Low	V _{out} (LO)	-2.0	-1.6	V
ECL-OUT High	V _{out} (HI)	-0.98	-0.7	V
Differential Offset Non-Linearity Guarantee over V _{IN} Range	ed ΔV_{os}	-5 -1.5	+5 +1.5	mV V

ELECTRICAL CHARACTERISTICS

 f_{τ} of test key transistors: 1.8 GHz min. at $V_{c\epsilon}=4$ V, $I_c=2$ mA.

Applications Information

To function properly, it is required that the reference voltage inputs be monotonically increasing from V₁ to V₁₆. The binary output code "rolls over" from 01111 to 10000 when V_{IN} is greater than V₁₆.

Two chips may be connected together to form a 5-bit parallel A/D converter. The reference voltage inputs are stacked in series while the analog input and strobe lines are connected in parallel. The four lower order bits may be wired together by pairs with the over range bit of the lower chip becoming the MSB.

Careful attention to layout is essential as the part is susceptible to interaction of the strobe signals and input and references. A small (22 Ω) resistor in the input line is helpful. Bypassing close to the circuit is needed.

 V_{BB} should not come up before V_{CC} .

ECL D/A DIE

DESCRIPTION

The 203-0177-90 is designed for use with the 203-0155-00 in parallel serial A/D converter systems. Five precision binary scaled current sources are independently switched to either I or \overline{I} , two supplementary current outputs. Switching is done by an emitter coupled pair driven differentially by an amplifier which converts the single ended input to a level-shifted differential drive.

FEATURES

- 5 BIT DAC
- Settling time to 8 bits 20 ns (240 $\Omega,~10~\text{pF}$ load)
- Power Supply -5.2 volts
- Input ECL compatible
- Two unswitched LSB current sources

ABSOLUTE MAXIMUMS

ELECTRICAL SYMBOL	VALUE	UNITS
B ₁	-4 to 0	V
B2	-4 to 0	v
B ₄	-4 to 0	v
B ₈	_4 to 0	V
B ₁₆	4 to 0	V
Bias	−12 to −2	V
1	-2 to +5	V
Ī	-2 to +5	V
I _{1A}	-2 to +5	V
I _{1B}	-2 to +5	V
F _B	-2 to +5	V
VEE	-6 to 0	V

Emitter connections R_1 , R_{1A} , R_{1B} , R_2 , R_4 , R_8 , R_{R8} , and R_{16} should never be more positive than Bias. Bypass must not be pulled down externally below -1.5 volts.

PIN NUMBER	NAME	INPUT/OUTPUT	DESCRIPTION
1	R _{1B}	Current Source	ILSB A Current
2		Current Source	ILSB A Current
4	R ₂	Current Source	2ILSB Current
5	R _a	Current Source	8ILSB Current
6	R _{R8}	Current Source	Emitter Reference Current
7	BIĂS	Output	
8,9	R ₁₆	Current Source	16 ILSB (MSB) Current
10	IRĔF	Input	Collector Reference Current
11	R₄	Current Source	4ILSB Current
12	ī [']	Output	Supplementary Current Output
13	1	Output	Current Output
14	GND		Ground
15	VEE	Neg. Supply	
16	B₄	Input	LSB +2 Input
17	B ₁₆	Input	MSB Input
18	B ₈	Input	LSB +3 Input
19	B ₂	Input	LSB +1 Input
20	B	Input	LSB Input
21	Bypass	Output	Bypass Capacitor
22	ILSB B	Output	Utility LSB Current Output-B
23	ILSB A	Output	Utility LSB Current Output-A
24	R _{1A}	Current Source	ILSB B Current

TERMINAL IDENTIFICATION

PARAMETER/CONDITIONS	SYMBOL	MIN	MAX	UNITS
Logical "Low" to Inputs $B_1, B_2, B_4, B_8, B_{16},$	ECL (Lo)	-2.0	1.62	V
Logical "High" to Inputs B ₁ , B ₂ , B ₄ , B ₈ , B ₁₆ ,	ECL (Hi)	-0.96	-0.7	V
Negative Supply	V _{EE}	-5.5	-5.0	V
Nominal = 6.4 mA Reference Current	I _{REF}		8	mA
Nominal = 12.8 mA Most Significant Bit Current	I _{MSB}		16	mA
Output Compliance	I T	-1.6	3.5	V
Output Compliance	I _{1А} I _{1В}	1.6	3.5	V
Bias for Current Sources	Bias	-9	-2.7	V
Power Supply Current V _{EE} (Dig)	I (V _{EE} -D)	- 15	-10	mA
Non-Linearity (Full Scale)*	Error		0.025	% Error
Non-Linearity (Full Scale)*	Error		0.1	% Error

ELECTRICAL CHARACTERISTICS

*Non-linearity is defined to be sure of absolute values and therefore must be non-negative.

APPLICATIONS INFORMATION

The part is designed to operate with a reference of +3.072 volts or ± 1.536 volts. Full scale output current is then 25.6 mA. A -5.2 volt digital supply is needed to set up the reference current. Digital inputs are ECL compatible and sink 1 mA each.

The component is tested to have linearity better than $\pm 0.05\%$ ($\pm 1/2$ LSB at 10 bits). More specifically, the 4 LSB currents ratio binarily to the MSB current within $\pm 0.05\%$ of full scale where full scale is defined to be twice the MSB current. Differential non-linearity is also tested so that each 1-bit transition causes an output change of 1/32 of full scale $\pm 0.05\%$ full scale. A final check of overall linearity is made by testing that the sum of the absolute values of each bit current error is less than 0.1% of full scale. This guarantees an overall non-linearity of less than $\pm 0.05\%$.

Because of the finite and variable output resistance, maximum accuracy will be achieved by operating the output into a fixed voltage. It is expected that this will be necessary to achieve 10-bit accuracy.

Greatest accuracy may be attained by functional trimming the emitter current setting hybrid resistors. The trimming should be done with output voltage constant.

To minimize the effect of emitter-base diode offsets and drifts a large voltage should be maintained across the emitter current setting resistors. At least 1 V for 8-bit accuracy and 4 V for 10-bit.

In connecting the biasing feedback loop, it should be observed that there is an inverting gain within the IC and the op-amp inputs must be as indicated in the figure below.

BIASING CIRCUIT FOR 203-0177-90

Pin 21 (bypass) is a voltage supply derived on the IC (about -1.9 V). Slightly faster settling of the output may be realized by bypassing this node with a capacitor (about 0.1 μ F) to ground.

Digital input signals should not exceed the ECL range, -0.7 V to -2.0 V during operation to avoid saturating transistors within the IC.

The utility current sources ILSBA and ILSBB are designed to carry one LSB current and are provided for a specific application. They may be used as required. If unused, it is recommended that the emitters be connected to Bias (Pin 7) and the collectors to Bypass (Pin 21).

CHANNEL SWITCH DIE

DESCRIPTION

The 203-0211-90 is a four input one output channel switch and amplifier intended for 300 MHz vertical deflection systems. Four TTL compatible control pins allow selection of any one of the four inputs or the sum of CH1 and CH2.

FEATURES

- 600 MHz bandwidth
- Output intended to drive 150 Ω load
- CH1 & CH2
 - Current driven
 - Differential transresistance (75 mV per Div/.25 mA per Div) is 300 Ω ±3%
- CH 3, 4, & 5
 - Voltage driven
 - Voltage gain .75 ±2%

.

SYMBOLS	IDENTIFICATION	MIN	MAX	UNITS
T	Operating Junction Temperature	- 15	+125	С
T _{STG}	Storage Temperature	-62	+125	С
V-VS	Maximum Input Voltage –VS1, –VS2, –VS3, –VS4 Maximum Input Range	– .3	VCC5 + .3	V
	CH1 & CH2 Differential Inputs	-2.0	+5.0	v
	CH3 & CH4 & CH5 Maximum Input range	- 1.5	+1.5	V
I-CH1] ICH2	Maximum Input Current Range CH1 & CH2 Differential Inputs	+.01	24	mA
V-CC5	+5 V Supply	-0.3	7.0	v
V-EE5	-5 V Supply	+0.3	-7.0	V
V-HFADJ	HFADJ Voltage	-5.0	+5.0	V
V-IBIAS	IBIAS Voltage	-5.0	+5.0	V

ABSOLUTE MAXIMUMS

Assembly

Die Attach	1 minute maximum	400°C
Wire Bond	1 minute maximum	350°C
Bake Out/Lid Attach	2 hours maximum	175°C

1

6-30

PAD #	NAME	INPUT/OUTPUT	DESCRIPTION
1	CH5 -	Input	CH5 Inverting Input
2	CH4-	Input	CH4 Inverting Input
3	CH4+	Input	CH4 Noninverting Input
4	CH3-	Input	CH3 Inverting Input
5	CH3+	Input	CH3 Noninverting Input
6	CH5+	Input	CH5 Noninverting Input
7	+Out	Output	+ Differential Output
8	Gnd		Ground Terminal
9	CH3/Not	Input	CH3 Select
10	CH4/Not	Input	CH4 Select
11	HFADJ	Bias	High Frequency Adjust
12	VCC5	Bias	+5 V Supply
13	Bypass		Bypass (.01 µF to GND)
14	CH2-	Input	CH2 Inverting Input
15	CH2+	Input	CH2 Noninverting Input
16	CH1-	Input	CH1 Inverting Input
17	CH1+	Input	CH1 Noninverting Input
18	CH1/Not	Input	CH1 Select
19	CH2/Not	Input	CH2 Select
20	V31	Test	Test Point
21	VEE5	Bias	-5 V Supply
22	IBIAS	Bias	Bias Input
23	GND		Ground Terminal
24	–Out	Output	 Differential Output

TERMINAL IDENTIFICATION

ELECTRICAL CHARACTERISTICS

NUMBER	CONDITIONS	MIN	МАХ	UNITS
1	DC Channel Isolation	300:1		
2	CH1, CH2 Differential Transresistance mV Output/mA Input 75 mV per div/.25 mA per div	292.5	307.5	Ω
3	CH1 & CH2 Small Signal Gain w/300 mV output. (% of center screen gain)	98.2	99.5	%
4	CH3 & CH4 & CH5 Differential Voltage Gain	.735	.765	·····
5	CH1 & CH2 Gain Mismatch	5	.5	%
6	CH3 & CH4 & CH5 Gain Mismatch Calculated	5	.5	%
7	CH1 or CH2 to CH3, CH4, CH5 Mismatch (gain)	-3.0	3.0	%
8	CH1, CH2 add mode, difference from CH1 mode gain	1.0	1.0	%

6-31

NUMBER	CONDITIONS	MIN	МАХ	UNITS
9	CH1, CH2 Input Common Mode bias voltage at - 12 mA common mode bias current		-0.500	V
10	CH5 Input Resistance, each side Pad 1 to 8, Pad 6 to 8	15K		Ω
11	CH5 Bias Current at 0 V input Pads 1 & 6	- 10.0	100	μA
12	VS1, VS2, VS3, VS4			
	Bias current at 0.4 V input Bias current at 2.4 V input VIL Valid Range for Low Data VIH Valid Range for High Data	0.60 10.0 30 2.0	+0.0 +10.0 +.80 VCC5 + .3	mΑ μΑ V V
13	CH3, CH4 Common Mode Bias Voltage Inputs Open Pads 2 & 3, 4 & 5	-50	+50	mV
14	Output Common Mode Voltage Pads 7 & 25	-50	+50	mV
15	VEE5 Current Range Pad 23	-90	-140	mA
6	VCC5 Current Range Pad 12	100	140	mA
17	Input Resistance Differential Input CH1 (Pads 17 & 18) CH2 (Pads 15 & 16)	145	153	Ω
	CH3 (Pads 4 & 5) CH4 (Pads 2 & 3)	147	153	Ω
8	Output Resistance Each side of differential output Pads 7 & 24	73.5	76.5	Ω
9	Output Offset for Channels 1, 2, 3, 4	-37.5	+37.5	mV
20	Output Offset for Channel 5	-20.0	+20.0	mV
21	Output Offset, Add (CH1 + CH2) Mode	-75	+75	mV
22	IBIAS, Bias Voltage Range	-0.100	+0.100	V
23	HFADJ, Bias Voltage Range	-3.65	-4.75	V
24	Power Dissipation (For Reference Only)		1.2	w

ELECTRICAL CHARACTERISTICS (cont)

6-32

VERTICAL OUTPUT AMPLIFIER

DESCRIPTION

ú

The 203-0212-90 is a high bandwidth, high gain, high linearity, low thermal distortion, vertical output amplifier. The IC is configured as a two stage differential input/differential output transconductance block utilizing the cascomp error correcting topology in each stage. It is intended to drive a common base output stage to provide necessary voltage compliance.

FEATURES

- Potentiometer controlled gain
- Centering adjustments
- Trace separation amp
- Beam find
- TTL compatible gating
- Low power dissipation
- SHIII process
- DC to 660 MHz bandwidth

SYMBOL	IDENTIFICATION	MIN	MAX	UNITS	
TJ	Operating Junction Temperature	-15	+ 150	°C	
Т _{sтg}	Storage Temperature	-55	+150	°C	
Pad 1 Pad 2	Input "A"	V _{EE} -0.3	V _{CC5} +0.3	V	
Pad 27 Pad 28	Input "B"	V _{EE} -0.3	V _{CC5} +0.3	V	
	Maximum Differential Voltage Input "A" to Input "B"	-1.0	1.0	V	
Pad 3	TSEP OUT	V _{EE} -0.3	V _{CC5} +0.3	V	
Pad 4	"B"	V _{EE} -0.3	V _{CC5} +0.3	V	
Pad 5	TSEP IN	V _{EE} 0.3	V _{CC5} +0.3	v	
	Maximum Differential Voltage, "B" to TSEP IN or TSEP OUT	1.0	2.0	V	
Pad 6	V _{EE5}	-7.0	+0.3	V	
Pad 7	"C"	V _{cc} -0.3	V _{CC5} +0.3	v	
Pad 8	GA	V _{EE} -0.3	V _{cc5} +0.3	v	
Pad 9	BWLBLO	GND	+15	V	
Pad 20	BWLALO	GND	+15	V	
Pad 12	BWLAHI	V _{cc5}	+12	V	
Pad 19	BWLBHI	V _{CC5}	+12	V	
Pad 10	IS	V _{EE} -0.3	V _{CC5} +0.3	V	
Pad 11	GND	V _{EE} -0.3	V _{CC5} +0.3	V	
Pad 13	OUT "B"	V _{cc5}	+25	V	
Pad 14	OUT "A"	V _{ccs}	25	v	

ABSOLUTE MAXIMUMS

SYMBOL	IDENTIFICATION	MIN	MAX	UNITS
Pad 15	V _{CC14}	V _{cc5} -0.3	25	V
Pad 16	V _{CC5}	V _{EE} -0.3	V _{CC14} +0.3	V
Pad 17	ТА	V _{CC5}	V _{CC14} +0.3	V
Pad 18	415	GND -0.3	V _{cc5} +0.3	V
Pad 21	V _{CC/2}	GND	V _{cc5} +0.3	V
Pad 22	BWLO/O	-1	V _{cc5} +0.3	V
Pad 23	BF	-1	V _{cc5} +0.3	V
Pad 24	Bypass Common	V _{EE} -0.3	V _{cc5} +0.3	V

ABSOLUTE MAXIMUMS (cont)

CAUTION NOTES:

- 1. No input may fall below $V_{\mbox{\tiny EE5}}$ –.3 to avoid latch-up and possible destruction.
- 2. All supplies should retain their relative polarities on power-up.

PIN NUMBER	NAME	INPUT/OUTPUT	DESCRIPTION
1	Input A	Input	Main Signal Input Left
2	Input A	Input	Main Signal Input Left
3	TSEP OUT	Output	Trace Separation Buffer Out
4	B	Test	1st Stage Error Amp Bias Test Point
5		Input	Trace Separation Buffer In
6	VEE5	Supply	Minus 5 V Supply
6 7	С	Input	Centering Input
8	GA	Input	Gain Adjust Input
9	BWLALO	Output	A Bandwidth Limit Filter Out
10	IS	Test	1st Stage Bias Test Point
11	GND	Supply	Ground
12	BWLA HI	Input	A Bandwidth Limit Filter Input
13	OUT A	Output	Main Stage Output Left
14	OUT B	Output	Main Stage Output Right
15	VCC14	Supply	+14.3 V Supply
16	VCC5	Supply	+5 V Supply
17	TA	Bias	Thermal Adjust Resistor Pad
18	415	Bias	Output Bias Current Setting Resistor
19	BWLB HI	Input	B Bandwidth Limit Filter Input
20	BWLB LO	Output	B Bandwidth Limit Filter Output
21	VCC/2	Test	1st Stage CB Stage Bias Test Point
22	BWL 0/0	Input	Bandwidth Limit Mode On/Off
23	BF	Input	Beam Find Mode On/Off
24	Bypass Common	Bias	Optional Input Common Bypass
25	AUXOUT A	Output	Nonfunctional
26	AUX O/O	Input	Aux. Amp On/Off (Non-Functional)
27	Input B	Input	Main Signal Input Right
28	Input B	Input	Main Signal Input Right

TERMINAL IDENTIFICATION

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, the following operating conditions shall apply:

VCC14 (PAD #15) between 14 and 14.6 V VCC5 (PAD #16) between 4.9 and 5.1 V VEE5 (PAD #6) between -5.1 and -4.9 V OUTA and OUTB (PADS #13 and 14) no lower than VCC14 R415 = 1700 $\Omega \pm 1\%$ RTA = 2200 $\Omega \pm 10\%$

PAD	SYMBOL	CONDITIONS	MIN	MAX	UNITS
1	I _{CCOUT}	+15 V DC Applied to Pins 13 & 14. Bias Current	109	132	mA
2	ICC14	+14 V DC Supply Bias Current (Pad 15)	Nominal	35	mA
3	ICC5	VCC5 Bias Current (Pad 16)	12	18	mA
4	IEE5	-5 V Supply Bias Current (Pad 6)	-80	-120	mA
6	IOBF	Output Current-Beam Find Zero Bias Current into either Output A or Output B with Beam Find Pin "HI"	29	105	mA
7	liga	Gain Adjust Bias Current Current Flowing into Gain Adjust Pin with V(GA)=VCC5	Nominal	40	μA
9	VIHBWL	BWL Gate Input Voltage Range (HI)	2.0		v
	VILBWL	BWL Gate Input Voltage Range (LO)		0.8	v

PAD	SYMBOL	CONDITIONS	MIN	MAX	UNITS
10	IIHBWL	BWL Gate Input Bias Current (HI)	Nominal	10	μΑ
	IILBWL	BWL Gate Input Bias Current (LO)	——	-400	μΑ
11	VIHBF	Beam Find Input Voltage (HI)	2.4		v
	VILBF	Input Voltage (LO) (Pad 23)		0.8	v
12	IIHBF	Beam Find Bias Current (HI) Bias Current	Nominal	10	μΑ
	IILBF	(LO) Bias Current	0	-400	μA
13	ΙΟΜΑΧ	Main Output Current Magnitude of Differential Output Current Output A to Output B (Pad 13 to Pad 14). Input Differential Voltage of 2 V applied to Pads 1 & 28. Beam Find Input LO.	42.2	51	mA
14	IOMAXBF	Main Output Current Same conditions as #14 with BF (Pad 23) HI.	3.0	25.2	mA
15	VOMAXTS	Trace Sep Control Voltage Output Voltage at Pad 3 with External Divider Network attached and $+5$ V and -5 V applied to Input Pad 5, respectively.	1.9	425	v
16	GMMMIN	Main Stage Gain VGA = 0 V Ratio of Diff. Output Current (Pad 13 to Pad 14) to the Diff. Input Voltage V(IN)A - V(IN)B (Pads 1, 2 to Pads 27, 28) 1 Div. deflection at Output Offset subtracted.	· · · · · · · · · · · · · · · · · · ·	.166	мно
17	GMMNOM	Main Stage Gain VGA = 2.5 V Same as #21 above	.166	.257	мно

ELECTRICAL CHARACTERISTICS

.

PAD	SYMBOL	CONDITIONS	MIN	MAX	UNITS
18	GMMMAX	Main Stage Gain VGA = 5.0 V Same as #21 above	.257		мно
19	IOC28+	Output Current Diff. Output Current Out. A Ref. to Out B GMM = .166 VC = 0 VIN = 0 (Pad 13 to Pad 14)		-4.7	mA
20	IOC28—	Output Current Diff. Output Current Out. A Ref to Out B GMM = .166, VC = -5 V, VIN = 0 V (Pad 13 to Pad 14)	4.7		mA
21	IOC43+	Output Current Diff. Output Current Out. A Ref to Out B GMM = .257, VC = 0 V, VIN = 0 V (Pad 13 to Pad 14)		-6.04	mA
22	IOC43-	Output Current Diff. Output Current Out. A Ref to Out B GMM = .257, VC = -5 V, VIN = 0 V (Pad 13 to Pad 14)	6.04		mA
23	AVTS	Trace Sep Gain Small-Signal Voltage Gain at TSEP OUT Referenced to TSEP In with a 500 Ω Load to Ground on TSEP Out and a 500 Ω Source Resistance	.92	1.00	
24	AVBWL	Gain Change in BWL Mode. Ratio of Main Stage Gain w/BWL Input Low to Main Stage Gain w/BWL Input HI.	.986	.999	

ELECTRICAL CHARACTERISTICS (cont)

.

PAD	SYMBOL	CONDITIONS	MIN	MAX	UNITS
25	LM	Main Stage Linearity. Ratio of the Differential Input Voltage causing a Diff. Output Current change from $+3$ Div to $+4$ Div (or -4 Div to $+3$ Div) to the Diff. Input Voltage causing a Diff. Output Voltage change from -1 Div to $+1$ Div.	.98	1.01	
NOTE: S	pecifications 26 th	rough 33 are guaranteed by the Fa	b Process and	are not tested	at Die Sort.
26	ZBWL	BWLHI (1), BWLHI (2) Input Impedance. Small signal Low Freq Input impedance	70	90	Ω
27	ZINTS	Trace Separation small signal impedance	50		ΚΩ
28	IINTS	Quiescent Trace Separation Input Bias Current, $VTS = 0$	7.0	20.5	μA
29	ZINC	Centering Input Impedance	3.5	7.0	ΚΩ
30	VCOC	Open Circuit Centering Pad -2.7 -2 Voltage		-2.3	V
31	ZINVCC/2	VCC/2 Input Impedance Small Signal	750	1300	Ω
32	VCC/20C	Open Circuit VCC/2 Pad Voltage	1.9	2.2	V
33	ZOBWLLO	Small Signal Differential Output Impedance, BWLALO to BWLBLO	20K		Ω

ELECTRICAL CHARACTERISTICS (cont)

APPLICATION INFORMATION

203-0212 Block diagram showing typical application

SHF III TRIGGER

DESCRIPTION

The 203-0213-90 die operates in several modes to provide sweep triggers or to shape the input for digital functions. It processes signals from DC to 600 MHz. The circuit dynamically selects the trigger sources in response to source code inputs. Slope, coupling, and mode are determined by a serially loaded control register.

- Bandwidth DC to 600 MHz
- 5 Signal Source Trigger Circuit (CH1-CH5)
- Control Register
- Signal Level Detection Modes
 - Sweep Trigger Mode
 - Slow Compare Mode
 - Fast Compare Mode
 - Strobed Fast Compare Mode

203-0213-90

203-0213-90 LOGIC BLOCK DIAGRAM

SYMBOLS	IDENTIFICATION	MIN	МАХ	UNITS
Tj	Operating Junction Temperature	- 25	+125	°C
T _{STG}	Storage Temperature	-50	+150	°C
	Digital Inputs With Common Parameters -CC, CD, -DS, -SR0, -SR1, -SR2			
	Safe Input Range	-0.3	(VCC5 +0.3)	v
	Maximum Bias Current	25	- 250	μA
VCC5	Maximum Voltage Range	-0.3	+7.0	v
VEE5	Maximum Voltage Range	+0.3	7.0	v
CH1, CH2, CH3, CH4, CH5	Maximum Voltage Range		±2.0	V

ABSOLUTE MAXIMUMS

a 2

PAD	NAME	INPUT/OUTPUT	DESCRIPTION
1	VEE	SUPPLY	-5 Volt Supply
2	EVCC	SUPPLY	Extra Contact to DVCC
3	-SR2	INPUT	Not Bit 2 Source Select
4	-SR1	INPUT	Not Bit 1 Source Select
5	-SR0	INPUT	Not Bit 0 Source Select
6	-DS	INPUT	Not Delay Select
7	CD	INPUT	Control Data Input
8	_CC	INPUT	Not Control Clock Input
9	–STB	INPUT	Not Fast Compare Strobe
10	DGND	SUPPLY	Digital Ground
11	IST		External Pulldown to -5 Volts
12	–TSO	OUTPUT	Not Trigger Status Output
13	—TG	OUTPUT	Not Trigger Gate Output
14	TG	OUTPUT	Trigger Gate Output
15	DVCC	SUPPLY	Digital +5 Volts Supply
16	тно	INPUT	Trigger Holdoff
17	AGND	SUPPLY	Analog Ground
18	TL	INPUT	Trigger Level Input
19	СР		Compensation Capacitor
20	LF		LF Capacitor
21	AC		AC Capacitor
22	SS	OUTPUT	Source Selector Output
23	AVCC	SUPPLY	Analog +5 Volt Supply
24	СНЗ	INPUT	CH3 Input
25	CH1	INPUT	CH1 Input
26	CH2	INPUT	CH2 Input
27	CH4	INPUT	CH4 Input
28	CH5	INPUT	CH5 Input

TERMINAL IDENTIFICATION

PARAMETER	CONDITIONS	MIN	MAX	UNITS
Trigger Source	Source Code Change To Corresponding Change In Trigger Selection		100	nS
Coupling	20 Hz Filter Cut Off Frequency	10	30	Hz
	50 Hz Filter Cut Off Frequency	36	70	kHz
	Residual Sinewave Amplitude	·	2	%
Slope Select	Time For Trigger Slope Selection to Change		10	nS
Trigger Level	Trigger Range	1.146	1.374	v
Trigger Level	Trigger Offset		± 50	mV
Trigger Level	Trigger Gain Non-Linearity Effect On Trigger Level Max Sinewave Freq. Effect on Trigger Level	.99	1.01	
Trigger Level	DCN to 1 kHz		±1	%
	1 MHz to 50 MHz		+2 -10	% %
	50 MHz to 300 MHz		+2 -50	% %
Trigger Level	Trigger Hysteresis	5.25	8	mV
Trigger Level	rigger Level Trigger Hysteresis Noise REJECT Selected		24	mV
Trigger Mode	igger Mode Propagation Delay in SWEEP TRIGGER Mode		3	nS
Trigger Mode	Propagation Delay Variation SWEEP TRIGGER Mode (Jitter)	· <u> </u>	50	pS
Trigger Mode	Maximum Trigger Repetition Rate, SLOW COMPARE Mode	25		MHz
Trigger Mode	Maximum Trigger Repetition Rate, FAST COMPARE MODE	300		MHz

TABLE 1 ELECTRICAL CHARACTERISTICS

6

PARAMETER	CONDITIONS	MIN	MAX	UNITS
Trigger Mode	Maximum Trigger Repetition Rate, STROBED FAST COMPARE Mode	300	·	MHz
Trigger Mode	Minimum Time Trigger Strobe		2	nS
Digital Inputs SR0, SR1, SR2, CC,DS	VIL	-0.3	+0.8	V
Digital Inputs SR0, SR1, SR2, CC, CD,DS	VIH	+2.0	VCC5+0.3	V
Digital Inputs SR0, SR1, SR2, CC, CD,DS	Input Current	- 10	+50	μA
Digital Inputs SR0, SR1, SR2, —CC, CD, —DS	Capacitance		5	pF
Digital Input			VCC5 - 1.675	V
Digital Input	VIH	VCC5 	VCC5 +0.3	V
Digital Input IIH (Input Current) THO		10	+50	μΑ
Digital Input -STB			VCC5 - 1.44	V
Digital Input STB			VCC5+0.3	V
Digital Input — STB	Input Current	+10	-50	μΑ

TABLE 1 (cont)

				.
PARAMETER	CONDITIONS	MIN	MAX	UNITS
Digital Input	Capacitance		5	pF
-STB				
Digital Input	Valid Data Set-up Time	0		nS
CD				
Digital Input	-CC Pulse Width	300		nS
-CC				
Digital Input	-CC Hysteresis	0.1		v
-CC				
Analog Input	Input Current	-10	+25	μΑ
CH1, CH2, CH3, CH4, CH5				
Analog Input	TL Input Resistance	2	3	ΚΩ
TL				
VCC5	Supply Current	90	180	mA
VEE5	Supply Current	-50	-100	mA
Output	VOL	3.1	3.38	v
TG, –TG				
Output	VOH	3.95	4.3	v
TG, –TG				
Output	VOL	+0.1	-0.25	v
-TS				
Output	ЮН		2	μΑ
-TS				
Output	IOL, Output Current For -TS	8.0	12.0	mA
-TS	V _{OUT} = 5 Volts			
		1		1

TABLE 1 (cont)

Applications Information

TRIGGER FEATURES

The Trigger circuit has five signal sources (CH1, CH2, CH3, CH4, and CH5).

Dynamic trigger selection code signals (-SR0, -SR1, -SR2) determine the trigger sources:

— SR2	-SR1	-SR0	TRIGGER SELECTION	
0	. 0	0	CH5	
0	0	1	CH1	
0	1	0	CH2	
0	1	1	CH1 and CH2 (SUM)	
1	0	0	CH5	
1	0	1	СНЗ	
1	1	0	CH4	
1	1	1	CH1 and CH2 (SUM)	

CONTROL REGISTER

Data shifts into the Control Register from the control input at not Control Clock Low to High Transitions, Bit 7 first and Bit 0 last. Active level is high at digital input.

BIT	FUNCTION
0	-TM0, Not Trigger Mode LSB
1	-TSM1, Not Trigger Mode MSB
2	-FR, Not Free Run, Continuous Trigger Gate
3	-HFR, Not Insert 50 kHz Low Pass
4	-LFR, Not Insert 50 kHz High Pass
5	- AC, Not Insert 20 Hz High Pass
6	SL1, Slope for Not Delay Select = 1
7	SL0, Slope for Not Delay Select $= 0$

TRIGGER SIGNAL COUPLING

The independently selected input for each trigger may be coupled to the trigger level comparator directly or through independently selected filters. Noise reject is actually an increased trigger hysteresis, rather than a filter. Control data inserts the filters.

AC	LFR	HFR	COUPLING SELECTED
0	0	0	Direct (DC)
0	0	1	50 kHz Low Pass (HFR)
х	1	0	50 kHz High Pass (LFR)
0	1	1	Direct, Noise Reject (DC NR)
1	0	0	20 Hz High Pass (AC)
1	0	1	20 Hz to 50 kHz Bandpass (AC HFR)
1	1	1	20 Hz High Pass Noise Reject (AC NR)

TRIGGER SLOPE SELECTION

Controlled by the Not Delay Select Inputs and Control Data

SL1	SL0	-DS	SLOPE
0	0	x	Positive
0	1	0	Negative
0	1	1	Positive
1	0	0	Positive
1	0	1	Negative
1	1	X	Negative

SIGNAL LEVEL DETECTION

Trigger Gate and Trigger Status Outputs represent the history of the difference voltage between the Selected Trigger Soruce and the Trigger Level. Trigger outputs respond to trigger signals according to the Trigger Hold-Off signal according to Trigger Slope, Control Data, and the Not Delay Select Input, and according to Trigger Mode Control data. TM0 and TM1 establish four modes of Trigger Circuit operation. The Trigger Gate Output (TG) is continuously true when the Free Run Control Bit FR is true.

SIGNAL LEVEL DETECTION (cont)

TM1	тмо	TRIGGER MODE SELECTION
0	0	SWEEP TRIGGER MODE The Trigger Gate sets at the first crossing of the Trigger Level by the Trigger Signal in the direction of the Selected Slope after the Trigger Signal is displaced in the opposite direction in the absence of Trigger Holdoff. The Trigger Gate resets at the assertion of Trigger Holdoff.
0	1	SLOW COMPARE The Trigger Gate sets when the Trigger Status Output has recovered to the false state, and the Trigger Signal is displaced from the Trigger Level in the direction of the selected slope. The Trigger Gate resets when the Trigger Signal is displaced from the Trigger Level in the opposite direction of the selected slope.
1	0	FAST COMPARE MODE The Trigger Gate sets when the Trigger Signal is displayed from the Trigger Level in the direction of the selected slope and resets when the Trigger Signal is displaced in the opposite direction.
1	1	STROBED FAST COMPARE MODE The Trigger Gate sets when the Trigger Strobe is true and the Trigger Signal is displaced from the Trigger Level in the opposite direction of the selected slope. The Trigger Gate resets when the trigger signal is displaced in the opposite direction.

Trigger Status corresponds directly to Trigger Gate except that Free Run has no effect on Trigger Status and that the Propagation Delay from the Trigger Gate True-to-False transition to the True-to-False transition of Trigger Status output is primarily determined by external circuitry. This enables slower external circuits to respond to very fast trigger events. Internally the Slow Compare Mode cycle rate is limited by the externally determined propagation time of the Trigger Status Output.

In the direction of the Selected Slope, the Trigger Gate resets when the Trigger Strobe is True and the Trigger Signal is displaced.

RELIABILITY

 λ , Failure rate $\leq 0.02\%/1000$ hours at 75°C Tj

SWEEP INTEGRATOR DIE

DESCRIPTION

The 203-0214-90 is part of a Sweep Gate Circuitry, Integrator Current Switches, Sweep Start Regulator, Delay Gate Comparator, Ramp Output Buffer, and a portion of the Sweep Display Delay Circuitry.

When used with the 203-0231-90, a complete Sweep Circuit system is generated with very few external components.

FEATURES

- Ramp Initiation Sweep Gate Circuitry
- Integrator Current Switches
- Sweep Start Regulator
- Delay Gate Comparator
- Buffered Ramp Output
- Sweep Display Delay Circuitry
- 200 Ω/Sq. BIFET process
- Max sweep speed 5 nS/Div (2.5 V Ramp)
- For electrical characteristics contact Applications Engineering

SYMBOL	IDENTIFICATION	MIN	MAX	UNITS
TJ	Operating Junction Temperature	-15	+115°C	°C
T _{STG}	Storage Temperature	-55	+150	°C
Pad 35	VCC15 + 15 V Voltage Range	VCC5 -0.3	+18	V
Pad 24	VCC5 +5 V Voltage Range	-0.3	+7.0	V
Pad 27	VEE5 -5 V Voltage Range	-7.0	+0.3	V
Pad 13, 30, 36	VEE 15 - 15 V		VEE +0.3	
Pad 1	Level Shift DAC Current Input	-10	0.0	mA
Pad 2	Level Shift DAC Reference Current Out Voltage Range at Pad	+0.3	VEE5	V
Pad 3	Sweep Start Reference in Voltage Range at Pad	-3.5	+2.0	V
Pad 4	Not 5 nS in Voltage Range at Pad	-0.3	VCC5 +0.3	V
Pad 5, 6	Not 1 nF Select In Not 0.1 μ F, 1 μ F, 10 μ F Select In Voltage Range at Pad	-0.3	VCC5 +0.3	V
	Maximum Voltage Difference Between Pads		6.0	v
Pad 7	Not Enable Sweep Gate Voltage Range at Pad	-0.3	VCC5 +0.3	V
		l		

ABSOLUTE MAXIMUMS

SYMBOL	IDENTIFICATION	MIN	МАХ	UNITS
Pad 8, 9, 10	Timing Cap Ports	Refer to Note #1		
Pad 17, 18	Not Aux Trigger In Not Trigger In Voltage Range at Pads	0.0	Note #2	V
Pad 19	Trigger Holdoff In Voltage Range At Pad	-0.3	VCC5 +0.3	V
Pad 20	VBB In Voltage Range at Pad	-0.3	VCC5 +0.3	V
Pad 22	Inhibit Zero Delay in Voltage Range at Pad	VEE5 - 0.3	VCC5 +0.3	V
Pad 23	Not Sweep Gate Out Current Out of Pad	- 15	0	mA
Pad 26	Not Delay Gate Out Current Out of Pad	-10	0	mA
Pad 29	Bypass Delay Comparator in Voltage Range at Pad	-0.3	VCC5 +0.3	V
Pad 31	Delay Reference in Voltage Range at Pad	VEE5	VCC5	V
Pad 32	Sweep Delay Offset Reference in Voltage Range at Pad	-3.5	+3.5	V
Pad 37	Delay Offset Reference In	VEE15	VCC15	V

ABSOLUTE MAXIMUMS (cont)

NOTE #1: With VCC5 regulating (VCC5 = 5.0 V \pm 3%) and the voltage at SSR between -1.2 and -1.3 V, the following limits MUST be observed:

-Minimum voltage that may be applied to a selected timing capacitor port:

Pad 8..... + 1.1 V Pads 9/10..... +0.6 V

-Minimum voltage that may be applied to an unselected timing capacitor port:

Pads 8/9/10 -0.8 V

-Maximum voltage that may be applied to the timing capacitor ports is VCC5 +0.3 V.

NOTE #2: Maximum voltage at "not Trigger" and "Auxiliary Trigger" inputs is VCC5 +0.3 V OR 6.5 V whichever is the smaller.

CAUTION

NOTE:

The Not 1 nF Select Input (Pad 5) and/or the Not 0.1/1/10 μ F Select Input (Pad 6) MUST NOT be left open with the power supplies on.

PAD #	NAME	INPUT/OUTPUT	DESCRIPTION		
1	LSDC	Input	Level Shift DAC Current		
2	LSDRC	Output	Level Shift DAC Ref. Current		
3	SSR	Input	Sweep Start Reference		
4	Not 5 nS	Input	Not 5 nS Select In		
5	Not 1 nF	Input	Not 1 nF Select In		
6	Not				
	0.1 μ/1 μ/10 μF	Input	Not 0.1 μ F/1 μ F/10 μ F Select In		
7	Not ESG	Input	Not Enable Sweep Gate Select In		
8	CT0 (100 pF)		Timing Cap		
9	CT1 (1 nF)		Timing Cap		
10	CT2				
	$(0.1 \ \mu/1 \ \mu/10 \ \mu F)$		Timing Cap		
11	sc		Stabilization Cap		
12	SCS	Output	Stabilization Capacitor Select		
13	VEE15	Supply	- 15 V Supply		
14	ER	Input	Reset Ref. Current In		
15	GND		Ground		
16	RDA	Input	Reset Delay Adjust		
17	Not Aux Trig	Input	Not Auxiliary Trigger In		
18	Not Trig	Input	Not Trigger In		
19	ТНО	Input	Trigger Holdoff In		
20	VBBI	Input	VBB (ECL Reference) In		
21	VBBO	Output	VBB (ECL Reference) Out		
22	IZD	Input	Inhibit Zero Delay In		
23	Not SG	Output	Not Sweep Gate Out		
24	VCC5	Supply	+5 V Supply		
25	RLM	Output	Sweep Reset Latch Monitor		
26	Not DG	Output	Not Delay Gate Out		
27	VEE5	Supply	-5 V Supply		
28	DGB	Input	Delay Gate Bypass		
29	BDC	Input	Bypass Delay Comparator In		
30	VEE15	Supply	-15 V Supply		
31	DR	Input	Delay Reference In		
32	SDO	Input	SWP Display Offset Ref. In		
33	GND		Ground		
34	RO	Output	Ramp Out		
35	VCC15	Supply	+15 V Supply		
36	VEE15	Supply	- 15 V Supply		
37	DOR	Input	Delay Offset Ref. In		

TERMINAL IDENTIFICATION

APPLICATIONS INFORMATION

Ramp Initiation Sweep Gate Circuitry

Ramp is initiated by the coincidence of a "LO" at the "Not Trigger", "Not Auxiliary Trigger" and "Trigger Holdoff" inputs. Operation corresponding to this set of inputs will be called "Sweep" in future paragraphs. Note that for the 203-0214-00 to ramp by itself (without the aid of the 203-0231-00), one of the three timing capacitor ports must be selected using the procedure given in Table 1, an appropriate capacitor attached to the selected port and an appropriate current source also attached to that port.

If the "Not Enable Sweep Gate" input is "LO", the "Not Sweep Gate" output will be "LO" during "Sweep". If the "Not Enable Sweep Gate" input is "HI", the "Not Sweep Gate" output will always remain "HI".

APPLICATIONS INFORMATION (cont)

Ramp is terminated when the internal ramp reaches the End-Of-Sweep threshold (approximately 1.48 V) or when "Trigger Holdoff" is asserted ("HI" at THO input). At termination, the "Not Sweep Gate" output will go "HI" and the internal ramp will return to the Sweep Start voltage. This sequence is called "Reset". Ramp termination may be delayed, relative to the "Not Sweep Gate" output ("LO" to "HI" transition) by attaching a capcitor to Pad 16 (Reset Delay Adjust RDA). This feature allows the Z-Axis time to blank the CRT before the ramp starts to slow down.

A latch is provided and functions such that when the internal ramp reaches End-Of-Sweep voltage, the latch is set holding the 203-0214-00 in the "Reset" condition. The latch is reset when "Trigger Hold-Off" goes "HI". At this point, the "HI" at "Trigger Hold-Off" maintains the 203-0214-00 in the "Reset" condition. In this manner, the time from "Not Sweep Gate" output "LO" to "HI" transition until "Trigger Hold-Off" input "LO" to "HI" transition can be long allowing for substantial delay through the scope logic circuitry.

Ramp Initiation Sweep Gate Circuitry

The internal latch does result in a potential logic trap. After an internal reset "Not Trigger", "Not Auxiliary Trigger" and "Trigger Hold-Off" can all be "LO" and the circuit may not ramp. "Trigger Hold-Off" must always go "HI" (after an internal reset) to clear the latch before the circuit can ramp again.

The internal ramp voltage (mentioned above) differs from the ramp out voltage by the amount of level shift/offset in effect at that specific sweep. Refer to Section on "Sweep-Display Delay Circuitry".

Integrator Current Switches

There are three current switches in the 203-0214-00 (one for each timing cap port). Only the current switch corresponding to the selected timing capacitor is active. The tail current to the other two current switches is "0". The tail current to the active current switch is always greater than the maximum timing current. During "reset", the current available to discharge the timing capacitor is equal to the current switch tail current minus the timing current. When the internal ramp reaches the sweep start voltage (during "Reset"), the "Sweep Start Regulator" supplies this differential current. Refer to section on Sweep Start Regulator.

During "Sweep", the current switch tail current is switched into a supply, allowing the timing current to flow into the timing cap.

Sweep Start Regulator

During "Reset" this circuit maintains the voltage at the internal ramp output equal to the voltage present at the "Sweep Start Reference (SSR)" input. SSR voltage may range from -1.2 to -1.3 V. Stability of this feedback circuit is insured, for the 100 pF and 1 nF timinig capacitor case, by switching in a 1 nF stabilization capacitor putting a dominant pole near the input portion of the "Sweep Start Regulator" circuitry. When the $0.1/1/10 \ \mu$ F timing capacitor is slected, the stabilization cap is switched out and the $0.1/1/10 \ \mu$ F timing capacitor.

During "Sweep" this circuitry is inhibited.

APPLICATIONS INFORMATION (cont)

Delay Gate Comparator

Normal operation of this circuit occurs when the "IZD" input is open, the "BDC" input is "LO" and the "Not 5 ns" input is "HI" for all sweep speeds (except 5 nS/Div where it is "LO"). Under these conditions, the "Not Delay Gate" output will remain "HI" until the internal ramp voltage (at the pickoff) becomes more positive than the voltage on the "Delay Reference (DR)" input. When the voltage becomes more positive, the "Not Delay Gate" will go "LO". The comparator is gated such that the function described above can only occur during "Sweep". Delay gate operation is controlled by the "DR" input at all sweep speeds (except the fastest (5 ns/Div—"NOT 5 nS input "LO").

At 5 nS/Div, the comparator gating function is modified such that "Not Delay Gate" will go "LO" immediately ("Zero Delay") after "Not Sweep Gate" goes "LO", regardless of the voltage at "DR". In a two sweep system this "Zero Delay" feature forwards or "pipes" the "Sweep" command through "A" Sweep to "B" Sweep allowing "B" Sweep to be used as the main sweep at 5 nS/Div. Use of "B" Sweep (at 5 nS/Div) may be desirable because the System Delay Constraints may result in excessive preview time if "A" Sweep were used. The "Zero Delay" feature may be inhibited by putting the "Inhibit Zero Delay (IZD)" input "HI" thus allowing the "DR" input to control the delay gate operation at all sweep speeds.

If the "Bypass Delay Comparator (BDC)" input is "HI", "Not Delay Gate" will go "LO" immediately after "Not Sweep Gate" goes "LO" regardless of the voltage at "DR", "IZD" input or any sweep speed related input ("Not 5 nS, Not 1 nF Select", etc.). "BDC" is used in "B" Sweep to assure that there is a "Gate" available coincident with "B" Sweep regardless of the setting at the "Not Enable Sweep Gate" input. The "Gate" (of course) appears at the "Not Delay Gate" output. In "A" Sweep, "BDC" is used in conjunction with the "Delay by Events" option and provides a fast path from trigger through the sweep.

"Not Delay Gate" will always go "HI" at the initiation of "Reset".

Buffered Ramp Output

Timing cap voltage is buffered by this circuitry consisting of FET source followers and/or NPN emitter followers. Voltage gain through this circuit is one (1), although there are DCN offsets due to the NPN emitter followers.

Buffered outputs from the three timing capacitors are merged at this point. How this is done can best be understood by referring to the Block Diagram or the schematics. When a capacitor is selected, it is necessary, for proper operation, to put the other two (off) timing cap ports at an appropriate voltage. This is normally done by the 203-0231-00. If the 203-0214-00 is to be operated by itself, reference should be made to Table 1 for the appropriate voltages.

Sweep Display Delay Circuitry

The Sweep Start Voltage, at "Ramp Out" is offset from "SSR" in proportion to Sweep Speed Setting, the "DOR" input voltage and the "DO" input voltage. Internally, the ramp applied to the delay comparator is offset in proportion to sweep speed setting and "DOR" input voltage. These offsets will result in a delay, since the ramp must run for a period of time before the "Ramp Out" voltages reaches the on screen voltage (approximately SSR) or the ramp voltage applied to the pickoff comparator reaches the available delay comparator range. Because the offsets are in proportion to the sweep speed setting, the delay will be constant for all sweep speeds. Also "DOR" is ganged with the timing reference voltage, so the delay will remain constant even when variable is operated. The delays due to these offsets are about 6 nS at the comparator pickoff point and a maximum of about 20 nS at "Ramp Out". Additionally, by operating "SDO", the delay at "Ramp Out" may be varied from about 20 nS to 10 nS.

APPLICATIONS INFORMATION (cont)

Offsetting is done for sweep speeds of 500 nS/Div or faster. Sweep speeds of 1 μ S/Div and slower have no offset.

Offset/Delay is used for the following purpose:

- Provide time for the ramp to become linear before it reaches on screen voltage and before it reaches available delay pickoff comparator stage.
- Maintains the unblanked, linear start of the displayed sweep at a nearly constant position for all sweep speeds.
- Allows "A" Sweep delay to be made longer than "B" Sweep delay so that in "B" Starts After Delay scope operating mode, the trigger edge may be viewed with "B" Sweep.

Level shifting is accomplished by passing a current through two series resistors hooked between the ramp buffer and "Ramp Out". The current comes from a DAC (in the 203-0231-00) which is programmed by a control register containing the Sweep Speed information. The reference current for the DAC is proportional to "DOR" and comes from the 203-0214-00 since it must also be related to the sheet resistance of the two level shift resistors. A gain cell, operated by "SDO", proportions the "Ramp Out" offset, but does not affect the offset at the delay pickoff comparator.

6

•

AUTOFOCUS PROCESSOR DIE

DESCRIPTION

The function of this circuit is to process the various intensifying inputs and to generate an appropriate focus function for the MSE type of CRT. Since the perceived intensity of the CRT spot light source is logarithmic and the transfer function from the bright intensity input to the grid drive output is exponential, the resultant perceived transfer function is made linear.

- SHF-III Process
- High f, at low currents
- Low $\rm R_{b}$ and $\rm R_{e}$ for predictable exponential characteristics
- 50 Ohm NiCr Resistors
- Cost effective focus correction for M.S.E. CRT's.

		V		
SYMBOL/PINS	IDENTIFICATION	MIN	MAX	UNITS
TJ	Operating Junction Temperature	—15	+115	°C
T _{STG}	Storage Temperature	-60	+ 125	°C
Pads 1,2,3,4,5, 6,12,15,16, 18,20,21,24	Maximum Input Voltage	-0.3	VCC +0.3	V
Pad 8	Bright Input Current	-2.0	+2.0	mA
Pad 9	External Z-Axis Maximum Input Current	-20.0	+20.0	mA
Pad 11	VEE Voltage	-7.0	+0.3	v
Pads 14,17,19	Adjust Inputs	-0.3	+0.3	V
Pad 22	VCC Voltage	-0.3	+7.0	v
Pad 23	ZGATE Output Maximum Output Loading		-3.0	mA

ABSOLUTE MAXIMUMS

CAUTION NOTES:

This product is sensitive to static charges and care should be taken in handling. Pins interfacing directly to transistor bases are most critical.

6

CAUTION

This product is sensitive to static charges.

PAD #	NAME	INPUT/OUTPUT	DESCRIPTION
1	-SGM	Input	Main Sweep Gate
2	-SGD	Input	Delayed Sweep Gate
3	-HSB	Input	Horizontal Select B
4	TXY	Input	Horizontal Mode XY Logic Triggered XY Mode
5	-HSA	Input	Horizontal Select A
6	IIZ	Input	Intensified Zone Reference Current
7	GND	Supply	Analog Ground
. 8	IB	Input	Bright Current
9	EXTZ	Input	External Z Current
10	GND	Supply	System Ground
11	VEE	Supply	-5 V Supply
12	IR	Input	1.0 mA Reference Current
13	RREF	Input	ADJ Reference Register
14	RQ	Input	Q Output Calibration Resistor
15	IRQ	Input	Q Output Reference Current
16	IDQ	Output	Q Exponential Current
17	RMKL	Input	MKL Calibration Resistor
18	IOMKL	Output	MKL Exponential Current
19	RZ	Input	Z Output Calibration Resistor
20	IRZ	Input	Z Output Reference Current
21	IOZ	Output	Z Exponential Current
22	VCC	Supply	+5 V Power Supply
23	-ZGATE	Output	ZGate Logic
24	BLANK	Input	Blank Gate

TERMINAL IDENTIFICATION

.

NUMBER	SYMBOL	CONDITIONS	MIN	МАХ	UNITS
1	ICC	Positive Supply current All Logic Inputs = "HI" IB = 0 VCC = 5.0 V	42	54	mA
2	IEE	Negative Power Supply All Logic Inputs = "HI" IB = 0 VEE = -5.0 V	-62	-46	mA
3	VR	IR Input Voltage IREF = 0.9 mA	-2.0	-1.0	V
4	VRZ	IRZ Input Voltage IRZ = 1.25 mA IB = 0	-250	-0	mV
5	VRQ	IRQ Input Voltage IRQ = 0.481 mA IB = 0	-250	-40	mV
6	RZ	Z Adjust Resistance IOZ = 5.0 mA, IRZ = 1.25 mA $IB = 1.0 \text{ mA}, RREF = 90 \Omega$ Pad to Gnd Resistance to obtain indicated current.	65	100	Ω
7	RMKL	MKL Adjust Resistance IOZ = 2.31 mA, RMKL = 50K to VCC $IB = 1.0 \text{ mA}, \text{RREF} = 90 \Omega$ Pad to Gnd Resistance to obtain indicated current.		90	Ω
8	RQ	Q Adjust Resistance IOQ = 1.923 mA, IRQ = 0.481 mA $IB = 1.0 \text{ mA}, RREF = 90 \Omega$ Pad to Gnd Resistance to obtain indicated current.	70	100	Ω
9	RIB	Brite Input Resistance	150	250	Ω
0	RIZ	External Z Input Resistance	2.3	3.7	ΚΩ
1	IIH	Logic High Input Current VIH = 5.0 V		20	μA

ELECTRICAL CHARACTERISTICS

6

NUMBER	SYMBOL	CONDITIONS	MIN	МАХ	UNITS
12	IIL [,]	Logic Lo Input Current VIL = 0 V BF and Blank Inputs	- 100		μΑ
13	IIL	Logic Lo Input Current VIL = $0 V$ All Remaining Logic Inputs			μA
14	VIH	Valid Range High Data	1.97	VCC +0.3	V
15	VIL	Valid Range Lo Data	-0.2	0.8	V
16	VOH	-ZGate Hi Output IL = 0.5 mA	1.8	2.2	v
17	VOL	-ZGate Lo Output IL = 0.5 mA	0.6	1.0	V
18	IOZM	Minimum IOZ IB = 0	0	30	μΑ
19	IIB	Full Scale Brite Input	0.665	0.785	mA
20	IIBRO	Readout Brite Input Current IOZ = 0.923 mA	0.44	0.54	mA
21	AIOZI	Z Output Intensified Zone Ratio Of $\frac{IOZI}{IOZh}$ IOZI = Value of IOZ with DSG low in main sweep mode and IOZh = Value with DSG high at the same value of IBrite, IOZI < 5.0 mA	1.60	2.10	A/A
22	AIEZ	External Z Axis Gain Equivalent to the change in IBrite divided by the change in IEXT Z that maintains IOZ at the same Ratio of IOZ with EXT Z amp on to IOZ with EXT Z amp off. IOZ = 1 mA.	-4	_7	A/A

ELECTRICAL CHARACTERISTICS (cont)

NUMBER	SYMBOL	CONDITIONS	MIN	МАХ	UNITS
23	IOMKLLIN	MIL Output Linearity		±50	μΑ
		Difference between the IOMKL minus the 5/3 power of the IOZ.			
		$MKLLIN = IOMKL - k (IOZ)^{5/3}$			
		where:			
		$k = IOMKLfs/(IOZfs)^{5/3}$ and $fs = full scale outputs$			
24	IOQLIN	Q Output Linearity		±0.05	mA
		Difference between the IOQ minus the 2.4 power of the IOZ			
		$QLIN = IOQ - k (IOZ)^{2.4}$			
		where			
		$k = IOQfs/(IOZfs)^{2.4}$ fs = full scale outputs			
25	td	Fast Logic Input to ZGate Delay Time		2	nS
26	td	Slow Logic Input to ZGate Delay. Slow inputs are:		100	nS
		–HSA–HSB TYY BF			
27	tdINT	Intensified Zone Delay		5	nS
		Delay Time of Intensified Zone is the delay from †r - of DSG to 50% of IOZ			
28	tdEXTZ	External Z Transition Time		10	nS

ELECTRICAL CHARACTERISTICS (cont)

APPLICATIONS INFORMATION

This circuit has a peak current gain of 50 at full scale output from the Bright Input and a gain of 300 from the EXTZ input. The bandwidth of 30 MHz results in a gain-bandwidth product of 9000 MHz.

Feedback from the exponential outputs to the inputs must be minimized to prevent oscillations and preserve transient response fidelity. The power supplies are also sensitive and must be bypassed with low inductance capacitors.

The RREF resistor determines the center value of the ADJ resistors. The value also affects the temperature drift of the outputs due to base current change with temperature.

The beam find function is not specified and that pin should be grounded to ensure remaining circuit functionality.

H.V. TRANSRESISTANCE AMP

DESCRIPTION

The 203-0227-90 is a shunt feedback gated amplifier designed to drive capacitive loads. The SHHV process is utilized to obtain a BV(CBO) of 65 V and an $\rm F_t$ of 2 GHz.

FEATURES

- SHHV process
- Class AB amplifier
- All NPN output configuration
- 67 V dynamic output
- 15 ns risetime (22 pF load)
- 2 GHz F,

SYMBOLS	IDENTIFICATION	VALUE	UNITS
Tj	Operating Junction Temperature	-15 to +115	°C
T _{STG}	Storage Temperature	-60 to +125	°C
Pad 1	VCC5, +5 V Supply	-0.3 to +7.0	v
Pad 2	IIN, Max Voltage Range	-0.3 to +3.0	v
Pad 2	IIN, Max Current Range	-10 to 0	mA
Pad 3	Gate, Max Voltage Range	VCC -0.3 to +0.3	v
Pad 5	TR Adj, Max Voltage Range	-3.0 to +20	v
Pad 6	VEE, Max Voltage Range	-7.0 to -0.3	v
Pad 7	Offset Adj, Max Voltage Range	15 to VCC15 +0.3	v
Pad 8	IREF, Max Voltage Range	VEE -0.3 to 0.3	v
Pad 9	VCC15, Max Voltage Range	-0.3 to +20.0	v
Pad 12	Bootstrap, Max Current Range	0 to +15.0	mA
Pad 13	CL Bypass, Max Voltage Range	VCC873 to 0	v
Pad 14	VCC87, Max Voltage Range	-0.3 to +95.0	v
Pad 15	VREF, Max Voltage Range	-15.0 to +15.0	v
Pad 16	IREF, Max Voltage Range	-15.0 to +15.0	v

ABSOLUTE MAXIMUMS

TERMINAL IDENTIFICATION

PAD #	NAME	INPUT/OUTPUT	DESCRIPTION
1	VCC5	Supply	+5 V Supply
2	lin	Input	Input Current to Amplifier
3	Gate	Input	TTL Not Gate
4	Ground		Input Ground
5	TR Adj	Input	Trans Response Voltage Adj
6	VEE	Supply	-5 V Supply
7	VOFF	Input	Quiescent Level Offset Adj
8	IREF	Input	Ref Current for Current Sources
9	VCC15	Supply	+15 V Supply
10	OUT GND	Ground	Output Ground
11	VO	Output	Amplifier Output
12	BS	Input	Bootstrap
13	CL	Output	Current Linearity Bypass
14	VCC87	Supply	+87 V Supply
15	VR	Input	Reference Voltage
16	IR	Output	Reference Current for Input

6

PARAMETRIC	SUMMARY
------------	---------

.

NUMBER	SYMBOL	CONDITIONS	MIN	MAX	UNITS
1	ICC87	VCC87 source current includes current in external pullup. IIN = 0 mA	8.0	10.0	mA
2	ICC87	VCC87 short current IIN = 5 mA	16.0	27.0	mA
3	ICC15	VCC15 source current IIN = 0 mA	5.4	7.6	mA
4	ICC5	VCC5 source current	6.4	10.6	mA
5	IEE5	VEE5 source current	19.0	30.0	mA
6	110	Reference current VREF = 10 V	1.0	1.5	mA
7	VOLO	Output Voltage, Low IIN = 0 mA VOFFSET = Open	9.0	13.0	V
8	VOLS	Output Voltage IIN = 0 mA VOFFSET = VEE	7.0	11.0	v
9	VTR+	Output Voltage Change IIN = 0 mA VTR = 7.5 to 15 V	0	±.55	V
10	VTR-	Output Voltage IIN = 0 V VTR = 7.5 to 0 V	0	±0.55	V
11	VBS	Bootstrap Output Voltage IIN = 0 mA, with respect to VOLS	9.5	16.5	V
12	VIN	IIN Pad input voltage IIN = 10 mA VGATE = 2.0 V	0.95	1.35	V
13	VIN	IIN Pad input voltage IIN = 5 mA VGATE = $1.0 V$	0.3	0.8	V
14	VOH	Output Voltage, HI IIN = 4IR	VOLS +62.0	VOLS +67.0	V

15	VOLIN1	Output linearity IIN1 = 1.05 IIN0	67.95	68.55	v
16	VOLIN2	Output linearity IIN2 = .95 IIN0	61.45	62.05	v
17	VOLIN3	Output linearity IIN3 = .90 IIN0	57.9	59.1	V
18	VOLIN4	Output linearity IIN4 = .80 IIN0	51.4	52.6	V
19	VOLIN5	Output linearity IIN5 = .60 IIN0	37.9	40.1	V
20	VOTC	Output voltage change with temperature	0	±1	V
21	VITR	Transient voltage input range	0	15	v
22	IITR	VITR = 15 V	0.4	0.95	mA
23	VIR	Pad voltage for IR = 1.0 mA	-1.6	-0.4	v
24	VOCL	Current limit bypass IIN = 0 mA VCC87 = 87 V	83.5	86.5	v

CONDITIONS FOR PARAMETERS 15 THROUGH 19 ADJUST IIN0 FOR VOUT = 65 V ± 0.05 V ABOVE VOL.

The following parameters apply to H853 and cannot be measured at die level.

25	Tr	Rise time IIN = 4IR CLOAD = 22 pF VOUT = 10% to 90%		≤15	ns
26	Tf	Fall Time IIN = 4IR CLOAD = 22 pF VOUT = 90% to 10%	-	≪25	ns
27	Abb	Aberrations VTR adjusted for optimum CLOAD = 15 pF	× 0	±10	%

6

APPLICATIONS INFORMATION

This circuit was designed to drive the Z-Axis and quadrapole electrodes of the T2503 CRT. All power supplies except the +87 V should be bypassed within 1 cm of the circuit with a high quality ceramic capacitor.

Care should be exercised that the output is not connected to a supply that is higher than the desired output. The current limiter protects the circuit only for a short to a voltage lower than the output.

A pullup resistor of 8k is required that will dissipate 0.64 W. A bootstrap capacitor of 22 pF is required to obtain a fast transient response. The current limiter is bypassed with 3300 pF. A 5.9k resistor from IREF to +5 V will set up 1 mA for the current sources.

The output should have at least 50 Ω in series with the capacitive load to preserve stable operation.

The current limiter will limit the circuit to a safe power dissipation during high amplitude sinusoidal outputs.

The stray capacitance on IIN should be less than 2 pF to preserve amplifier stability.

6

· · · ·

-

AUXILIARY PREAMPLIFIER DIE

DESCRIPTION

The 203-0229-90 is a SHIII auxiliary preamplifier. It provides limited signal conditioning for two high-speed, high-impedance inputs when used with FET Impedance Converters.

FEATURES

- SHIII Process
- TTL Compatible Gain Switching
- Two Outputs per channel
 - 1. Single-ended without positioning for trigger pick off.
 - 2. Differential with positioning for display.
- On chip limiting for good overdrive recovery.

SYMBOLS	IDENTIFICATION	VALUE
Tj	Operating Junction Temperature	−15°C — +115°C
Т _{STG}	Storage Temperature	−15°C — +125°C
V _{cc}	Positive Supply Maximum Voltage Range	−0.3 V — +7.0 V
V _{EE}	Negative Supply Maximum Voltage Range	+ 0.3 V — -7.0 V
V _(NII-II)	Maximum Differential Input Voltage NII or II (Pad 13 or 20 to Pad 12 or 21)	−2.5 V — +2.5 V
V _(NII) V _(II)	Maximum Input Voltage, NII or II Pads (12 to 13 and 20 to 21)	VEE -0.3 V - +0.3 V
V _(LIM)	Maximum Input Voltage, LIM (Pads 11 and 22)	VEE -0.3 V - VCC +1.5 V
V _(GA)	Maximum Input Voltage, GA (Pads 3 and 4)	VEE -0.3 V VCC +0.3 V
V _(POS)	Maximum Input Voltage, POS (Pads 2 and 5)	VEE -0.3 V - VCC +0.3 V
V _(RPOW)	Maximum Input Voltage, RPOW (Pads 16 and 17)	VEE -0.3 V VCC +0.3 V

ABSOLUTE MAXIMUMS

PAD #	NAME	FUNCTION	DESCRIPTION
1	DON4	Output	CH4 Display Output, Negative
2	POS4	Input	CH4 Position Input
3	GA4	Input	CH4 Gain Switch Control
4	GA3	Input	CH3 Gain Switch Control
5	POS3	Input	CH3 Position Input
6	DON3	Output	CH3 Display Output, Negative
7	DOP3	Output	CH3 Display Output, Positive
8	TPO3	Output	CH3 Trigger Pickoff Output
9	VCC3	Supply	CH3 +5 Volt Supply
10	FB3	Output	CH3 Feedback Output
11	LIM3		CH 3 Diode Limiter
12	113	Input	CH3 Inverting Input
13	NII3	Input	CH3 Non-Inverting Input
14	GND3	Ground	CH3 Ground
15	VEE3	Supply	CH3 – 5 Volt Supply
16	RPOW3	Bias	CH3 Bias Current
17	RPOW4	Bias	CH4 Bias Current
18	VEE4	Supply	CH4 – 5 Volt Supply
19	GND4	Ground	CH4 Ground
20	NII4	Input	CH4 Non-Inverting Input
21	114	Input	CH4 Inverting Input
22	LIM4		CH4 Diode Limiter
23	FB4		CH4 Feedback Out
24	VCC4	Supply	CH4 +5 Volt Supply
25	TPO4	Output	CH4 Trigger Pickoff Output
26	DOP4	Output	CH4 Display Output, Positive

TERMINAL IDENTIFICATION

ELECTRICAL CHARACTERISTICS

In the following summary refer to Figure 1 schematic for the following inputs and outputs:

V(IN) TTPO TDOP TDON V(FB) V(POS) V(GA)

NOTE: Power supply tolerances are \pm 2% unless otherwise indicated.

NUMBER	SYMBOL	CONDITIONS	MIN	МАХ	UNITS
1	V _{OFF}	Input Offset, NII-II	-10	+10	mV
2	1(11)	Bias Current, II	2.5	25	μA
3	AV(TTPO) (X1)	Voltage Gain (X1) V(GA) = Lo	-1.55	- 1.45	
4	AV(TTPO) (X0.2)	$\begin{array}{l} \text{Gain} = \frac{\text{V(TTPO)}}{\text{V(IN)}} \\ \text{Voltage Gain (X0.2)} \\ \text{V(GA)} = \text{Hi} \end{array}$	-0.310	-0.290	
4A		$Gain = \frac{V(TTPO)}{V(IN)}$ Ratio of X1 Output to X0.2 Output			
		$Ratio = \frac{AV(TTPO, X1)}{AV(TTPO, X0.2)}$	4.90	5.10	
5	V _{OM + (} TTPO)	TTPO Output Positive Voltage Limit FB = +1 V V(GA) = "Lo"	0.50	0.80	V
6	V _{om (ttpo)}	TTPO Output Negative Voltage Limit FB = -1 V V(GA) = "Lo"	-0.80	-0.50	V
7	V _{OO(TTPO)}	TTPO Change W/"Lo" — "Hi" Transition at V(GA) V(GA) = Pads 3 and 4	-10	+20	mV
8	AV(TDO, X.2)	Voltage Gain V(GA) = "HI"	0.580	0.620	
9	AV(TDO, X1)	$\begin{array}{l} \text{Gain} = \frac{\text{V(TDOP)} - \text{V(TDON)}}{\text{V(IN)}} \\ \text{Voltage Gain} \\ \text{V(GA)} = \text{"Lo"} \end{array}$	2.90	3.10	
		$Gain = \frac{V(TDOP) - V(TDON)}{V(IN)}$			

6

NUMBER	SYMBOL	CONDITIONS	MIN	МАХ	UNITS
10	AV(TDO)	Common Mode Voltage Gain V(GA) = "Lo"	-0.150	0.150	· · ·
11	V _{OO(TDO)}	$\begin{array}{l} \text{Gain} = \frac{\text{V(TDOP)} + \text{V(TDON)}}{\text{V(IN)}} \\ \text{Differential Output Voltage} \\ \text{V(TDOP)} - \text{V(TDON)} \\ \text{V(FB)} = 0 \text{ Volts} \\ \text{V(GA)} = \text{"Hi"} \\ \text{V(POS)} = -2.5 \text{ Volts} \\ \text{VCC} = 5.0 \text{ Volts} \\ \text{VEE} = -5.0 \text{ Volts} \end{array}$	-50	+ 50	mV
12	V _{oc(tdo)}	Common Mode Output Voltage V(FB) = 0 Volts V(GA) = "Hi" V(POS) = -2.5 Volts VCC = 5.0 Volts VEE = -5.0 Volts	-50	+ 50	mV
		$V_{\rm oc} = \frac{V(\rm TDOP) + V(\rm TDON)}{2}$			
13	V _{om + (tdo)}	TDOP - TDON Maximum Positive Output Swing. V(FB) = 0 Volts V(POS) = -5 Volts Same pads as #11	450	650	mV
14	V _{OM -} (TDO)	$\begin{array}{l} TDOP-TDON\ Maximum\ Negative\\ Output\ Swing\\ V(FB)=0\ Volt\\ V(POS)=0\ Volts\\ Same\ pads\ as\ \#11 \end{array}$	-650	-450	mV
15	V _{OM(TDO)MAX}	TDOP - TDON Maximum Differential Output Swing. V(FB) = 0 Volts Change in $V(POS) = +5$ Volts	1.0	1.2	V
16	I _{LIM+}	LIM Input Current V(LIM) = +0.8 Volt V(FB) = 0 Volts	-5.0	+30	nA
17	I _{LIM~}	LIM Input Current V(LIM) = -0.8 Volt V(FB) = 0 Volts Pad 11	-30	+5.0	nA
18	I(GA)HI	GA Bias Current V(GA) = 2.4 Volts Pad 3 or 4	-10	+10	μΑ
19	I(GA)LO	GA Bias Current V(GA) = 0.4 Volt Pad 3 or 4	-0.5	0	mA

ELECTRICAL CHARACTERISTICS (cont)

6

6-77

.

NUMBER	SYMBOL	CONDITIONS	MIN	MAX	UNITS
20	V(GA)LO	GA Valid Data Range-LO Pad 3 or 4	-0.3	+0.8	V
21	V(GA)HI	GA Valid Data Range-HI Pad 3 or 4	2.0	VCC+.3	V
22	V _{OC(POS)}	POS Open Circuit Voltage Pad 5 or 2 VEE = -5.0 Volts	-2.6	-2.4	v
23	Z _{I(POS)}	POS Input Impedance Pad 5 or 2	10		KΩ
24	V _{O(RPOW)}	RPOW, Compliance Voltage Pad 16 or 17	-1.40	-0.60	v
25	_{EE(-5)}	-5 Volts Supply Current Pad 18	-60	-45	mA

ELECTRICAL CHARACTERISTICS (cont)

APPLICATIONS INFORMATION

RELIABILITY

 $\lambda,$ failure rate \leqslant 0.02%/1K Hours @ 75°C T_{j}

SWEEP DAC DIE

DESCRIPTION

The 203-0231-90 is part of a sweep circuit system. This die contains circuitry for four separate functions as described under Features.

When used with the 203-0214-90 a complete sweep circuit system is generated with very few external components.

ĥ

FEATURES

- 7 Bit Shift Register and buffer
- Programmable
- Timing Current Generator
- Timing Capacitor Select
- Sweep-Display Delay Level Shift DAC
- 200 Ω/sq BIFET Process

•

Symbols	Identification	Minimum	Maximum	Units
T,	Operating Junction Temperature	-15	+125	°C
T _{STG}	Storage Temperature	-55	+150	°C
Pad 16	+15 Volts Voltage Range	-0.3	+18	V
Pad 9	-15 Volts Voltage Range	-18	+0.3	V
Pad 8	+5 Volts Voltage Range	-0.3	+7.0	V
Pad 1	-5 Volts Voltage Range	-7.0	+0.3	v
Pad 22	+32 Volt Supply Voltage Range	-0.3	+46	V
Pad 2	CD Input Voltage Range at Pad	-0.3	VCC5 + 0.3	V
Pad 3	-CC Input Voltage Range at Pad	-0.3	VCC5 + 0.3	V
Pad 7	ITREF Input Current Into Pad	0.0	400	μA
Pad 17	ITR Current Out Voltage Range at Pad	-0.3	VCC15 + 0.3	V
Pad 18	Timing Resistor Current Into Pad	0.0	100	μA
Pad 19	Timing Resistor Current Into Pad	0.0	1.0	mA
Pad 20	Timing Resistor Current Into Pad	0.0	10	mA
Pad 27, 28 29,30	Pads With Common Specs Current Out	1.0	0.0	mA
Pad 31	LVL Shift "DAC" in Current Into Pad	0.0	1.5	mA
Pad 32	LVL Shift "DAC" Current Out Pad Voltage Range at Pad	VEE5 0.3	+0.3	V

ABSOLUTE MAXIMUMS

		(Refer also to Tables 3 and	d 4)		
No.	Symbol	Conditions	Min	Max	Units
		POWER SUPPLY CURREN	NTS	ł	
1	ICC32	+32 Volt Supply Current Range	1.50	4.55	m
2	ICC15	+15 Volt Supply Current Range	2.00	6.00	m
3	ICC5	+5 Volt Supply Current Range	18.0	45.0	m
4	IEE5	-5 Volt Supply Current Range	-9.75	-2.00	m.
5	IEE15	-15 Volt Supply Current Range	-27.5	-6.0	m
	LOGIC OUTP	UT VOLTAGES REQUIRED TO INTE (Refer to Tables 3 and		1 203-0214-00	<u>. </u>
6	ESG-LO	Enable SWP GATE V-OUT (No Load) "LO" State	2.2	2.90	v
7	ESG-HI	Enable SWP GATE V-OUT (No Load) "HI" State	3.36	3.8	v
8	.1/1/10 μF SELECT	V-OUT (No Load) "LO" State	2.2	2.90	v
9	.1/1/10 μF SELECT	V-OUT (No Load) "HI" State	3.31	3.8	v
10	1NF SELECT	V-OUT (No Load) "LO" State	2.2	2.90	V
11	1NF SELECT	V-OUT (No Load) "HI" State	3.31	3.8	v
12	VOUT HI(1 nF) – VOUT LO (.1/1/10 μf)	Calculated from tests 8-11	0.52		V
13	VOUT HI (.1/1/10 μF) – VOUT LO(1 nf)	Calculated from tests 8-11	0.52		v

(Refer also to Tables 3 and 4)

No.	Symbol	Conditions	Min	Max	Units
14	VOUT HI (.1/1/10 μF) – VOUT HI(1 nf)	Calculated from tests 8-11	-0.12	+0.12	V
15	5 ns SELECT	VOUT (No Load) "LO" State	2.2	2.90	V
16	5 ns SELECT	VOUT (No Load) "HI" State	3.36	3.8	v

TIMING CAPACITOR SELECT(TCS) OUTPUT REQUIREMENTS

17	TCS(HI)	TCS Output Current "HI" State (into a 0.75 volt supply)	4.0	9.8	mA
18	TCS(LO)	TCS Output Voltage "LO" State	-2.5	-2.0	V

Timing Current DAC-Offsets, Current Gain and Current Gain Ratios (See Table 2 for definition of terms.)

19	M(1)	Current Gain (ITREF to ITR) (see Table 2)	1.99	2.01	
20	<u>M(OH)</u> M(1)	Current Gain Ratio (see Table 2)	1.99	2.01	
21	<u>M(OL)</u> M(1)	Current Gain Ratio (see Table 2)	1.99	2.01	
22	M(2) M(1)	Current Gain Ratio (see Table 2)	0.4975	0.5025	
23	M(3) M(1)	Current Gain Ratio (see Table 2)	0.199	0.201	
24	V(OH)	Offset (see Table 2)	-80	80	mV
25	V(OL)	Offset (see Table 2)	-80	80	mV
26	V(1)	Offset (see Table 2)	80	80	mV
27	V(2)	Offset (see Table 2)	-80	80	mV
28	V(3)	Offset (see Table 2)	80	80	mV

Sweep-Display Delay Level Shift DAC Output Current. LSDRC (Pad 31) = 1.174 mA. LSDC Measured into -5 V Power Supply for the Following Shift Register T5,T0 Codes.

29	 T5,T0 = 000000	7.654	8.000	mA
30	 T5,T0 = 010000	3.82	4.01	mA
31	 T5,T0 = 100000	1.91	2.00	mA
32	 T5,T0 = 000001	759	807	μA
33	 T5,T0 = 000100	759	807	μA
34	 T5,T0 = 010001	370	412	μA
35	 T5,T0 = 010100	370	412	μA
36	 T5,T0 = 100001	176	215	μA
37	 T5,T0 = 100100	176	215	μA
38	 T5,T0 = 000010	61.7	94.8	μA
39	 T5,T0 = 000101	61.7	94.8	μA
40	 T5,T0 = 010101	10	+10	μA
41	 T5,T0 = 100101	-10	+10	μA
42	 T5,T0 = 000110	-10	+10	μA
43	 T5,T0 = 010110	-10	+10	μA
44	 T5,T0 = 100110	-10	+10	μA
45	 T5,T0 = 110110	-10	+10	μA
46	 T5,T0 = 011001	-10	+10	μA
47	 T5,T0 = 011101	-10	+10	μA

INPUT BIAS VOLTAGES AND BIAS CURRENTS

48	 LSDRC input bias voltage 100 µA forced into pad 31	- 15	-8.5	v
49	 Same as #49 Except force 1.5 mA into pad 31	—15	-8.5	v
50	 Control data bias current from 0.4 volt supply	-5	+5	μA
51	 Control data bias current from 2.4 volt supply	-5	+35	μA
52	 Not clock input bias current from 0.4 volt supply	-5	+35	μA
53	 Not clock input bias current from +2.4 volt supply	-5	+35	μA

54	V-TC(3)	TC(3) (pad 26) fault catch voltage. CT0 selected. Timing current $= 5$ mA.	5.3	6.2	V
55	V-TC(2)	TC(2) (pad 25) fault catch voltage. CT1 selected. Timing current $= 2.5$ mA.	5.3	6.2	V
56	V-TC(1)	TC(1) (pad 24) fault catch voltage. CT2 selected. Timing current = 2.5 mA.	5.3	6.2	V
57	V-TC(1)	TC(1) (pad 24) voltage. "OFF" condition. "LO" state. CT0 selected. Force 10 μ A into pad 24 and measure voltage at pad 24.	-1.2	-0.5	V
58	V-TC(2)	Same as #57 except pad 25	-1.2	-0.5	v
59	V-TC(3)	TC(3) (pad 26) voltage. "OFF" condition. "LO" state. CT1 selected. T5, T0 = 000100 Force 10 μ A in pad 26 and measure pad 26 voltage.	-1.2	-0.5	V
60	V-TC(3)	TC(3) (pad 26) voltage. "OFF" condition. "LO" state. CT2 and TCS selected. T5, T0 = 001100 Force 10 μ A into pad 26 and measure pad 26 voltage.	-1.2	—0.5	V
61	V-TC(1)	TC(1) (pad 24) voltage. "OFF" condition. "HI" state. CT1 selected. T5, T0 = 000100 Force 10 μ A into pad 24 and measure pad 24 voltage.	5.3	6.0	v
62	V-TC(2)	TC(2) (pad 25) voltage. "OFF" condition. "HI" state. CT2 and TCS selected. T5, T0 = 001100 Force 10 μ A into pad 25 and measure pad 25 voltage.	5.3	6.0	v

Timing capacitor port fault catch voltages and "OFF" (port not selected) voltages. "OFF" voltage requirement will be "HI" or "LO" depending on timing capacitor selected (see Tables 3 and 4).

LEAKAGE CURRENT MEASURED AT TIMING CAPACITOR PORTS					
63	Leakage. TR(1), CT2 and TCS selected. T5, T0 = 001110. Measure leakage current from pad 24 to 0 volt supply	-1.0	1.0	nA	
64	Leakage Same as #63 except pad 24 to 3.85 volt supply.	- 1.0	1.0	nA	
65	Leakage. TR(1) and CT1 selected. T5, T0 $=$ 000110 (pad 25 output). Measure leakage current from pad 25 to 0 volt supply.	-1.0	1.0	nA	
66	Leakage Same as #65 except pad 25 to 3.85 volt supply.	-1.0	1.0	nA	
67	Leakage TR(1) and CT0 selected. T5, T0 $=$ 000010. Measure leakage current from pad 26 to 0 volt supply.	-1.0	10.	nA	
68	Leakage Same as #67 except pad 26 to 3.85 volt supply	-10	10	nA	

69	large current error TR(3) and CT0	-0.2	+0.2%	
33	Large current error. TR(3) and CT0 selected. T5, T0 - 000000. Force 8.05 mA into pad 20. Measure current from pad 26 to +3.85 volt supply Calculate error:	U.Z	+0.2%	
	$Error = \frac{8.05 \text{ mA} - I(MEAS'D)}{8.05 \text{ mA}} \text{ X 100\%}$	D		
70	Error @ pad 24. TR(3), CT2 and TCS selected. T5, T0 - 001100. Force 4.033 mA into pad 20. Measure pad 24 current to 3.85 volt supply Calculate error:	-0.2	+0.2	%
	$\text{Error} = \frac{4.033 \text{ mA} - \text{I}(\text{MEAS'D})}{4.033 \text{ mA}} \text{ X 100}^{\circ}$	%		
71	Error (a) pad 25. TR(3) and CT1 selected. T5, T0 = 000100. Force 4.033 mA into pad 20. Measure current from pad 25 to 3.85 volt supply. Calculate error:	- 0.2	+0.2	%
	$\text{Error} = \frac{4.033 \text{ mA} - \text{I}(\text{MEAS'D})}{4.033 \text{ mA}} \text{ X 100}^{\circ}$	%		
72	Current error @ pad 24. TR(2) and CT2 selected. T5, T0 = 001001. Force 805 μ A into pad 19. Measure current from pad 24 to 3.85 volt supply. Calculate error:		+0.2	%
	Error = $\frac{8.05 \ \mu A - I(MEAS'D)}{805 \ \mu A} X \ 100\%$	÷		
73	Current error @ pad 25. TR(2) and CT1 selected. T5, T0 = 000101. Force 805 μ A into pad 19. Measure current from pad 25 to 3.85 volt supply. Calculate error:	-0.2	+0.2	%
	$\text{Error} = \frac{805 \ \mu\text{A} - (\text{IMEAS'D})}{805 \ \mu\text{A}} \text{ X 100\%}$			

	Table T (cont)				
74	Error (a) pad 24. TR(1), CT2, and TCS selected. T5, T0 = 001110. Force 81 μ A into pad 18. Measure current from pad 24 to 3.85 volt supply Calculate error:	-0.2	+0.2	%	
	$Error = \frac{81\ \muA - (IMEAS'D)}{81\ \muA} X\ 100\%$				
75	Current error (a) pad 25. TR(1) and CT1 selected. T5, T0 = 000110. Force 81 μ A into pad 18. Measure current from pad 25 to 3.85 volt supply Calculate error:	-0.2	+0.2%		
	$\text{Error} = \frac{81 \ \mu\text{A} - (\text{IMEAS'D})}{81 \ \mu\text{A}} \text{X} \ 100\%$				
	Timing Current Sense Feedback (ITF) Co	ntinuity Che	ck		
76	ITF continuity. TR(1) selected. T5, T0 = 000110. Ground pad 25. Force 10 μ A in ITF (pad 21). Measure voltage pad 21 to pad 18.	1	50	к	
	$R(FET) ON = \frac{V(MEAS)}{10 \mu A}$				
77	ITF continuity. TR(2) selected. T5, T0 = 000101. Ground pad 25. Force 15 μ A in ITF (pad 21). Measure voltage pad 21 to pad 19.	1	50	К	
	$R(FET) ON = \frac{V(MEAS'D)}{15 \ \mu A}$				
78	ITF continuity. TR(3) selected. T5, T0 = 000100. Ground pad 25. Force 45 μ A in ITF (pad 21). Measure voltage pad 21 to pad 20. R(FET) ON = $\frac{V(MEAS'D)}{45 \ \mu A}$		50	к	

ł

ţ

4

.

CATCH DIODES

79	V-ITF	ITF catch voltage 43K resistor hooked from ITF (pad 24) to gnd. T5, T0 = 111110. Pads 18, 19, and 20 open. Measure voltage at ITF.	3.9	4.5	V .
80	V-ITR	ITR catch voltage Force 0.2 mA into ITR (pad 17) T5, T0 = 111110. Measure voltage at ITR.	15.2	16.2	v

81	VP	FET pinchoff voltage Drain voltage $= -8$ V	1.0	5.0	V
		Drain current = $-1 \mu A$			

1	а	bl	е	2
	d	DI	e	4

Measurements and Calculations Made to Determine Current Gain, Current Gain Ratios, and Offset of Timing Current DAC

Measure	Shift Register Code T5, T4	A 38.5K Resistor Connected Between ITREF (Pad 7) and VR. VR as Follows	Voltage at Pad 17
ITRA(1)	01	9.0 V	15 V
ITRB(1)	01	2.7 V	15 V
ITRA(OH)	00	9.0 V	15 V
ITRA(OL)	00	9.0 V	7.5 V
ITRB(OH)	00	2.7 V	15 V
ITRB(OL)	00	2.7 V	7.5 V
ITRA(2)	10	9.0 V	15 V
ITRB(2)	10	2.7 V	15 V
ITRA(3)	11	9.0 V	15 V
ITRB(3)	11	2.7 V	15 V

CALCULATE:
$$M(X) = \frac{38.5K(ITRA(X) - ITRB(X))}{9 - 2.7}$$

CALCULATE:
$$V(X) = \frac{9ITRB(X) - 2.7ITRA(X)}{ITRA(X) - ITRB(X)}$$

Where X = OH, OL, 1, 2, 3

NOTE 1: M(X) = Current Gain

NOTE 2: V(X) = Offset

Output and Timing Resistor Port Levels						
Shift Register Code T6, T0	ITR	TR(1)	TR(2)	TR(3)		
-00	1 mA					
	0.5 mA					
 	0.25 mA					
-11	0.1 mA					
00		CLP	CLP	SEL		
01		CLP	SEL	CLP		
10		SEL	CLP	CLP		

Table 3 Truth Table* Dutput and Timing Resistor Port Levels

Table 4					
Truth Table					
Output and Timing Capacitor Port Levels					

Shift Register Code T6, T0	TCS	CT2	CT1	СТО	Not ESG	Not 0.1 μF, 1 μF, 10 μF, SEL	Not 1 nf SEL	Not 5 nS SEL
00	LO	LO	LO	SEL		ні	н	
00 01	LO	н	SEL	LO		н	LO	
10	LO	SEL	н	LO		LO	н	
11	н	SEL	н	LO		LO	н	
1					LO			
0					ні			
-000000								LO
-All other								н

Tables 3 and 4 Notes:

1. Nominal ITR current with 9.625 V and 38.5K at ITREF.

2. SEL = selected

3. CLP = clamped

- 4. Shift register inputs at CD and -CC are TTL.
 - a. VIL(MAX) = 0.8 V
 - b. VIH(MIN) = 2.0 V

5. ITF output always senses voltage at bottom of selected timing resistor.

6. See Tests 29 through 47 for LSDRCO output truth table.

7. Data from the "CONTROL DATA" input, shifts into the control register (appears at register true outputs) at "NOT CONTROL CLOCK" low to high transitions, bit 6 first and bit 0 last. "Not Control Clock" must be maintained high after last shift to prevent false register oututs.

Pad #	Name	Input/Output	Description
1	VEE5	Supply	-5 Volt Supply
2	CD	Input	Control Data
3	-CC	Input	Not Control CLK IN
4			Test FET
5			Test FET
6			Test FET
7	IT-REF	Input	Timing Current Reference
8	VCC5	Supply	+5 Volt Supply
9	VEE15	Supply	-15 Volt Supply
10	GND		Ground
11	TCDR (1)	Input	Timing current DAC Resistor
12	TCDR (2)	Input	Timing current DAC Resistor
13	TCDR (3)	Input	Timing current DAC Resistor
14	TCDR (4)	Input	Timing current DAC Resistor
15	TCDR (5)	Input	Timing current DAC Resistor
16	VCC15	Supply	+15 Volt Supply
17	ITR	Output	Timing Capacitor Ref. Output
18	TR (1)		Timing Resistor
19	TR (2)		Timing Resistor
20	TR (3)		Timing Resistor
21	ITF	Output	Timing Current Sense Feedback
			Output
22	VCC32	Supply	+32 Volt Supply
23	TCS	Output	Timing Capacitor Select
24	CT2 .1 μF, 1 μF, 10 μF		Timing Capacitor
25	CT1 1 nF		Timing Capcitor
26	CT0 100 pF		Timing Capacitor
27	Not ESG	Output	Not Enable Sweep Gate Output
28	0.1, 1, 10 μF	Output	Capcitor Not Select Output
	Not Select		
29	1 nF Not Select	Output	Capacitor Not Select Output
30	5 nS Not Select	Output	Capacitor Not Select Output
31	LSDRC	Input	Level Shift DAC Ref Current In
32	LSDC	Output	Level Shift DAC Current Out

Table 5Terminal Identification

Applications Information

7-Bit Shift Register (see Tables 3 and 4)

Operation of the sweep circuit system is programmed by clocking a 7-bit code into this register. Parallel outputs are decoded and used to control the various functions of the 203-0231 and the 203-0214. Two of the bits program the timing current DAC, two of the bits select the timing resistor, and two of the bits select the timing capacitor. The seventh bit controls the Enable Sweep Gate function and is sent directly to the 203-0214-00 as "Not Enable Sweep Gate". A "One" at T6 (Enable Sweep Gate) of the register will allow "Not Sweep Gate Output" from the 203-0214-00 during sweep. A "Zero" on T6 inhibits "Not Sweep Gate" outputs.

Timing Current Generation

When combined with 10 off chip accurate resistors (9 of them are trimmed thick film on the H851 substrate) and an external op-amp, the 203-0231 provides a current (digitally programmed) that ranges from 5 microamps to 5 milliamps in a 5, 12.5, 25, 50, 125, etc., sequence. This current can be steered, with limitations, to one of three outputs corresponding to the three timing capacitor ports. The limitations referred to are the maximum current that can flow out of the three ports. The 100 pF port can handle the full 5 mA, the 1 nF port can handle 2.5 mA. The 0.1 μ F, 1 μ F, 10 μ F port can handle up to 2.5 mA.

The timing current (5 microamps to 5 milliamps) is generated in two stages. The process is as follows. A reference voltage (9.625 V) is applied to one end of a 38.5K resistor. The other end of the resistor is attached to the reference input (Pad 7-ITREF) of the timing current DAC. An internal op-amp keeps Pad 7 at zero volts and hence the reference current is approximately 0.25 mA. Scope "Variable Sweep Speed" is obtained by reducing the 9.625 V reference.

Output (ITR) of the timing current DAC is 0.1 mA, 0.25 mA, 0.5 mA, or 1 mA depending on the input digital code.

Shift register bits T4 and T5 contain the programming information for the timing current DAC. Timing current DAC output (ITR) is mirrored and multiplied by the network consisting of the external op-amp, the timing resistors, and FETS A, B, and C.

Shift register bits T0 and T1 contain the timing resistor select information.

Timing Capacitor Select (Refer to the Block Diagram)

The timing current (5 µA to 5 mA) is now steered to the appropriate timing cap port by FETS D, E, and F.

Shift register bits T2 and T3 contain the timing cap port select information. When the timing cap select (TCS) output from the 203-0231 and an external transistor (G) are used, a four timing capacitor system is realized.

Sweep-Display Delay Level Shift DAC (Refer to the Block Diagram)

See explanation in 203-0214-00 for a description of how the delay function works.

The level shift DAC in the 203-0231 requires a reference current which is supplied by the 203-0214. Max current from the level shift DAC occurs when the 5 ns/div sweep speed is selected. Under this condition the current out of the level shift DAC is 6.667 times the reference current.

At 10 ns/div the current out of the level shift DAC is 1/2 of the maximum. At 20 ns/div the current out of the level shift DAC is 1/4 of the maximum. At 50 ns/div the current out of the level shift DAC is 1/10 of the maximum. Output current continues to decrease in this manner for sweep speeds of 5 ns/div through 500 ns/div.

For sweep speeds of 1 μ s/div and slower the current out is zero.

•

COST

7

.

COSTING

TRANSFER COSTS FOR NEW USAGE OF AN EXISTING MONOLITHIC PACKAGED PART

If you are planning to use an existing monolithic packaged part in a new instrument design, please call ICM Applications Engineering (phone 627-1037). A significant increase in existing monolithic part volume may change the equipment required to manufacture it and it may affect the transfer cost.

Projected transfer costs up to 4 years beyond the present Fiscal Year can be obtained through a formal request to ICM Applications Engineering.

It is recommended that component use decisions for new applications of existing components be based on incremental cost (sometimes called variable cost). Variable cost is the labor, material, and variable burden portions of the transfer cost. Overhead (fixed cost) is subtracted and the incremental cost with yield loss is derived.

Incremental cost information also can be obtained by a formal request through ICM Applications Engineering.

More information on costing policies and definitions can be obtained from your Division cost accountant.

Fully burdened transfer costs are available from ICM Applications Engineering. They include yield loss and all overhead (fixed cost), and are reviewed quarterly and adjusted when appropriate.

7

. .

PACKAGE INFORMATION

Page No.

SECTION 8 PACKAGE INFORMATION 14-Pin DIP 8-1 16-Pin DIP 8-2 16-Pin MINIPAC 8-3 20-Pin DIP 8-4 24-Pin Power Plastic 8-5 16-Pin DIP CER 8-6 40-Pin DIP CER 8-7

14 PIN DIP

16 PIN DIP

16 PIN MINI PAC

.

20 PIN DIP

8-4

.

•

24 PIN POWER PLASTIC

AMARK PER ICM . 20.16

16 PIN CER

40 PIN CER

8

1

. 1 . 1

. . , .

. ••

v

,

،