
Tektronix TROUBLESHOOTING 
A MICROPROCESSOR 

Logic Analyzer Application Note + 57K1.0 

COMMITTED TO EXCELLENCE 

7ROLTRIC 48 REF TKIG +46 

CHO 

2994 
OFS 
6996 
eer 

1998 
bs deh 
bd 
wes 

biked 

r
e
 



TROUBLESHOOTING A MICROPROCESSOR 

WHY A LOGIC ANALYZER INSTEAD OF A SCOPE? 
Maybe you’re just getting started with microprocessors, or may- 

be you've worked with them from the beginning. Either way, 

you've probably discovered that designing and troubleshooting 

complex digital circuitry requires a special kind of tool. ..a 

tool with some capabilities the oscilloscope doesn’t offer. The 

ability to acquire, store, and display 16 or more channels of 

data at one time; to capture data preceding a trigger; to trigger 

on a desired word or pattern; to format data in a map or state 

table as well as in the traditional timing diagram and decode 

that data from binary to hexadecimal or octal notation; all these 

are necessary (or, at the least, very useful) in the data domain. 

The oscilloscope is still essential for detailed real-time analysis 

of electrical problems, but the /ogic analyzer, its counterpart in 

the data domain, meets these new requirements. 

This application note takes you through a typical microproces- 

sor troubleshooting sequence: from mapping to state tables to 

timing diagrams. Every step can be performed with the 7DO1F 

logic analysis package described here. 

The 7DO1F features 16-channel data acquisition and word rec- 

ognition, 4k formattable memory, pre, center, or post trigger, 

synchronous and asynchronous timing. Data may be mapped, 

formatted as state tables, or presented in timing diagram for- 

mat; all three formats feature readout in binary, hex, or octal 

notation. 

The addition of the WR501 Word Recognizer provides up to 32 

channels of word or pattern recognition plus digital delay 

capability. 

WHAT IS MAPPING? 
Mapping is a powerful analytical technique. The entire contents 

of the 7D01F memory are displayed at once, and a unique dot 

pattern is generated. This unique pattern greatly simplifies such 

procedures as checking program flow or obtaining a software 

signature. 

How is the data mapped? In the case of 16 bit wide words, the 

inputs from channels 8 to 15, representing the most significant 

byte, are inputted to a D/A converter which drives the vertical 

deflection circuitry of the crt; the inputs from channels 0 to 7, 

representing the least significant byte, are inputted to another 

D/A converter which drives the horizontal deflection circuitry. 
Thus each combination of 1s and Os in a word deflects the 

beam to a particular position on the crt. 

With 16 bits, 24° = 65,536 unique memory locations are dis- 

played in a 256 x 256 matrix. What happens is that we take the 

254 words (each 16 bits wide) stored in the 7D01F memory and 

display all 254 of them as dots at the position defined by the 

combination of 1s and Os that makes up each word. If some of 

the 254 words are identical, then, they will be displayed in the 

same spot, making that location brighter than the others (See 

figure 1). 

RAM addresses 0000,,-00FFj, 

ROM addresses accessed to 

get program steps stored 

there 

Copyright © 1977, Tektronix, Inc. All rights reserved. 1/O ports 

7DOITRIG +24 

Figure 1. 

WHY IS MAPPING HELPFUL? 
Mapping enables you to quickly look at all 254 words and com- 

pare their relative numerical values. Thus, in a microprocessor 

application, you might want to analyze an address bus that is 

16 bits wide. The pattern of 1s and Os on that bus tells us which 

device (and which location in that device) takes data from or puts 

data onto the data bus. So if we know the address, we know what 

device the microprocessor is operating on. 

The total number of addresses available is broken into blocks 

for the supporting memory and |/O. For example, hexadecimal 

addresses 0000 to OOFF might be reserved for a 256 x 8 bit RAM 

(where the data that the microprocessor works on is kept). Add- 

resses 010046 to 0900;¢ might be assigned to a 2k x 8 bit PROM, 

where the instructions which make up a microprocessor’s pro- 

gram are stored. And addresses FFO0;¢ and FEFCy¢ might be 

the addresses of two 8 bit wide I/O ports that communicate with 

a terminal. If the microprocessor were talking with the terminal, 

you would expect to see some dots at the locations defined by 

FFOO1g and FEFCy6, as well as some in the ROM address space 

(for instructions) and some in the RAM address space (where 

the microprocessor stored what the terminal sent to it). (See 

figure 2). 

7D01TRIG -1 

Figure 2.



Now, rather than tediously going through all 254 words stored 

in the 7DO1F and looking for FFOQi16 or FEFCi«6, you could 

easily see at a glance whether the microprocessor ever went 

to the I/O port during a program. That is the power of mapping. 

A larger microprocessor system might have much more pro- 

gram memory. By mapping the address line activity, you would 

quickly get an idea of which routines the microprocessor was 

performing. For example, a block data transfer routine might 

be in this area: 

7001 TRIG -8 

Figure 3. 

But suppose you find later that the map looks like this: 

7D01 TRIG +46 

DFOF cuUR 

Figure 4. 

Obviously, the microprocessor is doing something other than 

what you had in mind. 

By locating the address of one of these invalid points with the 

cursor (+), you could quickly set up a trigger on the built-in 

7DO1F word recognizer. Then you could restart the microproces- 

sor and wait for the 7DO1F to trigger. When it did, you would have 

a picture of how the microprocessor got to those invalid ad- 

dresses. By using the cursor, you could then track the addresses 

sequentially and see just what location the address jumped from 

(See figure 5). 

7OOL TRIG +480 

OFOF CUR 

Figure 5. 

WHAT GOOD IS STATE TABLE INFORMATION? 
State table displays are important aids for debugging software. 

Once you've located a problem area with mapping, you can go 

on to the next step: locating the faulty bit or bits in the program 

itself. 

In a binary system, a high voltage level might mean “1” anda 

low voltage level might mean ‘‘0’’. The parallel combination of 1s 

and Os on a group of lines at one point in time would represent 

a word or state, e.g. 1111111011111100. This is a 16-bit word 

displayed in binary. 

Here is the same number displayed in hexadecimal, where 

groups of 4 bits have been decoded into digits ranging from 0 

to F, beginning at the right: 

FEFC 

You might recognize FEFC as the address of an |/O port (figure 
2). Would you recognize it as quickly in binary form? This is the 

value of hex (or octal) decoding: masses of data are reduced to 

an easy-to-use form. The state table display, then, is just another 

way of looking at data the 7DO1F has stored. 

7DOi TRIG = . 7D01 TRIG 

Yi1L1iii1ar11111i1900 “H
y tas
 

N
G
I
 E

G 
¢ 

0000000010000110 
0.000000 100000911 
0000001 010110111 
aoco ce! 1909 i:ce0s 
0000010000 000000 
0000 000 000 000000 

ft
 
D
e
a
o
c
 

0000010110000116 
6000011 0000 
o0000011 1101 
o060 1000001 
0060100100 000000 
0000 000C00 000000 
o000 600000 000000 
000010: 610000110 

1111111100000000 TRIG 

Q
a
e
e
 
©
o
a
d
 

e
c
o
o
»
n
n
 

. 
G
N
A
 
G
l
a
d
 

w
e
 

G
i
 

in
 

re) 
ea 
63 
86 
11 
B7 
20 

FF@@ TRIG 

Figure 6. 

But what about the state data itself? How is it different from volt- 

tage waveforms? Like mapped data, state tables differ from tim- 

ing diagrams in that the data is stored using the same clock as 

the microprocessor system, or synchronously. The microproces- 



sor system ignores the voltages present on a bus between active 

clock edges. In other words, the voltages on a bus are sampled 

by the microprocessor only at certain times, and it is to our ad- 

vantage to use the same samples the microprocessor uses so 

that we store only what the microprocessor ‘‘sees’’. 

As an example, let’s take the map of address lines from the 

previous section on mapping. Now that you’ve stored the incor- 

rect block of addresses, you switch over to the state table mode, 

which shows you the address word at the cursor location and 

the next 16 words stored—17 of 254 words total that have been 

captured. Then, by using, the cursor control, you can locate the 

illegal address area; in this case, DFDF, toward the bottom of 

the table (See figure 7). 

7DOL TRIG +1186 

737F 

FFFF 
FFFF 
FFFF 
FFFF 
F3FF 
DFD7 
OF FF 

E7FF TRIG 

Figure 7. 

Now it’s an easy matter to see what devices the microprocessor 

was accessing just before it went wrong. If this were in the pro- 

gram ROM, you could check your listing of its contents and see 

exactly what the microprocessor was supposed to be doing. 

WORD RECOGNITION WITH THE WR501 
With the WR501 as part of the 7DO1F package, you have 34- 

channel word or pattern recognition with 16 channels stored and 

displayed. The digital delay feature allows you to delay from the 

word recognizer inputs by words or clock pulses. With word rec- 

ognition and digital delay both, it’s possible to word-recognize 

on word or pattern A, then on B, then to delay; or to word-rec- 

ognize on A, delay for a certain count, then recognize on B. 

WHAT DOES WORD RECOGNITION DO FOR YOU? 
Let’s continue our example from the state table section. You now 

know that the microprocessor was accessing the PROM (pro- 

gram storage area) just before it went bad. By attaching the ad- 

dress bus probes to the WR501, setting up the WR501 Word 

Recognizer for the first illegal address, and attaching the 7DO1F 

to the data bus, you can record data bus activity around the 

point of failure. 

An examination of the state tables showed that the microproces- 

sor received the code for a jump instruction and, in the next two 

lines, received DFDF as the address it should go to. However, 

DFDF is the first address in the illegal block of code. It appears 

that the PROM has been incorrectly programmed. 

The WR501 has triggered the 7DO1F, allowing you to store the 

area of operation you were looking for on the data bus, and so 

to locate the fault. 

THE 7D01F REFERENCE MEMORY 
The 4k 7DO1F reference memory is separate from the working 

memory. When a block of data has been stored in the 7DO1F and 

is found to be correct by your analysis, it can be ‘‘set aside’ as 

a reference. You can then specify that data gathered on subse- 

quent storage be ignored if it matches a 17-word table you 

select with the cursor, or if it matches the entire 254-word refer- 

ence memory. The 7DO1F will count the number of correct 

matches, generate an external TTL reset pulse, and reset itself 

until a mismatch occurs. Then it will hold the erroneous data 

and intensify it in the display, so you know immediately where 

it is and what it is. 

Suppose the microprocessor must perform a given sequence 

upon restart; but suppose also that it fails occasionally. First you 

capture a good sequence restart, designate that as your refer- 

ence, and, using the 7DO1F external reset pulse to restart the 

microprocessor, you activate the Reset If mode. Then you go 

home for the night. Upon your return in the morning, you'll find 

the 7D01F holding the record of the 36th restart sequence, which 

is incorrect. 

Figure 8. 

The sequence is analyzed and the problem solved. As you can 

see from this example, the reference memory with intensified 

exclusive-OR comparison can be a real time-saver. 

WHAT ABOUT THE TIMING DISPLAY ? 
Timing diagrams may be generated by using the 7DO1F’s internal 

time base. In this manner, 16 channels may be sampled at up 

to 50-ns intervals, 8 channels may be sampled at up to 20-ns 

intervals, or 4 channels may be sampled at up to 10-ns intervals. 

The channels can then be displayed as pseudo-waveforms in the 

familiar timing diagram format.



7DOL TRIG -96 

 netaaeenneneeeneter ts PISSSSEASETY = eeenntteeaeneneneet 

01001001 CUR. 

Figure 9. 

How is this useful? Suppose, in the failure example described 

in the state table section, that the fault has been traced to an 

1/O port instead of to a PROM. Incorrect data is being presented 

to the microprocessor by the I/O port. Is the incorrect data com- 

ing from the I/O port or the hardware on the other side? 

By using the 7DO1F internal time base as an asynchronous clock, 

the keyboard-generated waveforms on the ‘‘outside world” side 

of the |/O port can be examined in detail. (And they can only be 

examined asynchronously.) In our example, the I/O port is found 

to be perfectly okay. The trouble is traced to a faulty pullup resis- 

tor on the switch input to the keyboard encoder... to a race 

condition in the keyboard debounce circuitry... to a faulty 

Schmitt trigger... (circled area figure 9) or to any number of in- 

ternal or external problems. 

In conclusion, then, the 7DO1F logic analyzer package provides 

both synchronous and asynchronous testing capabilities. Use 

map and state table formats for checking the internally clocked, 

or synchronous, bus structure of the microprocessor system it- 

self. Use the timing diagram for troubleshooting the microproces- 

sor’s only link with the outside world, its supporting digital cir- 

cuitry. Either way, the 7DO1F gets you through your test 

procedure.



1/77 

Copyright © 1977, Tektronix, Inc. All rights reserved. Printed in U.S.A. Foreign and U.S.A. Products of Tektronix, Inc. are covered 

by Foreign and U.S.A. Patents and/or Patents Pending. Information in this publication supersedes all previously_ published 

material. Specification and price change privileges reserved. TEKTRONIX, TEK, SCOPE-MOBILE, TELEQUIPMENT, and are 

registered trademarks of Tektronix, Inc. P.O. Box 500, Beaverton, Oregon 97077. Phone: (Area Code 503) 644-0161, TWX: 910-467- 

8708, Cable: TEKTRONIX. Overseas Distributors in over 50 Countries. AX-3524 

we
 


