INSTRUCTION MANUAL

\qquad

26G2 RAMP GENERATOR

WARRANTY

All Tektronix instruments are warranted against defective materials and workmanship for one year. Tektronix transformers, manufactured in our plant, are warranted for the life of the instrument.

Any questions with respect to the warranty, mentioned above should be taken up with your Tektronix Field Engineer or Representative.

All requests for repairs and replacement parts should be directed to the Tektronix Field Office or representative in your area. This procedure will assure you the fastest possible service. Please include the instrument Type (or Part Number) and Serial or Model Number with all requests for parts or service.

Specifications and price change privileges reserved.
Copyright (C) 1970 by Tektronix, Inc., Beaverton, Oregon. Printed in the United States of America. All rights reserved. Contents of this publication may not be reproduced in any form without permission of the copyright owner.
U.S.A. and foreign Tektronix products covered by U.S. and foreign patents and/or patents pending.

TABLE OF CONTENTS

Fig. 1-1. 26G2 Ramp Generator.

SECTION 1 26G2 SPECIFICATION

Change information, if any, affecting this section will be found at the rear of this manual.

Introduction

The 26 G 2 is a rate and ramp generator plug-in unit designed for use with 2600-Series Mainframes. The major output is a precise voltage ramp. The ramp duration is set by two calibrated front-panel controls (RAMP DURATION and DURATION MULTiplier).

The ramp may be triggered, gated, or triggered during gate.

When used with a 26 G 3 Pulse Generator, the 26 G 2 can be used as a time-delay generator.

All front-panel signals are available at the rear-interface connector for patching to other plug-in units.

The 26G2 will perform to the specifications listed in this section within an ambient temperature range between $0^{\circ} \mathrm{C}$ and $+50^{\circ} \mathrm{C}$, except as indicated. No warmup time is required. The performance check instructions, Section 5, provide a convenient means of checking the performance of the 26 G 2 .

Electrical Characteristics

Characteristic	Performance Requirement
Ramp Rate Accuracy	
$10 \mu \mathrm{~s}$ to 1 s	Within 2% and 20 mV of indicated Amplitude/Time from 0.5 V to 9.9 V for 10 V ramp and 0.05 V to 0.99 V for 1 V ramp.
10 s	Within 4.5% and 20 mV of indicated Amplitude/Time from 0.5 V to 9.9 V for 10 V ramp and 0.05 V to 0.99 V for 1 V ramp.

OUTPUTS

Characteristic	Performance Requirements	Supplemental Information
Ramp, 10 V (A$)$		
Amplitude		
$\begin{aligned} & 100 \mu \mathrm{~s} \text { to } \\ & 10 \mathrm{~s} \end{aligned}$	$\begin{aligned} & +10.0 \mathrm{~V} \text {, within } \\ & 0.05 \mathrm{~V} \end{aligned}$	
$10 \mu \mathrm{~s}$	$\begin{aligned} & +10.0 \mathrm{~V} \text {, within } \\ & +0.25 \mathrm{~V}, \\ & -0.05 \mathrm{~V} \end{aligned}$	
DC Level between Ramps	$\begin{aligned} & 0 \mathrm{~V} \text {, within } 20 \\ & \mathrm{mV} \end{aligned}$	
Typical Short Circuit current		$33 \mathrm{~mA}$
Driving Capability		$3 \mathrm{k} \Omega$ or greater, and 300 pF or less
Ramp 1 V (C)		
Amplitude		
$\begin{aligned} & 100 \mu \mathrm{~s} \text { to } \\ & 10 \mathrm{~s} \end{aligned}$	$\begin{aligned} & +1.0 \mathrm{~V} \text {, within } \\ & 0.01 \mathrm{~V} \end{aligned}$	
$10 \mu \mathrm{~s}$	$\begin{aligned} & +1.0 \mathrm{~V} \text {, within } \\ & +0.03 \mathrm{~V} \text {, } \\ & -0.01 \mathrm{~V} \end{aligned}$	
DC Level between Ramps		0 V , within 5 mV
Source Impedance		50Ω, within 1%
Ramp Gate (D)		
Amplitude	$\begin{aligned} & +3 V \text {, within } \\ & 20 \% \end{aligned}$	
Off State		0 V , within 100 mV
Source Impedance		150Ω within 5%
Risetime, Falltime		100 ns or less, meassured at 10% to 90% amplitude points

OUTPUTS (cont.)

Characteristic	Performance Requirements	Supplemental Information
Ramp Start (E) Amplitude	$\begin{aligned} & +3 V \text {, within } \\ & 20 \% \end{aligned}$	
Off State		0 V , within 100 mV
Source Impedance		150Ω, within 5%
Risetime		100 ns or less, measured at 10\% to 90% amplitude points
Width (50\% amplitude)		$1.5 \mu \mathrm{~s}$, within 30%
INPUTS		
Characteristic	Performance Requirement	Supplemental Information
Trigger (1)		
Triggering Amplitude $V_{o n}{ }^{1}$	At least +1 V (-1 V with internal connector change)	
Non-Function Level $V_{\text {off }}{ }^{1}$		+0.4 V or less (-0.4 V with internal connector change)
Maximum Safe Input		$\begin{aligned} & 15 \mathrm{~V}(\mathrm{DC}+\text { Peak } \\ & \mathrm{AC}) \end{aligned}$
Minimum On Time		$250 \mathrm{~ns}$
Input Resistance		$10 \mathrm{k} \Omega$, within 10%
Gate (2)		
Gating Amplitude $\mathrm{V}_{\text {on }}{ }^{1}$	At least +1 V	
Non-Function Level $V_{\text {off }}{ }^{1}$		+0.4 V or less
Maximum Safe Input		$\begin{aligned} & 15 \mathrm{~V}(\mathrm{DC}+\text { Peak } \\ & \mathrm{AC}) \end{aligned}$
Input Resistance		$5 \mathrm{k} \Omega$ or greater

[^0]INPUTS (cont.)

Characteristic	Performance Requirements	Supplemental Information
Ground to Gate Function Range Open Circuit Voltage Minimum Down Time Current Output Minimum Sensing Resistance Maximum Safe Input	+0.4 V to 0 V	+5 V or less 250 ns 1.25 mA or less 320Ω 15 V (DC + Peak AC)
Ramp Reset (4) Function Amplitude $V_{\text {on }}{ }^{1}$ Non-Function Level $V_{\text {off }}{ }^{1}$ Minimum On Time Maximum Safe Input Input Resistance	At least+1 V	$\begin{aligned} & +0.4 \mathrm{~V} \text { or less } \\ & 250 \mathrm{~ns} \\ & 15 \mathrm{~V} \text { (DC + Peak } \\ & \mathrm{AC}) \\ & 5 \mathrm{k} \Omega \text { or greater } \end{aligned}$
Ground to (5) Reset Function Range Open Circuit Voltage Minimum Down Time Current Output Maximum Sensing Resistance Maximum Safe Input	+0.4 V to 0 V	$+3 V$ or less 250 ns 1.25 mA or less 320Ω 15 V (DC + Peak AC)

FUNCTION INPUTS
GROUND TO FUNCTION INPUTS

Fig. 1-2. Input Function Levels.

Accessories

An illustrated list of Standard and Optional accessories for the 26G2 will be found at the end of the Mechanical Parts List pullout pages.

NOTE

The pins, jacks and cables supplied to interconnect 2600-System modules are based upon a standard $40-\mathrm{mil}(0.040$ inch or $\approx 1 \mathrm{~mm})$ pin diameter. These items are manufactured by Cambion (Cambridge Thermionic Corp.) and others. Allied Radio Shack catalogs the basic elements of this $40-\mathrm{mil}$ system.

NOTES

> Change information, if any, affecting this section will be found at the rear of this manual.

Introduction

The 26G2 RAMP Generator unit is one of a series of plug-in modules and mainframes in the 2600 system. The 26G2 and other units in the series may also be plugged into 7000-Series Oscilloscopes, using an adapter.

To use the 26G2 effectively, the operation and capabilities of the instrument should be understood. This section describes the functions and features of the controls and connectors.

Installation

The 26G2 is designed to operate in any one of the plugin compartments in the 2600 -Series mainframes. To install the 26G2 into the mainframe, align the bottom groove of the 26G2 with the plastic guide bar in the mainframe. Push the 26G2 into the opening until the front panel is flush with the front of the mainframe. To remove the 26 G 2 , pull the release latch to disengage the unit from the mainframe connector. Continue to pull the release latch to remove the unit from the mainframe.

CONTROLS

A description of the function and operation of controls and connectors follows.

The switches used for selecting the various functions are miniature illuminated pushbuttons. The buttons are mechanically interlocked so that only one button may be depressed at one time (except that RAMP RESET is not interlocked to other buttons). Each button is illuminated from behind when the button is pushed in.

MODE Selector

FREE RUN-Provides generation of recurrent ramps at the RAMP 10 V and RAMP 1 V OUTPUTS. Does not depend on external signals or the RATE Generator to initiate the ramps.

GATED-Provides generation of recurrent ramps for the duration of a gate signal.

MAN-Pushing the MAN (manual) button provides one or more ramps for the period the button is held, but
always allows completion of the ramp in progress when the button is released.

EXT-Provides recurrent ramps for the duration of at least a +1 -volt gating signal applied to GATE INPUT connector. The last ramp completes after gate is removed.

TRIG'D-Pushing the TRIG'D button provides four possible modes of triggering: Ext +Slope, Ext -Slope, and Manual.

EXT +SLOPE-A positive-going, positive-level (above ground level) ${ }^{1}$ trigger signal of 1 volt applied to the TRIG INPUT will initiate ramp generation when this button is pushed.

EXT -SLOPE-A negative-going, positive-level ${ }^{1}$ trigger signal of 1 volt applied to the TRIG INPUT will initiate ramp generation when this button is pushed.

MAN-Applies a single trigger to the Ramp Generator each time the MAN button is pushed.

GATED TRIGger-Provides ramp generation at a rate determined by the trigger signal applied to the TRIG INPUT, and for time determined by the duration of the signal applied to the GATE INPUT.

RAMP RESET-Pushing this button terminates the ramp generation cycle in progress and resets the circuit for generation of a new cycle. This can be a convenience when working with long duration ramps.

RAMP DURATION-Selects calibrated ramp durations from $10 \mu \mathrm{~s}$ to 10 s in decade steps.

DURATION MULTiplier-Provides continuously variable calibrated ramp duration from 1.00 to 11.00 times the duration selected by the RAMP DURATION Selector.

[^1]

Fig. 2-1. Location of Modification Point, P11.

CONNECTORS

NOTE

The trigger and gate levels of the 26G2, both input and output, are compatible with the logic levels used in most DTL and TTL logic devices.

INPUTS

TRIG (1)-A 1 -volt pulse connected to this input (in TRIG'D MODE) initiates a ramp generation cycle.

GATE (2)-External gate signal input connector, requires a positive-going 1 -volt signal to start ramp.

GND TO GATE (3)-Ground, a signal of +0.4 V or less, or 320Ω to ground connected to this connector (with MODE switch in GATED or GATED TRIG) produces the same result as a positive-going 1 -volt signal applied to GATE INPUT. ${ }^{1}$

RAMP RESET (4)-External positive-going 1-volt signal terminates a ramp at any time during its runup.

GND TO RESET (5)-Ground, a signal of +0.4 V or less, or 320Ω to ground, connected to this connector terminates a ramp at any time during its runup.

GND (6)-Reference ground for all INPUT connectors.

Spare (7)-Spare connector is bused through to the rear connector, A2, and appears at a test point, TP58 (see Fig. 2-2).

OUTPUTS

RAMP $10 \mathrm{~V}(\mathrm{~A})$-Output of the RAMP Generator. Ramp starts at zero potential, rising linearly to +10 V . Ramp duration is a function of the setting of RAMP DURATION and DURATION MULTiplier control settings.

COM (B)-Reference ground for the RAMP OUTPUT connectors. The ground return for R148 (COM, B) and R136 is connected directly to pin 3, U110, thus assuring a ground return free of any currents other than Ramp current.

RAMP 1 V (C)-Output of the RAMP Generator. Ramp starts at zero potential, rising linearly to +1 V . Ramp duration is a function of the RAMP DURATION and DURATION MULTiplier control settings.

RAMP GATE (D)-Zero to +3 -volt step having the same time duration as the output ramp. The positive step is coincident with the start of the ramp, and remains at the high state until the ramp terminates.

RAMP START (E)-Zero to +3 -volt, 1.5μ s trigger pulse coincident with the start of the ramp.

GND (F)-Circuit Ground.

Spare (G)-Spare connector is bused through to the rear connector, A8, and appears at a test point, TP150 (see Fig. 2-2).

Fig. 2-2. Location of TP58 and TP 150 .

SECTION 3 CIRCUIT DESCRIPTION

Change information, if any, affecting this section will be found at the rear of this manual.

Introduction

This section of the manual contains a description of the circuits in the 26G2.

Simplified drawings are provided where necessary for easier circuit understanding. Complete schematic diagrams are included in the Diagram section. These schematics should be referred to throughout the detailed circuit description.

Symbols used on the schematic diagrams are explained on the first foldout diagram in the Schematic Diagram Section.

RAMP GENERATOR

General

The Ramp Generator produces three waveforms at the output terminals; a linear sawtooth, a rectangular gate, and a trigger pulse.

The Ramp Generator consists of two integrated circuits; Sweep Logic, U70, and Miller Integrator, U110, and their associated discrete circuit components. The primary functions of these components are Trigger Slope selection, Trigger Mode selection, Timing, Holdoff, and Reset.

Table 3-1 discusses each integrated circuit terminal and its function. All terminals are digital unless otherwise noted, and positive logic is employed.

TABLE 3-1
Sweep Logic U70

Terminal	Function
1, Reset	Current (logic 1) for at least 20 ns ends ramp, regardless how far the ramp has run up. No input (logic 0) allows U70 to operate.

TABLE 3-1 (cont.)

Terminal	Function
2, Ext Trig	Gating logic (with pin 10, Lock- out). See Table 3-2.
3, Ground	Circuit ground.
4, Trigger Input	Analog input, low impedance. Accepts analog current trigger sig- nal. Trigger threshold: Zero cur- rent, $\pm 100 \mu \mathrm{~A}$.
5, Slope Select	Logic 1 permits trigger to be initi-

Logic 0 permits trigger to be initiated on the negative slope of a trigger signal.

	ger signal.
6, Not used	Held at logic 1.
7, Not used	Held at logic 0.
8, GND, substrate	Reference ground.
9, Not used	Held at logic 0.
10, Lockout	Gating logic 1 (with pin 2 at logic

	1) locks out ramp start. See Table $3-2$.
11, Holdoff timing	Connects timing components which sets trigger lockout period after end of ramp. Holdoff capacitor dis- charges when ramp starts, and Holdoff timing starts at end of ramp as holdoff capacitor charges. When holdoff capacitor charges to upper threshold, a new ramp can be started.
12, Not used	Held at logic 0.
13, Not used	Held at logic 1.

TABLE 3-1 (cont)

Terminal
$14,+$ Gate Out

Function

Provides a +5 -volt source through R105 (logic 1) during ramp runup, driving current into pin 1, U110, Logic 0 ends ramp.

15, Not used	Open.
16, Power Supply	+5 volts.

TABLE 3-2

Mode	Logic State		Trig Signal	Output of U70 \& U110 in combination
	$\begin{gathered} \hline \text { Pin } \\ 2 \end{gathered}$	$\begin{gathered} \hline \text { Pin } \\ 10 \end{gathered}$	$\begin{gathered} \text { Pin } \\ 4 \end{gathered}$	
Free Run	1	0		Free Running ramp
Gated	1	1		Locked out-No ramp
W/Gate in	1	0		Free runs for duration of gate.
Gated Trig	0	1		No ramp
W/Gate in	0	0		No ramp
W/Gate \& Trig in	0	0	Trig in	Single ramp for
				Trig with Gate
Trig'd	0	0		No ramp
	0	0	Trig in	Single ramp for each

Triggering

The trigger circuit, 084 and associated circuitry, provides current drive to pin 4, U70.

The Trigger Input, Pin 4, has a hysteresis of about 0.2 mV , centered about zero current.

R85, connected to the -15 volt supply, furnishes about 0.6 mA into pin 4 (with no trigger signal), holding the current level away from the trigger threshold.

If a 0.7 volt positive pulse is applied to 084 base, about 0.7 mA will be diverted (0.7 volt across R84) from pin 4, reducing the current level into the triggered range of U70. U70 will be triggered, therefore, only when the base of Q84, Trigger Signal In, rises to about 0.7 volt positive.

If minus level triggering is desired, the strap at the modification point (Fig. 3-1), P11-1, P11-2, may be moved to the P11-2, P11-3 position.

Fig. 3-1. Location of Modification Point, P11.

For minus level triggering, R86 and R87 (to +5 volts) are connected to pin 4, pulling about 1.4 mA out of pin 4, biasing pin 4 at about 0.7 mA positive, and holding the current level away from the $100 \mu \mathrm{~A}$ threshold.

To get into the hysteresis range of pin 4 , the 0.7 mA positive bias must be cancelled. A negative-going 0.7 volt signal applied to "Trig In^{\prime} diverts current into pin 4, reducing the current level to the trigger threshold.

Voltages in excess of the required 0.7 volt signal level may be tolerated (up to about 15 volts) with no harm to the circuit.

If a large positive voltage is applied to the Trig Input, CR80 turns on, bypassing 084, and increasing the current into pin 4 , which can accept up to 15 mA .

In the negative direction, 084 emitter follows the signal, and will cause no damage up to the dissipation rating limits of R84 (15 volts across R84).

CR83 disconnects 084 collector from the -15 volt supply if the signal goes too far negative.

Slope Selection

U70 uses only one trigger input, and has the ability to select which slope turns the gate on, a logic 0 or logic 1.

Pushing EXT +SLOPE button gives a logic 0 on pin 5, allowing triggering to take place on the positive slope of the triggering signal. Pushing the EXT -SLOPE button gives a logic 1 on pin 5, allowing triggering to take place on the negative slope of the triggering signal.

Reset

If pin 1, U70, is made positive (logic 1) the ramp is terminated, regardless of how far the ramp has run up.

A positive-going signal at RAMP RESET turns Q95 on, which turns Q96 off, applying a logic 1 to pin 1, resetting the output ramp, (U110, pin 8) to zero volts.

Pushing the RAMP RESET button turns Q96 off, applying a logic 1 to pin 1 , resetting the output ramp to zero.

A ground (or any source which drops to less than 0.4 volt) at GND TO RESET turns off Q96, applying a logic 1 to pin 1, resetting the output ramp to zero.

Ramp reset initiation may be accomplished very rapidly (typically less than a few hundred nanoseconds) so that the ramp may be accurately terminated through an external logic system.

+GATE Out

The output ramp (pin 8, U110) is initiated by a gate from pin 14, U70, through R104, into pin 1, U110.

Linear Integrator

The Ramp Generator portion of U110 is an operational amplifier using the timing capacitor as the feedback element. Table 3-3 discusses each integrated circuit terminal and its function.

The ramp start level is set by a logic 0 on U110, pin 1, short circuiting the timing capacitor, pins 8 and 9 .

A logic 1 on pin 1 removes the shunt from pins 8 and 9 , allowing the timing capacitor to charge through the timing resistor, allowing the cutput, pin 8 to rise linearly.

When the output ramp reaches the level set at pin 6, U110 by R101, DC comparator in U110 causes the ramp to reset. A gate signal from pin 4, U110, resets U70 via pin 1, removing the clamp from the holdoff timing capacitor (connected to pin 11, U70). When the voltage at pin 11, U70 reaches approximately 3 volts, conditions are set to again accept a signal to restart the ramp.

TABLE 3-3
Miller Integrator, U110

Terminal	Function
1, Sweep Gate In	Current into pin 1 results in a linear voltage ramp at pin 8.
2, Oscillation Suppressor	Connects discrete components to prevent oscillation of the integrator.
3, Ground	Provides a reference ground for the RAMP outputs and Power return, +15 -volts and -13 mA (from -15 volt supply through R108).
4, Delayed Gate Out	Provides reset logic to pin 1, U70, when output level on pin 8 reaches the level set on pin 6 by R101.
5, Not used	Held at logic 1.
6, Ramp Length	Provides the DC reference level for the internal comparator to set up "end of ramp" logic.
7, Power Supply	+15 volts.
8, Output	Produces a linear voltage ramp out when current is gated into pin 1. Ramp is positive-going with an amplitude of approximately 0 to 9 volts.
9, Timing Current Summing node	Connects timing components which determine the ramp rate.
10, Substrate	$\approx-13 \mathrm{~mA}$ from R108.

The timing circuit uses a common resistor, R123, for all but the 10 second ramp, which uses R120 and R121.

Ramp Duration times 1 (X1) calibrates the X 1 end of the DURATION MULT and Ramp Duration times 11 (X11) calibrates the X11 end (Calibrate at X10).

R127, R128 and the +15 and -15 -volt supplies provide current through the voltage drop across R126 may be adjusted to any value of offset at pin 9 (potential and polarity). Adjusting R128, (Mult Linearity) to set the potential at TP125 equal to that at TP110 (with TP122 shorted to ground) maintains linearity over the full X 1 to

Circuit Description-26G2

X11 range of the DURATION MULT, R122. (Before shorting TP122 to ground, the DURATION MULT, R122, must be set to 5.00 to pervent shorting the -15 -volt supply).

Ramp Out (pin 8)

The output ramp (at pin 8, U110) starts at about 0 volts and rises to about 9 volts. The 9 -volt ramp is fed into an operational (feedback) amplifier having a gain which is adjustable from 1 to about 1.3. The feedback amplifier, Q132B, Q140, and Q145 with the gain-setting resistor, R137 (adjustable feedback), set the gain at about 1.1 for an output to 10 volts. R130 and R131 provide a current which set the Ramp start to zero potential.

R145, CR143, and Q140 act as a current limit for the output. If the current through Q145 exceeds about 30 mA , CR143 turns on, stealing emitter current from Q140. Since Q145 base current is dependent on Q140 emitter current, any decrease in Q140 emitter current reduces Q145 base current, thus limiting output current.

RAMP 10 V

The RAMP 10 V output provides a 10 -volt ramp output which is essentially a zero ohm voltage source. L147 minimizes any tendency to oscillate with reactive loads.

RAMP 1 V

The RAMP 1 V output provides a 1 -volt ramp output with an output resistance of 50 ohms.

The common return for R148-R136 is connected directly to pin 3, U110, eliminating any AC or DC current other than output current directly between these points. This assures a zero reference, based on the potential at pin 3.

Other Output Signals

The +Gate from pin 14, U70, provides a "Ramp Running" indication, a "Gate Out" a nd a "Trigger Out".

Ramp Out Indicator

The Ramp Output (Ramp Running) indicator Iamp circuit provides switching logic to indicate that a ramp is either running up or has just ended.

The indicator lamp circuit is a monostable multi having a minimum on time of approximately 100 ms . It indicates for even the shortest ramp duration. If the ramp duration is
longer than 100 ms , the lamp indicates 100 ms beyond the end of the ramp.

A positive gate from pin 14 (U70) turns on Q162 and Q190, which holds the collector of Q190 negative, quickly discharging C192 (within approximately $1 \mu \mathrm{~s}$). Q194 turns off, turning off Q196. Q198 turns on, providing operating current for DS198, the indicator Iamp.

When the ramp ends, ending the positive gate, Q162 turns off, turning Q190 off. C192 starts to charge toward +15 volts through R192, allowing Q194 gate to rise. Q194 turns on, turning on Q196, turning off Q198, and extinguishing the lamp.

Ramp Gate

When the +Gate occurs at pin 14 (U70), Q170 turns off, allowing Q174 to turn on, providing a positive level gate signal out. The GATE signal has an amplitude of 3 volts and an output resistance of 150 ohms.

Ramp Start

When the +Gate occurs at pin 14 (U70), Q182 turns off and Q184 turns on, and since the signal is AC coupled to Q182, the output is a positive pulse (differentiated step) of 3 volts amplitude, starting at ground and having a duration of $1.5 \mu \mathrm{~s}$. The output resistance is 150 ohms.

LOW VOLTAGE POWER SUPPLY

General

The regulated DC is supplied to two stages, (1) preregulation of the power transformer primary in the mainframe and (2) regulation in the 26G2 of the three individual voltages supplied by the mainframe power supply (transformer secondary).

Each of the three mainframe supplies ($-17 \mathrm{~V},+7 \mathrm{~V}$, and +17 V) is rectified and filtered in the mainframe and supplied to the 26 G 2 unit via the rear connector.

The heart of each regulator is a $\mu \mathrm{A} 723 \mathrm{C}$ Integrated precision voltage regulator, containing a feedback amplifier, reference voltage, current limiter, and output emitter follower. Fig. 3-2 shows the equivalent circuit of the $\mu \mathrm{A} 723 \mathrm{C}$.

R340 and R341 (with the temperature compensated Zener in the $\mu \mathrm{A} 723 \mathrm{C}$) provide the reference voltage for the -15 -volt supply. The -15 volt supply is the reference for the +5 and +15 -volt supplies.

VR346 provides a negative operating voltage for the +5 and +15 -volt supplies.

Fig. 3-2. $\mu \mathrm{A} 723 \mathrm{C}$ Integrated Circuit Equivalent.

Q328, Q334, and Q346 are series pass transistors for the $+15-,+5$ - and -15 -volt supplies, respectively, and R324, R334, and R349 establish drive current levels for the transistors.

R326, R333, and R348 resolve load current as a voltage which will shut down the supply with overload.

Error voltage is fed back to the -Input from the dividers, R328-R329, R336-R338, and R344-R345-R346 (R345 being the -15 -volt adjust).

C321, C331, and C343 prevent oscillations in the feedback loops.

Disable Lines

If the instrument is used in a 7000 -Series oscilloscope, which provides the necessary regulated voltages, the -15 V , +5 V , and +15 V regulators are disabled. Plugging the 26 G 2 into the 7000 -Series oscilloscope applies regulated voltage to both input and output of each regulator as well as +15 volts to each disable line. The voltage provided on the disable lines disables the regulators.

SECTION 4
 MAINTENANCE

Change information, if any, affecting this section will be found at the rear of this manual.

Introduction

This section of the manual contains maintenance information for use in preventive or corrective maintenance and troubleshooting of the 26G2.

Cleaning

Avoid the use of chemical cleaning agents which might damage the plastics used in this instrument. Avoid chemicals which contain benzene, toluene, xylene, acetone or similar solvents.

Semiconductor Checks

Periodic checks of the semiconductors in the 26 G 2 are not recommended. The best check of semiconductor performance is actual operation in the instrument.

Recalibration

A calibration check is recommended after each 1000 hours of operation, or every year if used infrequently. Replacement of components may necessitate recalibration of the affected circuits. Complete calibration instructions are given in the Performance Check/Adjust section.

TROUBLESHOOTING

Troubleshooting Aids

Diagrams. Circuit diagrams are given on foldout pages in Section 7. The circuit number and electrical value of each component are given on the diagrams. Important voltages are also shown.

Circuit Boards. The circuit boards used in the 26G2 are outlined with a tint band on the Schematic Diagram, and a photograph of each board is shown to the left of the diagram. Each board-mounted electrical component is identified on the photograph by its circuit number.

Voltages and Waveforms. Often the defective components can be located by checking for the correct voltage or waveform in the circuit. Typical voltages are given on the Schematic diagrams. These voltages are not absolute, and
may vary slightly from instrument to instrument. To obtain operating conditions similar to those used to take the reading, see the instructions in the Schematic Diagrams section.

Power Supply Voltage and Ripple. Table 4-1 lists the voltage and ripple tolerances of the power supplies in the 26G2. If a power supply voltage and ripple are within the listed tolerance, the supply can be assumed to be working properly. If outside the tolerance, the supply may be misadjusted or operating incorrectly.

TABLE 4-1

Supply	Ripple	Voltage
-15 V	$3 \mathrm{mV}, \mathrm{p}-\mathrm{p}$	$-15 \mathrm{~V}, \pm 40 \mathrm{mV}$
+5 V	$2 \mathrm{mV}, \mathrm{p}-\mathrm{p}$	$+5 \mathrm{~V}, \pm 50 \mathrm{mV}$
+15 V	$3 \mathrm{mV}, \mathrm{p}-\mathrm{p}$	$+15 \mathrm{~V}, \pm 150 \mathrm{mV}$

Troubleshooting Equipment

The following equipment is useful for troubleshooting the 26 G 2 .

1. Semiconductor Tester. Some means of testing the transistors and diodes used in the instrument is helpful. Since most of the semiconductor devices are used in a digital function, probably the most convenient check is that of measuring the junction resistance. For more complete tests, the Tektronix Type 576 is recommended. The most convenient method of integrated circuit check is substitution.
2. DC Voltmeter and Ohmmeter. For most applications, a 20,000 ohms/volt VOM can be used to check voltages and resistance, if allowance is made for the circuit loading when making voltage measurements at high impedance points.
3. Test Oscilloscope. A test oscilloscope is required to check circuit waveforms. An oscilloscope having a DC to 10 MHz frequency response and $1 \mathrm{mV} /$ Div to $10 \mathrm{~V} /$ Div vertical deflection factor is suggested. A 10X probe should be used where circuit loading is critical.

REPLACEMENT PARTS

Standard Parts

All electrical and mechanical parts replacements for the 26G2 can be obtained through your local Tektronix Field Office or Representative. However, many of the standard electronic components can be obtained locally in less time than is required to order them from Tektronix, Inc. Before buying or ordering replacement parts, check the parts lists for value, tolerance, rating and description.

NOTE

When selecting replacement parts, it is important to remember that the physical size and shape of the component may affect its performance in the instrument. All replacement parts should be direct replacements unless it is known that a different component will not adversely affect the instrument performance.

```
cAUTION}
```

Multi-layer circuit boards require extra care when replacing soldered components. Excess heat can cause the board laminations to separate and conductors to release. Many components have clinched leads which should be straightened before removal, so as not to damage the plated through holes. Such damage may result in irreparable loss of connection to an inner layer conductor.

Special Parts

Some parts are manufactured or selected by Tektronix Inc. to satisfy particular requirements, or are manufactured for Tektronix, Inc. to our specifications. These special parts are indicated in the parts lists by an asterisk preceding the part number. Most of the mechanical parts used in this instrument have been manufactured by Tektronix, Inc. Order all special parts directly from your local Tektronix Field Office or representative.

Ordering Parts

When ordering replacement parts from Tektronix, Inc., refer to the Parts Ordering Information and Special Notes and Symbols on the page immediately preceding the Electrical Parts List section. Include the following information:

1. Instrument Type (26G2)
2. Instrument Serial Number
3. A description of the part (if electrical, include the circuit number)
4. Tektronix Part Number

COMPONENT REPLACEMENT

General

The exploded view drawings associated with the Mechanical Parts Lists (Fig. 1, pullout page) may be helpful when disassembling or reassembling individual components or subassemblies.

Circuit Board Replacement

Most of the circuit boards in this instrument are easily removed for maintenance. However, some of the circuit boards are permanent parts of switch assemblies and are not intended for removal. For these boards, see the instructions given under Pushbutton Switch Assembly Replacement.

The following general instructions apply to the removable main boards:

1. Disconnect all of the multiple-pin connectors.
2. Remove the four screws at the rear of the instrument that secure the plastic guide to the side rails.
3. Pull the circuit board straight out to the rear. The four plastic clips that position the board will slide out with the board.

To replace the board, proceed as follows:

1. Place two plastic clips as shown in Fig. 4-1.
2. Position the circuit board between the two clips.
3. Slide the circuit board toward the front of the instrument until the notch about half-way back on the board edge is about $1 / 2$ inch from the rear of the cutout side panel. Place the clip on the board edge, slide the board and clip forward, guiding the clip into the channel.
4. Slide the circuit board forward until the board notch at the opposite side is in position to mount the plastic clip. Position the clip over the board notch, and again push the assembly forward until the rear plastic guide seats against the ends of the side panels.
5. Replace the screws.
6. Reconnect the multiple-pin connectors.

Fig. 4-1. Circuit Board Replacement.

Semiconductor Replacement

Replacement semiconductors should be of the original type or a direct replacement. Fig. 4-2 shows the lead configuration of the semiconductors used in this instrument. Some plastic case transistors may have lead configurations which do not agree with those shown here. If a replacement transistor is made by a manufacturer other than the original, check the manufacturer's basing diagram for correct basing. All transistor sockets in this instrument are wired for the standard basing as used for metal-cased transistors.

An extracting tool should be used to remove the 14-pin integrated circuits to prevent damage to the pins. A removing tool is available from Tektronix, Inc., as Part No. 003-0619-00. If an extracting tool is not available for removal of integrated circuits, pull evenly on both ends of the device. Avoid having one end of the package disengage from the socket ahead of the other.

Lead-end Pin Connectors

The pin connectors are grouped together and mounted in a plastic holder to serve as a multi-pin connector. To
provide correct orientation of this multi-pin connector an arrow is stamped on the circuit board, and a matching arrow is molded into the plastic connector body. Replace the connector with the arrows aligned. If individual leadend pin connectors are removed from the plastic body, note the individual wire color.

Pushbuttons

The pushbutton switches are not repairable and should be replaced as a unit. The pushbutton-illuminating lamp is the only replacable component on some of the pushbutton assembly circuit boards (see the information under Lamp Replacement).

To remove the pushbutton switches, use the following procedure:

1. Remove the RAMP DURATION switch knob (front panel).
2. Insert a screwdriver blade between the bottom of the front-panel casting and the indentation at the bottom cen-

Fig. 4-2. Semiconductor Lead configuration.
ter of the front-panel overlay. Carefully twist the screwdriver to move the overlay away from the subpanel. Remove the overlay.
3. Remove the two flat-head, No. O, POZ-I-DRIV (B) screws and remove the switch from the rear.

To replace the switch, reverse the above procedure.

Lamp Replacement (Series 70 Switches)

The following procedure describes lamp replacement in the pushbutton assembly.

1. Remove the pushbutton switch as described previously.
2. Note the position of the lamp on the circuit board. Unsolder the lamp leads from the circuit board.
3. Install the new lamp in the same position as the original and solder the leads to the circuit board. Use a heat sink to protect the lamp during soldering.

Lamp Replacement (Output Indicator)

This lamp is mounted in a plastic cap that snaps into a holder mounted behind the front panel.

INSTRUMENT REPACKAGING

If the 26 G 2 is to be shipped over long distances by commercial transportation, it is recommended that the instrument be repackaged in the original manner for maximum protection. Repackaging information and/or new shipping cartons may be obtained from Tektronix, Inc. Contact the nearest Tektronix Field Office or representative.

SECTION 5 PERFORMANCE CHECK/ADJUSTMENT

Change information, if any, affecting this section will be found at the rear of this manual.

Introduction

A calibration check is recommended every 1000 hours of operation, or every year if used infrequently. Before complete calibration, the instrument should be cleaned and inspected as outlined in the Maintenance section.

As an aid to checking the performance of the 26G2, a Short-Form Procedure is given prior to the complete procedure. To facilitate instrument checkout, the Short-Form Procedure lists the check and applicable tolerances. This Procedure also includes the step number and title as listed in the complete Performance Check, and the page number on which each step begins. The Short-Form Procedure also provides spaces to record performance data or to check off steps as they are completed.

The Performance Check can be used to check instrument performance without making any internal adjustments.

Following the Performance Check is a complete ADJUST Procedure. Completion of the Adjust Procedure insures that the instrument meets the electrical specifications given in Section 1.

Abstract

NOTE Limits, tolerances and waveforms in the ADJUST procedure are given as calibration guides, and should not be interpreted as instrument specifications except as specified in Section 1. All waveforms shown in this procedure were taken with a Tektronix Oscilloscope Camera system.

TEST EQUIPMENT REQUIRED

General

The following test equipment and accessories, or equivalent, are required for complete check or adjustment of the 26G2. Specifications given are the minimum necessary for accurate check or adjustment. Some of the recommended equipment may have specifications that exceed those given. All test equipment is assumed to be correctly calibrated and operating within the given specifications. If equipment is substituted, it must meet or exceed the specifications of the recommended equipment.

Special Tektronix calibration fixtures are used in this procedure only where they facilitate calibration. These special fixtures are available from Tektronix, Inc. Order by part number through your local Tektronix Field Office or representative.

Test Equipment

1. Test Oscilloscope, consisting of indicator, Dual Trace Amplifier, Differential Comparator, and Time Base.

Dual Trace Amplifier: Deflection Factor, 100 mV to 5 V; Bandwidth, 10 MHz , Single, Alternate and Chopped display modes; Trigger Source selection.

Differential Comparator: Comparison Voltage range from zero volts to +15.00 volts; Deflection Factor from 2 V/Div to $1 \mathrm{mV} /$ Div.

Time Base: Time/Div from 1μ s to 1 s with 10 X magnification.

The oscilloscope recommended is the Tektronix 7504 with the following plug-ins:

7A12 Dual Trace Amplifier
7A13 Differential Comparator
7B50 Time Base
2. Time-Mark Generator. Marker Range, . $1 \mu \mathrm{~s}$ to 1 s ; Trigger Range, $1 \mu \mathrm{~s}$ to 1 s . Type 184 or 2901 Time Mark Generator is recommended.
3. Pulse Generator. Output Pulse and Duration Variable; Output level 0-1 V, within 1\% of indicated; DC Output level, 0-1 V, within 1% of indicated. The 26 G 3 is recommended.
4. 2600-Series Mainframe. To provide operating power for the 26 G 1 and 26 G 3 generators.
5. Plug-in extender. To provide access to the adjustments and test points in the 26G1. Tektronix Part Number 067-0630-00.
6. Coaxial Cable assembly (2 required); 50Ω with BNC connectors. Tektronix Part Number 012-0057-01.
7. BNC to $40-\mathrm{Mil}$ Pin adapter cable. Tektronix Part Number 175-1178-00 (2 required).
8. BNC " T " Connector. Tektronix Part Number, 103-0030-00.
9. 1X Probe with BNC connectors (2 required). Tektronix Type P6011 is recommended. Tektronix Part Number 010-0192-00.

SHORT-FORM PERFORMANCE CHECK AND INDEX

26G2 Serial No. \qquad
Date \qquad
By \qquad

1. Check Output 10 V Ramp DC Level

0 volt, within 20 mV
2. Check Output Ramp 10 V Amplitude ($100 \mu \mathrm{~s}$ through 10 s)

Peaks of the ramps are 10 volts, with in 50 mV
3. Check Output Ramp 10 V Amplitude (10 $\mu \mathrm{s}$)

Peaks of the ramps are 10 volts, within $+250 \mathrm{mV},-50$ mV
4. Check Output Ramp 1 V Amplitude

Peaks of the ramps are 1 volt, within 10 mV (1 ms)
Peaks of the ramps are 1 volt, within $+30 \mathrm{mV},-10 \mathrm{mV}$ ($10 \mu \mathrm{~s}$)
6. Check Ramp Start Amplitude

Ramp Start Amplitude is 3 volts, within 20\%
7. Check Input Trig Level

Ramp is triggered on by the time the Trig Input level reaches +1 volt

8. Check Input Gate Level

Ramp is gated on by the time the gate level reaches +1 volt
9. Check Input Gnd to Gate Level

Ramp is gated on when DC level is between 0 and +0.4 volt

Ramp stops at some voltage more positive than +0.4 volt
10. Check Input Ramp Reset Level

Ramp circuit resets at +1 volt or less
11. Check Input Gnd To Reset

Ramp circuit resets (ramp does not run) between 0 and +0.4 volt
12. Check $1 \mathrm{~ms}, \mathrm{X} 1$, Ramp Duration

Ramp terminates within $20 \mu \mathrm{~s}$ (2\%) of leading edge of the 10th time mark
13. Check $1 \mathrm{~ms}, \times 10$, Ramp Duration

Ramp terminates within $200 \mu \mathrm{~s}$ (2\%) of leading edge of the 10th time mark
14. Check Duration Mult Linearity

Ramp terminates within $180 \mu \mathrm{~s}(2 \%)$ of leading edge of the 9th time mark.
15. Check Ramp Rate Accuracy

The point at which the ramp crosses the 10 -volt reference is within 9.8 to 10.2μ s of the 10th time mark

SHORT FORM ADJUSTMENT PROCEDURE AND INDEX

1. Adjust - 15 -volt Supply

ADJUST R345 for exactly -15 volts
2. Adjust Output Ramp DC Level

ADJUST R130 to set the output DC level to zero volts
3. Adjust Ramp 10 V Output Amplitude

ADJUST R137 to set the ramp peaks at exactly 10 volts
4. Adjust $1 \mathrm{~ms}, \mathrm{X} 1$ Ramp Duration (R101)

ADJUST R101 to terminate the ramp on the leading edge of the 10th time mark
5. Adjust Multiplier Linearity (R128)

ADJUST R128 to bring the potential difference between TP110 and TP125 to zero (TP122 shorted to ground and DURATION MULT set to 5.00)
6. Adjust $1 \mathrm{~ms}, \times 10$ Ramp Duration (R125)

ADJUST R125 to terminate the ramp on the leading edge of the 10th time mark
7. Adjust $10 \mu \mathrm{~s}$ Ramp Duration (C120A)

ADJUST C120A to terminate the ramp on the leading edge of the 10th time mark

PERFORMANCE CHECK PROCEDURE

General

The following procedure is arranged to check the 26G2 with the least reconnection of equipment. The control settings throughout this procedure continue from the preceding step(s) unless otherwise noted. The control settings can be checked at the points listed as Preliminary Control Settings.

NOTE

Control titles which are printed on the front panel of the $26 G 2$ are capitalized in this procedure (e.g., RAMP DURATION). Associated equipment controls are initial capitalized only (e.g., Marker Output).

The following procedure uses the equipment listed under Test Equipment Required. If other equipment is substituted, control settings or checking setup may need to be altered to meet the requirements of the equipment used. Operating instructions for the test equipment are not given in this procedure. Refer to the instruction manual for the test equipment if more information is required.

NOTE

The performance of this instrument may be checked at any temperature from $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$ provided that the instrument was adjusted within an ambient range of $+25^{\circ} \mathrm{C}$ to $+5^{\circ} \mathrm{C}$.

PRELIMINARY CONTROL SETTINGS

26G2

MODE	GATED
RAMP DURATION	1 ms
DURATION MULT	1.00

Differential Comparator

Volts/Div	5 mV
+Input	Gnd
-Input	Gnd

Time Base

Triggering	
Mode	Auto
Coupling	AC
Source	Int
Display Mode	Time Base
Time/Div	1 ms
Magnifier	$\times 1$

1. Check Output Ramp 10 V DC Level

a. Connect the Differential Comparator +Input to RAMP 10 V OUTPUT (A) and COM (B).
b. Vertically position the trace (test scope) to graticule center.
c. Switch + Input to DC.
d. CHECK-That the trace is within 4 divisions $(20 \mathrm{mV})$ of graticule center.

Performance Check/Adjustment-26G2

Reset the following controls:
26Ǵ2

MODE
TRIGGER

TRIG'D
EXT, +SLOPE

Differential Comparator

Volts/Div	20 mV
Variable	Pulled Out
Comparison Voltage	10.00 V
+Input	Gnd

Time Mark Generator

Trigger Selector
1 ms

Time Base
Triggering Mode Coupling Source
Display Mode
Time/Div

Auto
AC
Ext
Time Base
1 ms

2. Check Output Ramp 10 V Amplitude ($100 \mu \mathrm{~s}$ through 10 s)

a. Connect Time Mark Generator Trigger Output to 26G2 TRIG INPUT and to Time Base Ext Trig In.
b. Connect 26G2 RAMP 10 V to Differential Comparator +Input.
c. Vertically position the trace to graticule center.
d. Switch Differential Comparator + Input to DC.
e. Switch Differential Comparator - Input to V_{C}.
f. CHECK-That peaks of the ramps are within 50 mV (2.5 divisions) of graticule center.
g. CHECK-Remaining ranges (not including $10 \mu \mathrm{~s}$) through 10 s for $+10 \mathrm{~V}, \pm 50 \mathrm{mV}$.

Time Mark Generator
Trigger Selector $\quad 10 \mu \mathrm{~s}$

Differential Comparator

+Input	Gnd
-Input	Gnd
Volts/Div	.1 V
Variable	Pushed in
Comparison Voltage	10.00 V

Time Base

Time/Div
$10 \mu \mathrm{~s}$

3. Check Output Ramp 10 V Amplitude ($10 \mu \mathrm{~s}$)

a. Vertically position the trace to graticule center.
b. Switch + Input to DC.
c. Switch - Input to V_{C}.
d. CHECK-That the ramp peaks are within 2.5 divisions (250 mV) above, or 0.5 division below, graticule center.

Reset the following controls:
26G2
RAMP DURATION
1 ms

Time Base
Time/Div
1 ms

Differential Comparator

Volts/Div	10 mV
Comparison Voltage	1.000 V
+Input	Gnd
-Input	Gnd

Time Mark Generator
Trigger Selector 1 ms

4. Check Output Ramp 1 V Amplitude

a. Connect the OUTPUT RAMP 1 V to Differential Comparator + Input.
b. Position the trace to graticule center.
c. Switch +Input to DC.
d. Switch - Input to V_{C}.
e. CHECK-That the ramp peaks measure 1.00 volt, within 1 division (10 mV) of graticule center.
f. Switch 26G2 RAMP DURATION to $10 \mu \mathrm{~s}$.

Switch Time Mark Generator Trigger Selector to 10 $\mu \mathrm{s}$.
Switch Time Base Time/Div to $10 \mu \mathrm{~s}$.
g. CHECK-That the ramp peaks are within +3 divisions $(30 \mathrm{mV}),-1$ division (10 mV) at $10 \mu \mathrm{~s}$.

Reset the following controls:
26G2
RAMP DURATION 1 ms

Time Mark Generator
Trigger Selector
1 ms

	Time Base
Time/Div	1 ms

Differential Comparator

-Input	Gnd
+Input	DC
Volts/Div	1 V

5. Check Ramp Gate Amplitude

a. Connect RAMP GATE (D) and Gnd to Differential Comparator +Input.
b. Display output of RAMP GATE on test scope.
c. CHECK-That gate amplitude is 3 divisions (3 volts), within 0.6 division (20\%).

6. Check Ramp Start Amplitude

a. Connect RAMP START (E) and Gnd to Differential Comparator +Input.
b. Display output of RAMP START on test scope.
c. CHECK-That the RAMP START amplitude is 3 divisions (3 volts), within 0.6 division (20%).

Set controls as follows:
26G2

RAMP DURATION	1 ms
DURATION MULT	1.0
MODE	TRIG'D
TRIGGER	$+S L O P E$

26G3

Pulse Duration	1 ms
Duration Mult	1.00
Amplitude Range	1 V
Pulse Amplitude	0.00
Triggering	Preset Level

Time Mark Generator

Trigger Selector 1 ms

Differential Comparator

Volts/Div	2 V
+Input	DC
-Input	Gnd

Time Base

time/Div
1 ms

7. Check Input Trig Level

a. Connect Time Mark Generator Trigger Output to 26G3 Trig Input and to Time Base Ext Trig In.
b. Connect 26G3 OUTPUT RAMP 10 V to Differential Comparator +Input.
c. Connect 26 G 3 +Pulse Output to 26 G 2 TRIG IN (1).
d. Increase the 26G3 +Pulse Amplitude until a stable ramp is displayed on the test scope.
e. CHECK-That Ramp is triggered on by the time the TRIG INPUT level reaches +1 volt.

Reset the following controls:
26G2

MODE	GATED
GATE	EXT

26G3
Pulse Amplitude
0.00

8. Check Input Gate Level

a. Connect 26G3 +Pulse Out to 26G2 INPUT GATE.
b. Increase the 26G3 Pulse Amplitude until a stable ramp is displayed on the test scope.
c. CHECK-That the ramp is gated on by the time the gate level reaches +1 volt.

Reset the following controls:
26G3

Amplitude Range	10.0 V
Pulse Amplitude	0.00
Pulse Duration	DC

Dual Trace Amplifier

CH 1	
\quad Volts/Div	2 V
Input	DC
Display Mode	CH 1
Trigger Source	CH 1
	Differential Comparator
Volts/Div	50 mV
+Input	Gnd
-Input	Gnd
Comparison Voltage	+0.4

9. Check Input Gnd to Gate Level

a. Connect 26G3 +Pulse Out to 26G2 GND TO GATE and to Differential Comparator +Input.
b. Connect 26G2 OUTPUT 10 V RAMP to Dual Trace Amplifier, CH 1 (ramp should be running).
c. Increase DC level from 26G3 (Pulse Amplitude) until ramp stops.
d. CHECK-That ramp is gated on when DC level is between 0 and +0.4 volt, and that ramp stops at some voltage more positive than +0.4 volt (measure with differential comparator). The ramp may stop at a voltage greater than +1 volt.

Reset the following controls:
26G2
MODE
FREE RUN
RER

26G3

Pulse Amplitude	0.00
Amplitude Range	1.00

10. Check Input Ramp Reset Level

a. Connect 26G3+Pulse Out to 26G2 RAMP RESET.
b. Monitor RAMP 10 V with test scope (ramp should be running).
c. Increase DC Level from 26G3 (Pulse Amplitude) until ramp display on test scope terminates.
d. CHECK-That ramp circuit resets (output ramp stops) at +1 volt or less.

Reset the following controls:

26G3

Pulse Amplitude	0.00
Amplitude Range	10.0 V

11. Check Input Ground To Reset Level

a. Connect 26G3 +Pulse Output to 26G2 GND TO RESET.
b. Monitor RAMP 10 V with test scope.
c. Increase DC level from 26G3 (Pulse Amplitude) until ramp is displayed on test scope.
d. CHECK-That ramp circuit resets (output ramp does not run) between 0 and +0.4 volt (measure with differential comparator).

Set the following controls:

Time Mark Generator

Marker Selector		.1 ms
Trigger Selector		1 ms
	$\mathbf{2 6 G 2}$	
		1 ms
RAMP DURATION		1.00
DURATION MULT	TRIG'D	
MODE	EXT +SLOPE	

Dual Trace Amplifier
CH 1

Input
Volts/Div
CH 2
Input
Volts/Div
Display Mode
Trigger Source

Time Base

Time/Div	.1 ms
Magnifier	$\times 1$
Triggering	
\quad Mode	Auto
Coupling	AC
Source	Ext

12. Check 1 ms, X1, Ramp Duration

a. Connect Time Marker Output to Dual Trace Amplifier CH 1 Input.
b. Connect Trigger Output to Time Base Ext Trig In and 26G2 TRIG INPUT.
c. Connect 26G2 RAMP 10 V OUTPUT to Dual Trace Amplifier CH 2 Input.
d. Display Ramp and Marker outputs as shown in Fig. 5-1.
e. Switch Magnifier to X 10 .
f. CHECK-That the ramp terminates within 2 divisions ($20 \mu \mathrm{~s}$) of the leading edge of the 10th time mark.

Fig. 5-1. Typical display of ramp and time marks for steps 12 and 13.

Reset the following controls:

	Time Mark Generator
Marker Selector	1 ms
Trigger Selector	10 ms

26G2
DURATION MULT
10.00

Time/Div Magnifier

Time Base

$$
1 \mathrm{~ms}
$$

X1

13. Check 1 ms, X10, Ramp Duration

a. Display ramp and markers as shown in Fig. 5-1.
b. Switch Magnifier to X 10 .
c. CHECK-That the ramp terminates within 2 divisions ($200 \mu \mathrm{~s}$) of the leading edge of the 10th time mark.

14. Check Duration Mult Linearity

a. Switch Magnifier to X 1 .
b. Set DURATION MULT to 5.00.
c. Display ramp and markers as shown in Fig. 5-2.
d. Position the 5 th marker horizontally to graticule center.
e. Switch Magnifier to X 10 .
f. CHECK-That the ramp terminates within 1.8 divisions (2\%) of the 9th time mark.

Fig. 5-2. Typical display of ramp and time marks for step 14.
g. CHECK-DURATION MULT linearity at 8.00, 7.00, etc., as outlined above.

Set the following controls:
Time Mark Generator

Marker Selector	$1 \mu \mathrm{~s}$
Trigger Selector	.1 ms

26G2

RAMP DURATION	$10 \mu \mathrm{~s}$
DURATION MULT	1.00
MODE	TRIG'D
TRIGGER	EXT +SLOPE

Time Base

Time/Div	$1 \mu \mathrm{~s}$
Magnifier	X 1
Trigger	
Mode	Auto
Coupling	AC
Source	Ext

Differential Comparator

+Input	Gnd
-Input	Gnd
Volts/Div	10 mV
Variable	Pulled Out
Comparison Voltage	10.00 V

Test Scope Mainframe
Vertical Mode
Alt

Dual Trace Amplifier
CH 1

Volts/Div	.5 V
Input	DC
Display Mode	Alt
Trigger Source	CH 1

15. Check Ramp Rate Accuracy

a. Connect the 26G2 RAMP 10 V OUTPUT to Differential Comparator +Input.
b. Connect Time Mark Generator Marker Output to Dual Trace Amplifier CH 1 Input.
c. Connect Time Mark Generator Trigger Output to 26G2 TRIG INPUT and to Time Base Ext Trig In.
d. Position the trace (Differential Comparator) vertically to graticule center (10-volt reference)
e. Switch Differential Comparator +Input to DC.
f. Switch Differential Comparator -Input to V_{C}.
g. Switch Scope Vertical Mode to Alt.
h. Display ramp and time marks as shown in Fig. 5-3.
i. Switch Magnifier to X 10 .
j. CHECK-That the point at which the ramp crosses the 10 -volt reference (center graticule line) is within 2 divisions (9.8 to $10.2 \mu \mathrm{~s}$) of the 10th time mark.

Fig. 5-3. Typical display of ramp and time marks for step 15.

ADJUSTMENT PROCEDURE

Preliminary Control Settings

26G2

```
MODE
```


Differential Comparator

+Input	Gnd
-Input	Gnd
Comparison Voltage	-15 volts
Volts/Div	10 mV

Time Base

Time/Div	1 ms
Magnifier	$\mathrm{X1}$
Triggering	
Mode	Auto
Coupling	AC
Source	Int
Display Mode	Time Base

1. Adjust - 15 -Volt Supply

a. Connect a 1 X probe from Differential Comparator +Input to -15 -volt Test Point (location shown in Fig. 5-4).
b. Vertically position the trace to graticule center (Differential Comparator Position control).
c. Switch +Input to DC.
d. Switch - Input to V_{C}.
e. ADJUST-R345 to position the trace to graticule center.
f. Check the +5 -volt and +15 -volt supplies in the manner detailed above.

Set the following controls:
26G2
MODE
RAMP DURATION
DURATION MULT

GATED
1 ms
1.00

Fig. 5-4. Location of internal adjustments.

Differential Comparator

Volts/Div +Input - Input	5 mV
	Gnd
	Gnd
	Time Base
Time/Div	1 ms
Magnifier	X1
Display Mode	Time Base
Triggering	
Mode	Auto
Coupling	AC
Source	Int

2. Adjust Output Ramp DC Level (R130)

a. Connect the Differential Comparator +Input to RAMP 10 V OUTPUT (A) and COM (B).
b. Vertically position the trace (test scope) to graticule center.
c. Switch +Input to DC.
d. ADJUST-R130 to set the trace to graticule center.

Reset the following controls:
26G2
MODE
TRIGGER
TRIG'D
EXT, +SLOPE
RAMP DURATION
1 ms
Differential Comparator
Volts/Div
Variable
Comparison voltage
+Input

20 mV
Pulled out
$+10.00 \mathrm{~V}$
Gnd
Time Base
Time/Div 1 ms

3. Adjust Ramp 10 V Amplitude (R137)

a. Connect Time Mark Generator Trigger Output to 26G2 TRIG INPUT and to Time Base Ext Trig In.
b. Connect 26G2 RAMP 10 V to Differential Comparator +Input.
c. Vertically position the trace to graticule center.
d. Switch + Input to DC.
e. Switch -Input to V_{C}.

f. ADJUST-R137 to set ramp peaks to graticule
Set the following controls:
$26 \mathrm{G2}$
RAMP DURATION
DURATION MULT 1 ms MODE 1.00 TRIGGER TRIG'D EXT +SLOPE

Dual Trace Amplifier

CH 1 Input Volts/Div
CH 2
Input Volts/Div
Display Mode
Trigger Source
DC
2 V
DC
. 5 V
Add
CH 1

Time Base

Time/Div	.1 ms
Magnifier	X1
Triggering	
Mode	Auto
Coupling	AC
Source	Ext

Time Mark Generator

Marker Selector	.1 ms
Trigger Selector	1 ms

4. Adjust $1 \mathrm{~ms}, \mathrm{X} 1$ Ramp Duration (R101)

a. Connect 26G1 RAMP 10 V OUTPUT to Dual Trace Amplifier CH 1 Input.
b. Connect Time Mark Generator Marker Output to Dual Trace Amplifier CH 2 Input.
c. Connect Time Mark Generator Trigger Output to 26G2 TRIG INPUT and Time Base Ext Trig In.
d. Adjust Time Base Trigger/Level and Position controls to give a stable display similar to that in Fig. 5-5.
e. Switch Time Base Magnifier to X 10 .
f. ADJUST-R101 (see Fig. 5-4 for location of internal adjustments) to terminate the ramp on the leading edge of the 10th time mark.

Reset the following controls:
Dual Trace Amplifier

CH 1	
Volts/Div	50 mV
Input	Gnd
CH 2	
Volts/Div Input Gnd Display Mode Alt.	

5. Adjust Multiplier Linearity (R128)

a. Connect a 1 X probe from Dual Trace Amplifier, CH 1, to TP110. See Fig. 5-4 for test point location.
b. Connect a 1 X probe from Dual Trace Amplifier, CH 2, to TP125.
c. Vertically position both traces to graticule center.

Fig. 5-5. Typical display of ramp and time marks for ADJUST steps 4 and 6.
d. Set the 26 G 2 DURATION MULT to 5.00 (failure to set DURATION MULT to 5.00 will short circuit the -15 -volt supply).
e. Connect TP122 to ground.
f. Switch Dual Trace Amplifier CH 1 and CH 2 to DC.
g. ADJUST-R128 to bring the two traces together.
h. Remove shorting strap and probes.

Set the following controls:
Time Mark Generator
Marker Selector
Trigger Selector 1 ms 10 ms

Time Base
Trigger
Source
Time/Div
Magnifier
Ext
1 ms
X1

Dual Trace Amplifier

CH 1
Input Volts/Div

DC
2 V
CH 2
Input
Volts/Div
DC
Display Mode

$$
.5 \mathrm{~V}
$$

Add

26G2
DURATION MULT
10.00

6. Adjust $1 \mathrm{~ms}, \mathrm{X} 10$ Ramp Duration

a. Connect 26G2 RAMP 10 V OUTPUT to Dual Trace Amplifier, CH 1.
b. Connect Time Mark Generator Marker Output to Dual Trace Amplifier, CH 2.
c. Connect Time Mark Generator Trigger Output to 26G2 TRIG INPUT and Time Base Ext Trig In.
d. Display ramp and time marks as shown in Fig. 5-5.
e. Switch time Base Magnifier to $\times 10$.
f. ADJUST-R125 to terminate the ramp on the leading edge of the 10th time mark.

Reset the following controls:
Time Mark Generator

Marker Selector	$10 \mu \mathrm{~s}$
Trigger Selector	.1 ms

26G2
RAMP DURATION
DURATION MULT
$10 \mu \mathrm{~s}$ 10.00

Time Base

Time/Div

7. Adjust 10μ s Ramp Duration (C120A)

a. Display ramp and time marks as shown in Fig. 5-6.
b. ADJUST-C120A to terminate the ramp on the leading edge of the 10th time mark.

Fig. 5-6. Typical display for 10μ s Ramp Duration Adjust, Step 7.

PARTS LIST ABBREVIATIONS

BHB	binding head brass
BHS	binding head steel
cap.	capacitor
cer	ceramic
comp	composition
conn	connector
CRT	cathode-ray tube
csk	countersunk
DE	double end
dia	diameter
div	division
elect.	electrolytic
EMC	electrolytic, metal cased
EMT	electrolytic, metal tubular
ext	external
F \& I	focus and intensity
FHB	flat head brass
FHS	flat head steel
Fil HB	fillister head brass
Fil HS	fillister head steel
h	height or high
hex.	hexagonal
HHB	hex head brass
HHS	hex head steel
HSB	hex socket brass
HSS	hex socket steel
ID	insandescent diameter
inc	

int	internal
lg	length or long
met.	metal
mfg hdw	mounting hardware
OD	outside diameter
OHB	oval head brass
OHS	oval head steel
P/O	part of
PHB	pan head brass
PHS	pan head steel
plstc	plastic
PMC	paper, metal cased
poly	polystyrene
prec	precision
PT	paper, tubular
PTM	paper or plastic, tubular, molded
RHB	round head brass
RHS	round head steel
SE	single end
SN or S/N	serial number
S or SW	switch
TC	temperature compensated
THB	truss head brass
thk	thick
THS	truss head steel
tub.	tubular
var	variable
w	wide or width
WW	wire-wound

PARTS ORDERING INFORMATION

Replacement parts are available from or through your local Tektronix, Inc. Field Office or representative.

Changes to Tektronix instruments are sometimes made to accommodate improved components as they become available, and to give you the benefit of the latest circuit improvements developed in our engineering department. It is therefore important, when ordering parts, to include the following information in your order: Part number, instrument type or number, serial or model number, and modification number if applicable.

If a part you have ordered has been replaced with a new or improved part, your local Tektronix, Inc. Field Office or representative will contact you concerning any change in part number.

SPECIAL NOTES AND SYMBOLS

$\times 000$ Part first added at this serial number
$00 \times$ Part removed after this serial number
*000-0000-00 Asterisk preceding Tektronix Part Number indicates manufactured by or for Tektronix, Inc., or reworked or checked components.
Use 000-0000-00 Part number indicated is direct replacement.

INDEX OF ELECTRICAL PARTS LIST

Title Page No.
CHASSIS 6-1
Al MAIN Circuit Board Assembly 6-1
A2 MODE SWITCH Circuit Board Assembly 6-6
A3 GATE SWITCH Circuit Board Assembly 6-6
A4 TRIGGER SWITCH Circuit Board Assembly 6.7

SECTION 6 ELECTRICAL PARTS LIST

Values are fixed unless marked variable.

Resistors

Resistors are fixed, composition, $\pm 10 \%$ unless otherwise indicated.

R67	$315-0105-00$	$1 \mathrm{M} \Omega$	$1 / 4 \mathrm{~W}$	5%
R62	$315-0104-00$	$100 \mathrm{k} \Omega$	$1 / 4 \mathrm{~W}$	5%
R122	$311-0946-00$	$50 \mathrm{k} \Omega, \mathrm{Var}$		

Switch

Wired or Unwired
S60
260-1154-00
Rotary
RAMP DURATION

A1 MAIN Circuit Board Assembly

*670-1203-00
Complete Board

Capacitors

Tolerance $\pm 20 \%$ unless otherwise indicated.

C52	281-0518-00	47 pF	Cer	500 V
C54	281-0523-00	100 pF	Cer	350 V
C55	281-0523-00	100 pF	Cer	350 V
C62	290-0244-00	$0.47 \mu \mathrm{~F}$	Elect.	35 V
C64	281-0525-00	470 pF	Cer	500 V
C72	283-0000-00	$0.001 \mu \mathrm{~F}$	Cer	500 V
C73	281-0525-00	470 pF	Cer	500 V
C77	281-0523-00	100 pF	Cer	350 V
C91	281-0523-00	100 pF	Cer	350 V
C92	281-0523-00	100 pF	Cer	350 V

5\%

A1 MAIN Circuit Board Assembly (cont)

Semiconductor Device, Diodes

CR55	*152-0185-00	Silicon	Replaceable by 1N4152
CR58	*152-0185-00	Silicon	Replaceable by 1N4152
CR80	*152-0185-00	Silicon	Replaceable by 1 N 4152
CR83	*152-0185-00	Silicon	Replaceable by 1N4152
CR85	*152-0185-00	Silicon	Replaceable by 1 N 4152
CR92	*152-0185-00	Silicon	Replaceable by 1N4152
CR98	*152-0185-00	Silicon	Replaceable by 1N4152
CR134	*152-0185-00	Silicon	Replaceable by 1 N 4152
CR136	*152-0185-00	Silicon	Replaceable by 1N4152
CR137	*152-0185-00	Silicon	Replaceable by 1N4152
CR143	*152-0185-00	Silicon	Replaceable by 1N4152
CR160	*152-0185-00	Silicon	Replaceable by 1 N4152
CR173	*152-0185-00	Silicon	Replaceable by 1N4152
CRI86	*152-0185-00	Silicon	Replaceable by 1N4152
CR190	152-0246-00	Silicon	Low leakage, $250 \mathrm{~mW}, 40 \mathrm{~V}$
CR324	*152-0185-00	Silicon	Replaceable by 1N4152
VR346	152-0217-00	Zener	1N756A $400 \mathrm{~mW}, 8.2 \mathrm{~V}, 5 \%$

[^2]
A1 MAIN Circuit Board Assembly (cont)

| | Tektronix
 Ckt. No. | Serial/Model No.
 Part No. | Eff |
| :--- | :--- | :--- | :--- |\quad Disc \quad Description

Inductor

Toroid, 5 turns single

Transistors

Q55	151.0190-00	Silicon	NPN	TO-92 1N3904
Q84	*151-0219-00	Silicon	PNP	TO-18 2N4250
Q95	151-0190-00	Silicon	NPN	TO-92 2N3904
Q96	151-0223-00	Silicon	NPN	TO-18 2N4275
Q132	151-0232-00	Silicon	NPN	TO-77 Dual
Q140	151-0220-00	Silicon	PNP	TO-18 2N4122
Q145	*151-0103-00	Silicon	NPN	TO-5 Replaceable by 2 N 2219
Q162	151-0188-00	Silicon	PNP	TO.92 2N3906
Q170	*151-0216-00	Silicon	PNP	TO-92 Replaceable by MOT MPS 6523
Q174	151-0164-00	Silicon	PNP	TO-5 2N3702
Q182	*151-0216-00	Silicon	PNP	TO-92 Replaceable by MOT MPS 6523
Q184	151-0164-00	Silicon	PNP	TO-5 2N3702
Q190	*151-0195-00	Silicon	NPN	TO-92 Replaceable by MPS 6515
Q194	151-1025-00	FET		N channel, junction type, X55
Q196	151-0188-00	Silicon	PNP	TO-92 2N3906
Q198	151-0164-00	Silicon	PNP	TO-5 2N3702
Q328	*151-0134-00	Silicon	PNP	TO-5 Replaceable by 2 N2905
Q334	151-0260-00	Silicon	NPN	TO-39 2N5189
Q346	151-0260-00	Silicon	NPN	TO-39 2N5189

Resistors

Resistors are fixed, composition, $\pm 10 \%$ unless otherwise indicated.

R53	$315-0103-00$	$10 \mathrm{k} \Omega$	$1 / 4 \mathrm{~W}$	
R55	$315-0103-00$	$10 \mathrm{k} \Omega$	5%	
R57	$316-0472-00$	$4.7 \mathrm{k} \Omega$	5%	
R58	$316-0222-00$	$2.2 \mathrm{k} \Omega$	$1 / 4 \mathrm{~W}$	
R59	$316-0102-00$	$1 / 4 \mathrm{~W}$		
			$1 / 4 \mathrm{~W}$	
R64	$315-0303-00$	$30 \mathrm{k} \Omega$	$1 / 4 \mathrm{~W}$	5%
R66	$316-0682-00$	$6.8 \mathrm{k} \Omega$	$1 / 4 \mathrm{~W}$	
R68	$316-0682-00$	$6.8 \mathrm{k} \Omega$	$1 / 4 \mathrm{~W}$	
R69	$316-0682-00$	$6.8 \mathrm{k} \Omega$	$1 / \mathrm{W}$	
R71	$316-0106-00$	$10 \mathrm{M} \Omega$	$1 / 4 \mathrm{~W}$	

A1 MAIN Circuit Board Assembly (cont)

Ckt. No.	Tektronix Part No.
R72	$316-0471-00$
R74	$316-0682-00$
R75	$316-0682-00$
R80	$315-0103-00$
R82	$316-0682-00$

Tektronix Serial/Model No.
Description

Resistors (cont)

470Ω	$1 / 4 \mathrm{~W}$
$6.8 \mathrm{k} \Omega$	$1 / 4 \mathrm{~W}$
$6.8 \mathrm{k} \Omega$	$1 / 4 \mathrm{~W}$
$10 \mathrm{k} \Omega$	$1 / 4 \mathrm{~W}$
$6.8 \mathrm{k} \Omega$	$1 / 4 \mathrm{~W}$
$1 \mathrm{k} \Omega$	$1 / 4 \mathrm{~W}$
$30 \mathrm{k} \Omega$	$1 / 4 \mathrm{~W}$
$2 \mathrm{k} \Omega$	$1 / 4 \mathrm{~W}$
$1.6 \mathrm{k} \Omega$	$1 / 4 \mathrm{~W}$
$6.8 \mathrm{k} \Omega$	$1 / 4 \mathrm{~W}$

$$
5 \%
$$

$315-0103-00$
$315-0103-00$
$316-0472-00$
$316-0332-00$
$316-0682-00$

$10 \mathrm{k} \Omega$	$1 / 4 \mathrm{~W}$
$10 \mathrm{k} \Omega$	$1 / 4 \mathrm{~W}$
$4.7 \mathrm{k} \Omega$	$1 / 4 \mathrm{~W}$
$3.3 \mathrm{k} \Omega$	$1 / 4 \mathrm{~W}$
$6.8 \mathrm{k} \Omega$	$1 / 4 \mathrm{~W}$

$5.23 \mathrm{k} \Omega$	$1 / 8 \mathrm{~W}$	Prec	1%
$2 \mathrm{k} \Omega, \mathrm{Var}$			
$8.45 \mathrm{k} \Omega$	$1 / 8 \mathrm{~W}$	Prec	1%
$6.8 \mathrm{k} \Omega$	$1 / 4 \mathrm{~W}$		5%
$6.8 \mathrm{k} \Omega$	$1 / 4 \mathrm{~W}$		
620Ω	$1 / 4 \mathrm{~W}$		
100Ω	$1 / 4 \mathrm{~W}$		$1 / 2 \%$
$15 \mathrm{k} \Omega$	$1 / 4 \mathrm{~W}$		$1 / 2 \%$
$825 \mathrm{k} \Omega$	$1 / 4 \mathrm{~W}$	Prec	
$825 \mathrm{k} \Omega$	$1 / 4 \mathrm{~W}$	Prec	

321-0262-00
311-0609-00
321-0282-00
315-0682-00
316-0682-00

R108
R112
R113
R120
R121
315-0621-00
$316-0101-00$
316-0153-00
322-0473-02
322-0473-02
825 k Ω

321-0406-01
R124
R125
R126
321-0253-00
311-0609-00
321-0126-00
321-0306-00

311-1035-00
317-1035-00
321-0356-00
321-0193-00
R132
315-0752-00

321-0251-00
311-0635-00
R138
R140
315-0153-00
R141
315-0302-00
315-0123-00
?

Resistors (cont)

$$
\begin{aligned}
& 5 \% \\
& 5 \%
\end{aligned}
$$

$165 \mathrm{k} \Omega$	$1 / 8 \mathrm{~W}$	Prec	$1 / 2 \%$
$4.22 \mathrm{k} \Omega$	$1 / 8 \mathrm{~W}$	Prec	1%
$2 \mathrm{k} \Omega, \mathrm{Var}$			
200Ω	$1 / 2 \mathrm{~W}$	Prec	1%
$15 \mathrm{k} \Omega$	$1 / 8 \mathrm{~W}$	Prec	1%

$50 \mathrm{k} \Omega$, Var

$50 \mathrm{k} \Omega$, Var			
$49.9 \mathrm{k} \Omega$	$1 / 8 \mathrm{~W}$	Prec	1%
$1 \mathrm{k} \Omega$	$1 / 8 \mathrm{~W}$	Prec	1%
$7.5 \mathrm{k} \Omega$	$1 / 4 \mathrm{~W}$		5%

$4.02 \mathrm{k} \Omega$	$1 / 8 \mathrm{~W}$
$1 \mathrm{k} \Omega$	$1 / 4 \mathrm{~W}$
$15 \mathrm{k} \Omega$	$1 / 4 \mathrm{~W}$
$3 \mathrm{k} \Omega$	$1 / 4 \mathrm{~W}$
$12 \mathrm{k} \Omega$	$1 / 4 \mathrm{~W}$

Prec

A1 MAIN Circuit Board Assembly (cont)

Ckt. No.	Tektronix Part No.	Serial/Model Eff	No. Disc
		Resistors (cont)	

R143	$315-0222-00$
R145	$315-0101-00$
R147	$321-0612-03$
R148	$321-0750-06$
R161	$315-0332-00$

316-0152-00

$2.2 \mathrm{k} \Omega$	$1 / 4 W$		5%
100Ω	$1 / 4 W$		5%
500Ω	$1 / 8 W$	Prec	$1 / 4 \%$
55.5Ω	$1 / 8 W$	Prec	$1 / 4 \%$
$3.3 \mathrm{k} \Omega$	$1 / 4 W$		5%

R163
R165
R166
R171
R173
R180
R181
R182
R184
R186

R190	$316-0333-00$
R192	$316-0336-00$
R196	$316-0103-00$
R198	$316-0332-00$
R320	$316-0103-00$

315-0102-00
315-0392-00
315-0471-00
315-0151-00

316-0681-00
316-0470-00
321-0603-07
321-0603-07
316-0103-00

$33 \mathrm{k} \Omega$	$1 / 4 \mathrm{~W}$
$33 \mathrm{M} \Omega$	$1 / 4 \mathrm{~W}$
$10 \mathrm{k} \Omega$	$1 / 4 \mathrm{~W}$
$3.3 \mathrm{k} \Omega$	$1 / 4 \mathrm{~W}$
$10 \mathrm{k} \Omega$	$1 / 4 \mathrm{~W}$

5%
5%
5%
5%

5\%

5\%
5%
5%
$316-0101-00$
$315-0243-00$
$315-0752-00$
$315-0471-00$
$315-0151-00$

100Ω	$1 / 4 \mathrm{~W}$
$24 \mathrm{k} \Omega$	$1 / 4 \mathrm{~W}$
$7.5 \mathrm{k} \Omega$	$1 / 4 \mathrm{~W}$
470Ω	$1 / 4 \mathrm{~W}$
150Ω	$1 / 4 \mathrm{~W}$

680Ω	$1 / 4 \mathrm{~W}$
47Ω	$1 / 4 \mathrm{~W}$
$15 \mathrm{k} \Omega$	$1 / 8 \mathrm{~W}$
$15 \mathrm{k} \Omega$	$1 / 8 \mathrm{~W}$
$10 \mathrm{k} \Omega$	$1 / 4 \mathrm{~W}$

Prec	$1 / 10 \%$
Prec	$1 / 10 \%$

33Ω
680Ω
33Ω
$5 \mathrm{k} \Omega$
$15 \mathrm{k} \Omega$
$1 / 4 W$
$1 / 4 W$
$1 / 2 W$
$1 / 8 W$
$1 / 4 W$

Prec	$1 / 10 \%$
Prec	$1 / 10 \%$

$3.01 \mathrm{k} \Omega$
$3.01 \mathrm{k} \Omega$
$10 \mathrm{k} \Omega$
$6.98 \mathrm{k} \Omega$
$500 \Omega, \mathrm{Var}$

$1 / 8 W$	Prec	1%
$1 / 8 W$	Prec	1%
$1 / 4 W$		
$1 / 8 W$	Prec	

$2.05 \mathrm{k} \Omega$	$1 / 8 \mathrm{~W}$	Prec	1%
47Ω	$1 / 4 \mathrm{~W}$		
680Ω	$1 / 4 \mathrm{~W}$		

A1 MAIN Circuit Board Assembly (cont)

Ckt. No.	Tektronix Part No.	Serial/Model No. Eff Disc	Description
		Integrated	Circuits
U70	*155-0029-01		Sweep control, 16-pin DIP
UT10	*155-0028-00		Miller integrator
U320	156-0071-00		Volt reg. Replaceable by Fairchild μ A723C
U330	156-0071-00		Volt reg. Replaceable by Fairchild μ A723C
U340	156-0071-00		Volt reg. Replaceable by Fairchild μ A723C

A2 MODE SWITCH Circuit Board Assembly

*670-1206-00
DS65 $\quad * 150-0048-01 \quad$ Bulb

Switch
 Switch

Incandescent, \#683, selected

A3 GATE SWITCH Circuit Board Assembly

*670-1207-00

DS55
*150-0048-01

Complete Board

Bulb
Incandescent, \#683, selected

Switch

FIGURE AND INDEX NUMBERS

Items in this section are referenced by figure and index numbers to the illustrations which appear either on the back of the diagrams or on pullout pages immediately following the diagrams of the instruction manual.

INDENTATION SYSTEM

This mechanical parts list is indented to indicated item relationships. Following is an example of the indentation system used in the Description column.

> Assembly and/or Component
> Detail Part of Assembly and/or Component
> mounting hardware for Detail Part
> Parts of Detail Part
> mounting hardware for Parts of Detail Part
> mounting hardware for Assembly and/or Component

Mounting hardware always appears in the same indentation as the item it mounts, while the detail parts are indented to the right. Indented items are part of, and included with, the next higher indentation.

Mounting hardware must be purchased separately, unless otherwise specified.

PARTS ORDERING INFORMATION

Replacement parts are available from or through your local Tektronix, Inc. Field Office or representative.

Changes to Tektronix instruments are sometimes made to accommodate improved components as they become available, and to give you the benefit of the latest circuit improvements developed in our engineering department. It is therefore important, when ordering parts, to include the following information in your order: Part number, instrument type or number, serial or model number, and modification number if applicable.

If a part you have ordered has been replaced with a new or improved part, your local Tektronix, Inc. Field Office or representative will contact you concerning any change in part number.

Change information, if any, is located at the rear of this manual.

ABBREVIATIONS AND SYMBOLS

For an explanation of the abbreviations and symbols used in this section, please refer to the page immediately preceding the Electrical Parts List in this instruction manual.

INDEX OF MECHANICAL AND REPACKAGING PARTS ILLUSTRATIONS

Title
Location (reverse side of)
Figure 1 Exploded \& Standard Accessories Ramp Generator Diagram
Figure 2 Repackaging Plug-In Connector \& Regulators Diagram

SECTION 8

 MECHANICAL PARTS LISTFIGURE 1 EXPLODED \& STANDARD ACCESSORIES

Fig. \& Index No.	Tektronix Part No.	$\underset{\text { Eff }}{\substack{\text { Serial/Model } \\ \text { No. } \\ \text { Disc }}}$	Q t y	$12345 \quad$ Description
1-1	366-1028-00		1	KNOB, gray-RAMP DURATION
	- - -		-	knob includes:
	213-0153-00		2	SETSCREW, $5-40 \times 0.125$ inch, HSS
-2	366-1058-17		1	KNOB, latch
	- - - -		-	mounting hardware: (not included w/knob)
-3	214-1095-00		1	PIN, spring, split
-4	105-0075-00		1	RELEASE BAR, latch
-5	214-1280-00		1	SPRING, helical compression
-6	214-1054-00		1	SPRING, flat, latch detent
-7	105-0076-00		1	BOLT, latch, plastic
-8	333-1296-00		1	PANEL, front
-9	348-0235-00		2	SHIELDING GASKET, electrical
-10	136-0387-00		14	SOCKET, 1 pin
-11	352-0157-00		1	HOLDER, lamp
-12	378-0602-00		1	LENS, indicator light
-13	200-0935-00		1	CAP, lamp holder
-14	260-1154-00		1	SWITCH, rotary-RAMP DURATION, unwired
	- - -		-	mounting hardware: (not included w/switch)
-15	210-0590-00		1	NUT, hex., $0.375-32 \times 0.438$ inch
-16	210-0012-00		1	WASHER, lock, internal, 0.375 ID $\times 0.50$ inch OD
-17	210-0207-00		1	LUG, solder, $0.375 \mathrm{ID} \times 0.625$ inch OD, SE
-18	- - . -		1	RESISTOR, variable
	--- -		-	mounting hardware: (not included w/resistor)
-19	331-0268-00		1	DIAL, control, 10 turn
-20	386-1447-35		1	SUBPANEL, front
	--		-	mounting hardware: (not included w/subpanel)
-21	213-0192-00		4	SCREW, thread forming, $6-32 \times 0.50$ inch, Fil HS
-22	670-1206-00		1	CIRCUIT BOARD ASSEMBLY-MODE A2
	- - .		-	circuit board assembly includes:
-23	131-0707-00		7	CONNECTOR, terminal
-24	352-0165-00		1	HOLDER, terminal connector, 7 wire (black)
-25	175-0830-00		ft	WIRE, electrical, 7 wire ribbon, 0.271 foot long
	380-0155-00		1	HOUSING, light, 4 button
	- --		-	mounting hardware: (not included w/housing)
	213-0181-00		1	SCREW, thread forming, \#2 0.375 inch, PHS
		-	,	mounting hardware: (not included w/circuit board assembly)
-26	211-0156-00		2	SCREW, 1.72×0.25 inch, 82° csk, FHS

FIGURE 1 EXPLODED \& STANDARD ACCESSORIES (cont)

Fig. \& Index No.	Tektronix Part No.	Serial/Model Eff No. Disc	$\begin{aligned} & \mathrm{Q} \\ & \mathrm{t} \\ & \mathrm{y} \\ & \hline \end{aligned}$	$12345 \quad$ Description
-27	670-1207-00		1	CIRCUIT BOARD ASSEMBLY-GATE/RAMP RESET A3 circuit board assembly includes:
	- - - -		-	
-28	131-0707-00		7	CONNECTOR, terminal
-29	352-0165-06			HOLDER, terminal connector, 7 wire (blue)
-30	175-0830-00		ft	WIRE, electrical, 7 wire ribbon, 0.271 foot long
	380-0154-00			HOUSING, light, 3 button
	- . . -		-	mounting hardware: (not included w/housing)
	213-0181-00		1	SCREW, thread forming, \# 2×0.375 inch, PHS
	-		-	mounting hardware: (not included w/circuit board assembly)
	211-0156-00		2	SCREW, $1-72 \times 0.25$ inch, $82^{\circ} \mathrm{csk}$, FHS
-31	670-1209-00		1	CIRCUIT BOARD ASSEMBLY-TRIGGER A4 circuit board assembly includes:
	- - . -		-	
-32	131-0707-00		6	CONNECTOR, terminal
-33	352-0164-05		1	HOLDER, terminal connector, 6 wire (green)
-34	175-0829-00		ft	WIRE, electrical, 6 wire ribbon, 0.334 foot long
	380-0154-00		1	HOUSING, light, 3 button
	- . -		-	mounting hardware: (not included w/housing)
	213-0181-00		1	SCREW, thread forming, \#2 0.375 inch, PHS
	--		-	mounting hardware: (not included w/circuit board assembly)
	211-0156-00		2	SCREW, $1-72 \times 0.25$ inch, 82° csk, FHS
-35	670-1203-00		1	CIRCUIT BOARD ASSEMBLY-MAIN AI circuit board assembly includes: CIRCUIT BOARD
	- -		-	
	388-1552-00		1	
-36	214-0579-00		12	PIN, test point
-37	136-0241-00		1	SOCKET, integrated circuit, 10 pin
-38	136-0260-01		1	SOCKET, integrated circuit, 16 pin
-39	136-0269-00		3	SOCKET, integrated circuit, 14 pin
-40	136-0235-00		1	SOCKET, transistor, 6 pin
-41	214-1291-00		1	HEAT SINK, transistor
	136-0220-00		14	SOCKET, transistor, 3 pin, square
-42	136-0183-00		4	SOCKET, transistor, 3 pin
-43	131-0608-00		56	TERMINAL, pin, 0.365 inch long
	- - - -		-	mounting hardware: (not included w/circuit board assembly)
-44	344-0210-00		2	CLIP, spring tension, plastic, top
-45	344-0211-00		2	CLIP, spring tension, plastic, bottom
-46	386-1402-00		1	PANEL, rear
	---- ${ }^{-}$		-	mounting hardware: (not included w/panel)
-47	213-0192-00		4	SCREW, thread forming, $6-32 \times 0.50$ inch, Fil HS

FIGURE 1 EXPLODED \& STANDARD ACCESSORIES (cont)

-48	$426-0629-00$
-49	$214-1061-00$
-50	$426-0628-00$
-51	$337-1316-00$
-52	$175-0828-00$
-53	$175-0829-00$
-54	$175-0830-00$
-55	$175-0831-00$
-56	$352-0161-01$
-57	$352-0163-03$
-58	$352-0164-04$
-59	$352-0165-01$
	$352-0165-02$
-60	$352-0166-02$
-61	$131-0707-00$

1 FRAME SECTION, top
1 SPRING, flat, sliding ground
1 FRAME SECTION, bottom
2 SHIELD, electrical
ft WIRE, electrical, 5 wire ribbon, 0.833 foot long
ft WIRE, electrical, 6 wire ribbon, 0.448 foot long
ft WIRE, electrical, 7 wire ribbon, 0.771 foot long
ft WIRE, electrical, 8 wire ribbon, 0.833 foot long
1 HOLDER, terminal connector, 3 wire (brown)
1 HOLDER, terminal connector, 5 wire (orange)
1 HOLDER, terminal connector, 6 wire (yellow)
1 HOLDER, terminal connector, 7 wire (brown)
1 HOLDER, terminal connector, 7 wire (red)
1 HOLDER, terminal connector, 8 wire (red)
55 CONNECTOR, terminal
-62 012-0200-00 012-0201-00
012-0202-00
070-1066-00

STANDARD ACCESSORIES

2 PATCH CORD, pinjack to pinjack (red)
2 PATCH CORD, pinjack to pinjack (blue)
1 PATCH CORD, pinjack to pinjack (black)
1 MANUAL, instruction (not shown)

Fig. \&
Index Tektronix
No. Part No.

$$
\begin{array}{cll}
\begin{array}{c}
\text { Serial/Model } \\
\text { No. } \\
\text { Eff }
\end{array} & \begin{array}{c}
\mathbf{Q} \\
\mathbf{t}
\end{array} & \\
\mathbf{y} & 12345
\end{array} \text { De }
$$ Description

$2-$	$065-0138-00$
-1	--
$-204-0241-00$	
-2	$004-0243-00$
-3	$004-1079-00$
-4	$004-0748-00$

26 G 2 RAMP GENERATOR

[^0]: ${ }^{1}$ See Fig. 1-2 for Input Ranges.

[^1]: ${ }^{1}$ Internal connector, P11-1, 2, 3 (Fig. 2-1), permits a negative level signal to initiate ramp generation. When connected arrow to arrow, a positive level signal will initiate ramp generation; and when reversed, a negative level signal will initiate ramp generation.

[^2]: ${ }^{1}$ Individual timing capacitors in this assembly must be ordered by the 9 digit part number, letter suffix and tolerance printed on the timing capacitor to be replaced.
 Example:
 F-
 285-XXXX-XX
 The letter suffix and the tolerance should be the same for all of the timing capacitors in the assembly.

