
continued

5-19-78

*series model

TL:cet

Page 8

Type 547/RM547	PRODUCT	MODIFICATION	INDEX	$\begin{aligned} & \text { circuit } \\ & \text { section- } \times X . x X \\ & \text { page } \end{aligned}$				
11 altern	ALTERNATE SWEEP SWITCHING							
$\begin{gathered} \text { EFF. SN. } \\ \text { S.M. } \end{gathered}$	DESCRIPTION			MOD. NO.	PAGE	LABOR TIME	KIT	NO.
$\xrightarrow[\substack{1728 \\ 237-\mathrm{RM}}]{\text { Prope }}$	Proper Alternate sweep operation at low line assured.			9409	111.01			
12470 Sweep	Sweep Steering Diodes Replacement Kit			---	111.02	0.3h	050-0473-00	

Page 12

Type 547/	/RM547	PRODUCT	MODIFICATION	INDEX	$\begin{aligned} & \text { circuit } \\ & \text { section- } X X X X X \\ & \text { page } \end{aligned}$				
	CALIBRATOR								
$\begin{gathered} \hline \text { EFF. SN. } \\ \text { S.M. }{ }^{*} \end{gathered}$	DESCRIPTION				MOD. NO.	PAGE	$\begin{aligned} & \text { LABOR } \\ & \text { TIME } \end{aligned}$	KIT	N O.
					\checkmark				
$\begin{aligned} & 1360 \\ & 180-\mathrm{RM} \end{aligned}$	Possible short on CALIBRATOR switch eliminated by changing dress of insulated strap between terminals W3-2R and W3-12R.				9089	----	-----		--
2890	Resistors changed to $1 / 2 \%$ tolerance to facilitate calibration and reduce possible error.				9080	115.01	-----		
3150	Zener diode replaced with resistor to improve reliability and reduce cost.				10229	115.02	-----		
10200	Resistors changed to improve quality and reduce cost.				12856	115.03	-----		

Page

PKOHECED BY EYEL SOPORT, TEKTYONTX LTD.
EOR FUL MOD DETALLS REFER IU MICROFIC

+225V POWER SUPPLY OSCILLATION ELIMINATED
Effective Prod SN 260 Usable in SN 100-259

C694 was added in parallel with R694 to prevent possible oscillation at the +225 V supply caused by adding R694, a 47 k resistor in the grid circuit of V707 for the protection of D693.

Parts Added:
C694 281-0523-00 Capacitor, 100pF
INSTALLATION
Parts Required: See 'Parts Added.'
Solder C694 in parallel with R694. R694 is located between pin 1 of V707 and CSE-8 on the Power chassis.

POWER CHASSIS
(c) 1966, Tektronix, Inc.

All Rights Reserved.

The VA supply voltages $(+100,+225$, and +350) are wired to the wrong sections of capacitor C773A, B, and C. Relocate the wire straps to their proper locations.

INSTALLATION

Relocate wiring to C773, using the drawings below for proper location.

BEFORE

AFTER

ELECTROLYTIC CAPACITOR ASSEMBLIES REPLACED WITH EQUIVALENT CAPACITOR FLANGE，BASE，OR COVER TO ELIMINATE UNNECESSARY PART NUMBERS AND TO FACILITATE REPLACEMENT

Effective Prod SN not given
（also RM）
All electrolytic capacitor assemblies were replaced with their equivalent raw capacitor，metal or fiber flange，plastic cover，and DELRIN base（when required）to eliminate unnecessary part numbers and to facilitate replacement of electrolytic capacitors by customers．For replacement of capacitor assem－ blies，Customer Service will supply raw capacitors with both metal and fiber flanges and plastic covers when required．

Parts Removed：

C771	290－0229－00	Capacitor， $2 \times 40 \mathrm{FF} 250 \mathrm{~V}$
C773	290－0237－00	Capacitor，40／20／20uF 250／350／450V
C802	290－0243－00	Capacitor， $40 \mu \mathrm{~F} 400 \mathrm{~V}$
C709	290－0238－00	Capacitor，20／10／10uF 250／350／450V
C730	290－0239－00	Capacitor，125 F F 250V
C671	290－0240－00	Capacitor，300 F 250 V
C701	290－0241－00	Capacitor， $200 \mu \mathrm{~F} 400 \mathrm{~V}$
C642	290－0242－00	Capacitor，250／40 $\mathrm{HF} 350 / 250 \mathrm{~V}$

Parts Added：

C771	290－0185－00	Capacitor， $2 \times 40 \mu \mathrm{~F} 250 \mathrm{~V}$
C773	290－0196－00	Capacitor，40／20／20uF 250／350／450V
C802	290－0190－00	Capacitor，40⿲㇒丨丶㇒ 400V
C709	290－0195－00	Capacitor，20／10／10 ${ }^{\text {F }}$ 250／350／450V
C730	290－0179－00	Capacitor，125 $\mathrm{F}^{\text {F } 250 \mathrm{~V}}$
C671	290－0180－00	Capacitor， $300 \mu \mathrm{~F} 250 \mathrm{~V}$
C701	290－0192－00	Capacitor， $200 \mu \mathrm{~F} 400 \mathrm{~V}$
C642	290－0197－00	Capacitor，250／40 F F 350／250V
	386－0252－00	Flange
	386－0253－00	Flange
	386－0254－00	Flange
	386－0255－00	Flange
	200－0257－00	Cover
	200－0259－00	Cover
	200－0260－00	Cover
	432－0048－00	Base，capacitor mounting
	432－0047－00	Base，capacitor mounting（Type 547

DELRIN Reg．TM E．I．du Pont de Nemours \＆Co．，Inc．
© 1965，Tektronix，Inc．
Ali Rights Reserved．
+100V DC POWER SUPPLY REWIRED TO IMPROVE REGULATION
Effective Prod SN $1081 \quad$ Usable in SN 100-1080 180-RM 100-179

The regulation of the +100 V DC supply can be improved and the need to select 6080 's for $V 677$ can be eliminated by rewiring the circuitry around V677.

Parts Removed:

R663	$302-0105-00$	Resistor, 1 M	$1 / 2 \mathrm{~W}$	10%
R667	$302-0334-00$	Resistor, 330 k	$1 / 2 \mathrm{~W}$	10%
R5́77	$308-0040-00$	Resistor,	1.5 k	25 W

Parts Added:

C665
R663
R665
R666
R667
R677

283-0001-00
301-0185-00
301-0225-00
301-0226-00
301-0304-00
308-0065-00
162-0504-00

Capacitor, $0.005 \mu \mathrm{~F} 500 \mathrm{~V}$
Resistor, 1.8M 1/2W 5\%
Resistor, 2.2M 1/2W 5\%
Resistor, 22M 1/2W 5\%
Resistor, 300k 1/2W 5\% Resistor, $2 k$ 25W 5\% WW Tubing, VARGLAS ${ }^{*}$

INSTALLATION
Parts Required: See 'Parts Added.'
a) Remove R663, a 1 M $1 / 2 \mathrm{~W} 10 \%$ resistor, between CSD-22 and CSE-22.
b) Remove R667, a 330k $1 / 2 \mathrm{~W} 10 \%$ resistor, from CSD-21 and CSE-21.
c) Remove the bare wire between pin 7 of V664 and pin 4 of V677.
d) Connect C665 and R665 in parallel and solder them between CSE-22 and pin 7 of V664.
e) Install R663, a $1.8 \mathrm{M} 1 / 2 \mathrm{~W} 5 \%$ resistor between pin 7 of V664 and CSD-22. Insulate the lead to CSD-22 with a piece of \#22 tubing.
f) Install R667, a $300 \mathrm{k} 1 / 2 \mathrm{~W} 5 \%$ resistor, between CSD-21 and CSE-21.
g) Replace the \#22 wire box strap between CSF-19 and CSF-25 with two \#22 box straps between CSF-19/22 and CSF-22/25.
h) Solder R666, a 22M 1/2W 5\% resistor, between CSF-22 and CSE-22.
i) Replace R677, on the shunt resistor bracket, with a $2 k 25 \mathrm{~W} 5 \%$ resistor.

VARGLAS, Reg. TM of Varflex Corp.
© 1966, Tektronix, Inc. 1 of 2
All Rights Reserved.

POWGR CHASSIS

POWER SUPPLY FILTER CAPACITOR WIRING ERROR CORRECTED
Effective Prod SN 1270

Usable in SN 100-1269 100-179
modified out of sequence:
1176-89 1220-39

Sections A and B of C709 are transposed to place the +225 V and +350 V supplies to the correct voltage rated sections.

INSTALLATION

Transpose the two white-orange-green-brown wires and the two white-red-redbrown wires on C709, located on the Sweep chassis.

AFTER
© 1966, Tektronix, Inc.
All Rights Reserved.
+225 V POWER SUPPLY REGULATION IMPROVED
Effective Prod SN 2887
modified out of sequence:
547/RM $2724 \quad 2744 \quad 2784$
Usable in SN 100-2886 2355

RM547 310
327-9
Excessive selection of 6080 for 6707 was necessary to get +225 V supply to regulate over line volts range of 102.5 V to 127.5 V .

R706 was changed from 1.25 k to 1.35 k to reduce tube selection for V 707 .
Parts Removed:
R706 308-0102-00 Resistor, WW, 1.25k 25W
Parts Added:
R706 308-0282-00 Resistor, WW, 1.35k 25W
INSTALLATION
Parts Required: See 'Parts Added.'
Replace R706 (1.25k 25W resistor) with a 1.35 k 25W WW resistor. R706 is mounted on the power supply shunt resistor bracket at the rear of the instrument.
© 1966, Tektronix, Inc. All Rights Reserved.

3-WIRE POWER CORD FEMALE GROUND CONNECTION IMPROVEMENT

For 3-Wire Power Cords
Used on TEKTRONIX Type Instruments

Modification Kit, PN 040-0424-01, improves the non-current carrying ground contact on the 3 -wire power cords, used on TEKTRONIX Type instruments, by adding a spring to the female contact.

The kit includes enough springs to modify twenty-five power cords.
© 1965, Tektronix, Inc.

Quantity	Part Number	Description
25 ea	$214-0698-00$	Spring, power cord ground

INSTRUCTIONS

() Insert the spring (from kit) as indicated in the drawing below, and push it in by plugging the male end of the power cord into the female end.

THIS COMPLETES THE INSTALLATION.
() Add the spring to the Mechanical Parts List of your Instruction Manual (if applicable).

DF:1s

MOTOR BASE CONNECTOR CHANGED TO FACILITATE ASSEMBLY AND REDUCE COST
Effective Prod SN 6340
TEKTRONIX ${ }^{@}$-made motor bases were adapted for automated machinery to reduce cost and facilitate fabrication.

TEKTRONIX-made motor bases 131-0102-00 and 131-0150-00 were replaced with new motor bases 131-0102-01 and 131-0150-01. New and old differ in method used for their assembly and their subparts. 0ld motor bases use a \#4 nut, lockwasher, and screw on one side and a \#4 nut, lockwasher, and externally threaded ground post on other side. New motor bases use a \#4 self-tapping screw into new internally threaded ground post 129-0041-01 on other side.

This mod is superseded by M12876. The ground connection for the 3-wire motor base installed by this mod proved to be inadequate.

Parts Removed:

$$
\begin{array}{ll}
\text { 131-0102-00 } & \text { Motor base (Type RM547) } \\
131-0150-00 & \text { Motor base (Type 547) }
\end{array}
$$

Parts Added:

131-0102-01	Motor base (Type RM547)
$131-0150-01$	Motor base (Type 547)

© 1966, Tektronix, Inc. All Rights Reserved.

POWER SUPPLY V707 PROTECTION CIRCUITRY CHANGED TO IMPROVE HIGH LINE, LOW LOAD REGULATION

Effective Prod SN 6380
Unstable CRT display occurred. At high line, the plate of V694 tried to go below +100 V but D693 became forward biased and functioned as a normal diode clamping the plate to +100 V . Also, the μ of 6080 's used at $V 707$ was too low (≤ 1).

The 6080 manufacturer agreed to build higher μ tubes (≥ 1.8). D693 was removed and new protection circuitry was installed as shown.

Parts Removed:

D693
R729
R728
Parts Added:

D694
R726
R729
R728

179-0764-00
152-0288-00
302-0224-00
302-0684-00

179-0764-01
152-0107-00
301-0204-00
301-0224-00
301-0474-00

Cable, 150 V adjust
Diode, zener 140 V
Resistor, comp, 220k 1/2W 10\%
Resistor, comp, 680k 1/2W 10\%

Cable, 150 V adjust Diode, silicon, 1N647
Resistor, comp, 200k 1/2W 5\%
Resistor, comp, 220k 1/2W 5\%
Resistor, comp, 470k 1/2W 5\%

POWER SUPPLY LINE VOLTAGE SELECTOR SWITCH ADDED TO FACILITATE CHANGE OF LINE VOLTAGE REQUIREMENTS

Effective Prod SN 7980
A Line Voltage Selector switch (SW602) was added to the rear panel. The new switch assembly includes a 115 V fuse, and a 230 V fuse to eliminate the need for a fuse holder. The primaries of the power transformer (T601) were changed to accommodate the Line Voltage Selector switch, and the rear panel power requirement markings were changed.

Parts Removed:
Type 547 only

$$
\begin{array}{ll}
387-0758-00 & \text { Rear subpanel } \\
387-0766-00 & \text { Rear overlay }
\end{array}
$$

Type RM547 only

437-0073-00 Cabinet, RM
380-0018-00 Filter housing
Type 547/RM only
200-0582-00 Cap, fuse, 3AG
F601
159-0011-00
Fuse, 6.25A slo, 3AG
334-0904-00 Tag, voltage, 115 V
2 ea 213-0088-00 Screw, Thrd Frm, \#4 x 1/4
T601
SW601
120-0307-00 Power transformer
175-0503-00 Wire, \#18 solid, 4-N (4-121) $0.167 \mathrm{ft} .(2 " \mathrm{pc})$
260-0199-00 Switch, toggle, SPST
352-0010-00 Holder, fuse, 3AG
210-0873-00
179-0765-00
441-0478-00
179-0771-00

Cable, 110 V
Power chassis
Cable, Power

Parts Added:
Type 547 only
387-0758-02 Rear subpanel
387-0766-01 Rear overlay
Type RM54 only
387-0859-01
380-0018-03
4 ea. 214-1000-00
212-0039-00
437-0073-01
Type 547/RM only

F601
F602
159-0011-00
159-0005-00
200-0704-00
179-1214-00
2 ea. 210-0407-00
SW602

T601
SW601

204-0279-00
175-0675-00
175-0567-00
210-0458-00
120-0521-00
260-0785-00
212-0070-00
441-0478-01
179-0765-01
179-0771-01

Rear subpane
Rear overlay

Rear subpanel Filter housing
Corner, filter housing inserts
Screw, $8-32 \times 3 / 8$ THS
Cabinet, RM

Fuse, 6.25A slo, 3AG
Fuse, 3A slo, 3AG
Cover, Line Voltage Selector Cable, Line Voltage Selector Nut, $6-32 \times 1 / 4$
Body, Line Voltage Selector
Wire, \#18 str., black (6" pc)
Wire, \#18 str., white (4" pc)
Nut, Keps, 8-32
Power transformer
Switch, toggle, DPST
Screw, $8-32 \times 5 / 16$, FHS
Power Chassis
Cable, 110 V
Cable, power

REAR PANEL POWER REQUIREMENTS MARKING	
Before	After
108-122V 6.25A SLOW	WATTS (MAX) 550
216-244V 3A SLOW	AMPS (MAX) 5.5A
	AT $115 \mathrm{~V}, 60 \mathrm{~Hz}$

115V FUSE 6.25A SLOW
230V FUSE 3A SLOW
FREQ RANGE $50-60 \mathrm{~Hz}$

POWER SUPPLY CORD ASSEMBLY ATTACHED PERMANENTLY TO INSTRUMENT
Effective Prod SN 7980 (Type 547 only) Usable in SN 100-7979
The detachable power cord assembly was replaced with a cord assembly which is attached permanently to the instrument.

Parts Removed:

$131-0572-00$	Connector, power receptacle
$161-0010-00$	Cord, power
$213-0104-00$	Screw, 6-32 $\times 3 / 8$ Thrd. Form.
$214-0698-00$	Spring, power cord ground
$380-0018-00$	Housing, filter

Parts Added:

	103-0071-01	Adapter, power cord
	161-0033-00	Cord, power
	124-0207-00	Strip, ceramic
	210-0202-00	Lug, solder DE6
	210-0457-00	Nut, Keps 6-32
	211-0537-00	Screw, 6-32 x 5/8 Truss head
	213-0146-00	Screw, \#6 x 0.313 Thrd. Form.
2 ea.	213-0166-00	Screw, \#6 x 0.75 Thrd. Form.
	214-1000-00	Corner, filter housing
	358-0161-00	Bushing, strain relief
2 ea.	358-0324-00	Bushing, ceramic strip
	380-0018-03	Housing, filter

INSTALLATION

These instructions describe:
A. How to permanently attach the power cord to an instrument equipped with a power receptacle by replacing the receptacle with a special new power cord assembly, and,
B. How to install a detachable power cord in an instrument equipped with a permanently attached power cord by replacing the cord assembly with a power receptacle and a new cord.
A. PARTS REQUIRED TO INSTALL ATTACHED POWER CORD:

$$
4 \text { ea. } \begin{array}{ll}
\text { 161-0033-01 } & \text { Assembly, power cord } \\
214-1000-00 & \text { Corner, filter housing insert } \\
380-0018-03 & \text { Housing, filter (optional) }
\end{array}
$$

B. PARTS REQUIRED TO INSTALL DETACHABLE CORD:
131-0572-00
Connector, receptacle, 3-wire 161-0010-03 Cord, power, 3-wire, 8 ft .

[^0]IWSTALIMOM (Conimued)

Replace the recoptacle comector on the rear of the instrument with a now power cord assembly, using the receptacle comector momting hard are
Wire as shom in the dowing.
Optional: A filter housing with notched corners for wroping the power cord when not in use is available if desired. The no housing with plastic corner inserts is a direct replacement for the ofd housing. BOTTO:

FIG. 1
b. 10 MASALL HThGHBLE CORD: ?efor lo Fig. 2.

Replace the athaches power cord assembly on the rear of the instrarni witi the 3 wire receptacte connector.

Rembe the wite wire usod for grounding the attached power cord assembly.
Wire the recepracle as shom in the draning.
BOT10n

POWER SUPPLY RECTIFIER DIODES CHANGED

Effective Prod SN 12110

Power supply rectifier diodes changed to increase current rating.
Surge current was causing the rectifier diodes in the 100 V supply to short. Rectifier diodes 0672 A, B, C, and D were changed from a $500-750 \mathrm{~mA}$ diode to a 3A diode. The new diodes have a "top hat" type case requiring that the leads be bent 90° and the diodes dressed differently.

Parts Removed:

D672A, B, C, D 152-0066-00 Diode, 400PIV 500-750mA

Parts Added:
D672A, B, C, D 152-0423-00 Diode, 300PIV, 3A
© 1970, Tektronix, Inc.
All Rights Reserved.

FAN MOTOR REPLACEMENT

For the following TEKTRONIX ${ }^{\ominus}$ instruments:
Type 127 All Serial Numbers
Type 507 All Serial Numbers
Type 545B All Serial Numbers
Type 547 All Serial Numbers
Type RM547 All Serial Numbers
Type 549 All Serial Numbers
Type 565 All Serial Numbers
Type RM565 All Serial Numbers

A new fan motor, pn 147-0001-01, replaces previously used fan motors, pn 147-0001-00 and pn 147-0026-00, which are no longer available. Four new mounting screws are required when replacing a pn 147-0026-00 fan motor. If replacing a pn 147-0001-00 fan motor, disregard the instructions and use the new fan motor as a direct replacement.

NOTE

Once this kit has been installed, pn 147-0001-01 may be used as a direct replacement for the fan motor.

PARTS INCLUDED IN PARTS REPLACEMENT KIT:
Quantity Part Number Description
1 ea
147-0001-01
4 ea 211-0552-00
MOTOR, FAN:AC, SHADED P, 1350 RPM, $115 \mathrm{~V}, 60 \mathrm{HZ}$
1 ea SCREW, MACHINE:6-32 X 2 INCH, PNH STL LABEL:050-KIT

INSTALLATION INSTRUCTIONS:

WARNING

Before proceeding, ensure the POWER switch is in the OFF position, then disconnect the instrument from the power source.

NOTE
If replacing a pn 147-0001-00 fan motor, disregard the following instructions and use the fan motor, included in this kit, as a direct replacement.
() 1. Replace the four screws holding the front and rear bearing retainers on the new fan motor with the four $6-32 \times 2$ inch screws included in this kit.

NOTE
The longer screws provided in this kit must be installed in the reverse direction of the screws being removed to allow mounting the fan motor to the fan motor mount.
() 2. Replace the old fan motor, pn 147-0026-00, with the new fan motor.
() 3. Remove the protective backing from the 050-kit label, included in this kit, and place the label on a clean flat surface of the instrument near the serial number tag. The label indicates this kit has been installed.
() 4. For future reference, correct the Replaceable Mechanical Parts List in the Instruction Manual with the information in the parts list of this kit.

JG:ct

gRATICULE LIGHT FILTER REPLACED WITH SMOKE GRAY FILTER

Effective Prod SN not given
(also RM)
The polarized light filter is replaced with a smoke gray light filter. The gray filter material seems to be just as effective as the polarized material for most applications, but is considerably less expensive and less susceptible to deterioration from moisture.

Because of excessive stock of the polarized filter, 378-0545-00, the trigger date for M8194 was extended past that of M9022 making this change unnecessary.

Refer to M9022.
Parts Removed:
378-0545-00 Light filter, polarized

Parts Added:
378-0546-00 Light filter, smoke gray

CRT VERTICAL SENSITIVITY IMPROVED

Effective Prod SN 1010
180-RM
The rejection of some T5470 CRT's, caused by Vertical Sensitivity running slightly high (0.2 V), was reduced by lowering the shield voltage by 10 V . This permitted the return to original upper limit spec of $6.8 \mathrm{~V} / \mathrm{cm}$. Precision resistors are used and VERT GAIN control is recentered.

Parts Removed:
R863 301-0473-00` Resistor, 47k 1/2W 5\%

R862 301-0823-00 Resistor, 82k 1/2W 5\%
R1027 315-01.21-00 Resistor, 120k 1/4W 5\%
Parts Added:

R863	$323-0356-00$	Resistor, $49.9 \mathrm{k} 1 / 2 \mathrm{~W} 1 \%$
R862	$323-0395-00$	Resistor, 127k $1 / 2 \mathrm{~W} 1 \%$
R1027	$315-0471-00$	Resistor, $470 \Omega 1 / 4 \mathrm{~W} 5 \%$

© 1966, Tektronix, Inc
All Rights Reserved.

TRACE ROTATOR COIL IMPROVED
Effective Prod SN 1510
210-RM
The trace rotator coil was replaced with a coil causing less distortion at full trace rotation, thereby increasing the yield of T5470 CRT's. The new coil is the same electrically except the winding form is wider, and the connection terminals are reversed, i.e., the white-green and white-violet leads are transposed.

Parts Removed:
L778 108-0265-00 Coil, fixed
Parts Added:
L778 108-0323-00 Coil, fixed
© 1966, Tektronix, Inc.
All Rights Reserved.

UNBLANKING AMPLIFIER CIRCUIT PROTECTION ADDED

Effective Prod SN 1880
Usable in SN 100-1879
240-RM
Field failure of Q373 and V393B is possible by arcing in the CRT or CRT circuitry coupling a transient backwards through unblanking CF, V393B, into collector of Q373. A protective network is added to collector of Q373 and a clamping diode is added to the CRT circuitry.

Also see M11722.
Parts Added:

C380	$281-0536-00$	Capacitor, 1000pF $\pm 100 \mathrm{pF}$
D831	$152-0208-00$	Diode, 1N3195
R380	$302-0473-00$	Resistor, 47k $1 / 2 \mathrm{~W} 10 \%$

INSTALLATION
Parts Required: See 'Parts Added' and parts listed below:
R381 316-0470-00 Resistor, 47 1/4W
176-0522-00 Wire, \#22 solid, white 2-1/2"
Sweep Chassis:
a) Lift end of D372 at CSD-43.
b) Remove \#22 bare wire strap between CSD-42 and CSD-43.
c) Install R380, $47 \mathrm{k} 1 / 2 \mathrm{~W}$ resistor, between CSD-43 and collector of Q373 directly below.
d) Solder loose end of D372 to CSD-42.
e) Lift components from CSD-44 thru -47 to gain access to R381, $47 \Omega 1 / 4 \mathrm{~W}$ resistor between CSD-45 and pin 7 of V393B.
f) Relocate R381 between pin 7 of V393B and CSD-43 using a new $47 \Omega 1 / 4 \mathrm{~W}$ resistor.
g) Reconnect components lifted in step e.
h) Install C380, a 1000pF capacitor, between CSD-43 and CSE-43.

INSTALLATION (continued)
F \& I Chassis:
i) Remove \#22 bare wire strap between CSE-6 and CSG-1.
k) Relocate lead of $\mathrm{R} 827,33 \mathrm{k} 1 / 2 \mathrm{~W}$ resistor, to CSE-3 from CSG-1.
m) Install D831, 1 N3195 diode, between CSF-1 and CSG-1 (cathode to CSG-1).
n) Install a \#22 white wire between CSG-1 and C802 center terminal. C802 is located on the vertical portion of the F \& I chassis.

F \& I CHASSIS

SWEEP CHASSIS

2 of 3

CRT AND LIGHT PIPING CHANGED TO PROVIDE A RISETIME GRATICULE AND FACILITATE ASSEMBLY

Effective Prod SN 2070

The present internal graticule does not provide for risetime measurements and the present graticule illumination method is excessively complex.

The CRT was replaced with a CRT having an internal risetime graticule and the graticule illumination hardware (a light reflector spring, light piping tape, and the light reflector plate) was replaced with an improved light reflector ring.

A Parts Replacement Kit 050-0246-01 consisting of the new graticule illumination hardware is available to facilitate the replacement of the CRT and the reflector ring in pre-mod M8744 instruments.

THIS KIT DOES NOT INCLUDE A CRT.
Parts Removed:
V859
154-0429-00
214-0433-00
387-0917-00
Tube, T5470-31-2
Spring, light reflector
Plate, light reflector

Parts Added:
V859
154-0478-00
Tube, T5470-31-2
354-0262-00 Ring, light reflector 386-0212-00 Plate, light reflector

CRT LIGHT REFLECTOR RING REPLACEMENT

For the following TEKTRONIX Type Oscilloscopes:

Type	543B	SN 100-546	e	547	SN	100-2069
Type	RM543B	SN 100-139	Type	RM547	SN	100- 249
Type	544	SN 100-319	Type	555	SN	9000-10409
Type	RM544	SN 100-119	Type	565	SN	1000-1369
Type	545B	SN 100-2187	Type	RM565	SN	1000-1278
Type	RM545B	SN 100-409	Type	581A	SN	5000-5389
Type	546	SN 100-449	Type	585A	SN	9000-10204
Type	RM546	SN 100-169	Type	RM585A	SN	1000-1170

Plastic light reflector ring, PN 354-0262-00, replaces light reflector retaining spring, PN 214-0433-00. This eliminates the need for taping the edges of the light pipe plate (fastened to the front of the CRT) and the light reflector plate with white tape.
\#\#This kit plus the light reflector plate, PN 386-0212-00, replaces light reflector plate, PN 386-0917-00. Also this kit will be needed when replacing internal graticule CRT's (shown below) in the Types 555, 565, RM565, 581A, 585A and RM585A oscilloscopes.
\#\#For replacement of CRT's in the Type 540 Series Oscilloscopes listed above, see Parts Replacement Kit, PN 050-0420-00.

NOTE: If the serial number of your instrument is above those listed, or if this kit has been installed, disregard the instructions and order PN 354-0262-00, or PN 286-0212-00, or the new CRT as a direct replacement.

CRT Type	Part Number	CRT Type	Part Number	
T5550-2-1	154-0476-00	T5650-11-1	154-0477-02	
T5550-7-1	154-0476-01	T5650-31-1	154-0477-03	
T5550-11-1	154-0476-02	T5810-2-1	154-0479-01	
T5550-31-1	154-0476-03	T5810-11-1	154-0479-02	
T5650-2-1	154-0477-00	T5810-31-1	154-0479-00	
T5650-7-1	154-0477-01			
\#\#Indicates change since last publication.				
© 1965, Tektronix, Inc.All Rights Reserved.		1-17-72	Page $\begin{array}{r}1 \text { of } 2 \\ 102.06\end{array}$	
		edes: 4-9-7		

PARTS INCLUDED IN PARTS REPLACEMENT KIT:

Quantity
Part Number
1 ea 354-0262-00

Description

Ring, light reflector, plastic

INSTRUCTIONS

() Replace the light reflector retaining spring with the plastic light reflector ring (from kit), installing it as shown in the drawing. (A little "prestretching" may help.) Remove any white tape on the edges of the light reflector plate or light pipe plate.
() Enter the new CRT Part Number (from Table on page 1) in your Instruction Manual Electrical Parts List. Also enter the following new part in the Mechanical Parts List:

CRT FILTER SHAPE AND COLOR STANDARDIZED TO REDUCE COST
Effective Prod SN 2440
270-RM
A cost savings was provided by standardizing the shape and color of CRT light filters. This was accomplished by replacing 0.060" thick green, blue, and amber filters for $5^{\prime \prime}$ rectangular and round external graticule instruments and 0.030" thick smoke gray filter for 5 " rectangular internal graticule instruments with new $0.030^{\prime \prime}$ thick green, blue, amber, and smoke gray filters with configuration acceptable for both internal and external graticule use.

This mod also replaced $0.060^{\prime \prime}$ thick green, blue, and amber filters for $3^{\prime \prime}$ CRT instruments with new 0.030" thick green, blue, amber, and smoke gray filters with same configurations. Changed the configuration of internal graticule clear scratch plates (5" round and $5^{\prime \prime}$ rectangular) to conform to new filter configurations, thereby allowing use of common tooling.

Smoke gray will replace green as standard filter shipped with external graticule instruments. Amber, green, and blue filters in all configurations will be set up as optional filters supplied on customer demand and with special phosphors.

The recommended optional filters for various phosphors is as follows:

Smoke gray filter	P1	P2	P20	P28	P31	P7	
Blue filter	P5	P11	P14	P17	P32		
Amber filter	P12	P13	P19	P25	P26	P27	P7
No filter necessary	P15	P16	P24				
P7 phosphor requires both a	smoke						
gray	and	an amber filter.					

Parts Removed:

> 378-0545-00 Filter, smoke gray

Parts Added:

$$
\begin{array}{ll}
378-0567-00 & \text { Filter, smoke gray } \\
378-0568-00 & \text { Filter, green } \\
378-0569-00 & \text { Filter, blue } \\
378-0570-00 & \text { Filter, amber }
\end{array}
$$

HV OSCILLATOR ERROR AMPLIFIER REWIRED TO ELIMINATE TENDENCY TO OVERCOMPENSATE AND CAUSE TRACE DIMMING

Effective Prod SiN 4080
Usable in SN 100-4079
When using 10V CALIBRATOR signal to check CRT cathode intensity modulation the trace would dim and there was no intensity modulation.

The error signal feedback loop in the high voltage oscillator circuit was too sensitive, with the result that high amplitude (10V) intensity modulation signals fed to the CRT cathode entered the feedback loop resulting in cancellation of the modulation signal. Test was selecting V800, R806 in order to obtain acceptable intensity modulation with 10V CALIBRATOR signal.

The HV oscillator error amplifier was rewired as follows: C842, which was wired to pin 2 of V814 and the junctions of C841, R841, and R842 on one end and to the junction of C854, R853, and R857 on the other, was rewired to the junction of R853, C852, and R847.

Parts Removed:
R806 302-0104-00 Resistor, 100k 1/2W 10\%
Parts Added:
R806 302-0823-00 Resistor, 82k 1/2W 10\%
INSTALLATION
Parts Required: See 'Parts Added.'
a) Replace R806, a $100 \mathrm{k} 1 / 2 \mathrm{~W} 10 \%$ resistor, located between CSJ-4 and CSK-4, with an $82 \mathrm{k} 1 / 2 \mathrm{~W} 10 \%$ resistor. See Fig. 1.
b) Rewire the connections of C 842 as shown in attached schematic and procedure. See Fig. 2.

To gain access to the bottom of the HV board, proceed as follows:

1. Remove the metal HV shield.
2. Remove two screws from HV assembly cover.
3. Remove three screws that hold HV board in place and unsolder R836, a $1 \mathrm{M} 1 / 4 \mathrm{~W}$ resistor from C836, a 500 pF capacitor mounted in the rear outside corner of the HV assembly.
4. Carefully lift out the HV board, rewire as shown in drawing, and reassemble.

FIG. 1.

HV DIODE HEATER LEADS REPLACED TO PREVENT MELTING OF INSULATION

Effective Prod Sil 4080
Overneating of the HV transformer core melts the insulation on the HV diode heater leads, causing arcing between the leads and core. This overheating results when the HV regulator (V814) fails, causing the oscillator to run at maximum output.

The HV diode heater leads were changed from polyetnylene insulated wire to 15 kV irradiated polyethylene insulated wire with a temperature rating of $125^{\circ} \mathrm{C}$.

Refer to Mod 11809, page 102.10.
Parts Removed:

$$
\begin{array}{cc}
\text { 175-0012-00 } & \text { Wire, polyethylene, insulated } \\
\text { \#22 stranded (1.583 ft.) } \\
\text { 175-0549-00 } & \text { Wire, polyethylene, insulated } \\
\# 22 \text { solid (1.250 ft.) }
\end{array}
$$

Parts Added:
175-0676-00
Wire, irradiated polyethylene insulated \#22 stranded, temp. rating $125^{\circ} \mathrm{C}$ (2.875 ft.)

INSTALLATION:
Parts Required:
162-0019-00 Tubing, vinyl \#2 clear 4-1/2"

Add a 4-1/2" length of \#2 clear tubing over the three wires (white, white-black and white-violet) which run from the HV transformer terminals to the ceramic strip on the bottom of the HV power supply as shown in the drawing.
© 1966, Tektronix, Inc. All Rights Reserved.

102.09

HIGH VOLTAGE OSCILLATOR CLAMPING CIRCUIT ADDED TO SCREEN GRID

 CIRCUIT TO PREVENT DAMAGE TO THE HIGH VOLTAGE TRANSFORMEREffective Prod SN 5830
Usable in SN 100-5829
When V814 fails, the screen of V800 rises toward +350 V . This increases the amplitude of oscillations which increases the voltage across the primary winding of the high voltage transformer. This increase in voltage could result in arcing between windings and transformer damage.

A clamping network was added to the screen circuit of V800. This network prevents the screen from going more positive than approximately +125 V thereby limiting the oscillator output amplitude.

Parts Added:

D803	$i 52-0107-00$	Diode, silicon 6107
D804	$152-0265-00$	Diode, zener 1N970B
R804	$316-0104-00$	Resistor, comp, 100k $1 / 4 \mathrm{~W} \quad 10 \%$

INSTALLATION

Parts Required: See 'Parts Added' and part listed below. Wire, \#22 solid, white-red-red-brown (5 in.)
a) Remove the two \#22 bare wires from CSK-2 and CSK-4 to the ground solder lug between CSJ and CSK.
b) Relocate one lead of C803 from CSK-2 to the ground solder lug.
c) Relocate one lead of R806 from CSK-4 to the ground solder lug.
d) Install 0802 (152-0107-00) between CSJ-2 and CSK-2 with the cathode (banded) lead in CSK-2.
e) Install D804 (152-0265-00 zener) between CSK-1 and CSK-2 with the cathode (banded) lead in CSK-2.
f) Install R804 (100k 1/4W resistor) between CSK-2 and CSK-4.
g) Install a 5 in. piece of \#22 solid wire (w-r-r-br) between CSK-4 and
 CSH-1.

Effective Prod SN 5920
Increased demand for Type 547 Mod 1722 (External Graticule) resulted in its being changed from a Custom Instrument mod to a Production Special.

Parts Added:

Special Mod $172 Z$ final kit, consisting of:

154-0419-00	CRT, T5470-31
$331-0037-00$	Graticule 6 cm Vert. x 10 cm Horiz. ruling
$401-0004-00$	Cam nylon, 3/8 0D, 0.150 High
$337-0187-00$	Shield, 5" graticule 1 ight (acrylic)
$386-0451-00$	Plate, plexi $1 / 8 \times 5-1 / 2 \times 5-11 / 16$
$210-0816-00$	Washer, rubber WAN 13-20

© 1966, Tektronix, Inc.
All Rights Reserved.

FOCUS AND INTENSITY POTENTIOMETERS CHANGED TO REDUCE COST, IMPROVE QUALITY, AND PROVIDE BETTER SUPPLY

Effective Prod SN 8140
FOCUS and INTENSITY potentiometers were changed as indicated in the removeadd lists. The new potentiometers are smaller, and require smaller potentiometer covers.

Parts Removed:

R84
R826
311-0313-00
311-0450-00
200-0269-00
Parts Added:
R846
R826

311-0313-01
311-0450-01
200-0745-00

Potentiometers, comp, 5M Potentiometers, comp, 1M Cover, potentiometer, polypropylene

Potentiometers, comp, 5M
Potentiometers, comp, 1M Cover, potentiometers, polypropylene

The tolerance and availability of the purchased glass CRT funnels are not so easy to control as the TEKTRONIX ${ }^{@}$-made ceramic funnels, and the graticule illumination is not so good as it could be.

The purchased glass CRT funnels were replaced with TEKTRONIX-made ceramic funnels, the ceramic CRT required a new shockmount, bezel, and illumination hardware.

Parts Removed:

V859

354-0204-00	Ring, CRT shockmount
154-0478-00	Tube, CRT, T5470-31-2 w/Int. Grat.
$354-0262-00$	Ring, reflector, light plate
$386-0212-00$	Plate, light reflector
200-0382-00	Cover, graticule, 200-0382-01

Parts Added:

$$
\begin{array}{ll}
\text { 354-0321-00 } & \text { Ring, CRT shockmount } \\
\text { 154-0568-00 } & \text { Tube } \\
378-0594-00 & \text { Ring, reflector, light plate } \\
386-1459-00 & \text { Plate, light conductor } \\
\text { 200-0896-02 } & \text { Cover, graticule, 200-0896-02 } \\
331-0191-01 & \text { Mask, graticule }
\end{array}
$$

INSTALLATION
Parts Required: 050-0420-00 Parts Replacement Kit

T5471-7-2 (P-7 PHOSPHOR) CRT REPLACEMENT
For the following TEKTRONIX Type Oscilloscopes:
Types 543B/RM543B Serial Numbers 100-3000
Types 544/RM544 Serial Numbers 100-2000
Types 545B/RM545B Serial Numbers 100-11000
Types 546/RM546 Serial Numbers 100-2000
Types 547/RM547 Serial Numbers 100-10000

CRT with ceramic bulbs T5471-7-2 PN 154-0568-02 replaces CRT with glass bulbs PN 154-0478-02 which is no longer available. The ceramic CRT provides improved illumination of the internal graticule. The increased outer diameter of the ceramic CRT necessitates changing the light plate reflector, the light pipe reflector ring, the graticule mask, and the graticule cover.

NOTE 1: To use a TEKTRONIX camera bezel on an instrument containing a ceramic CRT it is necessary to modify the bezel by replacing the rubber gasket on the bezel with a thicker gasket. Order the vinyl light seal spacer PN 122-0745-00 separately.

NOTE 2: If the serial number of your instrument is above those listed, or if this kit or 050-0420-00 has been installed, disregard the instructions as CRT PN 154-0568-02 is a direct replacement.

PARTS INCLUDED IN PARTS REPLACEMENT KIT:
Quantity Part Number Description
1 ea 154-0568-02 Tube, vacuum, CRT T5471-7-2
1 ea 200-0896-02 Bezel, graticule
1 ea 331-0191-01 Mask, graticule
1 ea 354-0321-00 Ring, shockmount
1 ea 378-0594-00 Ring, reflector, light
1 ea 386-1459-00 Plate,llight reflector

WARNING

High vacuum cathode ray tubes are dangerous to handle. To prevent personal injury from flying glass in case of tube breakage, wear a face mask or safety goggles, and gloves.

Handle the CRT with extreme care. Do not strike or scratch it. Never subject it to more than moderate force or pressure when removing or installing.

Always store spare CRT's in original protective cartons. Save cartons to dispose of used CRT's.

BE SURE TO DISCONNECT THE INSTRUMENT FROM IT'S POWER SOURCE \& THAT THE HI VOLTAGE POWER SUPPLY IS COMPLETELY DISCHARGED BEFORE REPLACING THE CRT!

INSTRUCTIONS

Use the following procedure to remove the CRT:
() 1. Remove the CRT bezel nuts, bezel, and plastic light filter or CRT protector plate.
() 2. Remove the plastic light reflector plate and retaining spring from the top of the CRT.
() 3. Remove the CRT anode lead and disconnect all leads from the neck of the CRT.
() 4. Use a Phillips screwdriver and loosen the CRT base clamp.
() 5. Use a plastic, or a wooden, dowel to carefully work the CRT socket loose from the base clamp.
() 6. Grasp the face of the CRT with the right hand. Push the CRT carefully toward the front of the instrument with the left hand. Remove the CRT through the front of the instrument.

Use the following procedure to install the ceramic CRT:
() 7. Remove the black plastic support bracket from the front of the CRT shield. To do this, it is recommended that this bracket first be cut in two with a knife. Once the bracket is cut, it can easily be removed by hand. Care should be taken not to pry the bracket from the funnel with a screwdriver or similar blunt instrument, as the soft Mu-metal CRT shield or the front panel may be damaged.
() 8. Install the new support bracket into the CRT shield. This is a force-fit assembly and the installation is similar to installing a car tire on a rim. Put the bottom of the bracket in first, and push on a small portion of the bracket at a time, working around the shield, until the bracket is fully within the shield.
() 9. Before installing the ceramic CRT, dust talcum powder on the CRT base. This prevents the base of the CRT from stick ing to the neoprene bushing inside the base clamp.
() 10. Carefully insert the ceramic CRT into the shield and the base clamp. Keep the anode button in line with the anode connector hole on the CRT shield so that the button is aligned with the hole when the CRT is fully inserted.
() 11. Connect the CRT socket to the tube base.
() Turn the CRT so that the horizontal graticule lines are parallel with the top of the front panel.

NOTE: If the CRT face is not aligned parallel with the front of the oscilloscope, use a $7 / 64^{\prime \prime}$ hexagonal wrench to loosen the two socket head mounting screws that fasten the base clamp to the mounting bracket. Move the base clamp and CRT radially to align the face of the CRT with the front panel of the instrument.
() 12. Connect the anode and neck-pin leads (observe color-code).
() 13. Tighten the base clamp.

() 14. Turn on the oscilloscope. Obtain a free-running sweep on the CRT.
() 15. Check the alignment of the trace with the graticule lines. If the trace is not parallel with the graticule lines, align the trace with the TRACE POSITION control.
() 16. Install the new light reflector plate, the light reflector ring, the graticule mask, and the graticule bezel. See drawing on pages 4 and 5 .
() Check the operation of the instrument and recalibrate as required.
() Correct the Electrical and Mechanical Parts List in your Instruction Manual. Instructions for replacing rubber camera mounting bezel:

If a Tektronix camera is to be used, it will be necessary to replace the rubiber gasket on the camera bezel with a gasket having a greater width. Order Tektronix PN 122-0745-00, and slip the original gasket off and replace it with the new gasket. No special tools or adhesives are required for the installation.

If a bezel for mounting commercially available cameras on Tektronix oscilloscopes is used (PN 014-0018-00) the new gasket will not be required.

DF:lis

For the following TEKTRONIX Type Oscilloscopes:
Types 543B/RM543B Serial Numbers 100-3000
Types 544/RM544 Serial Numbers 100-2000
Types 545B/RM545B Serial Nurbers 100-11000
Types 545/RM546 Serial Numbers 100-2000
Types 547/RM547 Serial Numbers 100-10000

CRT with ceramic bulbs T5471-11-2 PN 154-0568-03 replaces CRT with glass bulbs PN 154-0478-03 which is no longer available. The ceramic CRT provides improved illumination of the internal graticule. The increased outer diameter of the ceramic CRT necessitates changing the light plate reflector, the light pipe reflector ring, the graticule mask, and the graticule cover.

NOTE 1: To use a TEKTRONIX camera bezel on an instrument containing a ceramic CRT it is necessary to modify the bezel by replacing the rubber gasket on the bezel with a thicker gasket. Order the vinyl light seal spacer PN 122-0745-00 separately.

NOTE 2: If the serial number of your instrument is above those listed, or if this kit or 050-0420-00 has been installed, disregard the instructions as CRT PN 154-0568-03 is a direct replacement.
© 1976, Tektronix, Inc. All Rights Reserved

6-11-76
Supersedes: 050-0420-00

Page 1 of 5
102.15

PARTS INCLUDED IN PARTS REPLACEMENT KIT:
Quantity Part Number Description
1 ea 154-0568-03 Tube, vacuum, CRT T5471-11-2
1 ea 200-0896-02 Beze1, graticule
1 ea 331-0191-01 Mask, graticule
1 ea 354-0321-00 Ring, shockmount
1 ea 378-0594-00 Ring, reflector, light
1 ea 386-1459-00 Plate, light reflector

WARNING
High vacuum cathode ray tubes are dangerous to handle. To prevent personal injury from flying glass in case of tube breakage, wear a face mask or safety goggles, and gloves.

Handle the CRT with extreme care. Do not strike or scratch it. Never subject it to more than moderate force or pressure when removing or installing.

Always store spare CRT's in original protective cartons. Save cartons to dispose of used CRT's.

BE SURE TO DISCONNECT THE INSTRUMENT FROM IT'S POWER SOURCE \& THAT THE HI VOLTAGE POWER SUPPLY IS COMPLETELY DISCHARGED BEFORE REPLACING THE CRT!

INSTRUCTIONS

Use the following procedure to remove the CRT:
() 1. Remove the CRT bezel nuts, bezel, and plastic light filter or CRT protector plate.
() 2. Remove the plastic light reflector plate and retaining spring from the top of the CRT.
() 3. Remove the CRT anode lead and disconnect all leads from the neck of the CRT.
() 4. Use a Phillips screwdriver and loosen the CRT base clamp.
() 5. Use a plastic, or a wooden, dowel to carefully work the CRT socket loose from the base clamp.
() 6. Grasp the face of the CRT with the right hand. Push the CRT carefully toward the front of the instrument with the left hand. Remove the CRT through the front of the instrument.

Use the following procedure to install the ceramic CRT:
() 7. Remove the black plastic support bracket from the front of the CRT shield. To do this, it is recommended that this bracket first be cut in two with a knife. Once the bracket is cut, it can easily be removed by hand. Care should be taken not to pry the bracket from the funnel with a screwdriver or similar blunt instrument, as the soft Mu-metal CRT shield or the front panel may be damaged.
() 8. Install the new support bracket into the CRT shield. This is a force-fit assembly and the installation is similar to installing a car tire on a rim. Put the bottom of the bracket in first, and push on a small portion of the bracket at a time, working around the shield, until the bracket is fully within the shield.
() 9. Before installing the ceramic CRT, dust talcum powder on the CRT base. This prevents the base of the CRT from stick ing to the neoprene bushing inside the base clamp.
() 10. Carefully insert the ceramic CRT into the shield and the base clamp. Keep the anode button in line with the anode connector hole on the CRT shield so that the button is aligned with the hole when the CRT is fully inserted.
() 11. Connect the CRT socket to the tube base.
() Turn the CRT so that the horizontal graticule lines are parallel with the top of the front panel.

NOTE: If the CRT face is not aligned parallel with the front of the oscilloscope, use a $7 / 54^{\prime \prime}$ hexagonal wrench to loosen the two socket head mounting screws that fasten the base clamp to the mounting bracket. Move the base clamp and CRT radially to align the face of the CRT with the front panel of the instrument.
() 12. Connect the anode and neck-pin leads (observe color-code).
() 13. Tighten the base clamp.

INSTRUCTIONS (cont)

() 14. Turn on the oscilloscope. Obtain a free-running sweep on the CRT.
() 15. Check the alignment of the trace with the graticule lines. If the trace is not parallel with the graticule lines, align the trace with the TRACE POSITION control.
() 16. Install the new light reflector plate, the light reflector ring, the graticule mask, and the graticule bezel. See drawing on pages 4 and 5 .
() Check the operation of the instrument and recalibrate as required.
() Correct the Electrical and Mechanical Parts List in your Instruction Manual. Instructions for replacing rubber camera mounting bezel:

If a Tektronix camera is to be used, it will be necessary to replace the rubber gasket on the camera bezel with a gasket having a greater width. Order Tektronix PN 122-0745-00, and slip the original gasket off and replace it with the new gasket. No special tools or adhesives are required for the installation.

If a bezel for mounting commercially available cameras on Tektronix oscilloscopes is used (PN 014-0018-00) the new gasket will not be required.
\#\#

T5471-31-2 or -2-2 ($\mathrm{P}-31$ or $\mathrm{P}-2 \mathrm{PH}$) CRT REPLACEMENT

For the following TEKTRONIX ${ }^{(®)}$ Oscilloscopes:
Types 543B/RM543B Serial Numbers 100-3000
Types 544/RM544 Serial Numbers 100 - 2000
Types 545B/RM545B Serial Numbers 100-11000
Types 546/RM546 Serial Numbers 100-2000
Types 547/RM547 Serial Numbers 100-10000

Ceramic crt T5471-31-2, pn 154-0568-00, replaces glass crt's T5470-31-2 (P31 phosphor), pn 154-0478-00, and T5470-2-2 (P2 phosphor), pn 154-0468-01, which are no longer available. The ceramic crt provides improved illumination of the internal graticule. The increased outer diameter of the ceramic crt necessitates changing the light plate reflector, the light pipe reflector ring, the graticule mask, and the graticule cover.

NOTE: If the serial number of your instrument is above those listed, or if this kit or 050-0420-00 has been installed, disregard the instructions as pn 154-0568-00 is a direct replacement.

PARTS INCLUDED IN PARTS REPLACEMENT KIT:
Quantity Part Number Description
1 ea 154-0568-00 Tube, vacuum, crt T5471-31-2
1 ea 200-0896-02
1 ea 331-0191-01
1 ea 354-0321-00
1 ea 378-0594-00
1 ea 386-1459-00
Bezel, graticule
Mask, graticule
Mount, resilient
Ring, reflector, light
Plate, light reflector

WARNING

High vacuum cathode ray tubes are dangerous to handle. To prevent personal injury from flying glass in case of tube breakage, wear a face mask or safety goggles, and gloves.

Handle the crt with extreme care. Do not strike or scratch it. Never subject it to more than moderate force or pressure when removing or installing.

Always store spare crt's in original protective cartons. Save cartons to dispose of used -crt's.

BEFORE STARTING TO REPLACE THE CRT, BE SURE THE INSTRUMENT IS DISCONNECTED FROM THE AC LINE AND THE HIGH-VOLTAGE POWER SUPPLY IS COMPLETELY DISCHARGED.

INSTRUCTIONS:

Use the following procedure to remove the crt:
() 1. Remove the crt bezel nuts, bezel, and plastic light filter or crt protector plate.
() 2. Remove the plastic light reflector plate and remaining spring from the top of the crt.
() 3. Remove the crt anode lead and disconnect all leads from the neck of the crt.
() 4. Using a Phillips screwdriver, loosen the crt base clamp.
() 5. Use a plastic or wooden dowel to carefully work the crt socket loose from the base clamp.
() 6. Grasp the face of the crt with the right hand. Push the crt carefully toward the front of the instrument with the left hand. Remove the crt through the front of the instrument.
Use the following procedure to install the ceramic crt.
() 7. Remove the black plastic-support bracket from the front of the crt shield. To do this, it is recommended that this bracket first be cut in two with a krife. Once the bracket is cut, it can easily be removed by hand. Care should be taken not to pry the bracket from the funnel with a screwdriver or similar blunt instrument, as the soft Mu-metal crt shield or the front panel may be damaged.
() 8. Install the new resilient mount into the crt shield. This is a force-fit assembly and the installation is similar to installing a car tire on a rim. Put the bottom of the bracket in first, and push on a small portion of the bracket at a time, working around the shield, until the bracket is fully within the shield.
() 9. Before installing the ceramic crt, dust talcum powder on the crt base. This prevents the base of the crt from sticking to the neoprene bushing inside the base clamp.
() 10. Carefully insert the ceramic crt into the shield and the base clamp. Keep the anode button in line with the anode connector hole in the crt shield so that the button is aligned with the hole when the crt is fully inserted.
() 11. Connect the crt socket to the tube base.
() Turn the crt so that the horizontal graticule lines are parallel with the top of the front panel.

NOTE: If the crt face is not aligned parallel with the front of the oscilloscope, use a $7 / 64^{\prime \prime}$ hexagonal wrench to loosen the two socket head mounting screws that fasten the base clamp to the mounting bracket. Move the base clamp and crt radially to align the face of the crt with the front panel of the instrument.
() 12. Connect the anode and neck-pin leads (observe color-code).
() 13. Tighten the base clamp.

Fig. 1. Installing Light Reflector Ring and Plate.

Fig. 2. Installation of CRT Bezel Assembly.
() 14. Turn on the oscilloscope. Obtain a free-running sweep on the crt.
() 15. Check the alignment of the trace with the graticule lines. If the trace is not parallel with the graticule lines, align the trace with the TRACE POSITION control.
() 16. Install the new light reflector plate, the light reflector ring, the graticule mask, and the graticule bezel as shown in Fig. 1 and Fig. 2. To install the light reflector ring and plate, hold the ring in place with the forefingers of both hands as shown in Fig. 1. Then slide the thumbs down to snap the bottom of the ring in place.

Check the operation of the instrument and recalibrate as required.
Correct the Electrical and Mechanical Parts List in your Instruction Manual.

Instructions for replacing rubber camera-mounting bezel:
If a TEKTRONIX ${ }^{\circledR}$ camera is to be used, it will be necessary to replace the rubber gasket on the camera bezel with a thicker gasket, pn 122-0745-00. Slip the original gasket off and replace it with the new gasket. No special tools or adhesives are required for the installation.
If the camera used with the oscilloscope was not supplied by Tektronix, Inc. and bezel pn 014-0018-00 is used, the rubber gasket will not need changing.

VERTICAL AMPLIFIER COMPATIBILITY WITH TYPE W UNIT IMPROVED
 Effective Prod SN 940
 180-RM
 Usable in SN 100-939
 100-179

The wide swing of the Type ' W ' unit output causes oscillation in the input amplifier emitter circuit that tends to saturate eigher transistor of this stage (depending upon the vertical position) when high amplitude (200 cm) input signals are used. The exact amount of input signal needed to make this problem occur depends on the signal rep rate.

A damping resistor R1020 is added between the junctions of D1018-R1018 and C1035-R1153 to prevent the oscillations from occurring.

The size of the aberration depends on the vertical position of the waveform.

After Mod
Test conditions same as above.

Parts Added:
R1020 316-0331-00 Resistor, 3302 1/4W 10\%
(c) 1965, Tektronix, Inc.

1 of 2
All Rights Reserved.

INSTALLATION
Parts Required: See 'Parts Added.'
Refer to drawing for component layout.
a) Relocate the two white-red wires from CSB-24 to CSB-27.
b) Solder R1020, a $330 \Omega 1 / 4 \mathrm{~W} 10 \%$ resistor, between CSB-24 and CSB-27.

VERT AMP DECOUPLING CAPACITOR INCREASED IN VALUE TO REDUCE
VERT SIGNAL OUT NOISE AND PREVENT ERRATIC TRIGGERING
Effective Prod SN 1010
Usable in SN 100-1009
180-RM
100-179
Replace C1157, a bypass capacitor, with a larger value reduced transients from the power supply getting into the VERTICAL SIGNAL OUT signal. The larger value reduced this noise from as much as 30 mV , depending upon the front panel settings, to as low as 5 mV .

Also, noise feeding into the trigger circuit was reduced, lessening the possibility of erratic triggering.

Parts Removed:
C1157 283-0067-00 Capacitor, $0.001 \mu \mathrm{~F}$ cer
Parts Added:
C1157 283-0057-00 Capacitor, $0.1 \mu \mathrm{~F}$ cer
INSTALLATION
Parts Required: See 'Parts Added.'
Replace C1157, an $0.001 \mu \mathrm{~F}$ capacitor, with an $0.1 \mu \mathrm{~F}$ capacitor. C1157 is located on the ceramic strips directly above transistor sockets Q1144 and Q1154, on the VA chassis. It is the only capacitor on these first two strips from the front of the instrument.

VERT AMP 200 MHz OSCILLATION AND RESULTING TRACE BROADENING ELIMINATED

Effective Prod SN 1272
180-RM
Usable in SN 100-1271
100-179
modified out of sequence:
$\begin{array}{lllll}561 & 1167 & 1186 & 1222-4 & 1230-9\end{array}$
$\begin{array}{lllll}1162 & 1176 & 1188 & 1228 & 1270\end{array}$
Overshost, ringing, and subsequent trace broadening, caused by 200 MHz oscillation occurring in the emitter circuit of the input transistors, resulted from the combination of two things: Lower input capacity of Q1014, Q1024, caused by a change to a snap-in transistor socket (M8208) which has lower cap-itor, and the possible use of a high FM tube at V1003.

A $6.8 p F$ capacitor, 019 , was added in parallel with R1019.
Also, refer to M10557 which changes the value of C1019 to 12 pF 500 V .
Parts Added:
C1019 281-0572-00 Capacitor, cer, 6.8pF 500V
INSTALLATION
Parts Required:
C1019 281-0505-00 Capacitor, cer, 12pF 500V
Install C1019 across the terminals of R1019 (1.5k 5W resistor), located on the lower VA chassis between Q1014 and Q1024.
© 1966, Tektronix, Inc.
All Rights Reserved.

OUTPUT AMPLIFIER PROTECTION CIRCUIT ADDED TO PROTECT OUTPUT TRANSISTORS

$$
\text { Effective Prod SN } 2340 \quad \text { Usable in SN 100-2339 }
$$

260-RM
100-259
It has been found that the +225 V 6080 series regulator tube (V707) can momentarily short internally. The resulting rise in output voltage in the supply breaks down the Vertical Output transistors Q1114 and Q1134 causing Vertical to be inoperative.

A transistor Q1109 was added in series with the output amplifier collector supply. The base was returned to 100 V through a 150 V zener diode D1109 (see schematic). The fixed base voltage limits the collector voltage of the output amplifiers to approximately 250 V maximum. The transistor was mounted between the two ventilation holes on the Input Vertical Amplifier chassis.

Parts Removed:

$$
\begin{array}{ll}
\text { 441-0473-00 Chassis, VA } \\
179-0770-00 & \text { Cable harness, Lower VA }
\end{array}
$$

Parts Added:

	441-0473-01	Chassis, VA
	$179-0770-01$	Cable harness, Lower VA
	$386-0143-00$	Plate, mica insulator
R1109	$305-0243-00$	Resistor, comp, 24k 2W 5%
D1109	$152-0228-00$	Diode, zener, 105V $1 \mathrm{~W} 10 \%$
Q1109	$151-0149-00$	Transistor, 2N3441, silicon NPN

INSTALLATION
Parts Required: 040-0405-00 Field Modification Kit

MI - 040-0405-00
Types 544/RM, 546/RM and 547/RM

VERTICAL OUTPUT AMPLIFIER PROTECTION

For the following Tektronix Oscilloscopes:
Type 544 Serial Numbers 100- 369
Type RM544 Serial Numbers 100-199
Type 546 Serial Numbers 100-449
Type RM546Serial Numbers 100- 169
Type 547 Serial Numbers 100-2339
Type RM547 Serial Numbers 100-259

Modification Kit, PN 040-0405-00, adds a protective circuit to protect the Vertical Amplifier output transistors, Q1114 and Q1134, from excessive collector voltage caused primarily by grid-to-cathode shorts in the +225 V type 6080 series regulator tube, V707.

The protective circuit consists of a transistor (Q1109) in series with the output amplifier collector supply. The base of the transistor is returned to +100 V through a 105 V zener diode (D1109). The fixed base voltage of the series transistor limits the output transistor collector voltage to approximately 205 V in the event that the +225 V supply goes out of regulation.

The transistor and associated components are all mounted on a small subchassis which is mounted near the rear of the input Vertical Amplifier chassis, using an existing Vertical Amplifier chassis mounting hole.

PARTS REQUIRED

Quantity Tektronix Part Number
1 ea 040-0405-00

> Description
> Modification Kit

INSTALLATION

Installation instructions are included in the Modification Kit.
\#\# Indicates change since last publication.
(C) 1965, Tektronix, Inc. All Rights Reserved.

Supersedes: August ,1967
Page 1

CIRCUIT DESCRIPTION

Q1109 is normally saturated, allowing the circuit to function normally. If the +225 V supply output voltage rises due to a shorted 6080, the transistor is no longer saturated. Base current requirements are reduced and the base voltage rises until the zener catches it, thus limiting the collector voltage to approximately 205 V .

ELECTRICAL PARTS LIST

Ckt.No.	Part Number	Description			
			ODES		
D1109	152-0305-00	Zener	105 V	IW	$\pm 5 \%$
		RESISTORS			
R1109	305-0243-00	Comp	24 k	2 W	5\%
		TRANSISTORS			
Q1109	151-0149-00	Silicon			NPN

MECHANICAL PARTS LIST

$407-0219-00$	Bracket
$356-0136-00$	Bushing, Teflon
$131-0183-00$	Connector, terminal feed-through
$210-0006-00$	Lockwasher, int \#6
$210-0007-00$	Lockwasher, ext \#8
$210-0202-00$	Lug, solder, SE-6 w $/ 2$ holes
$210-0407-00$	Nut, $6-32 \times 1 / 4$
$386-0143-00$	Plate, mica insulator
$211-0510-00$	Screw, $6-32 \times 3 / 8$ PHS, Phillips
$212-0023-00$	Screw, 8-32 $\times 3 / 8$ PHS, Phillips
$361-0007-00$	Spacer, nylon molded, 0.063
$124-0092-00$	Strip, ceramic, $7 / 16 \times 3-$ notch (large
$210-0935-00$	Washer, shoulder, fiber
$210-0802-00$	Washer, steel, $6 S \times 5 / 16 \times 0.028$

PARTS INCLUDED IN MODIFICATION KIT:

Quantity	Part Number	Description
(1 ea)		Assembly, consisting of:
2 ea	124-0092-00	Strip, ceramic, $7 / 16 \times 3$-notch (large)
1 ea	131-0183-00	Connector, terminal feed-through
1 ea	151-0149-00	Transistor, silicon, 2N3441
1 ea	152-0305-00	Diode, zener, 105 V IW $\pm 5 \%$
1 ea	210-0006-00	Lockwasher, int \#6
1 ea	210-0202-00	Lug, solder, SE-6 w/2 holes
2 ea	210-0407-00	Nut, 6-32 $\times 1 / 4$
2 ea	210-0802-00	Washer, steel, $6 \mathrm{~S} \times 5 / 16 \times 0.028$
2 ea	210-0935-00	Washer, shoulder, fiber
2 ea	211-0510-00	Screw, 6-32 3 3/8 PHS, Phillips
1 ea	305-0243-00	Resistor, comp, 24 k 2W 5\%
1 ea	358-0136-00	Bushing, Teflon*
2 ea	361-0007-00	Spacer, nylon molded, 0.063
1 ea	386-0143-00	Plate, mica insulator
1 ea	407-0219-00	Bracket, angle
1 ea		Wire, "22 solid, 175-0522-00, w-o-gn-bn, 4"
1 ea		Wire, " 22 solid, 175-0522-00, w-bn-bk-bn, 4"
1 ea	210-0007-00	Lockwasher, ext \#8
1 ea	212-0023-00	Screw, 8 -32 $\times 3 / 8$ PHS, Phillips
1 ea	214-0210-00	Spool, w/3 ft. silver-bearing solder
1 ea	(1-910D)	Tag, MODIFIED INSTRUMENT, gummed back

[^1]

Page 4 of 5
040-0405-00

INSTRUCTIONS

IMPORTANT: When soldering to the ceramic strips, use the silver-bearing solder supplied with this kit.
() 1. Remove the left side panel and bottom plate.
REFER TO DRAWING WHILE PERFORMING STEPS 2 THROUGH 7.
() 2. Remove the rear Power Supply chassis mounting screw on the vertical bulkhead, just to the rear of R1118.
() 3. Install the assembly (from kit) over the hole vacated in step 2, using the 8-32 screw and lockwasher from the kit. Align the bracket as shown.
() 4. Relocate the white-green wire from the top terminal of R1118 to the connector terminal on the assembly.
() 5. Solder the ${ }^{\#} 22$ white-orange-green-brown wire, from assembly, to CSA -30 .
() 6. Solder the \#22 white-brown-black-brown wire, from assembly, to CSA -31.
() 7. Solder the bare wire, from solder lug on assembly, to the top terminal of R1118.

THIS COMPLETES THE INSTALLATION.

() Check wiring for accuracy.
() Check Vertical Amplifier Gain and High Frequency Compensations, as given in your Manual Calibration Procedure.
() Replace the side panel and bottom plate.
() Fasten the insert pages in your Instruction Manual.
() Moisten the back of the MODIFIED INSTRUMENT tag (from kit) and place it on the Vertical Amplifier schematic in your Instruction Manual.

DW:Is

INSTRUCTION MANUAL

MODIFICATION INSERT

VERTICAL OUTPUT AMPLIFIER PROTECTION

$$
\begin{array}{ll}
\text { TYPES } 544 \text { SN 100- } 369 & \text { RM544 SN 100-119 } \\
\text { TYPES 546 SN 100-449 } & \text { RM546 SN 100-169 } \\
\text { TYPES 547 SN 100-2339 } & \text { RM547 SN 100-259 }
\end{array}
$$

Installed in Type \qquad SN \qquad Date \qquad

This insert has been written to supplement the Instruction Manual for these instruments. The information given in this insert will supersede that given in the manual.

This Insert Material Copyright (C) 1965, by Tektronix, Inc., Beaverton, Oregon. Printed in the United States of America. All rights reserved. Contents of this insert may not be reproduced in any form without the permission of the copyright owner.

GENERAL INFORMATION

This instrument has been modified with Modification Kit, PN 040-0405-00, which added a protective circuit to protect the Vertical Amplifier output transistors, Q1114 and Q1134, from excessive collector voltage caused primarily by grid-to-cathode shorts in the +225 V type 6080 series regulator tube, V707.

The protective circuit consists of a transistor (Q1109) in series with the output amplifier collector supply. The base of the transistor is returned to +100 V through a 105 V zener diode (D1109). The fixed base voltage of the series transistor limits the output transistor collector voltage to approximately 205 V in the event that the +225 V supply goes out of regulation.

The transistor and associated components are all mounted on a small subchassis which is mounted near the rear of the input Vertical Amplifier chassis, using an existing Vertical Amplifier chassis mounting hole.

CIRCUIT DESCRIPTION

Q1109 is normally saturated, allowing the circuit to function normally. If the +225 V supply output voltage rises due to a shorted 6080, the transistor is no longer saturated. Base current requirements are reduced and the base voltage rises until the zener catches it, thus limiting the collector voltage to approximately 205 V .

ELECTRICAL PARTS LIST
Ckt.No.
Part Number
Description
DIODES
D1109 152-0305-00
Zener 105 V IW $\pm 5 \%$
RESISTORS
R1109 305-0243-00 Comp 24k 2W 5\%
TRANSISTORS
Q1109
151-0149-00
Silicon
2N3441
NPN

MECHANICAL PARTS LIST
407-0219-00
356-0136-00
131-0183-00
210-0006-00
210-0007-00
210-0202-00
210-0407-00
386-0143-00
211-0510-00
212-0023-00
361-0007-00
124-0092-00
210-0935-00
210-0802-00

Bracket

Bushing, Teflon
Connector, terminal feed-through
Lockwasher, int \#6
Lockwasher, ext \#8
Lug, solder, SE-6 w/2 holes
Nut, $6-32 \times 1 / 4$
Plate, mica insulator
Screw, 6-32 $\times 3 / 8$ PHS, Phillips
Screw, $8-32 \times 3 / 8$ PHS, Phillips
Spacer, nylon molded, 0.063
Strip, ceramic, $7 / 16 \times 3$-notch (large
Washer, shoulder, fiber
Washer, steel, $6 S \times 5, / 16 \times 0.028$

VERTICAL AMPLIFIER CAPACITOR VALUE INCREASED

 TO ELIMINATE OSCILLATION WITH SOME 12AT7'sEffective Prod SN 3380
Usable in SN 1272-3379 (Type 547) 180-3379 (Type RM547)
modified out of sequence: 3173
Trace widening occurred from Vertical Amplifier oscillations which were being caused by certain batches of "hot" 12AT7's used for the input cathode follower V1003.

C1019 in the emitter circuit of Q1014-Q1024 was changed from 6.8 pF to 12 pF to eliminate the oscillation.

Also see M9141 for standard instruments below SN 1272 and rackmount instruments below SN 180.

Parts Removed:
C1019 281-0572-00 Capacitor, cer, 6.8pF 500V
Parts Added:
C1019 281-0505-00 Capacitor, cer, 12pF 500V
INSTALLATION
Parts Required: See 'Parts Added.'
Replace C1019, a 6.8 pF 500 V capacitor, with a 12 pF 500 V capacitor. C1019 is located between the terminals of R1019 (1.5 k 5 W resistor) on the lower VA chassis between Q1014 and Q1024.
© 1966, Tektronix, Inc.
All Rights Reserved.
VERTICAL AMPLIFIER CAPACITORS REPLACED BY HIGHER VOLTAGE TYPE TO PREVENT FAILURE
Effective Prod SN $4270 \quad$ Usable in SN 100-4269
Catastrophic failure of Vertical Amplifier output components, caused by inadequate voltage rating of C1069, C1071, C1113, and C1132, resulted in an inoperative Vertical accompanied by smoke from the VA Output circuit board.
Capacitors C1035, C1038, C1048, C1069, C1071, C1087, C1113, and C1132, 200V ceramic, were replaced with 500 V ceramic capacitors of similar physical size. C1035, C1038, C1048, and C1087 were replaced for conformity only.
Parts Removed:
C1035
C1038
C1048
C1069
C1071
283-0067-00
Capacitor, cer, 0.001 FF 200V
C1087
C1113
C1132
Parts Added:
C1035
C1038
C1048
C1087
*C1071
283-0078-00 Capacitor, cer, 0.001 $\mu \mathrm{F} 500 \mathrm{~V}$
*C106
*C1113
*C1132

INSTALLATION

Parts Required: See 'Parts Added' with asterisk.
Replace $0.001 \mu \mathrm{~F} 200 \mathrm{~V}$ ceramic capacitors C1069, C1071, C1113, and C1132 with $0.001 \mu \mathrm{~F} 500 \mathrm{~V}$ ceramic capacitors.

[^2]
VERTICAL AMPLIFIER GAIN POTENTIOMETER RANGE INCREASED

Effective Prod SN 4750

The range of Vert Gain potentiometer R1017 was insufficient when the CRT was at the high end of the sensitivity scale. With the potentiometer properly set, less than 10% (the minimum acceptable amount) of range was left at one end of the potentiometer when the potentiometer was at -20% end of tolerance.

R1017 was changed to a 200Ω potentiometer and C 1027 to a variable $5.5-18 \mathrm{pF}$ capacitor.

Parts Removed:

C1027	281-0558-00	Capacitor, cer, 15pF 500V NPOA
R1017	$311-0258-00$	Potentiometer, comp, $100 \Omega 1 / 5 \mathrm{~W}$ miniature

Parts Added:

C1027	281-0061-00	Capacitor, var, cer, 5.5-18pF NPO
R1017	$311-0097-00$	Potentiometer, comp, 2008 0.5 W miniature

VERTICAL AMPLIFIER OUTPUT TRANSISTORS CHANGED TO REDUCE FAILURES

Effective Prod SN 5680

Usable in SN 100-5679
Vertically unstable trace. When the trace is driven hard off the screen in either vertical directions, some of the matched pair sets of output transistors can be driven into their breakdown region. The minimum breakdown voltages specified for these transistors are too low for the circuit.

The matched pair transistors 153-0524-00 were replaced by new matched pair transistors 153-0548-00. The new transistors are checked for $V_{c b o}=120 \mathrm{~V}$ minimum instead of 80 V and $\mathrm{V}_{\text {ceo }}=80 \mathrm{~V}$ minimum instead of 60 V . They also are pulse matched for hrb.

Parts Removed:
Q1114 153-0524-00 Transistor, checked pair of 151-0121-00
Q1134
Parts Added:
$\begin{array}{ll}\text { Q1114 } \\ \text { Q1134 153-0548-00 } & \text { Transistor, matched pair of 151-0124-00 }\end{array}$
INSTALLATION
Parts Required: See 'Parts Added.'
Replace Q1114 and Q1134 with the 153-0548-00 matched pair transistors.
© 1966, Tektronix, Inc.
All Rights Reserved.

VERTICAL AMPLIFIER INPUT TUBE AND DC BALANCE POTENTIOMETER REPLACED TO IMPROVE VERTICAL AMPLIFIER BALANCE

Effective Prod SN 6730 Usable in SN 100-6729
POSITION control of the Vertical plug-in does not have enough range to move the trace off screen. Problem is particularly acute when a Type iAl is used.

The two sections of 12AT7's used as V1003 have a difference of bias which exceeds the range of adjustments of the DC Balance control R1004.

The raw 12AT7 tubes used at V1003 were replaced by 12AT7's that have been aged 75 hours and the value of the DC Balance control was increased from 2.5 k to 3 k .

Parts Removed:

R1004	$311-0086-00$	Potentiometer, $2.5 \mathrm{k} \pm 20 \% 0.5 \mathrm{~W}$
V1003	$154-0039-00$	Tube, vacuum 12AT7

Parts Added:

R1004	$311-0629-00$	Potentiometer, comp, $3 \mathrm{k} \pm 10 \% 0.5 \mathrm{~W}$
V1003	$157-0118-00$	Tube, checked $(154-0039-0012$ AT7 $)$ aged 75 hours

INSTALLATION
Parts Required: See 'Parts Added.'
a) Replace R1004 with a 3 k potentiometer.
b) If replacement of V 1003 is required, replace it with a 157-0118-00 tube.

VERTICAL AMPLIFIER COMPONENTS CHANGED TO IMPROVE $1-15 \mathrm{kHz}$ FREQUENCY RESPONSE
Effective Prod SN 10730
When triggered on low frequency squarewaves, the display will not appear flat, but will be trapezoidal because of insufficient compensation in the vertical amplifier.

The following changes were made.

1) An adjustable $R C$ time constant was added.
2) RC time constant R1077/C1077 was made variable.
3) R1126 value was changed.
4) C1076 was changed physically (made smaller) but not changed electrically. See schematic on following page.

To accommodate the changes, the etched circuit board was changed. The new etched circuit board assembly is a direct replacement for the old.

Refer to the manual for the new calibration procedure.
Parts Removed:

> 670-0401-00 Vertical Output Board assembly

Parts Added:
670-0401-01 Vertical Output Board assembly
New board assembly is the same as the old except for the following:
Parts Removed:
C1076 281-0075-00 Capacitor, var, cer, 5-25pF
C1077
281-0549-00
R1077 315-0163-00
Capacitor, cer, 68pF
R1126 321-0204-00
Resistor, comp, 16k 1/4W 5\%
388-0553-00
Resistor, prec, $1.3 \mathrm{k} 1 / 8 \mathrm{~W} 1 \%$
Circuit board, Vertical Output
1966, Tektronix, Inc.

Parts Added:

C1076
C1077
C1091
R1091
R1077
R1126

281-0123-00
281-0540-00
281-0605-00
311-0613-00
311-0614-00
321-0201-00 388-0553-01

Capacitor, var, cer, 5-25pF Capacitor, cer, 51pF Capacitor, cer, 200pF Potentiometer, var, 100k 0.5W Potentiometer, var, 30k 0.5W Resistor, prec, 1.21k 1/8W 1\% Circuit board, Vertical Output

VERTICAL AMPLIFIER DIODES ADDED TO PROTECT +100V SUPPLY

Effective Prod SN 11270 Usable in SN 2340-11269

Failures in Q1109 due to contaminated silicon grease, improper seating or mounting of insulating washers, or burrs on the mounting holes can cause catastrophic failures of the +100 V supply and possibly in the 225 V supply.

A diode was added in series with D1109, (cathode to cathode). This diode disconnects if Q1109 shorts to ground. R1118 will burn out but other circuitry will be protected.

Parts Added:

D1114
152-0107-00
Diode, silicon 400V PIV

INSTALLATION:

1. Move cathode of D1109 from CSA-27 to CSA-28.
2. Add a bare wire between CSA-26 and CSA-27.
3. Add D114, 152-0107-00 diode between CSA-26 and CSA-28, (cathode to CSA-28).

RESISTOR CHANGED TO INSURE OPERATION OF VERTICAL POSITION NEON
Effective Prod SN 11890
Vertical indication neons fail to ignite with rotation of VERTICAL POSITIONING control.

Tolerance build up could prevent the neons from reaching firing voltage. R1187 was changed to increase the 1184 plate current, insuring 90 V for worst case neons.

Parts Removed:
R1187 301-0334-00 Resistor, fixed composite, 1/2W 330k

Parts Added:

R1187 323-0431-00 Resistor, precision, 1.2W MF 301k

'B' TRIGGER DC STABILITY IMPROVED

DC triggering was unstable at low levels due to noise getting into the Int Trig DC Levei dividers, R6 and R7. Increasing the size of the decoupling capacitor C 8 filtered out the noise and stabilized the DC triggering.

Parts Removed:
C8 283-0002-00 Capacitor, 0.01 F 500V
Parts Added:
C8 283-0057-00 Capacitor, 0.1 1 F 200V
INSTALLATION
Parts Required: See 'Parts Added.'
Replace C8, an $0.01 \mu \mathrm{~F} 500 \mathrm{~V}$ discap capacitor, with an $0.1 \mu \mathrm{~F} 200 \mathrm{~V}$ discap capacitor. C 8 is located between the first notch and a solder lug on the bottom row of ceramic strips on the 'B' Sweep chassis, just to the rear of the 'B' Int Trig DC Level potentiometer.
'B' SWEEP TRIGGER AND DELAY PICKOFF DECOUPLING CAPACITORS INTERCHANGED TO CORRECT VOLTAGE RATINGS

Effective Prod SN 1360
220-RM
C18 and C424 are physically interchanged to put the 200V capacitor (283-0067-00) at C18 and the 500 V capacitor (283-0000-00) at C424. Their values are the same ($0.001 \mu \mathrm{~F})$. The change is to conform to the Instruction Manual.

SWEEP TRIGGER INPUT TRANSFORMER INSULATION CHANGED TO PREVENT SHORT
Effective Prod SN 1770
Usable in SN 100-1769
240-RM
100-239
Inoperative sweep occurs because the wire insulation in transformers T52 and T252 is damaged as the wire abruptly bends over the sharp edge of the ferrite core. As a result the primary and secondary can short applying 100 V to the primary. This can damage many diodes and transistors.

The insulation on the primary (green) leads of transformers T52 and T252 was changed to TEFLON ${ }^{\circledR}$.

Parts Removed:
T52
T252
120-0323-00 Transformer, toroid
Parts Added:
$\begin{array}{lll}\text { T52 } & \text { 120-0323-01 } & \text { Transformer, toroid } w / T E F L O N \text { insulated }\end{array}$ primary leads

INSTALLATION
Parts Required: See 'Parts Added.'
a) Replace $T 52$ on the 'B' Sweep chassis between CSB-12/14 and CSC $-1 / 3$ with the TEFLON insulated transformer. Install the green leads in CSB-12/14 and the red leads in CSC-1/3. Refer to Fig. 1.
b) Replace T252 on the 'A' Sweep chassis between CSE-9/10 and CSF-8/10 with the TEFLON insulated transformer. Install the green leads in CSE-9/10 and the read leads in CSF-8/10. Refer to Fig. 2.

TEFLON, Reg. TM of E. I. du Pont de Nemours \& Co., Inc.
© 1966, Tektronix, Inc.
All Rights Reserved.

Fig. 1
Fig. 2

TRIGGER CIRCUITS REWIRED TO IMPROVE STABILITY

Effective Prod SN 6740
Usable in SN 100-6739

Single-ended Trigger circuits previously used were sensitive to noise causing premature triggering in single-sweep mode of operation.

Trigger circuits were changed to a push-pull configuration. The push-pull circuit tends to cancel common mode noise originating at the input of fluctuations occurring in the +100 V power supply. The quiescent current of the Trigger tunnel diode was lowered so that it requires almost twice as much signal current to switch it to its high state. This has the advantage of doubling the amount of noise signal required to cause premature triggering. See Before-After schematics.

Parts Removed:

L25?	108-0]47-00	Coil, fixed $2.2 \mu \mathrm{H}$
T252	120-0323-01	Transformer, toroid $2 \mathrm{~T}-8 \mathrm{~T}$ biflar
L244	276-0507-00	Core, ferramic suppressor
C2.41	281-0523-00	Capacitor, cer. $100 \mathrm{pF} 350 \mathrm{~V} \pm 20 \mathrm{pF}$
C243	281-0525-00	Capacitor, cer. $470 \mathrm{pF} 500 \mathrm{~V} \pm 94 \mathrm{pr}$
C2.56	281-0576-00	Capacitor, cer. $11 \mathrm{pFF} 500 \mathrm{~V}+5 \%$
C276	290-0187-00	Capacitor, EMT $4.7 \mu \mathrm{~F} 35 \mathrm{~V} \pm 20 \%$
R275	301-0513-00	Resistor, comp. 1/2 W $51 \mathrm{k} 5 \%$
R279	302-0152-00	Resistor, comp. 1/2 W $1.5 \mathrm{k} 10 \%$
R 276	302-0471-00	Resistor, comp. $1 / 2 \mathrm{~W} 470 \Omega 10 \%$
R245	311-0308-20	Pot, comp. $50 \Omega \pm 10 \% 2 \mathrm{~W}$
R243	316-0100-00	Resistor, comp, $1 / 4 \mathrm{~W} 10 \Omega 10 \%$
R281	316-0101-00	Resistor, comp. 1/4 W $100 \Omega 10 \%$
$\begin{aligned} & \mathrm{R} 221, \mathrm{R} 223, \\ & \mathrm{R} 24 \mathrm{j} \end{aligned}$	336-0221-00	Resistor, comp. 1/4 W $220 \Omega 10 \%$
R244	323-0001-00	Resistor, prec. 1/2W $10 \Omega 1 \%$
R282	323-0333-00	Resistor, prec. $1 / 2 \mathrm{~W} 28.7 \mathrm{k} 1 \%$
R247, K248	324-0306-00	Resistor, prec. lw $15 \mathrm{k} 1 \%$
R236	324-0335-00	Resistor, pree. $1 \mathrm{~W} 30.1 \mathrm{k} 1 \%$
R256	301-013:-00	Resistor, comp. 1/2 W 130 E \%\%
L. 52	108-0147-00	Coil, dixed $2.2 \mu \mathrm{H}$
T52.	120-0323-01	Transformer, toroid 2T-8T bifilar
L44	276-0507-00	Core, ferramic suppressor

continued

Parts Removed (continued):

C41	281-0523-00	Capacitor, cer, 100pF 350V $\pm 20 \mathrm{pF}$
C43	281-0525-00	Capacitor, cer, 470pF 500V $\pm 94 \mathrm{pF}$
C56	281-0576-00	Capacitor, cer, 11pF 500V $\pm 5 \%$
C76	290-0187-00	Capacitor, EMT, 4.7 $\mu \mathrm{F} 35 \mathrm{~V} \pm 20 \%$
R75	301-0513-00	Resistor, comp, 51k 1/2W 5\%
R79	302-0152-00	Resistor, comp, 1.5k 1/2W 10\%
R57	302-0224-00	Resistor, comp, 220k 1/2W 10\%
R76	302-0471-00	Resistor, comp, $470 \Omega 1 / 2 \mathrm{~W} 10 \%$
R43	316-0100-00	Resistor, comp, $10 \Omega 1 / 4 \mathrm{~W} 10 \%$
R81	316-0101-00	Resistor, comp, $100 \Omega 1 / 4 \mathrm{~W} 10 \%$
R21		
R23	316-0221-00	Resistor, comp, $220 \Omega 1 / 4 \mathrm{~W} 10 \%$
R41		
R44	322-0001-00	Resistor, prec, $10 \Omega 1 / 4 \mathrm{~W} \pm 1 \%$
R82	323-0333-00	Resistor, prec, $28.7 \mathrm{k} 1 / 2 \mathrm{~W} \pm 1 \%$
$\begin{aligned} & \text { R47 } \\ & \text { R48 } \end{aligned}$	324-0306-00	Resistor, prec, $15 \mathrm{k} \quad 1 \mathrm{~W} \pm 1 \%$
$\begin{aligned} & \text { R36 } \\ & \text { R45 } \end{aligned}$	324-0335-00	Resistor, prec, $30.1 \mathrm{k} \quad 1 \mathrm{~W} \pm 1 \%$ Potentiometer, WW, 50Ω Cable, 'B' sweep
	311-0324-00	
	179-0763-00	
Q34		
Q234	151-0188-00	Transistor, 2N3906 Si PNP T092
Q244		

Parts Added:

L250	108-0146-00	Coil, fixed $5 \mu \mathrm{H}$
L285	108-0.410-00	Coil, dixed $1 \mu \mathrm{H}$
T252	120-0500-60	Transformer, toroid 2T-12T bifilar
D221, D222	152-0075-00	Diode, 6075 germanium
C244, C245	281-0578-00	Capacitor, cer. $18 \mathrm{pF} 500 \mathrm{~V} \pm 5 \%$
C276	290-0175-(0)	Capacitor, EMT $10 \mu \mathrm{~F} 35 \mathrm{~V} \pm 20 \%$
R276	301-0221-60	Resistor, comp. 1/2 W $220 \Omega 5 \%$
R279	302-0561-00	Resistor, comp. 1/2 W $560 \Omega 10 \%$
R275	303-02.43-60	Resistor, comp. 1 W $24 \mathrm{k} 5 \%$
R233	308-0301-60	Resistor, ww $3 \mathrm{~W} 10 \mathrm{k} \pm 1 \%$
R2\%	308-0310-C0	Resistor, ww $5 \mathrm{~W} 12 \mathrm{k} \pm 1 \%$
R 236	308-0320-C0	Resistor, ww $3 \mathrm{~W} 15.6 \mathrm{k} \pm 1 \%$
R281	315-0181-60	Resistor, comp. 1/4 W $180 \Omega 5 \%$
$\begin{aligned} & \mathrm{R} 221, \mathrm{R} 223, \\ & \mathrm{R} 232, \mathrm{R} 2+2 \end{aligned}$	315-0471-00	Resistor, comp. 1/4W $470 \Omega 5 \%$
R252	315-0560-0	Resistor, comp. 1/4W $56 \Omega 5 \%$
R282	323-0636-60	Resistor, prec. $1 / 2 \mathrm{~W} 50 \mathrm{k} \pm 1 \%$
R243	311-0076-00	Pot, comp. $10 \mathrm{k} \pm 10 \% 2 \mathrm{~W}$
R256	301-0304-60	Resistor, comp. J/2 W 300k 5.\%

Parts Added (continued):

150	108-0146-(0)	Coil, fixed $5 \mu \mathrm{H}$
L. 85	108-0410-00	Coil, fixed $1 \mu \mathrm{H}$
T52	120-0500-C0	Transformer, tord 2 T -12 T hithar
D21, D22	152-0975-00	Diode, 6075 germanjum
C44, C.45	281-0.578-C0	Capacitor, cer. $18 \mathrm{p}!500 \mathrm{~V} \pm 5 \%$
C76	290-0175-60	Capacitor, EMT $10 \mu \mathrm{~F}: 35 \mathrm{~V} \pm 20$ \%
R70́	301-0221-C0	Resistor, comp. 1/2W $220 \Omega 5$
R57	302-010.1-60	Resistor, comp. 1/2 W 100 k 10
R79	302-0.561-00	Resistor, comp. 1/2 W $560 \Omega 10$,
R75	303-0243-00	Resistor, comp. 1W $2.4 \mathrm{k} 5 \%$
R33	308-0301-00	Resistor, ww $3 \mathrm{~W} 10 \mathrm{k} \pm 1 \%$
R46	308-0310-60	Resistor, ww $5 \mathrm{~W} 12 \mathrm{k} \pm 1 \%$
R36	308-0320-00	Resistor, ww $3 \mathrm{~W} 15.6 \mathrm{k} \pm 1 \%$
R81	315-6181-00	Resistor, comp. 1/4W $180 \Omega 5 \%$
R21, R23,	315-0471-00	Resistor, comp. 1/4W $470 \Omega 5 \%$
R52	315-0560-60	Resistor, comp. 1/4 W $56 \Omega 5 \%$
R82	323-0636-00	Resistor, prec. $1 / 2 \mathrm{~W} 50 \mathrm{k} \pm 1 \%$
R45	311-0405-00	Pot, ww $10 \mathrm{k} \pm 5 \%$
	179-0763-01	Cable, "B" sweep
Q34, Q234,	151-0199-00	Transistor, Si PNP T092 MPS -3640
C1165, C1175	281-0512-00	Capacitor, cer. $27 \mathrm{pF} 500 \mathrm{~V} \pm 27 \mathrm{pF}$

INSTALLATION INSTRUCTIONS:
Parts Required: 040-0459-00 Modification Kit

Microfiche scan by vintageTEK - Your donations help support the museum - vintagetek.org

A SWEEP TRIGGER

Microfiche scan by vintageTEK - Your donAffdnERelp support the museum - vintagetek.org

B SWEEP TRIGGER

Microfiche scan by vintageTEK - Your don\&tiont kelp support the museum - vintagetek.org

'A' AND 'B' TRIGGERING STABILITY IMPROVEMENT

For the following Tektronix Oscilloscopes:
Types 546 Serial Numbers 100-962
RM546 Serial Numbers 100-499
547 Serial Numbers 100-6739
RM547 Serial Numbers 100-6739

Modification Kit, PN 040-0459-00, changes the ' A ' and ' B ' Trigger circuits from a single-ended to a push-pull configuration. The previously used single-ended Trigger circuit configuration was sensitive to noise, causing premature triggering when in the single sweep mode of operation.

The push-pull circuit attentuates the common mode noise originating at the input or originating from fluctuations occurring in the +100 V power supply.

The quiescent current of the Trigger circuit tunnel diode was lowered so that it requires almost twice the amount of signal current to switch it to its high state. This has the advantage of doubling the amount of noise signal required to cause premature triggering.

It is recommended that aged 6DJ8 tubes, PN 157-0122-00, be installed in conjunction with this modification if it is necessary to replace V24 or V224 in the Trigger circuit.

The checked 6DJ8 tubes are not provided in this Modification Kit.
The installation of this modification entails extensive rewiring of both Trigger circuits and the addition of two components to the trigger pick-off circuit in the Vertical Amplifier.

PARTS REQUIRED

Quantity Tektronix Part Number
1 ea 040-0459-00

Description
Modification Kit

INSTALLATION

Installation instructions are included in the Modification Kit.

11-11-68
Supersedes: June 1968
Page 1

PARTS INCLUDED IN MODIFICATION KIT:
Quantity
Part Number

2 ea	$108-0146-00$
2 ea	$108-0410-00$
2 ea	$120-0500-00$
4 ea	$151-0199-00$
4 ea	$152-0075-00$
1 ea	$214-0210-00$
2 ea	$281-0512-00$
4 ea	$281-0578-00$
2 ea	$290-0175-00$
2 ea	$301-0221-00$
1 ea	$301-0304-00$
1 ea	$302-0104-00$
2 ea	$302-0561-00$
2 ea	$303-0243-00$
2 ea	$308-0301-00$
2 ea	$308-0310-00$
2 ea	$308-0320-00$
1 ea	$311-007600$
1 ea	$311-0405-00$
2 ea	$315-0181-00$
8 ea	$315-0471-00$
2 ea	$315-0560-00$
2 ea	$316-0101-00$
2 ea	$323-0636-00$
4 ea	$176-0139-00$
1 ea	$176-0140-00$
2 ea	
6 ea	

Coil, fixed, $5 \mu \mathrm{H}$
Coil, fixed, $1 \mu \mathrm{H}$
Transformer, toroid, 2T-12T bifilar
Transistor, Si, PNP, MPS-3640
Diode, germanium, 6075
Spool, w/3 ft. silver-bearing solder
Capacitor, cer, $\quad 27 \mathrm{pF} \quad 500 \mathrm{~V}$
$\begin{array}{llll}\text { Capacitor, cer, } & 18 \mathrm{pF} & 500 \mathrm{~V} & \\ \text { Capacitor, EMT, } & 10 \mu \mathrm{~F} & 35 \mathrm{~V} & 20 \%\end{array}$
$\begin{array}{lrrr}\text { Capacitor, EMT, } & 10 \mu \mathrm{~F} & 35 \mathrm{~V} & 20 \% \\ \text { Resistor, comp, } & 220 \Omega & 1 / 2 \mathrm{~W} & 5 \%\end{array}$
Resistor, comp, $\quad 300 \mathrm{k} \quad 1 / 2 \mathrm{~W} \quad 5 \%$
Resistor, comp, $\quad 100 \mathrm{k} \quad 1 / 2 \mathrm{~W} \quad 10 \%$
Resistor, comp, $\quad 560 \Omega \quad 1 / 2 \mathrm{~W} \quad 10 \%$
Resistor, comp, $\quad 24 \mathrm{k}$ lW 5\%
Resistor, WW, 10k $\quad 3 \mathrm{~W} \quad 1 \%$

Resistor, WW,	12 k	5 W

Resistor, WW,	15.6 k	3 W
P	1%	
10 k	2 W	10%

Potentiometer, comp, $10 \mathrm{k} \quad 2 \mathrm{~W} \quad 10 \%$
Po

Resistor, comp,	180Ω	$1 / 4 \mathrm{~W}$	5%
Resistor, comp,	470Ω	$1 / 4 \mathrm{~W}$	5%
Resistor, comp,	56Ω	$1 / 4 \mathrm{~W}$	5%
Resistor, comp,	100Ω	$1 / 4 \mathrm{~W}$	10%
Resistor, prec,	50 k	$\mathrm{l} / 2 \mathrm{~W}$	1%

Wire, \# 22 solid, 176-0122-00, bare, 12 in .

FIG. 1
A SWEEP TRIGGER
Top components before mod

040-0459-00

INSTRUCTIONS (cont)

IMPORTANT: When soldering to the ceramic strips, use the silver-bearing solder supplied with this kit.
() Remove all dust covers from the instrument.
A. TIME BASE 'A' TRIGGER CIRCUIT ONLY

Refer to Figs. 1 and 2 for steps 1 through 46.
() 1. Remove R247, a $15 \mathrm{k} 1 \mathrm{~W} 1 \%$ resistor, located between CSA -7 and CSD-7.
() 2. Remove R248, a $15 \mathrm{k} 1 \mathrm{~W} 1 \%$ resistor, located between CSA-9 and CSD-9.
() 3. Remove the " 22 bare wire between CSA -10 and the center terminal of ' A ' Trigger Sens potentiometer R245.
() 4. Remove the \#22 bare wire between CSA-10 and CSD-9.
() 5. Remove the ${ }^{*} 22$ bare wire between CSA -6 and CSD-7.
() 6. Remove R244, a $10 \Omega 1 / 2 \mathrm{~W} 1 \%$ resistor, located between CSA -11 and CSD-11.
() 7. Remove the *22 bare wire between CSA-11 and the rear terminal of 'A' Trigger Sens potentiometer R245.
() 8. Remove the ${ }^{\#} 22$ bare wire between CSA -7 and CSA -11 .
() 9. Remove the ${ }^{\text {\# } 22 ~ b a r e ~ w i r e ~ b e t w e e n ~ C S A ~}-6$ and CSA-9.
() 10. Remove R256, a $130 \mathrm{k} \mathrm{1/2W5} \mathrm{\%} \mathrm{resistor} ,\mathrm{located} \mathrm{between} \mathrm{CSA-12} \mathrm{and} \mathrm{CSD-12}$.
() 11. Remove C243, a 470 pF 500 V capacitor, located between CSD-11 and CSD-13.
() 12. Remove R282, a 28.7 k 1/2W 1\% resistor, located between CSA-15 and CSD-15.
() 13. Remove R236, a 30.1 k 1 W 1\% resistor, located between CSD-6 and CSE-6.
() 14. Remove L252, a $2.2 \mu \mathrm{H}$ coil, located between CSD-9 and CSE-9.
() 15. Remove L244 and D245, located between CSD-10 and CSE-10. Discard the ferramic bead L244, but SAVE tunnel diode D245 for later use.
() 16. Remove C256, an 11 pF 500 V capacitor, located between CSE-10 and CSE-11.
() 17. Remove D259, a 6075 diode, located between CSE-11 and CSE-15. SAVE for later use.
() 18. Remove L256, a $1.1 \mu \mathrm{H}$ coil, located between CSD-12 and CSE-11. SAVE for later use.
() 19. Remove the \# 22 bare wire, located between CSD-12 and CSE-12.

TYPICAL SWITCH CONFIGURATION

() 20. Remove R220, a 47Ω (or 100Ω) $1 / 4 \mathrm{~W} 10 \%$ resistor, located between pin 2 of V 224 and contact F-10 of the SLOPE switch. Refer to switch configuration above for the correct switch contact identification.
() 21. Remove R222, a 47Ω (or 100Ω) $1 / 4 \mathrm{~W} 10 \%$ resistor, located between pin 7 of V 224 and contact F-4 of the SLOPE switch. Refer to switch configuration above.
() 22. Remove R221, a $220 \Omega 1 / 4 \mathrm{~W} 10 \%$ resistor, located between CSD -5 and pin 1 of V224.
() 23. Remove R223, a $220 \Omega 1 / 4 \mathrm{~W} 10 \%$ resistor, located between CSD -3 and pin 6 of V224.

STEPS 24 THROUGH 38 APPLY ONLY TO TYPE 547/RM OSCILLOSCOPES.
() 24. Remove the ${ }^{\#} 22$ bare wire between CSD-1 and pin 8 of V224.
() 25. Remove the ${ }^{\#} 22$ bare wire between CSE-3 and pin 5 of V224.
() 26. Remove the ${ }^{\#} 22$ bare wire between CSE-5 and pin 4 of V224.
() 27. Remove the \#22 bare wire between pin 6 of V224 and the base of Q244.
() 28. Remove the ${ }^{\# 22}$ bare wire between pin 1 of V224 and the base of Q234.
() 29. Remove the ${ }^{\# 22}$ bare wire from the ground lug of V 224 tube socket.
() 30. Remove C249, a $0.02 \mu \mathrm{~F}$ discap, located between CSD-8 and the ground lug on V224 tube socket. SAVE for later use.
() 31. Rotate V224 tube socket 180°.
() 32. Resolder the \#22 bare wire from CSD-4 to the solder lug on V224 tube socket.

INSTRUCTIONS (cont)

\oplus Indicates parts from the kit.
() 33. \oplus Install a ${ }^{\#} 22$ bare wire between CSD-1 and pin 3 of V224.
() 34. \oplus Install a ${ }^{\#} 22$ bare wire between pin 6 of V 224 and the base of Q244.
() 35. \oplus Install a ${ }^{\#} 22$ bare wire between pin 1 of V 224 and the base of Q234.
() 36. \oplus Install a ${ }^{\#} 22$ bare wire, insulated by a 1 inch piece of varglas tubing, between pin 5 of V224 and CSE-3.
() 37. \oplus Install a \# 22 bare wire, insulated by a linch piece of varglas tubing, between pin 4 of V224 and CSE-5.
() 38. Install C249, a $0.02 \mu \mathrm{~F}$ discap removed in step 30, between CSD-4 and CSD -8 .
() 39. Remove the \# 22 bare wire located between CSD-8 and the collector of Q234.
() 40. Remove R243, a $10 \Omega 1 / 4 \mathrm{~W} 10 \%$ resistor, located between CSD-11 and the collector of Q234.
() 41. Remove R241 and C241, located between CSE-10 and the collector of Q244.
() 42. Remove the \#22 bare wire located between CSD-10 and CSD-11.
() 43. Remove the \#22 bare wire located between CSD-13 and the ground solder lug.
() 44. Remove the \#22 bare wire located between CSD-13 and CSD-17.
() 45. Remove R281, a $100 \Omega 1 / 4 \mathrm{~W} 10 \%$ resistor, located between CSD-16 and the base of Q284.
() 46. Remove T252, a toroid transformer, located between CSE-9, CSE-10, CSF-8, and CSF-9.

FIG. 3
A SWEEP TRIGGER
Bottom components after mod

FIG. 4
A SWEEP TRIGGER
Top components after mod

Refer to Figs. 3 and 4 for steps 47 through 86.
() 47. \oplus Install a ${ }^{\#} 22$ bare wire between CSD-17 and the adjacent ground solder lug.
() 48. \oplus Install a ${ }^{\#} 22$ bare wire between CSA-10 and the adjacent ground solder lug.
() 49. \oplus Install a ${ }^{\# 22}$ bare wire between CSD-9 and CSD-10.
() 50. \oplus Install a ${ }^{\#} 22$ bare wire between CSD-9 and the collector of Q244.
() 51. \oplus Install R281, a 180Ω 1/4W 5\% resistor, between CSD-16 and the base of Q284.
() 52. \oplus Install L285, a $1 \mu \mathrm{H}$ coil, between CSD-13 and the ground solder lug.
() 53. \oplus Install D221 and D222, two 6075 diodes, between pins 1 and 6 of V224, with the emitter (striped) lead of one in pin 6 and the emitter (striped) lead of the other in pin 1.
() 54. \oplus İnstall a ${ }^{\#} 22$ bare wire between CSE-10 and CSE-11.
() 55. \oplus Install a ${ }^{\# 22}$ bare wire between CSE-11 and the collector of Q234.
() 56. \oplus Install R232, a $470 \Omega 1 / 4 \mathrm{~W} 5 \%$ resistor, between CSE-9 and the collector of Q234.
() 57. \oplus Install R242, a $470 \Omega 1 / 4 \mathrm{~W} 5 \%$ resistor, between CSE-9 and the collector of Q244.
() 58. \oplus Install R223, a $470 \Omega 1 / 4 \mathrm{~W} 5 \%$ resistor, between CSD -3 and pin 6 of V224.
() 59. \oplus Install R221, a $470 \Omega 1 / 4 \mathrm{~W} 5 \%$ resistor, between CSD -5 and pin 1 of V 224.
() 60. \oplus Install R222, a $100 \Omega 1 / 4 \mathrm{~W} 10 \%$ resistor, between pin 7 of V224 and contact F-10 of the SLOPE switch. Refer to switch configuration on page 6.
() 61. \oplus Install R220, a $100 \Omega 1 / 4 \mathrm{~W} 10 \%$ resistor, between pin 2 of V224 and contact F-4 of the SLOPE switch. Refer to switch configuration on page 6.
() 62. \oplus Install T252, a 2 T-12T toroid transformer, between CSE-7, CSE-10, CSF-8, and CSF-9. The green insulated leads should be in CSE-7 and CSE-10.
() 63. \oplus Replace A Trigger Sens potentiometer R245 with a new 10 k potentiometer.
() 64. \oplus Install a ${ }^{\#} 22$ bare wire between the middle and front terminals of R245.
() 65. \oplus Install a ${ }^{\# 22}$ bare wire between the middle terminal of R245 and CSA-9.
() 66. \oplus Install a ${ }^{\# 22}$ bare wire between the rear terminal of R245 and CSA-11.
() 67. \oplus Install a ${ }^{\#} 22$ bare wire between CSD-11 and CSE-11.
() 68. \oplus Install a ${ }^{\#} 22$ bare wire between CSD-8 and CSE-9.
() 69. \oplus Install a ${ }^{\#} 22$ bare wire between CSD-12 and CSE-14.

INSTRUCTIONS (cont)

() 70. \oplus Install R282, a 50 k 1/2W 1% resistor, between CSA-15 and CSD-15.
() 71. \oplus Install R256, a 300 k 1/2W 5\% resistor, between CSA -12 and CSD-12.
() 72. \oplus Install R233, a 10 k 3 W 1\% resistor, between CSA -11 and CSD-11.
() 73. \oplus Install R246, a 12 k 5 W 1\% resistor, between CSA -10 and CSD-10.
() 74. Install L256, a $1.1 \mu \mathrm{H}$ coil removed in step 18, between CSD-12 and CSE-12.
() 75. Install D245, a tunnel diode removed in step 15, between CSD-10 and CSE-10. The emitter (dotted) lead should be in CSD-10.
() 76. \oplus Install R252, a 56Ω 1/4W 5% resistor, between CSD-7 and CSE-7.
() 77. \oplus Install R236, a $15.6 \mathrm{k} 3 \mathrm{~W} 1 \%$ resistor, between CSD-6 and CSE-6.
() 78. \oplus Install L250, a $5 \mu \mathrm{H}$ coil, between CSD-7 and CSD-9.
() 79. \oplus Install C245, an 18 pF 500 V capacitor, between CSD-10 and CSD-13.
() 80. \oplus Install C244, an 18 pF 500 V capacitor, between CSE-10 and CSE-12.
() 81. Install D259, a 6075 diode removed in step 17, between CSE-12 and CSE-15. The emitter (striped) lead should be in CSE-15.
() 82. \oplus Replace C276, a $4.7 \mu \mathrm{~F} 35 \mathrm{~V}$ capacitor located between CSF-13 and CSG-13, with a $10 \mu \mathrm{~F} 35 \mathrm{~V}$ capacitor.
() 83. \oplus Replace R276, a $470 \Omega 1 / 2 \mathrm{~W} 10 \%$ resistor located between CSF-14 and CSG-14, with a $220 \Omega 1 / 2 \mathrm{~W} 5 \%$ resistor.
() 84. \oplus Replace R275, a $51 \mathrm{k} \mathrm{1/2W} 5 \%$ resistor located between CSF-15 and CSG-15, with a 24 k IW 5% resistor.
() 85. \oplus Replace R279, a $1.5 \mathrm{k} \mathrm{1/2W} 10 \%$ resistor located between CSF-16 and CSG-16, with a $560 \Omega 1 / 2 \mathrm{~W} 10 \%$ resistor.
() 86. \oplus Replace Q234 and Q244 with 151-0199-00 transistors.

THIS COMPLETES THE MODIFICATION OF TIME BASE A TRIGGER CIRCUIT.

Top components before mod

FIG. 6
B SWEEP TRIGGER
Bottom components before mod

INSTRUCTIONS (cont)

B. TIME BASE B TRIGGER CIRCUIT ONLY

Refer to Figs. 5 and 6 for steps 1 through 38.
() 1. Remove R44, a $10 \Omega 1 / 4 \mathrm{~W} 1 \%$ resistor, located between CSA -6 and CSB -6 .
() 2. Remove R36, a 30.1 k 1 W 1\% resistor, located between CSA -7 and CSB-7.
() 3. Remove R47, a 15 k 1W 1\% resistor, located between CSA -9 and CSB-9.
() 4. Remove R48, a $15 \mathrm{k} 1 \mathrm{~W} 1 \%$ resistor, located between CSA -11 and CSB-11.
() 5. Remove the ${ }^{\#} 22$ bare wire located between CSB-11 and CSA-12.
() 6. Remove L52, a $2.2 \mu \mathrm{H}$ coil, located between CSA-12 and CSB-12.
() 7. Remove R49, a $100 \Omega 1 / 2 \mathrm{~W} 10 \%$ resistor, located between CSA -13 and CSB-13. SAVE for later use.
() 8. Remove L44 and D45, located between CSA-14 and CSB-14. Discard the ferramic core L44, but SAVE tunnel diode D45 for later use.
() 9. Remove C43, a 470 pF capacitor, located between CSA -14 and CSA -17.
() 10. Remove C56, an 11 pF capacitor, located between CSB-14 and CSB-15.
() 11. Remove L56, a $1.1 \mu \mathrm{H}$ coil, located between CSA-15 and CSB-15. SAVE for later use.
() 12. Remove D59, a 6075 diode, located between CSB-15 and CSB-17. SAVE for later use.
() 13. Remove the \#22 bare wire located between CSA-16 and CSB-16.
() 14. Remove D57, a 6075 diode, located between CSA-19 and CSB-19. SAVE for later use.
() 15. Remove R57, a 220 k 1/2W 10\% resistor, located between CSA -20 and CSB-20.
() 16. Remove R82, a $28.7 \mathrm{k} 1 / 2 \mathrm{~W} 1 \%$ resistor, located between CSA -21 and CSB-21.
() 17. Remove R23, $220 \Omega 1 / 4 \mathrm{~W} 10 \%$ resistor, located between CSA -3 and pin 6 of V24.
() 18. Remove R21, a $220 \Omega 1 / 4 \mathrm{~W} 10 \%$ resistor, located between CSA -5 and pin 1 of V 24.
() 19. Remove the white-brown wire from CSB-6.
() 20. Remove the ${ }^{*} 22$ bare wire between CSB-6 and CSB-9.
() 21. Remove the white-brown wire from CSA -4 and CSA-13, and remove from the cable.
) 22. Remove the two white-red-red-brown wires from CSA-9. Use an ohmmeter to determine which wire connects to CSA -46 and remove it from CSA -46. Cut it off where it enters the cable. Pull the remaining wire removed from CSA-9 out of the cable near CSA-46 and trim it so that it may be soldered into CSA-46.

INSTRUCTIONS (cont)

() 23. Remove the \# 22 bare wire between CSA -6 and CSA -14 .
() 24. Remove the ${ }^{\#} 22$ bare wire between CSA -9 and CSA -11 .
() 25. Remove the \#22 bare wire between CSA -13 and the collector of Q34.
() 26. Remove R43, a $10 \Omega 1 / 4 \mathrm{~W} 10 \%$ resistor, located between CSA -14 and the collector of Q34.
() 27. Move one lead of C49, a $0.02 \mu \mathrm{~F}$ discap, from CSA -13 to CSA -14 .
() 28. Remove the \#22 bare wire between CSA-15 and CSA-16.
() 29. Remove the \# 22 bare wire between CSA -17 and the ground solder lug.
() 30. Remove the \# 22 bare wire between CSA -17 and CSA -19.
() 31. Remove the \# 22 bare wire between CSA-21 and the base of Q84.
() 32. Remove R81, a $100 \Omega 1 / 4 \mathrm{~W} 10 \%$ resistor, located between CSA -21 and the base of Q84.
() 33. Remove C41 and R41, located between CSB-14 and the collector of Q44.
() 34. Move the white-blue wire from CSB-11 to CSB-8.
() 35. Remove toroid transformer T52, located between CSB-12, CSB-14, CSC-1, and CSC-2.
() 36. Move the white-brown-black-brown wire from CSB-13 to CSB-10.
() 37. Remove the \# 22 bare wire between CSB-16 and CSB-19.
() 38. Remove the \# 22 bare wire between CSB-19 and CSB-20.

FIG. 7
B SWEEP TRIGGER
Bottom components after mod

FIG. 8
B SWEEP TRIGGER
Top components after mod

INSTRUCTIONS (cont)

Refer to Figs. 7 and 8 for steps 39 through 74.
() 39. \oplus Replace R79, a 1.5 k 1/2W 10% resistor located between CSC-6 and CSD -6 , with a $560 \Omega 1 / 2 \mathrm{~W} 10 \%$ resistor.
() 40. \oplus Replace R76, a $470 \Omega 1 / 2 \mathrm{~W} 10 \%$ resistor located between CSC-8 and CSD-8, with a $220 \Omega 1 / 2 \mathrm{~W} 5 \%$ resistor.
() 41. \oplus Replace R75, a $51 \mathrm{k} 1 / 2 \mathrm{~W} 5 \%$ resistor located between CSD-8 and CSE-8, with a 24 k IW 5\% resistor.
() 42. \oplus Replace C76, a $4.7 \mu \mathrm{~F} 35 \mathrm{~V}$ capacitor, with a $10 \mu \mathrm{~F} 35 \mathrm{~V} \pm 20 \%$ capacitor. C76 is located between CSC - 8 and CSD-9 in Type 546/RM Oscilloscopes and between CSC-9 and CSD-9 in Type 547/RM Oscilloscopes.
() 43. \oplus Install two 6075 diodes (152-0075-00) between pins 1 and 6 of V 24 , with the emitter (striped) lead of one in pin 1 and the emitter (striped) lead of the other in pin 6.
() 44. \oplus Install R23, a $470 \Omega 1 / 4 \mathrm{~W} 5 \%$ resistor, between CSA -3 and pin 6 of V24.
() 45. \oplus Install R21, a $470 \Omega 1 / 4 \mathrm{~W} 5 \%$ resistor, between CSA -5 and pin 1 of V 24.
() 46. \oplus Install a prebent $\# 22$ bare wire between CSA -4 and CSA-10.
() 47. \oplus Install a prebent ${ }^{\# 22}$ bare wire between CSA-10 and CSA-14.
() 48. \oplus Install a prebent ${ }^{\#} 22$ bare wire between CSA-15 and CSA-19.
() 49. \oplus Install a prebent ${ }^{\# 2} 2$ bare wire between CSB-9 and CSB-13.
() 50. \oplus Install a prebent ${ }^{\#} 22$ bare wire between CSB-11 and CSB-15.
() 51. \oplus Install a ${ }^{\#} 22$ bare wire between CSB-11 and the collector of Q44.
() 52. \oplus Install a ${ }^{\# 22}$ bare wire between CSB-13 and the collector of Q34.
() 53. \oplus Install a ${ }^{\#} 22$ bare wire between CSA-19 and the adjacent ground solder lug.
() 54. \oplus Install R42, a $470 \Omega 1 / 4 \mathrm{~W} 5 \%$ resistor, between CSA -14 and the collector of Q44.
() 55. \oplus Install R32, a $470 \Omega 1 / 4 \mathrm{~W} 5 \%$ resistor, between CSA -14 and the collector of Q34.
() 56. \oplus Install L85, a $1 \mu \mathrm{H}$ coil, between CSA-17 and the ground solder lug.
() 57. \oplus Install R81, a $180 \Omega 1 / 4 \mathrm{~W} 5 \%$ resistor, between CSA -18 and the base of Q84.
() 58. \oplus Install R82, a $50 \mathrm{k} \mathrm{l} / 2 \mathrm{~W} 1 \%$ resistor, between CSB-21 and the base of Q84.
() 59. Install L56, a $1.1 \mu \mathrm{H}$ coil removed in step 11, between CSB-16 and CSB-20.
() 60. \oplus Install T52, a 2T-12T toroid transformer, between CSB-12, CSB-13, CSC-1, and CSC-2. The green insulated leads should be in CSB-12 and CSB-13.
() 61. \oplus Install R36, a $15.6 \mathrm{k} 3 \mathrm{~W} 1 \%$ resistor, between CSA -7 and CSB-7.

INSTRUCTIONS (cont)

() 62. \in Install a ${ }^{\#} 22$ bare wire between CSB-8 and CSA -9 .
() 63. \oplus Install R33, a $10 \mathrm{k} 3 \mathrm{~W} 1 \%$ resistor, between CSA-9 and CSB-9.
() 64. Install R49, a $100 \Omega 1 / 2 \mathrm{~W} 10 \%$ resistor removed in step 7, between CSA -10 and CSB-10.
() 65. \oplus Install L50, a $5 \mu \mathrm{H}$ coil, between CSA-11 and CSB-11.
() 66. \oplus Install R52, a 56Ω 1/4W 5% resistor, between CSA -11 and CSB-12.
() 67. \oplus Install a ${ }^{\# 2}$ bare wire between CSA-13 and CSB-15.
() 68. \oplus Install C45, an 18 pF 500 V capacitor, between CSA -13 and CSA -17 .
() 69. \oplus Install C44, an 18 pF 500 V capacitor, between CSB-13 and CSB-16.
() 70. Install D45, the tunnel diode removed in step 8, between CSA-13 and CSB-13 with the emitter (dotted) lead in CSA-13.
() 71. \oplus Install R46, a $12 \mathrm{k} 5 \mathrm{~W} 10 \%$ resistor, between CSA -15 and CSB-15.
() 72. \oplus Install R57, a $100 \mathrm{k} 1 / 2 \mathrm{~W} 10 \%$ resistor, between CSA -20 and CSB-20.
() 73. Install D57, a 6075 diode removed in step 14, between CSA-19 and CSB-20 with the emitter (banded) lead in CSA-19.
() 74. Install D59, a 6075 diode removed in step 12, between CSB-16 and CSC-7 with the emitter (banded) lead in CSC-7.

Refer to Fig. 9 for steps 75 through 70.
() 75. \oplus Replace B Trigger Sens potentiometer R45 with a 10k 5\% potentiometer.
() 76. \oplus Install a ${ }^{\#} 22$ bare wire between the middle and rear terminals of B Trigger Sens potentiometer R45.
() 77. \oplus Install a ${ }^{\#} 22$ bare wire between the front terminal

R45

FIG. 9 of R45 and the bottom terminal of R27.
() 78. Install the white-blue wire from CSB-8 into the middle terminal of B Trigger Sens potentiometer R45.
() 79. Remove and discard the white-brown wire previously connected to the old R45.
() 80. Swap the white-brown and white-red wires at the connectors on the B Sweep support post. White-brown should be on top.
() 81. \oplus Replace Q34 and Q44 with 151-0199-00 transistors.
THIS COMPLETES THE MODIFICATION OF THE TIME BASE B TRIGGER CIRCUIT.

INSTRUCTIONS (cont)

C. LOWER VERTICAL AMPLIFIER CHASSIS

Refer to Fig. 10.
() 1. \oplus Install C1165, a 27 pF 500 V capacitor, in parallel with R1165 located between CSA -9 and CSB-9.
() 2. \oplus Install Cll75, a 27 pF 500 V capacitor, in parallel with R1167 located between CSA-11 and CSB-11.

FIG. 10
LOWER VERTICAL AMPLIFIER .

THIS COMPLETES THE INSTALLATION.

() Check wiring for accuracy.
() Place Manual insert pages in your Instruction Manual.
() Refer to the Manual insert pages for the proper calibration procedure.
() Replace all dust covers on the instrument.

BE:Is

INSTRUCTION MANUAL

MODIFICATION INSERT

> 'A' AND 'B' TRIGGER STABILITY IMPROVEMENT
> TYPES 546 -- SN 100- 962 TYPES 547 -- SN 100-6739

Installed in Type \qquad SN \qquad Date \qquad

This insert has been written to supplement the Instruction Manual for these instruments. The information given in this insert will supersede that given in the manual.

This Insert Material Copyright (C) 1967, by Tektronix, Inc., Beaverton, Oregon. Printed in the United States of America. All rights reserved. Contents of this insert may not be reproduced in any form without the permission of the copyright owner.

GENERAL INFORMATION

This instrument has been modified with Modification Kit, PN 040-0459-00, which changed the ' A ' and ' B ' Sweep Trigger circuits from a single-ended to a push-pull configuration. The previously used single-ended circuit configuration was sensitive to noise, causing premature triggering to occur when in the single sweep mode of operation.

The push-pull circuit tends to cancel common mode noise originating at the input or from fluctuations occurring in the +100 V power supply.

The quiescent current of the Trigger circuit tunnel diode was lowered so that it requires almost twice the amount of signal current to switch it to its high state. This has the advantage of doubling the amount of noise signal required to cause premature triggering.

This description describes the operation of the B Sweep Trigger circuit. The description also applies to the A Sweep Trigger except the circuit numbers are prefixed with a '2'. Example: V224A instead of V24A.

V24A and V24B form a switching comparator. The voltage level at which the comparator switches is set by the B TRIGGERING LEVEL control R15. V24 drives Q34 and Q44, which form a current type switching comparator. Q34 and Q44 drive tunnel diode D45 which in turn drives sweep gating tunnel diode D85.

If no triggering signal is applied to V 24 the stage consisting of V 24 A and V 24 B is unbalanced. One section (which one depends upon the setting of the B SLOPE and B TRIGGERING LEVEL controls) is conducting more current than the other. The voltages at the plates of V24A and V24B should therefore be different. However, diodes D21 and D22 clamp the two plate voltages to within 0.3 volt of each other, with the plate of the section which is conducting the most current being the most negative.

The second stage, made up of Q34 and Q44, is also unbalanced. The transistor whose base is the most negative conducts most of the current supplied by R36. This current is not sufficient to cause the conducting transistor to saturate. The conducting transistor merely acts as a constant current source.

Tunnel diode D45 is biased to its low voltage state by current through R32, R33, R45, and R42. If the comparator stages are unbalanced in such a manner as to cause Q34 to conduct, an additional current flows through D45. This additional current biases D45 to its high voltage state.

When the current through D45 reaches a total of 10 mA the voltage across D45 will suddenty increase to approximately 0.5 volts. This sudden voltage change is coupled to the sweep gating tunnel diode D85 by C44, D59, and C45. C44 differentiates the triggering signal which provides a fast rising pulse for D85. L56 and the low impedance of conducting diode D57 decrease the fall time of the triggering pulse. D59 ensures that D85 is only triggered when D45 turns on, and not when D45 turns off.

CALIBRATION

Substitute the following steps for the Trigger circuits calibration procedures.
12. Adjust A TRIGGERING LEVEL CENTERING R225 and A TRIGGERING SENS R245 (Course Adjustment) -- A Sweep Trigger
a. Set the AMPLITUDE CALIBRATOR switch to . 1 VOLTS.

NOTE: A 100 mV peak-to peak signal is used in this portion of the procedure as an adjustment aid only and is not intended to be interpreted as a trigger-amplitude specification that contradicts the one given in the Characteristics section of this manual.
b. Disconnect the coaxial cable from the Ext Input connector on the TU-7 and connect it to the oscilloscope A TRIGGER INPUT connector.
c. Set the front panel controls of the oscilloscope to the positions shown in Table 1 (some of the controls will not need to be changed since they are already set properly).

TABLE 1
Controls not mentioned may be left in any position.

INTENSITY	As required for
FOCUS	As required for
ASTIGMATISM	As required for
SCALE ILLUM	As required for
HORIZONTAL POSITION	As required to left edge
VERNIER (HORIZONTAL	Midrange
AMPLITUDE CALIBRATOR	. 1 VOLTS
HORIZONTAL DISPLAY	A
SWEEP MAGNIFIER	XI OFF
Single Sweep Switch	NORMAL
Time Base A	
TRIGGERING LEVEL	0
TIME/CM	. 5 mSEC
VARIABLE (TIME/CM)	CALIBRATED
TRIGGERING	
MODE SLOPE	$\begin{aligned} & \text { TRIG } \\ & + \end{aligned}$
COUPLING	AC
SOURCE	EXT

d. Locate the junction of R217, C218, and R218. Connect a short jumper clip lead between the junction and ground. This jumper disables the A TRIGGERING LEVEL control.
e. Locate the junction of R252 and L250. Connect a 10 X probe from the test oscilloscope to this junction.
12. f. Preset the A TRIGGERING LEVEL CENTERING R225 control to midrange and A TRIG SENS R245 control fully clockwise.
g. Adjust the A TRIGGERING LEVEL CENTERING R225 control for a stable display of square waves on the test oscilloscope (the square waves will have an amplitude of approximately 200 mV peak-to-peak). Note that there is a range in the adjustment of R225 through which the square wave display will remain stable. Set R225 approximately in the middle of this range.
13. Adjust A TRIGGERING LEVEL CENTERING R225 and A TRIGGER SENS R245
(Fine Adjustment) -- A Sweep Trigger
a. Adjust the A TRIGGER LEVEL CENTERING R225 control for a stable square wave display on the test oscilloscope with the A SLOPE switch set to + . Then set the A SLOPE switch to - and readjust R 225 . Continue alternating the position of the A SLOPE switch and adjusting R225 until the test oscilloscope square wave display is stable at both settings of the A SLOPE switch.
b. Rotate the A TRIGGER SENS R245 control counter-clockwise until the square wave on the test oscilloscope breaks up. Leave R245 set at this point.
c. Readjust the A TRIGGER LEVEL CENTERING R225 control for a stable square wave display at both settings of the A SLOPE switch. Note that there is a range in the adjustment of R225 over which a stable test oscilloscope square wave display will be obtained. Set R225 in the middle of this range.
d. Set the AMPLITUDE CALIBRATOR switch to 50 mVOLTS . If the test oscilloscope square wave display remains stable at either or both settings of the A SLOPE switch, return the AMPLITUDE CALIBRATOR switch to . 1 VOLTS and repeat steps (b) and (c). If not, continue to the next step.
e. Disconnect the 10X probe from the junction of R252 and L250.
14. Adjust A INT TRIG DC LEVEL R209 -- A Sweep Trigger
a. Disconnect the coaxial cable from the A TRIGGER INPUT connector and move it to the Ext Input connector on the TU-7.
b. Set the TU-7 front panel controls as follows:

Variable	Fully Clockwise
Vertical Position	Centered
Test Function	Low Load

c. Set the AMPLITUDE CALIBRATOR switch to . 5 VOLTS and the A SOURCE switch to NORM INT.
d. Adjust the TU-7 Variable control so that the displayed waveform amplitude is 5 mm peak-to-peak.
e. Using the TU-7 Vertical Position control, center the display for equal amplitude above and below the center graticule line.
f. Set the A COUPLING switch to DC.
g. Adjust the A INT TRIG DC LEVEL R209 control to obtain a stable display. (With the A SLOPE switch set to + , the sweep trace should start on the positive-going rise of the calibrator waveform).
15. Check Internal Triggering -- A Sweep Trigger
a. Set the A COUPLING switch to AC.
b. Adjust the TU-7 Variable control for a display amplitude of 2 mm peak-to-peak.
c. Disconnect the jumper clip lead which is grounding the junction of R217, C218 and R2!8.
d. Adjust the A TRIGGERING LEVEL control to obtain a stable display.
e. Check for stable time-base triggering on the - slope when the A SLOPE switch is set to - and stable triggering on the + slope when the A SLOPE switch is set to +. If necessary, readjust the A TRIGGERING LEVEL control to obtain a stable display when making the check for each A SLOPE switch position.

16. Check A TRIGGERING LEVEL Control Zero Set -- A Sweep Trigger

a. Check that the A TRIGGERING LEVEL control is set to 0 and the A SLOPE switch is set to + .
b. Connect the VOM between the R217, C218, R218 junction and ground.
c. Carefully turn the A TRIGGERING LEVEL control to obtain a reading of exactly zero volts on the VOM.
d. If the A TRIGGERING LEVEL knob is set properly on the control shaft, the white dot on the knob should be directly below the 0 on the front panel. If the white dot does not point exactly to 0 , disconnect the VOM, loosen the setscrew in the knob and reposition the knob.
e. After tightening the knob, set the knob to 0 , reconnect the VOM, and recheck the reading. The VOM reading should be zero when the A TRIGGERING LEVEL knob is set to 0 .

NOTE: A dc-coupled test oscilloscope with a $\times 10$ probe can be used in place of the VOM to perform step 16.
As another method, the TRIGGERING LEVEL knob can be checked for correct position by repeating step $15-\mathrm{e}$. This method does not require the use of a test oscilloscope or VOM. When performing step 15-e, the TRIGGERING LEVEL knob should point to 0 when stable triggering is obtained.
f. Disconnect the VOM or $\times 10$ probe, whichever is used.
17. Adjust B TRIGGER LEVEL CENTERING R25 and B TRIGGER SENS R45
(Coarse Adjustment) -- B Sweep Trigger
a. Set the AMPLITUDE CALIBRATOR switch to .1 VOLTS.

NOTE: A 100 mV peak-to-peak signal is used in this portion of the procedure as an adjustment aid only and is not intended to be interpreted as a trigger-amplitude specification that contradicts the one given in the Characteristics section of this manual.
b. Disconnect the coaxial cable from the TU-7 Ext Input connector and connect it to the oscilloscope B TRIGGER INPUT connector.
c. Set the HORIZONTAL DISPLAY switch to B.
d. Set the B TRIGGERING LEVEL control to 0 and the B SOURCE switch to EXT. Check that the B MODE switch is set to TRIG and that the B COUPLING switch is set to AC.
17. e. Locate the junction of R17, C 18 and R18. Connect a short jumper clip lead between the junction and ground. This jumper disables the B TRIGGERING LEVEL control.
f. Locate the junction of R52 and L50. Connect a 10X probe from the test oscilloscope to this junction.
g. Preset the B TRIGGERING LEVEL CENTERING R25 control to midrange and B TRIG SENS R45 control fully clockwise.
h. Adjust the B TRIGGERING LEVEL CENTERING R25 control for stable display of squarewaves on the test oscilloscope (the squarewaves will have an amplitude of approximately 200 mV peak-to-peak). Note that there is a range in the adjustment of R25 through which the squarewave display will remain stable. Set R25 approximately in the middle of this range.

18. Adjust B TRIGGER LEVEL CENTERING R25 and B TRIGGER SENS R45

 (Fine Adjustment) -- B Sweep Triggera. Adjust the B TRIGGER LEVEL CENTERING R25 control for a stable squarewave display on the test oscilloscope withthe B SLOPE switch set to + . Then set the B SLOPE switch to - and readjust R25. Continue alternating the position of the B SLOPE switch and adjusting R25 until the test oscilloscope squarewave display is stable at both settings of the B SLOPE switch.
b. Rotate the B TRIGGER SENS R45 control counterclockwise until the squarewave on the test oscilloscope breaks up. Leave R45 set at the point where the squarewave breaks up.
c. Readjust the B TRIGGER LEVEL CEN TERING R25 control for a stable squarewave display at both settings of the B SLOPE switch. Note that there is a range in the adjustment of R25 over which a stable test oscill oscope squarewave display will be obtained. Set R25 in the middle of this range.
d. Set the AMPLITUDE CALIBRATOR switch to 50 mVOLTS . If the test oscilloscope squarewave display remains stable at either or both settings of the B SLOPE switch, return the AMPLITUDE CALIBRATOR switch to .1 VOLTS and repeat steps (b) and (c). If not, continue to the next step.
e. Disconnect the 10X probe from the junction of R52 and L50.
19. Adjust B INT TRIG DC LEVEL R9 -- B Sweep Trigger
a. Disconnect the coaxial cable from the B TRIGGER INPUT ∞ nnector and move it to the Ext Input connector on the TU-7.
b. Set the AMPLITUDE CALIBRATOR switch to .5 VOLTS and the B SOURCE switch to NORM INT.
c. Adjust the TU-7 Variable control so that the displayed waveform amplitude is 5 mm peak-to-peak.
d. Using the TU-7 Vertical Position control, center the display for equal amplitude above and below the center graticule line.
e. Set the B COUPLING switch to DC.
f. Adjust the B TRIG DC LEVEL R9 control to obtain a stable display. (With the B SLOPE switch set to + , the sweep trace should start on the positive-going rise of the calibrator waveform).
20. Check Internal Triggering -- B Sweep Trigger
a. Set the B COUPLING switch to AC.
b. Adjust the TU-7 Variable control for a display amplitude of 2 mm peak-to-peak.
c. Disconne ct the jumper clip lead which is grounding the junction of R17, C18, and R18.
d. Adjust the B TRIGGERING LEVEL control to obtain a stable display.
e. Check for stable time-base triggering on the - slope when the B SLOPE switch is set to - and stable triggering on the + slope when the B SLOPE switch is set to +. If necessary, readjust the B TRIGGERING LEVEL control to obtain a stable display when making the check for each B SLOPE switch position.

21. Check B TRIGGERING LEVEL control Zero Set -- B Sweep Trigger

a. Check that the B TRIGGERING LEVEL control is set to 0 and the SLOPE switch is set to + .
b. Connect the VOM between the R17, $\mathrm{Cl} 18, \mathrm{R} 18$ junction and ground.
c. Carefully adjust the B TRIGGERING LEVEL control to obtain a reading of exactly zero volts on the VOM.
d. If the B TRIGGERING LEVEL knob is set properly on the control shaft, the white dot on the knob should be directly below the 0 on the front panel. If the white dot does not point exactly to 0, disconnect the VOM, loosen the setscrew in the knob, and reposition the knob.
e. After tightening the knob, set the knob to 0 , reconnect the VOM, and repeat steps (c) and (d).

NOTE: A DC-coupled test oscilloscope with a $\times 10$ probe can be used in place of the VOM to perform this step, if desired.
As another method, the TRIGGERING LEVEL knob can be checked for correct position by repeating step $20-\mathrm{e}$. This method does not require the use of a test oscilloscope or VOM. When performing step step 20-e, the TRIGGERING LEVEL knob should point to 0 when stable triggering is obtained.
f. Disconnect the VOM or X10 probe, whichever isused.
g. Disconnect the coaxial cables, T connector, and set the AMPLITUDE CALIBRATOR switch to OFF.

ELECTRICAL PARTS LIST (cont)

Ckt. No.	Part Number	Description				
	RESISTORS					
R21	315-0471-00	470Ω	1/4W	5\%		
R23	315-0471-00	470Ω	1/4W	5\%		
R32	315-0471-00	470Ω	1/4W	5\%		
R33	308-0301-00	10k	3 W	1\%	WW	
R36	308-0320-00	15.6k	3 W	1\%	WW	
R41	Delete					
R42	315-0471-00	470Ω	1/4W	5\%		
R43	Delete					
R44	Delete					
R45	311-0405-00	10k		5\%	WW	variable
R46	308-0310-00	12k	5 W	1\%	WW	
R47	Delete					
R48	Delete					
R52	315-0560-00	56Ω	1/4W	5\%		
R57	302-0104-00	100 k	1/2W	10\%		
R75	303-0243-00	24 k	1 W	5\%		
R76	301-0221-00	220Ω	1/2W	5\%		
R79	302-0561-00	560Ω	1/2W	10\%		
R81	315-0181-00	180Ω	1/4W	5\%		
R82	323-0636-00	50 k	1/2W	1\%		
R221	315-0471-00	470Ω	1/4W	5\%		
R223	315-0471-00	470Ω	1/4W	5\%		
R232	315-0471-00	470Ω	1/4W	5\%		
R233	308-0301-00	10k	3 W	1\%	WW	
R236	308-0320-00	15.6k	3 W	1\%	WW	
R241	Delete					
R242	315-0471-00	470Ω	1/4W	5\%		
R243	Delete					
R244	Delete					
R245	311-0076-00	10k	2 W	10\%		variable
R246	308-0310-00	12k	5W	1\%	WW	
R247	Delete					
R248	Delete					
R252	315-0560-00	56Ω	1/4W	5\%		
R256	301-0304-00	300 k	1/2W	5\%		
R257	Delete					
R275	303-0243-00	24 k	1 W	5\%		
R276	301-0221-00	220Ω	1/2W	5\%		
R279	302-0561-00	560Ω	1/2W	10\%		
R281	315-0181-00	180Ω	1/4W	5\%		
R282	323-0636-00	50 k	1/2W	1\%		

TRANSFORMERS

T52	120-0500-00	Toroid	2T-12T bifilar
T252	$120-0500-00$	Toroid	$2 T-12 T$

ELECTRICAL PARTS LIST

Values fixed unless marked variable.
Ckt. No. Part Number Description

CAPACITORS

```
C41
C43
C44
C45
C56
C76
C241
C243
C244
C245
C256
C276
C1165
C1175
```

D21
D22
D221
D222

L44
L50
L52
L85
L244
L250
L252
L285

Q34
Q44
Q234
Q244

Delete
Delete
281-0578-00
281-0578-00
Delete
290-0175-00
Delete
Delete
281-0578-00
281-0578-00
Delete
290-0175-00
281-0512-00
281-0512-00

152-0075-00
152-0075-00
152-0075-00
152-0075-00

18 pF	500 V	$\pm 5 \%$	
18 pF	500 V	$\pm 5 \%$	
$10 \mu \mathrm{~F}$	35 V	$\pm 20 \%$	EMT
27 pF	500 V		
27 pF	500 V		

DIODES
6075
6075
6075
6075
COILS
$5 \mu \mathrm{H}$
$1 \mu \mathrm{H}$
$5 \mu \mathrm{H}$
$1 \mu \mathrm{H}$

TRANSISTORS

MPS-3640
MPS-3640
MPS-3640
MPS-3640

A SWEEP TRIGGER

Microfiche scan by vintageTEK - Your donations help support the museum - vintagetek.org

TUNNEL DIODES REPLACED TO INCREASE POWER RATING

Effective Prod SN 11890
Usable in SN 100-11889
No trigger. Tunnel diodes are being over-dissipated when operating at high ambient temperatures with tolerance build up.

D45 and D245 were replaced with higher wattage rated diodes.
Parts Removed:
D245
D45 152-0154-00 Diode, germanium tunnel
Parts Added:
D245
D45
152-0140-01 Diode, tunnel
INSTALLATION:
Parts Required: See 'Parts Added'.
a) Replace D245, located on the ceramic strips above Q234, with a 152-0140-01 tunnel diode.
b) Replace D45, located on the ceramic strips above Q234, with a 152-0140-01 tunnel diode.

'B' SWEEP TO 'A' SWEEP START MATCHING AT 50MHz IMPROVED

Effective Prod SN 1010 180-RM

Usable in SN 100-1009
100-179
The Sweep start matching at 50 MHz was, in some cases, exceeding its 1 cm specifications. Increasing the value of C98 assures the sweep starting within 1 cm , when operating in the ALT mode.

Parts Removed:
C98 281-0557-00 Capacitor, 1.8pF
Parts Added:
C98
281-0604-00
Capacitor, 2.2pF
INSTALLATION
Parts Required: See 'Parts Added.'
Replace C98 on the 'B' Sweep chassis, located just beneath C99, a variable ceramic capacitor. C99 is the only variable ceramic capacitor on the ' B ' Sweep chassis.
'B' SWEEP GENERATOR UNBLANKING GATE DIODE REPLACED

Effective Prod SN 1160
180-RM

Usable in SN 100-1159
100-179

Diode D182, 1N3728, was replaced with a 1 N3605 diode. Vendor could no longer supply diode to the required specs. Components are changed to meet circuit requirements.

Parts Replacement Kit 050-0225-00 is available to facilitate the replacement of D182 in premodified instruments.

Parts Removed:

D182	152-0128-00		Diode, 1 N3728	
R481	$301-0154-00$	Resistor, 150 k	$1 / 2 \mathrm{~W}$	5%
R181	$301-0363-00$	Resistor, 36 k	$1 / 2 \mathrm{~W}$	5%
R182	$302-0274-00$		Resistor,	270 k

Parts Added:

D182	$152-0141-00$		Diode, 1 N3605		
R481	$304-0273-00$		Resistor, 37 k	1 W	10%
R181	$323-0280-00$	Resistor, 8.06 k	$1 / 2 \mathrm{~W}$	1%	
R182	$323-0356-00$	Resistor, 49.9 k	$1 / 2 \mathrm{~W}$	1%	

INSTALLATION
Parts Required: 050-0225-00 Parts Replacement Kit

DIODE REPLACEMENT

For the following Tektronix Oscilloscopes:
Type 547 Serial Numbers 100-1159 RM547 Serial Numbers 100-179

This Parts Replacement Kit, PN 050-0225-00, replaces diode PN 152-0128-00, 1N3728, which is no longer available, with diode PN 152-0141-02, a 1 N4152

Use of the new diode requires that some of the associated component values be changed.

NOTE: If this kit has been installed, disregard the instructions as PN 152-0141-02 is a direct replacement.

PARTS LIST

Quantity Part Number
I ea 152-0141-02
1 ea 214-0210-00
1 ea 304-0273-00
1 ea 323-0280-00
1 ea 323-0356-00

Description

Diode, 1 N4152
Spool, w/3 ft. of silver-bearing solder Resistor, comp, 27 k IW 10% Resistor, prec, 8.06 k 1/2W 1\% Resistor, prec, 49.9 k 1/2W 1\%

INSTRUCTIONS

IMPORTANT: When soldering to the ceramic strips, use the silver-bearing solder supplied with this kit.

Replace the following components on the ' A ' Sweep chassis with the components from the kit. Use the drawing for the locations.
() D182 with a 1N4152 diode between CSD-99 and a solder lug below it. The banded end goes toward CSD-99.
() R182 with a precision $49.9 \mathrm{k} \mathrm{l} / 2 \mathrm{~W} 1 \%$ resistor between CSD-104 and CSE-104.
() R181 with a precision $8.06 \mathrm{k} \mathrm{1/2W} 1 \%$ resistor between CSD-105 and CSE-105.
() R481 with a composition $27 \mathrm{k} 1 \mathrm{~W} 10 \%$ resistor between CSD-10ó and CS: 106.
THIS COMPLETES THE INSTALLATION.
() Check wiring for accuracy.
() Correct your Instruction Manual parts list and schematics as necessary.

JT:Is

'B' SWEEP BRIGHTNESS CONTROL RANGE INCREASED AND CONTROL KNOB REPALCED

Effective Prod SN $1970 \quad$ Usable in SN 100-1969 250-RM 100-249

The BRIGHTNESS control knob is replaced with a longer type knob for improved operational convenience. The BRIGHTNESS control range is increased about 10 V by changing R185 and R187 values in the control circuit.

This increase in control range enables the equalizing of brightness of A and B traces up to about $100,000: 1$ difference in sweep rates and/or duty cycle as compared to present limit of about 20,000:1.

Parts Removed:
R185 309-0447-00 Resistor, 6.19M
R187

$$
\text { 309-0448-00 Resistor, } 9.31 \mathrm{M}
$$

366-0261-00 Knob, gray DELRIN ${ }^{\text {© }}$
Parts Added:
*R185
309-0451-00
309-0447-00
366-0283-00

Resistor, 3.92M 1/2W
Resistor, 6.19M 1/2W Knob, gray DELRIN

INSTALLATION
Parts Required: See 'Parts Added' with asterisk.

DELRIN, Reg. TM of E. I. du Pont de Nemours \& Co., Inc.
© 1966, Tektronix, Inc.
All Rights Reserved.

INSTALLATION (continued)

a) Replace BRTGHTNESS control on front panel by pulling off present one and pushing on the new long type knob.
b) Temporarily remove C186, a variable capacitor, between CSD-91 and CSE-91.
c) Unsolder R187 between CSD-89 and CSE-89.
d) Relocate R185 from CSD-90/CSE-90 to CSD-89/CSE-89. This will now be R187.
e) Install new R185, 3.92M resistor, between CSD-90 and CSE-90. Dress resistor down like old R185.
f) Reinstall C186 between CSD-91 and CSE-91.

'B' SWEEP UNBLANKING CF CUTOFF ELIMINATED WITH ADDED PROTECTIVE DIODES

Effective Prod SN $1970 \quad$ Usable in SN 100-1969
250-RM
100-249
The addition of D194 in the 'B' Sweep Unblanking CF V193B, prevents it from being cut off by the 'A' Sweep unblanking waveform when BRIGHTNESS control is set at maximum intensity.

Parts Added:
D194 152-0061-00 Diode, silicon 6061

INSTALLATION

Parts Required: See 'Parts Added.'
a) Temporarily remove C186, a variable capacitor, between CSD-91 and CSE-91.
b) Unsolder the three resistors at CSE-91, -92, and -93.
c) Remove bare wire strap between CSE-91, -92, and -93.
d) Install a box strap between CSE-91 and CSE-93 (outside).
e) Relocate the gray-orange-orange coax from pin 9 of V193B to CSE-92.
f) Install D194, silicon 6061 diode, between CSE-92 and pin 9 of V193 (cathode to CSE-92).
g) Reinstall R186 (750k) to CSE-91.
h) Solder R183 (41.3k) and R184 (46.4k) to CSE-93.
i) Reinstall C186, a variable capacitor, between CSE-91 and CSD-91.

[^3]
'B' SWEEP GENERATOR DIODE ADDED TO PROTECT DISCONNECT DIODE
Effective Prod SN 3130
modified out of sequence:

$\begin{array}{llllllll}2142 & 2515-7 & 2595-6 & 2709-9 & 2782 & 2848 & 2951 & 3039-42\end{array}$
$\begin{array}{llllllll}2342 & 2527 & 2611 & 2724 & 2784 & 2861 & 2957-8 & 3044-7\end{array}$
$\begin{array}{llllllll}2344 & 2540 & 2618 & 2726-8 & 2789-90 & 2870 & 2990 & 3051\end{array}$
$2376 \quad 2542 \quad 2636-7 \quad 2730-3 \quad 2796 \quad 2873 \quad 2997 \quad 3053$
$2378 \quad 2544 \quad 2660-2 \quad 2739 \quad 2798 \quad 2880 \quad 2999 \quad 3067$

$2383-5$	$2546-8$	$2664-9$	2741	2801	2882	3005	$3074-7$

2388	2562	2681	2847	2808	2884	3010	$3082-3$

$\begin{array}{llllllll}2395 & 2570 & 2683 & 2749 & 2810 & 2886 & 3012-4 & 3085\end{array}$
$\begin{array}{lllllll}2412 & 2573 & 2690 & 2751-4 & 2812-3 & 2912 & 3016-20 \\ 3111\end{array}$
$\begin{array}{llllllll}2420 & 2575-6 & 2692 & 2759 & 2822 & 2914-5 & 3028-9 & 3113-5\end{array}$
$\begin{array}{llllllll}2457 & 2581 & 2698 & 2770 & 2830 & 2918-9 & 3032 & 3117\end{array}$
$\begin{array}{llllllll}2468 & 2583-4 & 2702-3 & 2773 & 2832 & 2933 & 3034-5 & 3123-4\end{array}$
$\begin{array}{llllllll}2470 & 2587 & 2705-6 & 2776-7 & 2835 & 2936 & 3037 & 3128\end{array}$
24752592
Excessive 'B' sweep jitter, excessive 'B' sweep non-linearity, or excessive Delay Trigger jitter occurred. D86 was being subjected to excessive reverse voltage transients which were generated by switching-in uncharged timing capacitors when V91 (Miller tube) filaments were cold or not fully warmed up.

A diode was added from the grid (pin 1) of the Miller tube V91 and ground (cathode to ground) to protect D86 from transients.

Parts Added:
D90 152-0165-00 Diode, Tek-made special

INSTALLATION

Parts Required: See 'Parts Added.'

INSTALLATION (continued)

a) Lift components above V91 at CSA-29, -30, and -31.
b) Relocate the wire strap at CSA-30 to -31 .
c) Install D90 between CSA-30 and pin 1 of V91. (Banded end to CSA-30.)
d) Reinstall components to CSA-29, -30 , and -31 .

SWEEP TRIGGER GENERATOR AMPLIFIER TUBES CHANGED
TO CHECKED, AGED, AND BALANCED TUBES
Effective Prod SN 7960
The aged 6DJ8's used as trigger amplifiers were changed to 6DJ8's, aged 75 hours, and balanced.

Parts Removed:
$\begin{array}{lll}\text { V24 } \\ \text { V224 } & \text { 157-0122-00 } & \text { Tube, checked, } 154-0187-00 \text { (6DJ8) aged } 75 \text { hours }\end{array}$
Parts Added:
V24
V224

157-0125-00
334-1085-00

Tube, 154-0187-00 (6DJ8) aged 75 hours and balanced
Tag, label: $1 \times 5 / 8$ alum. w/adhesive backing
© 1966, Tektronix, Inc.
All Rights Reserved.
'B' SWEEP CHASSIS WIRE MODIFICATION INCORPORATED TO ELIMINATE SWEEP FREE-RUNNING Effective Prod SN 8420
'B' Sweep will free-run when the TRIGGER MODE switch is in the trigger position, no signal applied. 'B' Sweep trigger circuit is oscillating.

The wire strap to the collector of Q44 was relocated, and the leads to C44 and C45 were shortened.
© 1966, Tektronix, Inc. All Rights Reserved.

product modification

$050-0479 \mathrm{~m} 01$
015384
M14335

Fut the following TrkTRINix Tune Ocrillesranoes

 pos: ins listed belus. This kick provides pate to modify only one sweep; order two kits io monify both sweeps in the 546,54 ? and 55h

NOTE If the serial number of your instrument is above those listed, or if this kit has been installed, disregard the instructions and use the components contained herein as direct replacements.

PARTS INCLUDED IN PAKTS PERLADSAENT KMT.

IMPORTANT: When soldering to the ceramic strins, use the silver-bearing solder supnia with this kit.

This kit is aividod into four parte.
A. Types 544, $\begin{array}{lll} & \text { RM544 } \\ & 546, & \text { PM546 }\end{array}$
547, RM547
B. Types $\begin{aligned} & 546, \\ & 547, \\ & \text { RM545 } 47\end{aligned}$
C. Types 556 , RM55S
D640
page 5
0205
D. Types 556 , RMi556
D840

Page 9

Page 13
Page 17

FIG. 1
A. TYPE 544, RM544

D286
546, RM546
547, RM547
Refer to Fig. 1 for ceramic strip locations.
() 1. Unsolder D286, a diode connected between CSD-22 (CSD-21 in type 544) and CSD-25, or pin 1 of V291.
() 2a. If D286 was connected to pin 1 of V291, relocate the end of the resistor from CSD-25 to CSD-26 and remove the bare wire between CSD-25 and CSD-26.
() 2b. If D286 was soldered to CSD-25, remove the bare wire between CSD-25 and pin 1 of V291.
() 3. Remove the bare wire between CSD-24 and Q303 collector.
() 4. Remove the bare wire between CSD-21 and Q303 emitter.
() 5. Remove the bare wire between CSE-23 and Q303 base.
() 6. Replace the bare wire between CSE-23 and CSE-28 with the 2.7 k resistor (R300) from the kit.
() 7. Unsolder the leads from Q284 socket.
() Remove Q284, 151-0108-00 and replace the three-pin Q284 socket with the six-pin socket from the kit. The key goes toward CSD. In early instruments with screw-mounted transistor sockets, use the plastic transistor socket mounting ring from the kit. (See Fig. 2)
() 8. Relocate the leads from CSE-26 to CSE-25 and the leads from CSE-25 to CSE-26.

NOTE: THIS VIEW IS FROM TRANSISTOR SIDE

$$
F / G 3
$$

() 9. Remove the "Q303" silkscreenirg from both sides of the chassis using lacquer thinner or similar sclvert. When nodification is completed Q303 will share the Q284 socket, and Q23S will occupy the former Q303 socket. The chassis may be marked accordingly if desired. (See Figs 2 and 3).

REFER TO FIG. 2 FOR STEFS A-10 THROUGH A-1?
10. Solder the leads to the six-pin socket as indicated below and in fig. 2:

Bare wire from CSD-17 to Q284 emitter.
() 11. Solder a 152-0185-00 diode (D286, from kit) between pin 1 of V291 (cathode end) and Q286 emitter. (See fig. 2).
() 12. If not already present, solder a 15?-0165-00 diode (D291, from kit) between a ground lug on V2S1 socket (cathode end) and pin 1 of V291 (not shown in fig. 2).
() 13. Solder a $1 \mathrm{k} 1 / 4 \mathrm{~W}$ resistor (R298, from kit) from a ground lug on the V291 socket to CSD-25.
() 14. Solder a bare wire from Q286 collector to CSD-25.
() 15. Solder a bare wire from Q286 base to CSD-21.
() 16. Solder a bare wire from Q303 collector to CSD-24.
() 17. Solder a bare wire from Q303 emitter to CSD-21.
() 18. Solder a bare wire from Q303 base to CSE-23.
() 19. Solder an 18k resistor (R297, from kit) between CSD-25 and CSE-25.
() 20. Remove transistor Q303 from its former socket.
Install transistors Q303 (removed above) and Q284 (151-0190-00, from kit) in the six-pin socket as indicated in Fig. 3.
() 21. Install transistor Q286 (151-0277-00, from kit) as indicated in Fig. 3. If the transistor has four leads, clip off the fourth (case) lead. THIS COMPLETES THE INSTALLATION.
() Moisten the back of the MODIFIED INSTRUMENT tag (from kit) and attach it to the proper Sweep Generator Schematic.
() Fasten the Insert pages in your Instruction Manual.
() Recalibrate the sweep timing as indicated in your Instruction Manual.

B. iMPE 546, RM546 D8́ 547, RM547

Refer to fig. 4 for ceramie strip incation.
() 1 Insolder and remove 36 located betwe n CSA-28 and CSA-30 or b-tween CSA-27 or $\mathrm{CJA}-28$ and pin-1 of V9..
() If D86 was connected between CSA-28 and CSA-30 ramye the vare wire detween CSAB-30 and pin-1 of VGi.
 Unsolder the end of Rỉ2 at CSN-C) (to be reconnected in later step to new Q84 socket) and remove the bare wire between CSA-c1 and Q34 base.
() 3. Unsolder and remove tre folliowing haro wer:
Between CSA-2; and 103 emitter.
() Retwoen CSA-2s and Qiu3 Lase.
, j betweer CSP-3: are 2103 coilector.
() 4. Unsoider the leais from Q84 sionet

$$
\text { F/G } 5
$$

REFER TO FIG. 5 FOR STEPS B-5 THROUGH B-19.
() 5. Remove Q84, and replace the 3 pin Q84 socket with the six pin socket from the kit. The key goes toward CSA. In early instruments with screw mounted transistor sockets, use the plastic transistor socket mounting ring from the kit. (See Fig. 5)
() 6. Remove the "Q103" silkscreening from both sides of the chacsis ustag lacquer thinner or similar solvent. When the mafification is completed Q103 will share the six-pin Q84 socket, and Q86 w1ll occupy the fomer Q103 socket. The chassis may be marked accordingly if derined Ste Figs 5 and 6).
() 7. Solder a 152-0185-00 diode (D86, from kit) between Q86 emitter and pin 1 of V91 (cathode end).
() 8. If not already present, solder a 152-0165-00 diode (D91, from kit) between a ground lug on V91 socket (cathode end) and pin 1 of V91 (not shown on Fig. 5).
() 9. Solder a bare wire between CSA-27 and Q86 base.
() 10. Solder a bare wire between CSA-21 and Q86 collector.
() 11. Solder a $1 k$ resistor (R97, from $k i t$) between $Q 86$ collector and a ground lug on the D91 socket.
() 12. Solder bare wire (from kit) between Q103 emitter and Q86 base.
() 13. Solder a sleeving-covered wire (from kit) between Q103 base and CSA-29.
() 14. Solder a sleeving-covered wire (from kit) between Q103 collector and CSB-31.
() 15. Solder the end of 100 or 180Ω resistor (R81, unsolder in step B-4) to Q84 base.
() 16. Solder the end of the 28.7 k or 50 k resistor R 82 , (unsoldered in steps 2 or 4) to Q84 base (other end to CSB-21).
() 17. Solder the bare wire from the ground lug near Q84 to Q84 emitter.
() 18. Solder the bare wire (from kit) from $\operatorname{CSA}-23$ to Q84 eollector.
() 19. Solder an 18 k resistor (R91, from kit) between CSA-21 and CSB-21.

F / G.
() 20. Remove transistor Q103 from its former socket.
() Install transistors Q103 (removed above) and Q84 (151-0190-00, from kit) in the six-pin socket as indicated in Fig. 6.
() 21. Install transistor Q86 (151-0277-00, from kit) as indicated in Fig. 6. If the transistor has four leads, clip off the fourth (case) lead.

THIS COMPLETES THE INSTALLATION.
() Moisten the back of the MODIFIED INSTRUMENT tag (from kit) and attach it to the proper Sweep Generator Schematic.
() Fasten the Insert pages in your Instruction Manual.
() Recalibrate the sweep timing as indicated in your Instruction Manual.
C. TYPE 556, RM556

D640
Refer to Fig. 7 for ceramic strip locations.
Remove the rail and components as necessary to gain access to the tansistor sockets.
() 1. Unsolder and remove D640, located between CSG-43 and CSH-47, or pin 1 of V661. Remove the rail and capacitor C681 as necessary to gain access.
() 2. If D640 was connected between CSG-43 and pin 1 of V661, add a bare wire between $\mathrm{CSH}-47$ and pin 1 of V661.
3. Unsolder and remove the following bare wires:
() Between CSG-43 and Q643 emitter.
() Between CSH-49 and Q643 base (SN 100-2137, 556 or 100-1067, R556).
() Between CSG-46 and Q643 base.
() Between CSG-47 and Q643 collector.
() Between CSG-43 and CSG-52.
() 4. Unsolder the $0.001 \mu \mathrm{~F}$ capacitor (C643) from Q643 collector (leave end connected to the ground lug on V661 socket).

FIG. 7

FRONT OF INSTRUMENT $\$$

Q563 Q643
FORMERLY Q563

NOTE: THIS VIEW 15 FROM TRANSISTOR SIDE aF CH145515 4 FRONT OF INSTRUMENT

$$
F G, \quad 9
$$

() 5. Remove Q563 and unsolder the leads from the three-pin Q563 socket. Remove the socket, and replace it with the six-pin socket from the kit. The flat side goes toward CSH.
() 6. Remove the Q643 silk-screening from both sides of the chassis, using lacquer thinner or similar solvent. When the modification is completed Q563 and Q643 will share the six-pin Q563 socket, and Q647 will occupy the old Q643 socket. The chassis may be marked accordingly if desired (see Figs. 8 and 9).
7. Solder the following wires and components as indicated in Fig. 8. Bare wire (from kit) from Q643 emitter to Q647 and to CSG-52. Bare wire (from kit) from Q643 base to CSH-49 (SN 100-2137, 556 or 100-1067, R556).
Bare wire (from kit) from Q643 base to CSG-46.
0.001 pF capacitor (C643, unsoldered in step C-4) from Q643 collector to ground lug on the V661 socket.
() Bare wire (from kit) from Q643 collector to CSG-47.
() Bare wire (from kit) from Q563 collector to CSG-49.
8. Solder an 18 k 5 W resistor (R644, from kit) between CSG-40 and CSH-44.
() 9. Solder a 1 k resistor (R642, from kit) between Q647 collector and a ground lug on V661 socket.
() 10. Solder a 152-0185-00 diode (D645, from kit) between Q647 emitter and CSH-47 (cathode to CSH-47).
() 11. Solder a bare wire (from kit) detween pin 3 of V661 and CSH-44.
() 12. Solder a bare wire (from kit) between Q647 collector and CSG-40.
() 13. Remove transistor Q643 from its former socket.
() Install transistors Q563 (removed in step C-5) and Q643 (removed above) in the six-pin socket as indicated in Fig. 9.
() 14. Install transistor Q647 (151-0277-00, from kit) as indicated in Fig. 9. If the transistor has four leads, clip off the fourth (case) lead.

THIS COMPLETES THE INSTALLATION.
() Moisten the back of the MODIFIED INSTRUMENT tag (from kit) and attach it to the proper Sweep Generator Schematic.
() Fasten the Insert pages in your Instruction Manual.
() Recalibrate the sweep timing as indicated in your Instruction Manual.

D. TYPE 556, RM556

0840
Refer to Fig. 10 for ceramic strip locations.
Renove the rail and components as necessary to gain access to the transistor sockets.
() 1. Unsolder ard rencve D840, locate between CSA-14 and CSB-14, or pin : of y8el.
() 2. If 3640 was cornacted netwoen CSA-14 and pin i of V8bi, dudd a bare wire notween css-14 aná pin 1 of V861.
3. Unsolder and renove the following bare wires:
() Between CSA-5 and CSA-14.
() Between Q763 emitter and Q773 emitter.
() Between CSB-12 and Q843 base. (SN 100-2137, 556 or 100-1067, R556)
() Between CSB-11 and Q843 base. (SN2138-up, 556 or 1068-up R556.)
() Between CSA-10 and Q843 collector.
() Between CSA -5 and Q843 emitter.
() Setween CSA-3 and Q763 collector.
() 4. Unsolder the $0.001 \mu \mathrm{~F}$ capacitor (C843) from Q843 collector (leave other end connected to ground lug on V861 socket).

*S/N 100-2137,556 OR 100-1067,R556 * * SN 2138-UP, 556 OR 1068-UP, R556

Q847 ($151,-0277-\infty$)
FORMERLY Q843

Q843 Q763 FORMERLY Q763
NOTE: THIS VIEW IS FROM TRANSISTOR SIDE OF CHASSIS FRONT OF INSTRUMENT
 F/G 12
\#\# Indicates change since last publication.

- with the eix-2rn socket from the ktt The key goes toward CSP
wencire trio gR4? silk. screening from Doth sides of tre chassis ustan
:achuer thimper oy similar solvent. When the modification is completed
Q 763 anc 0843 's? share the six-01n Q 263 socket and 0847 will occuoy
the 0:C O843 cocket The chassis may be marked accorsing?y if desired

A won resivtar , pro.. wisoideras in step D-5) from Q763 base to 4773 base
A (0ks resistor (R818) from 9763 emitter to CSB-6
6 zare wiro from 0763 emitter to SSA-3.
A -2me wh: trom 0847 base and U843 emitter to CSA-5
A Dare wire from Q843 to USB-12 (SN 100-2137, 556 or 100-1067, R556.)
A Dare winn from 0843 base to iSB-11 (SN 2138-40, 556 or 1068-up, R555.)
A bare wire from 4843 collector to CSA-10.
The 0.00iuF capacitor i, 843 , unsoldered in step 0.4 : to p843 collector
anje 0845 (inf-9195 00, from kit) between Q547 mitter and CSB-14
(varnode end)
S.iner the $18 k$ resistor (R884, from kit) between CSA-15 and CSB-15
Fi.iger the 1 k res istor (P842, from kit) between 0847 collector and
d zround lua on the $\% 861$ socket.
Solder a bare wire between $\angle S B-15$ and oin 3 of V8u:.

11. Solder a bare wire between CSA-15 and Q847 collector.
12. Remove transistor $Q 843$ from its former socket
Install 0763 (removed in step $0-5$) and $Q 843$ (removed above) as
indrated in Fig. i?
() 13. Install transistor 0847 (151-0277-00, from kit) as indicated in Fig 12 If the transistor has four leads, cllp off the fourth (case) lead.

THIS COMPLETES THE INSTALLATION.
Moisten the back of the MODIFIED INSTRUMENT tag (from kit) and attach it to the proper Sweep Generator Schematic.
() Fasten the Insert pages in your Instruction Manual
() Recailibrate the sweep timing as indicated in your Instruction Manual.

DF: Is
050-0479-01 Page

INSTRUCTION

MANUAL

MODIFICATION INSERT

Installed in Type \qquad SN \qquad Sweep Generator \qquad Date \qquad
This insert has been written to supplement the Instruction Manual for these instruments. The information given in this insert will supersede that given in the manual.

This Insert Material Copyright(C) 1969 by Tektronix, Inc., Beaverton, Oregon. Printed in the United States of America. All rights reserved. Contents of this insert may not be reproduced in any form without the permission of the copyright owner.

GENERAL INFORMATION

Gallium Arsenide diodes, PN 152-0161-00, are no longer available and are replaced with a transistor and associated circuitry in the circuit positions listed below.

Tyne	$544 / R$	D286	
pe	$546 / R$	D86	D286
Type	$547 / R$	D86	D286
iype	$556 / R$	D640	D840

CIRCUIT DESCRIPTION:

The circuitry is basically unchanged except that a transistor is used in place of the disconnect diode. When its base goes negative, the transistor cuts off, initiating a sweep. A voltage divider in the collector circuit establishes the collector voltage during cut off. At the end of the sweep, the transistor is turned on and discharges the timing capacitor.

Ckt.No. Ckt.No. Part Number Description
Types Types
544,546 556
547,/R's

D640
D641
D645
D840
D841
D845

Q84
(3) Q103

Q643
(4) Q86

Q284
(3) Q303
(4) Q 286
(6) R91
(5) R97
(6) R297 R844
(5) R298 R842

DIODES
Delete 152-0165-00
152-0185-00 Silicon Replaceable by $1 N 4152$
Delete
152-0165-00
152-0185-00 Silicon Replaceable by $1 N 4152$
TRANSISTORS 2N3904

151-0277-00 RCA 38520
151-0190-00 2N3904
151-0277-00 RCA 38520
RESISTORS

$308-0400-00$	$18 k$	5 W	5%
$315-0102-00$	1 k	$1 / 4 \mathrm{~W}$	5%
$308-0400-00$	18 k	5 W	5%
$315-0102-00$	1 k	$1 / 4 \mathrm{~W}$	5%
$315-0272-00$	2.7 k	$1 / 4 \mathrm{~W}$	5%

*Not changed

SWEEP TIMING CAPACITORS VALUES LOWERED TO IMPROVE SLOW SPEED ACCURACY

Effective Prod SN 1010
180-RM
The design center of Sweep Timing capacitor 290-0040-00 was changed from $10 \mu \mathrm{~F} \pm 3.5 \%$ to $9.975 \mu \mathrm{~F} \pm 3.5 \%$ to correct a slow speed timing error caused by a characteristic of MYLAR ${ }^{\circledR}$ capacitors at low frequencies. Under maximum tolerance conditions (both timing resistors and capacitors at maximum tolerances) the timing on the 1,2 , and 5 sec positions could be out of spec.

MYLAR, Reg. TM of E. I. du Pont de Nemours \& Co., Inc.
© 1966, Tektronix, Inc.
All Rights Reserved.

'A' AND 'B' TIMING SWITCH TIMING CAPACITORS CHANGED FOR GREATER STABILITY

Effective Prod SN 5310
Usable in SN 100-5309
Timing changes occurred with temperature variations of 0° to $50^{\circ} \mathrm{C}$. This was because impregnated MYLAR ${ }^{\oplus}$ timing capacitors returned to a different value after being heated or cooled to the environmental limits of the instrument.

The worst problem for stock capacitors occurred at $0^{\circ} \mathrm{C}$. Information taken by the capacitor department indicates approximately 0.2% capacitance change after warming to $80^{\circ} \mathrm{C}$ and cooling to $25^{\circ} \mathrm{C}$. If such a change happened every time the capacitor was heated, timing would change drastically. Even if the capacitor changed only once, this was enough to disrupt the 0.25% matching of the set (all values in the set didn't return to same level--it varied depending on value of capacitor). Also, reports from the field indicate some capacitors have changed by 2%.

Matched timing series capacitors C90E, F, G, H, J, and C290E, F, G, H, J were changed to a dry polycarbonate type, which returns to the same value after undergoing temperature extremes. The new capacitors also more closely match the temperature coefficient of the timing resistors.

Parts Removed:

$$
\begin{aligned}
& \text { C90E,F,G,H,J } \\
& \text { C290E,F,G,H,J }
\end{aligned}
$$

Parts Added:

$$
\begin{aligned}
& \text { C90E,F,G,H,J } \\
& \text { C290E,F,G,H,J }
\end{aligned}
$$

Capacitor, checked assembly of 285-0608-00, 285-0607-00, 285-0614-00, 285-0631-00, and 291-0040-00.

Capacitor, checked assembly of 285-0669-00, 285-0668-00, 285-0726-00, 285-0739-00, and 291-0040-00.

NOTE: Part number of the wired 'A' TIME/CM switch (SW290) changed from 262-0595-00 to 262-0595-01; part number of 'B' TIME/CM switch (SW90) changed from 262-0596-00 to 262-0596-01.

MYLAR, Reg. TM of E. I. du Pont de Nemours \& Co., Inc.
© 1966, Tektronix, Inc.
1 of 2
All Rights Reserved.

INSTALLATION

Parts Required: See 'Parts Added.'
a) Replace the entire set of MYLAR timing capacitors on the 'A' TIME/CM switch (C290E-J) with the new set of capacitors.
b) Replace the entire set of MYLAR timing capacitors on the 'B' TIME/CM switch (C90E-J) with the new set of capacitors.

A AND B TIMING RESISTORS CHANGED TO MAINTAIN SPECIFIED TOLERANCE

Effective Prod SN $5480 \quad$ Usable in SN 100-5479
Component selection is unable to provide sufficient quantities of 312-0641-00 timing resistor sets.

A selectable value $1 / 4 \mathrm{~W} 10 \%$ resistor was added in series with the 2.8 M timing resistor (nominal value 47k).

Parts Removed:
R90D-F 312-0641-00 Resistors, checked set
R290D-F 312-0641-00 Resistors, checked set
Parts Added:
R90D-F 312-0641-01 Resistors, checked set
R290D-F 312-0641-01 Resistors, checked set
INSTALLATION
Parts Required: 050-0338-01 Parts Replacement Kit
© 1966, Tektronix, Inc.
All Rights Reserved.

TIMING RESISTOR REPLACEMENT
For the following TEKTRONIX ${ }^{\circledR}$ Oscilloscopes:

Types	544/RM544	Serial Numbers	$100-1159$
546/RM546	Serial Numbers	$100-1369$	
547/RM547	Serial Numbers	$100-8289$	
556	Serial Numbers	$100-2409$	
R556	Serial Numbers	$100-1109$	

Timing resistor set, pn 312-0641-04, replaces timing resistor sets, pn 312-0641-00, 312-0641-01, 321-0641-02 and 312-0641-03 which are no longer available. The 312-0641-04 set uses metal-film precision resistors in place of the carbon-film resistors for improved yield and stability. Pn 312-0641-04 may also include selected 10% resistors to be installed in series with the appropriate precision resistors.

PARTS INCLUDED IN PARTS REPLACEMENT KIT:
$\begin{array}{ccc}\text { Ckt. No. Quantity } & \text { Part Number } \\ 1 \text { ea } & 312-0641-04\end{array}$
Description
Resistor, checked set

SCHEMATICS

Partial - Sweep Timing Switch diagram
(TYPICAL SWITCH CONFIGURATION)

NOTE: The following method is used to identify the TIMING switch terminals:

The wafers are numbered from the front to the rear.
The contact mounting holes are numbered relative to the index key as shown in the sample drawing. (The number of contact mounting holes will vary from switch to switch, but the method of numbering them is the same.)

The contacts have an ' F ' or ' R ' suffix which denotes that they are on the front or the rear of the wafer.

Example: W2-7R (denoted by * on drawing) is contact \#7 on the rear of wafer \#2.

Refer to the Drawing while performing the following steps.
() 1. If a 10% resistor is taped to the $7 M \Omega$ resistor in the kit, use it to replace the bare wire** between TIMING switch contacts W7-4R and $W 7-7 R$, located to the rear of the $7 M \Omega$ timing resistor.
() 2. Replace the $7 M \Omega$ timing resistor with the $7 M \Omega$ resistor from the kit.
() 3. If a 10% resistor is taped to the $2.8 \mathrm{M} \Omega$ resistor in the kit, use it to replace the bare wire** between contacts W7-5R and W7-8R, located to the rear of the $2.8 \mathrm{M} \Omega$ timing resistor.
() 4. Replace the $2.8 \mathrm{M} \Omega$ timing resistor with the $2.8 \mathrm{M} \Omega$ resistor from the the kit.
**or resistor, if pn 050-0338-00 or 050-0338-01 was previously installed.

INSTRUCTIONS (cont'd)
() 5. If a 10% resistor is taped to the $1.4 M_{\Omega}$ resistor in the kit, use it to replace the bare wire** between contacts W7-6R and W7-9R located to the rear of the $1.4 \mathrm{M} \Omega$ timing resistor.
() 6. Correct the applicable parts list and schematic diagrams in your Instruction Manual.
**or resistor, if pn 050-0338-00 or 050-0338-01 was previously installed.

SWEEP TIMING SWITCH RESISTORS CHANGED TO FACILITATE TIMING RESISTOR SELECTION Effective Prod SN 8290

Timing resistors must be $\pm 1 / 8 \%$ value. The resistors received from vendors are $\pm 1 \%$ value. Therefore a very large number of resistors must be purchased to get a few useful ones.

A selected series resistor was added in series with the 7M timing resistor on the Sweep Timing switch.

Parts Replacement Kit 050-0338-01 is available to facilitate the replacement set PN 312-0641-00 and 312-0641-01 in pre-modified instruments.

Parts Removed:

R290D,E,F,G
312-0641-01

Resistors, checked set (1) 309-0438-00,
(1) 309-0443-00, (1) 309-0446-00 with series pad resistor 47 k nominal value. Resistors matched within 0.25\%

Parts Added:

$$
\begin{array}{ll}
\text { R290D, E,F,G,H 312-0641-02 } & \text { Resistor, checked set (1) 309-0438-00, } \\
& \text { (1) } 309-0443-00 \text { with series pad res istor } \\
& 39 \mathrm{k} \text { nominal value, (1) 309-0446-00 with } \\
& \text { series pad resistor 47k nominal value. } \\
& \text { Resistors matched within } 0.25 \%
\end{array}
$$

© 1966, Tektronix, Inc.
All Rights Reserved.

SWEEP GENERATOR TIMING RESISTORS CHANGED TO METAL FILM TO IMPROVE OHMIC STABILITY

Effective Prod SN 10260
The currently used carbon timing resistors vary in value for varying load, shelf life, and temperature.

The carbon film timing resistors were changed to metal film. Parts Replacement Kit 050-0338-01 is available to facilitate the replacement of timing resistors 312-0641-03 in pre-modified instruments.

Parts Removed:

R290D, E,F,G,H 312-0641-02
R90D, E, F,G,H

Resistor, checked set (1) 309-0438-00,
(1) 309-0443-00 w/series pad resistor 39 k nominal value, (1) 309-0446-00 w/series pad resistor 47 k nominal value. Resistors matched within 0.25% spread.

Parts Added:
R290D,E,F,G,H 312-0641-03
R90D, E,F,G,H

Resistor, checked set (1) 323-0495-00,
(1) 323-0756-00 w/series pad resistor 39 k nominal value, (1) 323-0524-00 w/series pad resistor 47 k nominal value. Resistors matched within 0.25% spread.

DELAY PICKOFF RELIABILITY IMPROVED
Effective Prod SN 1010
Usable in SN 100-1009
100-179
The PIV of D433 was insufficient to withstand the reverse DC bias and trigger of the External Delay Input. D433 was changed from a 30V PIV diode 152-0141-00 to a 200 V PIV diode $152-0061-00$.

Parts Removed:
D433 152-0141-00 Diode, 1N3605
Parts Added:
D433
152-0061-00
Diode, 1N6061

INSTALLATION
Parts Required: See 'Parts Added.'
Replace D433 on the 'B' Sweep chassis with a 1N6061, 152-0061-00, diode. D433 is located between CSD-49 and CSC-49.

© 1966, Tektronix, Inc.
All Rights Reserved.

TUNNEL DIODE REPLACEMENT

For the following TEKTRONIX® Type Instruments:

Type 3B1 Time-Base Unit
Type 3B2 Time-Base Unit
Type 3B3 Time-Base Unit
Type 21A Time-Base Unit
Type 22A Time-Base Unit
Type 283/R283 Real-Time Adapters
Type 422/R422 Oscilloscopes
Type 491/R491 Spectrum Analyzers
Type 546/RM546 Oscilloscopes
Type 547/RM547 Oscilloscopes
Type 556/R556 Oscilloscopes
-- Serial Numbers
$101-\mathrm{up}$
$100-\mathrm{up}$
$100-\mathrm{up}$
$7000-\mathrm{up}$
$7000-\mathrm{up}$
B010100-up
$100-\mathrm{up}$
B010100-up
$100-\mathrm{up}$
$100-\mathrm{up}$
$100-\mathrm{up}$

100-up
100-up
7000-up
7000-up
B010100-up
B010100-up
100-up
100-up

Tunnel Diode, pn 152-0402-00, replaces Tunnel diodes, pn 152-0081-00 and pn 152-0402-00. The new diode is identical in all respects with the diode being replaced except that the anode and cathode configuration may be reversed.

PARTS INCLUDED IN PARTS REPLACEMENT KIT:
Quantity Part Number
Description
1 ea 152-0402-00
Diode, tunnel, 2.2mA, 25pF

INSTRUCTIONS

() Replace the defective diode with the new one from the kit, noting the direction of the cathode as indicated by the arrow on the case. See drawing.

() Correct the Electrical Parts List in your Instruction Manual.

With a 20 V signal from a high impedance source (such as the Calibrator) applied through patch cords to 'A' External trigger input and the vertical plug-in, oscillations appear to ride on top of the vertical signal.

The 'A' Sweep Trigger circuit was generating high frequency oscillations with a 20 V signal applied to the External trigger input via high capacity leads (patch cords) and from a high impedance generator (Calibrator).

R220 and R222 were changed from 47Ω to 100Ω to eliminate the high frequency oscillation.

INSTALLATION
Parts Required: See 'Parts Added.'
a) Replace R220 ($47 \Omega 1 / 4 W$), located between pin 2 of V224 and the lower terminal of the 'A' + or - SLOPE switch, with a $100 \Omega 1 / 4 \mathrm{~W}$ resistor.
b) Replace R222 ($47 \Omega 1 / 4 \mathrm{~W}$), located between pin 7 of $V 224$ and the 'A' + or - SLOPE switch, with a 100Ω 1/4W resistor.
'A' SWEEP GENERATOR FAST SWEEP GAIN ADJ CENTERED AND V1184 SOCKET REWIRED Effective Prod SN 1010 180-RM

The 'A' Sweep Generator fast sweep gain adjustment C299 was adjusting near high capacity end. The C299 value was increased from 3-12pF to $4.5-25 \mathrm{pF}$ to allow adjustment closer to mid-range.

Sections A and B of the Position-Indicator amplifier tube V1184 on the VA chassis were rewired to ease production wiring of the chassis only.

Parts Removed:
C299 281-0007-00 Capacitor, 3-12pF cer
Parts Added:
C299 281-0010-00 Capacitor, 4.5-25pF cer
(C) 1966, Tektronix, Inc.

All Rights Reserved.

TIME BASE 'A' UNBLANKING CIRCUIT RESISTOR ADDED TO ASSURE 'B' TRACE IS BRIGHTER THAN 'A' TRACE AT SOME SWEEP SPEEDS

Effective Prod SN 5680
Usable in SN 1880-5679 (Type 547) 240-5679 (Type RM547)
Also usable below the above-1isted serial numbers if M8950 is installed.
In some instruments ' B ' intensity is less than ' A ' when sweep speeds are identical and brightness is maximum.

Variation of bias voltages in 6DJ8 tubes used in the 'A' and 'B' sweep unblanking cathode follower circuits.

A 1 k metal film resistor was added between the collector of Q373 and the junction of C380, R380, and R374.

Parts Added:
R377 321-0193-00 Resistor, prec, $1 \mathrm{k} 1 / 8 \mathrm{~W} 1 \%$ metal film
INSTALLATION
Parts Required: See 'Parts Added' and part listed below R380 302-0473-00 Resistor, comp, 47k 1/2W 10\%
a) Remove the \#22 bare wire between the collector of Q373 and CSE-44.
b) Move the anode (unbanded) lead of D372 to CSD-45.
c) Remove R380 ($47 \mathrm{k} 1 / 2 \mathrm{~W} 10 \%$) located between the collector of Q373 and CSD-43 and install a new R380 between CSE-43 and CSD-43.
d) Install R377 (ak 1/8W 1\%) between the collector of Q373 and CSE-44.

'A' SWEEP CHASSIS LAYOUT (partial)

ALTERNATE TRACE SYNC AMPLIFIER MODIFIED TO ASSURE

 PROPER ALT SWEEP OPERATION AT LOW LINEEffective Prod SN 1728
237-RM
modified out of sequence:

561	1131	1262	1399	1570	$1647-9$	$1695-7$
812	1140	1302	1411	$1572-3$	1655	1699
941	1143	1352	1413	$1575-6$	1657	$1704-6$
1040	1148	1355	$1454-6$	$1578-9$	1676	$1708-9$
1045	$1190-1$	1360	1458	1600	$1680-1$	$1712-3$
$1072-3$	1197	$1362-3$	1493	$1602-8$	1686	1715
1075	1210	$1391-2$	$1495-6$	1640	1688	$1717-26$
1078	1219	1397	1498	$1642-4$	1693	

If a Type 1 Al is used in the Type 547 , the Type 1 Al will not always alternate when 'B' INTENSIFIED BY 'A' ALT mode is used. The plug-in may be operating properly, but the fault is with the Type 547 as follows:

The fast-falling trailing edge of the sync pulse from the sweep switching multi causes L760 (plug-in connector schematic) to kick back a high enough positive pulse to overcome the cutoff bias on V764B. This generates a second sync pulse which switches the plug-in back to its original state so fast that it appears not to have switched at all.

With a Type 547/1A2 combination, a slightly different situation exists. The problem here is centered around the bias condition of V764B. When this same trouble is encountered with the Type 1A2 it is probably not alternating at all. Differences in line voltage, $V 764$ bias resistors, and V764B are the basic reasons for the difficulty.

To correct these difficulties, the bias on V764 is centered and the tolerance is tightened by changing R761 to 4.75 k and R 762 to 69.8 k . The additional switching pulse resulting from the stored energy in L760 is eliminated by adding a diode (D760) across L760.

Parts Removed:

R761	$315-0475-00$	Resistor, 4.7 k	$1 / 4 \mathrm{~W} 5 \%$
R762	$301-0683-00$	Resistor, 68 k	$1 / 2 \mathrm{~W} 5 \%$

Parts Added:

D700	152-0075-00	Diode, silicon
R761	$321-0258-00$	Resistor, $4.75 \mathrm{k} 1 / 8 \mathrm{~W}$ prec.
R762	$232-0370-00$	Resistor, $69.8 \mathrm{k} 1 / 2 \mathrm{~W}$ prec.

© 1966, Tektronix, Inc.
All Rights Reserved.
11-6-70
1 of 2
11-6-70
111.01

INSTALLATION

Parts Required: See 'Parts Added.'
a) Replace R 671 , a $4.7 \mathrm{k} 1 / 4 \mathrm{~W}$ resistor located between the rear ground lug of V764 and the ceramic strip just above it, with a $4.75 \mathrm{k} 1 / 8 \mathrm{~W} 1 \%$ resistor.
b) Replace R 762 , a $68 \mathrm{k} 1 / 2 \mathrm{~W} 5 \%$ resistor located between the ceramic strips above V764, with a $69.8 \mathrm{~K} 1 / 2 \mathrm{~W} 1 \%$ resistor.
c) Solder $D 760$, a 6075 germanium diode across and in parallel with the coil L760, located next to R762. Solder the cathode end toward outside of the instrument.

SWEEP STEERING DIODES

For Tektronix Types 547 and R547 Oscilloscopes
Serial Numbers 100-12470

Gallium Arsenide diodes, PN 152-0161-00, are no longer available and are replaced in the D462 and D472 positions with silicon diodes, PN 152-0153-00. When replacing either D462 of D472 it is necessary to replace the other diode in order to maintain circuit symetry.

NOTE: If the Serial number of your instrument is above those listed, or if this kit has been installed, disregard the instructions as PN 152-0153-00 is a direct replacement.
(C) 1969, Tektronix, Inc.

Quantity	Part Number	Ckt.No.	Description
2 ea	$152-0153-00$	D462,D472	Diode, silicon
1 ea	$214-0210-00$		Spool, w/3 ft silver-bearing solder

INSTRUCTIONS

NOTE: When soldering to the ceramic strips use the silver-bearing solder supplied with this kit.
() 1. Unsolder and remove the D462 and D472, located near Q543 and connected between a ceramic strip notch and a terminal post.
() 2. Install the diodes from the kit in the same position. The cathode ends go to the post.

THIS COMPLETES THE INSTALLATION
() Change the part numbers for D462 and D472 in your Instruction Manual.

TL: 1s

HORIZONTAL DISPLAY SWITCH CHANGED TO MINIMIZE DRIFT WHEN SWITCHING TO EXTERNAL HORIZONTAL MODE

Effective Prod SN 4270
Usable in SN 100-4269
Horizontal drift occurred after switching to the EXT HORIZ mode. Thermal drift was occurring because the plate dissipation of V514A was not the same in the EXT HORIZ mode as it was in the other HORIZONTAL DISPLAY modes.

An extra wafer was added to the rear HORIZ DISPLAY switch to ground the junction of R524-R525 in all positions of the HORIZ DISPLAY switch except EXT HORIZ X1 and X10. This allows V514A plate dissipation to remain the same in all HORIZ DISPLAY modes. See 'After' schematic on following pages.

NOTE: Wafers of rear HORIZ DISPLAY switch in the manual schematic are now numbered 5 to 11 and 1 to 2 (mag section). These will be renumbered 1 to 10.

This method proves to be impractical as a field solution. An alternate method, outlined in the installation procedure below, provides a suitable field installation.

Parts Removed:
SW530

$$
\begin{aligned}
& \text { 260-0535-00 } \\
& \text { (subpart of } \\
& 262-0601-00 \text {) }
\end{aligned}
$$

Switch, raw, rotary, HORIZ DISPLAY, 7 sec. 8 position, 30° type F w/concentric 2 sec., 4 position, 30° type F

Parts Added:

SW530 260-0796-00
Switch, raw, rotary, HORIZ DISPLAY, 8 sec . 8 position, 30° type F w/concentric 2 sec , 4 position, 30° type F

INSTALLATION
Parts Required:

D525.1	152-0061-00	Diode, silicon, 100mA 175PIV
D526.1	$152-0032-00$	Diode, zener, $105 \mathrm{~V} 1 / 4 \mathrm{~W} \pm 10 \%$
R527.1	$321-0381-00$	Resistor, prec, $90.9 \mathrm{k} 1 / 8 \mathrm{~W} \pm 1 \%$ metal film

HORIZONTAL AMPLIFIER R545 CHANGED TO REDUCE GAIN
Effective Prod SN $5130 \quad$ Usable in SN 100-5129
X10 timing was too long. Too much gain through the Horizontal Amplifier, resulting in insufficient range of adjustment for X10 Cal Adjust.

R545 was changed from 8.87 k to 8.25 k .
Parts Removed:
R545 323-0284-00 Resistor, 8.87k 1/2W 1\%
Parts Added:
R545 323-0281-00 Resistor, 8. 25k 1/2W 1\%
INSTALLATION
Parts Required: See 'Parts Added.'
Replace R545 with an $8.25 \mathrm{k} 1 / 2 \mathrm{~W} 1 \%$ resistor.
© 1966, Tektronix, Inc. All Rights Reserved.

HORIZONTAL AMPLIFIER RC NETWORK ADDED TO PROTECT CRT PHOSPHOR FROM POSSIBLE 'TURN-ON-FLASH' BURNS

Effective Prod SN 5680
Usable in SN 100-5679
Bright filash occurs on the CRT face when time delay relay turns on the regulated power supplies.

The CRT high voltages are delayed after the regulated supplies come on, but the three voltages, namely: cathode, grid and anode voltages come on in sequence. Because of the RC time constant of the control grid circuit, it comes on later than cathode voltage, so momentarily grid No. 2 (first anode), grid No. 1 (control grid), and cathode form a triode that causes the control grid to draw grid current, thus creating an electron cloud near the first anode region. When the anode accelerating voltage comes on, it attracts this electron cloud and forms an electron beam which causes the CRT turn-onflash and associated phosphor burns. This situation is aggravated by the 'high-contrast' phosphor, which is much more susceptible to burning than conventional phosphors.

An RC charging circuit consisting of R562 and C562 was added in series with the base of Q564 and -150 V . This will bias the base in a negative voltage region for approximately 4 s during turn-on, causing the electron beam to strike the horizontal plate, thus scattering and diffusing it, resulting in no harm to the phosphor. D542 and D561 were changed from 6075 germanium to 6061 silicon diodes to avoid reverse breakdown during turn-on. An additional feature of the added circuit is that the base voltage of Q564 is more constant, making it a better grounded base situation and improving the Sweep linearity.

Parts Removed:
D542
D561
152-0075-00
Diode, germanium 6075

Parts Added:
D542
D561
C562
152-0061-00
290-0214-00
Diode, silicon 6061

R562
302-0333-00
Capacitor, EMT 100 HF 250V
Resistor, comp, 33k 1/2W 10\%
Wire, solid, \#22 white-orange 6" (175-0522-00)
INSTALLATION
Parts Required: See 'Parts Added.

INSTALLATION (continued)

a) Disconnect one lead of D541, a zener diode, and the white-brown wire from CSG-77 and reconnect to CSG-78.
b) Disconnect the two (2) white-brown-black-brown wires from CSF-77 and reconnect to CSF-78.
c) Add a $6^{\prime \prime}$ length of white-orange \#22 solid wire between CSE-76 and CSG-77.
d) Relocate R 540 , an 8.2 k 1 W resistor, by removing from between CSF-77 to CSG-77 and reinstalling between CSF-78 to CSG-78.
e) Add R562, a $33 \mathrm{k} 1 / 2 \mathrm{~W}$ resistor, between CSE-76 and the base of Q564.
f) Add C562, a $10 \mu \mathrm{~F} 250 \mathrm{~V}$ capacitor, between CSE-86 and CSG-77, with positive end of capacitor at CSG-77.
g) Replace D542, a 6075 germanium diode, located between CSD-64 and CSE-64 (cathode or banded end toward CSE-64), with a 6061 silicon diode.
h) Replace D561, a 6075 germanium diode, located between CSD-82 and CSE-82 (cathode or banded end toward CSE-82), with a 6061 silicon diode.

SWEEP CHASSIS~

2 of 2

CALIBRATOR RESISTORS CHANGED TO 1/2\% TOLERANCE TO

 FACILITATE CALIBRATION AND REDUCE POSSIBLE ERROREffective Prod SN 2890
The combined possible error of the $\pm 3 \%$ Calibrator and the $\pm 3 \%$ plug-in attenuator was felt to be greater than was necessary.

The $\pm 1 \%$ Calibrator divider resistors were replaced with $\pm 1 / 2 \%$ resistors.
Parts Removed:
SW950 262-0599-00 Switch, wired, CALIBRATOR
The following are subparts of the wired CALIBRATOR switch:

R950	$323-0289-00$	Resistor, prec, $10 \mathrm{k} 1 / 2 \mathrm{~W} 1 \%$	
R951	$323-0635-00$	Resistor, prec, $6.66 \mathrm{k} 1 / 2 \mathrm{~W}$	1%
R952	$323-0634-00$	Resistor, prec, $1.789 \mathrm{k} 1 / 2 \mathrm{~W}$	1%
R953	$323-0633-00$	Resistor, prec, $801 \Omega 1 / 2 \mathrm{~W}$	1%
R954	$323-0632-00$	Resistor, prec, $452 \Omega 1 / 2 \mathrm{~W}$	1%
R955	$323-0631-00$	Resistor, prec, $146.1 \Omega 1 / 2 \mathrm{~W} 1 \%$	
R956	$323-0630-00$	Resistor, prec, $72.4 \Omega 1 / 2 \mathrm{~W} 1 \%$	
R957	$323-0629-00$	Resistor, prec, $43.1 \Omega 1 / 2 \mathrm{~W} 1 \%$	
R958	$323-0628-00$	Resistor, prec, $28.6 \Omega 1 / 2 \mathrm{~W}$	1%
R962	$323-0627-00$	Resistor, prec, $21.4 \Omega 1 / 2 \mathrm{~W}$	1%

Parts Added:
SW950 262-0731-00 Switch, wired, CALIBRATOR
The following are subparts of the wired CALIBRATOR switch:

R950	$323-0709-01$	Resistor, prec, $10.048 \mathrm{k} 1 / 2 \mathrm{~W} \pm 1 / 2 \%$	
R951	$323-0708-01$	Resistor, prec, $6.68 \mathrm{k} 1 / 2 \mathrm{~W} \pm 1 / 2 \%$	
R952	$323-0707-01$	Resistor, prec, $1.782 \mathrm{k} 1 / 2 \mathrm{~W} \pm 1 / 2 \%$	
R953	$323-0706-01$	Resistor, prec,	$800 \Omega 1 / 2 \mathrm{~W} \pm 1 / 2 \%$
R954	$323-0705-01$	Resistor, prec,	$452 \Omega 1 / 2 \mathrm{~W} \pm 1 / 2 \%$
R955	$323-0704-01$	Resistor, prec,	$146 \Omega 1 / 2 \mathrm{~W} \pm 1 / 2 \%$
R956	$323-0703-01$	Resistor, prec, $72.4 \Omega 1 / 2 \mathrm{~W} \pm 1 / 2 \%$	
R957	$323-0702-01$	Resistor, prec, $43.1 \Omega 1 / 2 \mathrm{~W} \pm 1 / 2 \%$	
R958	$323-0701-01$	Resistor, prec, $28.6 \Omega 1 / 2 \mathrm{~W} \pm 1 / 2 \%$	
R962	$323-0700-01$	Resistor, prec,	$21.4 \Omega 1 / 2 \mathrm{~W} \pm 1 / 2 \%$

© 1966, Tektronix, Inc.
All Rights Reserved.

CALIBRATOR ZENER DIODE REPLACED WITH RESISTOR TO IMPROVE RELIABILITY AND REDUCE COST.

Effective Prod SN 3150
Usable in SN 100-3149
D948, a 7 V zener diode, was failing occasionally resulting in an inoperative or erroneous Calibrator.

D948 was replaced with a $6.8 \mathrm{k} 1 / 4 \mathrm{~W} 5 \%$ resistor to improve reliability and reduce cost. The advertised Calibrator risetime was not changed, however, the test risetime limits were changed from $0.3 \mu \mathrm{~s}$ to $0.4 \mu \mathrm{~s}$ maximum (0.2 mV to 5 V) and from $0.5 \mu \mathrm{~s}$ to $0.6 \mu \mathrm{~s}$ maximum (10 V to 100 V).

Parts Removed:
D948 152-0004-00 Diode, zener type 1N707 (Hoffman), type 1N763 (Transitron)

Parts Added:
R948 315-0682-00 Resistor, comp, 6.8k 1/4W 5\%

INSTALLATION

Parts Required: See 'Parts Added.'
Replace D948 (7V zener diode) with resistor R948 ($6.8 \mathrm{k} 1 / 4 \mathrm{~W}$). D948 is located on the power supply chassis just behind the Cal. Ampl. potentiometer R943.

© 1966, Tektronix, Inc. All Rights Reserved.

CALIBRATOR RESISTORS CHANGED TO REDUCE COST

Effective Prod SN 10200
Higher quality and lower cost resistors were made available to replace the $1 / 2 \mathrm{~W}, 1 / 4 \%$ resistor used in the Calibrator.

R964 and R965 were changed from a TC-5 to a TC-9. Temperature coefficient T5 is $\pm 25 \mathrm{PPM}, 25^{\circ} \mathrm{C}$ to $+145^{\circ} \mathrm{C}$, and TC-9 is $\pm 25 \mathrm{PPM},-55^{\circ} \mathrm{C}$ to $+165^{\circ} \mathrm{C}$.

Parts Removed:
R964 323-0638-00 Resistor, 50k 1/2W 1/4\%
R965 323-0637-00 Resistor, 50 1/2W 1/4\%
Parts Added:
R964 323-0638-06 Resistor, 50k 1/2W 1/4\%
R965 323-0637-06 Resistor, $50 \Omega 1 / 2 \mathrm{~W} 1 / 4 \%$
© 1966, Tektronix, Inc.
All Rights Reserved.

POSITION NEON ILLUMINATION DUE TO GRATICULE LIGHTS ELIMINATED
Effective Prod SN 390
Usable in SN 100-389
The position neons appear lighted due to the light from the graticule filtering through the neon holders. Add two insulating graticule light sleeves.

Parts Added:
2 ea. 166-0328-00 Sleeves, graticule light
INSTALLATION
Parts Required: See 'Parts Added.'

1) Loosen the graticule light mounting nuts and slide the graticule lights back and to the side.
2) Install the new light sleeves over the graticule lights.
3) Reinstall the graticule lights, making sure they stick out no further than the indentations in the CRT eyebrow will allow.
© 1966, Tektronix, Inc.
All Rights Reserved.

ACCESSORIES CHANGED TO PERMIT PATCHING WITHOUT ADAPTERS

Effective Prod 2-26-65
(also RM)
The present patch cords and/or adapters were changed/added as indicated below to permit patching from BNC to BNC connectors, or from BNC to UHF (or banana jack) connectors without the use of adapters.

Also, these patch cords are set up as optional accessories:
6 inch red BNC to BNC 012-0085-00
6 inch red BNC to banana plug 012-0089-00
6 inch black BNC to BNC 012-0084-00
6 inch black BNC to banana plug 012-0088-00
18 inch black BNC to BNC 012-0086-00
18 inch black BNC to banana plug 012-0090-00
Parts Removed:

131-0033-00
012-0031-00
Parts Added:

Adapter, binding post Patch cord

$$
\begin{array}{ll}
\text { 012-0087-00 } & \text { Patch cord, BNC to BNC } \\
012-0091-00 & \text { Patch cord } \\
012-0092-00 & \text { Jack, BNC post }
\end{array}
$$

TRANSISTOR SOCKETS CHANGED

Effective Prod SN 1160
180-RM
A better and more economical way to mount transistor sockets was provided by replacing sockets with new snap-in type. Also see M9141.

Parts Removed:
35 ea. 136-0095-00 Socket, 4-pin transistor
Parts Added:
29 ea. 136-0181-00
Socket, 3-pin transistor 6 ea. 136-0182-00 Socket, 4-pin transistor 35 ea. 354-0234-00 Ring, transistor socket
© 1966, Tektronix, Inc. All Rights Reserved.

CABINET LATCH RETAINER RING REPLACED FOR IMPROVED RELIABILITY

Effective Prod SN 4560 (RM Only)
Usable in SN 100-4559
Cabinet latch screws pull loose from the front panel. This problem is caused by the phosphor bronze split retainer ring coming off the cabinet latch screw. It could occur, for example, if screw is pulled while being turned, or screw is used to pull instrument from cabinet.

The phosphor bronze retainer rings were replaced by stainless steel split retainer rings. The new rings are bent slightly to facilitate installation.

Parts Removed:
4 ea. 354-0236-00
Ring, retainer, split, 0.344 OD $\times 0.213$ ID \times 0.013 phosphor bronze

Parts Added:
4 ea. 354-0294-00
Ring, retainer, split, 0.375 OD x 0.209 ID x 0.025 stainless steel

INSTALLATION
Parts Required: See 'Parts Added.'
Replace the phosphor bronze split retainer ring on each of the four cabinet latch screws with a stainless steel retainer ring. Carefully "screw" the ring over the threads with your fingers (or gently with your pliers). Don't force the ring over the threads, as this may spread it too much.

NOTE: If you have a number of retainer rings to install, you may order a special tool from Southco Corp. (see drawing below). The part number is $1 / 4-20-58-0-4586-13$.

All Rights Reserved.

MOTOR BASE CHANGED TO IMPROVE GROUND CONNECTION
Effective Prod SN 6300
Usable in SN 100-6299
The present motor base grounding is not adequate, due to cold flow of the plastic between the ground post and the mounting plate.

The method used to attach the ground post in the motor base assemblies was changed. The new mounting eliminates plastic between the ground post and the mounting plate and provides a metal-to-metal ground connection. To insure a good fit between mating parts, the size of the mounting screws was changed from \#4 to \#6, and the clearance holes in the mounting plate and shell were increased to \#6.

To prevent corrosion between new ground post and mounting plate, the plate was changed from etched aluminum to cad-plated steel.

Parts Removed:

$$
\begin{array}{ll}
131-0150-01 & \text { Motor base,+Type } 547 \\
131-0102-01 & \text { Motor base, Type RM547 }
\end{array}
$$

Parts Added:

$$
\begin{array}{ll}
131-0572-00 & \text { Motor base, Type } 547 \\
131-0102-02 & \text { Motor base, Type RM547 }
\end{array}
$$

INSTALLATION
Parts Required: See 'Parts Added.'
Replace the motor base connector with the new type.

BOTTOM RAIL ANTI-SLIDE FEET ADDED TO PREVENT SLIDING OFF OF SCOPE-MOBILES*

Effective Prod SN 6730
Usable in SN 100-6729
Instrument can slide off SCOPE-MOBILE when shelf is tilted in extreme forward position.

Two anti-slide feet were added to each bottom rail and the transformer mounting bracket was modified to allow clearance for the mounting hardware.

Parts Removed:
2 ea. 122-0108-00 Angle, rail bottom
210-0010-00 Lockwasher, int. \#10
212-0509-00 Screw, $10-32 \times 5 / 8$ BHS pozidriv
406-0928-00 Bracket, transformer, 0.063 al.
Parts Added:
8 ea. 212-0071-00 Screw, 8-32 x 1" Fil-HS pozidriv
4 ea. 348-0052-00 Foot, anti-slide molded neoprene
INSTALLATION
Parts Required: See 'Parts Added.'
a) Remove the bottom rails from the instrument.
b) Drill four holes in each rail in the locations shown in Fig. 1 using a \#19 drill.
c) Tap these holes using an 8-32 tap.
d) Countersink the existing hole indicated in Fig. 1 with a 100° countersink. Do this only on the rail to be installed over the power transformer.
e) Temporarily hold the rail with the countersunk hole in place over the transformer. Using one of the holes drill in step 2 as a guide, mark the transformer support and drill a $1 / 4^{\prime \prime}$ clearance hole for the foot-mounting hardware. See Fig. 1.
f) Reinstall the bottom rails and then install the anti-slip feet.

10\% AND 20\% ZENER DIODES CHANGED TO STANDARD 5\% UNITS

Effective Prod SN 8630

NOTE: All diodes in any one instrument will not necessarily change at the same time. The effective SN furnished will be when the final diode in the particular instrument is changed.

Zener diode values are at present widely scattered in both voltage and tolerance. The proposed modifications will standardize all $400 \mathrm{~mW}, 1 \mathrm{~W}, 1.5 \mathrm{~W}$, and 10 W zeners, now listed as 10% and 20%, to 5% tolerance, and change the majority of non-standard parts to standard JEDEC units. One of these changes is to minimize the number of active part numbers. There will be no increase in cost for the 5\% zeners.

Voltage tolerance for 10% and 20% zener diodes was changed to 5% for all uses. At the same time, all 250 mW zener diodes were changed to 400 mW . Refer to parts removed and added list for details.

Parts Removed:

D541
D297
D97
D277 D76
D693 D1109

152-0067-00
152-0118-00
152-0119-00
152-0157-00
152-0228-00

152-0022-00
152-0294-00
152-0281-00
152-0288-00
152-0305-00
152-0305-00

Diode, 1M25Z10 25V $\pm 10 \%$
Diode, 1 N 3033 36V $\pm 20 \%$
Diode, 1N969A 22V $\pm 10 \%$
Diode, .4M140Z10 140V $\pm 10 \%$
Diode, 1M105Z10 105V $\pm 10 \%$

Parts Added:

D541
D297

> D97

D277
D76
D693 D1109

Diode, 1N3045B 110V $\pm 5 \%$
See M12258.
© 1966, Tektronix, Inc.
All Rights Reserved.

CABINET LATCH ASSEMBLY CHANGED TO A MECHANICALLY MORE RELIABLE ASSEMBLY

 Effective Prod SN 12800The panel holes were changed to accommodate the new latches.
Parts Removed:

$$
\begin{array}{ll}
387-0761-00 & \text { Plate, cabinet side, left } \\
387-0762-00 & \text { Plate, cabinet side, right } \\
386-1093-00 & \text { Plate, cabinet bottom }
\end{array}
$$

Parts Added:

$$
\begin{array}{ll}
387-0761-04 & \text { Plate, cabinet side, left } \\
387-0762-04 & \text { Plate, cabinet side, right } \\
386-1093-03 & \text { Plate, cabinet bottom }
\end{array}
$$

© 1970, Tektronix, Inc.
All Rights Reserved.

CERAMIC STRIPS CHANGED
Effective Prod SN 15280
All $3 / 4^{\prime \prime}$ wide ceramic strips were replaced by $7 / 16^{\prime \prime}$ wide strips for standardization.

Ceramic strips were replaced where used as follows:

Parts Removed:
3/4" ceramic strips
124-0100-00
124-0086-00
124-0087-00
124-0088-00
124-0089-00
124-0090-00
124-0091-00

Notches

1
2
3
4
7
9
11

Parts Added:
7/16" ceramic strips
124-0118-00
124-0119-00
124-0092-00
124-0120-00
124-0094-00
124-0095-00
124-0106-00

To maintain approximately the same height between the chassis and the top of the ceramic strips, replace spacers used to mount $3 / 4^{\prime \prime}$ ceramic strips with spacers listed below:

Spacer used with $3 / 4^{\prime \prime}$ strip

Replacement spacer used with 7/16" strip

361-0039-00
361-0039-00
361-0392-00
.406
. 406
.593

To provide adequate stud length on the $7 / 16^{\prime \prime}$ strips for the longer replacement spacers, the $7 / 16^{\prime \prime}$ ceramic strips listed above were modified by replacing the cera-mount studs, 355-0046-00 (. 777 overall length) with new longer studs, 355-0158-00 (1.108 overall length).
© 1970, Tektronix, Inc.
12-22-72
All Rights Reserved.

BLANK PLUG-IN
For all Tektronix Oscilloscopes using Letter or !1' Series Plug-Ins -- including Types 581/A, $585 / \mathrm{A}$, and RM585A with a Type 81 Adapter.

Modification Kit, PN 040-0065-0n, with the enćlosed information allows the construction of special plug-in units for the above instruments.
\#\#\# Format change since last pubiication.
(C) 1965, Tektronix, Inc. All Rights Reserved

5-5-69
Supersedes: 12-5-68

PARTS INCLUDED IN MODIFICATION KIT:

Quantity	Part Number	Description
1 ea	131-0017-00	Connector, amphenol, 16-pin
1 ea	210-0004-00	Lockwasher, int \#4
1 ea	210-0201-00	Lug, solder, SE \#4
2 ea	210-0406-00	Nut, hex, 4-40 x 3/16
1 ea	210-0812-00	Washer, fiber
2 ea	211-0097-00	Screw, 4-40 x 5/16 PHS, Phillips
4 ea	212-0043-00	Screw, $8-32 \times 1 / 2 \mathrm{FHS}$, Phillips, 100°
1 ea	$212-0008-00$ $333-0150-00$	Screw, $8-32 \times 1 / 2$ PHS, Pozidrive
1 ea	354-0025-00	Ring, retaining
1 ea	366-0125-00	Knob, retaining, gray
1 ea	384-0510-00	Rod, securing, RS53
4 ea	384-0631-00	Rod, spacer, plug-in
1 ea	386-0423-00	Plate, sub-panel, special blank plug-in
1 ea	387-0549-00	Plate, blank, FP53 special
1 ea	441-0108-00	Chassis, special blank, CH53

continued

The following chart is intended as a guide to the voltages and signals supplied by the various oscilloscopes at the plug-in connector. It lists the approximate load current requirements necessary to keep each power supply in regulation. In addition, it lists the inputs used by the oscilloscopes.

$\begin{aligned} & \hline \text { PIN } \\ & \text { NO. } \end{aligned}$	DESCRIPTION	INSTRUMENTS	VOLTAGE	MAX LOAD CURRENT	MIN LOAD CURRENT	NOTES
1	Vertical Signal Input	All	See *Note			
2	Ground	All				Grounded in oscilloscope
4 5	Int Trig Sig Input	$\begin{gathered} 544,546 \\ 547,555^{* *} \text { only } \end{gathered}$	(See Manual)			These pins blank in all other oscilloscopes
6	Blank Pin	A! 1				
7	Slave Pulse Output	547 only	(See Manual)			This pin blank in all other oscilloscopes
$\begin{array}{r} 8 \\ 16 \end{array}$	Alt Trace Sync Pulse Output	All	(See Manual)			Pin 8 grounded by Types CA, M, etc, in Alt Trace mode.
9	-150v Supply	All	-150 v DC	60 ma	3.8 ma	
- 0	+100 v Supply	All	+100 v DC	50 ma	4.5 ma	
11	-225v Supply	All	+225 v DC	75 ma	16.0 ma	
12	+350 v Supply	All	+350v DC	20 ma	0 ma	
$\begin{aligned} & 13 \\ & 14 \end{aligned}$	Heater Supply	All	6.3 v AC	2.8 amp	0 ma	Elevated to +100 v in some oscilloscopes (see Manuals). Do not ground either pin.
15	Series Heater String Supply	All	+ 75 v DC	150 ma	150 ma	Instrument should not be operated without loading this supply.

*NOTE: Bias required at both pins is $+67.5 \mathrm{v}(\pm 2 \%)$. Signal Amplitude limited by sensitivity of oscilloscope ($100 \mathrm{mv} / \mathrm{cm}$).
Used on Type 555 SN 7000-up, or Type 555 modified with Field Modification Kits 040-0328-00 or 040-0328-01.

CRADLE MOUNT

For the following TEKTRONIX® Type Oscilloscopes:

Type	524AD	Serial Numbers	5001-up	
Type	531	Serial Numbers	5001-up	
Type	531A	Serial Numbers	All Seria	Number
Type	532	Serial Numbers	5001-up	
Type	533A	Serial Numbers	All Seria	Number
Type	535	Serial Numbers	5001-up	
Type	535A	Serial Numbers	All Seria	Number
Type	536	Serial Numbers	All Seria	Number
Type	541	Serial Numbers	5001-up	
Type	541A	Serial Numbers	All Seria	fiumber
Type	543	Serial Numbers	All Seria	Numbers
Type	543A	Serial Numbers	All Seria	Numbers
Type	543B	Serial Numbers	All Seria	Number
Type	544	Serial Numbers	All Seria	Number
Type	545	Serial Numbers	5001-up	
Type	545A	Serial Numbers	All Seria	Numbers
Type	545B	Serial Numbers	All Seria	Numbers
Type	546	Serial Numbers	All Seria	Numbers
Type	547	Serial Numbers	All Seria	Numbers
Type	549	Serial Numbers	All Seria	Numbers
Type	570	Serial Numbers	5001-up	
Type	575	Serial Numbers	Ali Seria	Numbers
Type	581	Serial Numbers	All Seria	Numbers
Type	581A	Serial Numbers	All Seria	Numbers
Type	585	Serial Numbers	All Seria	Numbers
Type	585A	Serial Numbers	All Seria	Numbers
Type	661	Serial Numbers	All Seria	Numbers

Modification Kit, PN 040-0281-00, enables the above TEKTRONIX Type instruments to be rackmounted in a standard 19 inch relay rack. A vertical front panel space of 17-1/2 inches is required.

Future instruments with the same front panel dimensions may also be used with this kit, providing they have bottom rails similar to those on the above listed instruments. This kit directly replaces 040-0182-00.

Quantity	Part Number
1 ea.	$426-0208-00$
2 ea.	$(211-0025-00)$
4 ea.	$(212-0023-00)$
1 ea.	$(381-0198-00)$
2 ea.	$(381-0211-00)$
1 ea.	$105-0013-00$
2 ea.	$210-0008-00$
2 ea.	$210-0409-00$
2 ea.	$210-0804-00$
8 ea.	$210-0833-00$
2 ea.	$210-0852-00$
6 ea.	$211-0025-00$
2 ea.	$212-0004-00$
8 ea.	$212-0008-00$
8 ea.	$212-051-00$
1 ea.	$333-0491-00$
2 ea.	$381-0202-00$
2 ea.	$387-0636-00$
1 ea.	$406-0424-00$

Description

Assembly, cradle mount, oscilloscope, indluding: Screw, 4-40 x 3/8 FHS
Screw, 8-32 x 3/8 PHS, Phillips
Bar, stiffening, $1 / 4 \times 5 / 8 \times 16-5 / 8$
Bar, mounting, $1 / 4 \times 1 / 2 \times 8-1 / 8$
Stop, instrument
Lockwasher, int \#8
Nut, hex, $8-32 \times 5 / 16$
Washer, flat, $8 \mathrm{~S} \times 3 / 8$
Washer, cup, \#10
Washer, spacer, 3/16ID $\times 3 / 80 D \times 0.091$
Screw, 4-40 x 3/8 FHS
Screw, $8-32 \times 5 / 16$ PHS, Phillips
Screw, 8-32 x 1/2 PHS, Phillips
Screw, $10-32 \times 1 / 2$ OHS
Panel, front, mask for rackmounting Bar (guide rail), aluminum, angle, 18 in . Plate (slide), BAKELITE ${ }^{\oplus}$, $1-1 / 8 \times 18 \mathrm{in}$. Bracket, hold-down

INSTRUCTIONS

() 1. Mount the two guide rails and BAKELITE slides (from kit) on the cradle assembly, with the rail lip on the outside (Fiq. 1A). Use the threaded holes in the cradle, spaced according to the lenaths listed for the kits in Fiq. 1B. Mount the rails with the $4-40 \times 3 / 8$ FHS screws from the kit.
() 2. Fasten each side of the cradle assembly to the front flanqe of the relay rack, with three $8-32 \times 1 / 2$ PHS screws from the kit (see Fics. 2 and 6). Each mounting bar is fastened to the cradle by a single 4-40 screw, allowing it to be adjusted for sliqht variations in rack width.

NOTE: To install the cradle assembly in channeltype racks, it will be necessary to tilt the assembly sideways, while bending one side inward.
() 3. Remove the voltaqe taq on the rear riaht hand side of the instrument.
() 4. Relocate the voltage taq on the middle left hand side of the instrument, use a \#43 drill (see Fig. 3).
() 5. Mount the hold-down bracket (from kit) on the rear panel of the instrument, as near to the vertical center line as possible (see Fiq. 3).
() a. Drill and tap the two holes in the rear panel shown in Fiq. 3. Use a \#29 drill and an 8-32 tap.
CAUTION: BE CAREFUL NOT TO DRILL INTO COMPONENTS MOUNTED BEHIND THE REAR SUB-PANEL.
() b. Mount the hold-down bracket, using two $8-32 \times 1 / 2$ PHS screws from the kit.

BAKELITE, Reg. TM of Union Carbide Corp.

INSTRUCTIONS (cont)
() c. If the instrument will be subject to excessive vibration, the 8-32 nuts (from kit) should be added.
() 6. Place the instrument on the cradle guide rails and slide it into place.
() 7. Temporarily mount the mask (from kit) on the front of the relay rack, over the instrument front panel, and hold it in place with three or four of the $10-32 \times 1 / 2$ OHS screws from the kit.

FIG. 1

FIG. 3

INSTRUCTIONS (cont)

() 8. Position the instrument so that the stainless steel ring touches the mask all the way around the instrument (see Fig. 4).
() 9. Place the instrument stop (from kit) on the cradle so that it meshes with the hold-down bracket on the instrument (see Fig. 5). If necessary, the hold-down bracket may be adjusted up or down.
() Mark the exact location of the stop on the cradle.
()10. Remove the mask and the instrument.
()11. Place the instrument stop in the location marked in step 7. Select two of the tapped holes in the stop, and mark and drill 11/64in. holes in the cradle at these points.
()12. Mount the stop, using the $8-32 \times 5 / 16$ PHS screws, flat washers and lockwashers from the kit (see Fig. 5).
()13. Replace the instrument. Make sure the hold-down bracket and instrument stop come together properly.
()14. Replace the mask, using the $10-32 \times 1 / 2$ OHS screws, the \#10 cup washers, and the two spacer washers from the kit (see Fig. 6).
THIS COMPLETES THE INSTALLATION
JT:1s

FIG. 4

FIG. 5

M7009
Instrument Type See Below

AIR FILTER REPLACEMENT

For the Following Tektronix Oscilloscopes:

Type	531	Serial Numbers	101-20000	(Guernsey)
Type	531 A	Serial Numbers	20001-25609 and	「10]0025-100477̄
Type	532	Serial Numbers	101-Up	
Type	533	Serial Numbers	101-3000	
Type	533A	Serial Numbers		100001-100778
Type	535	Serial Numbers	101-20000	
Type	535A	Serial Numbers		\|101250-102117!
Type	536	Serial Numbers	101-2969	
Type	541	Serial Numbers	101-20000	
Type	541 A	Serial Numbers	20001-Up	100166
Type	543	Serial Numbers	101-3000	
Type	543A	Serial Numbers	3001-Up	
Type	543B	Serial Numbers		100023-100128!
Type	544	Serial Numbers		100013-100043!
Type	545	Serial Numbers	101-20000	
Type	545A	Serial Numbers	20001-Up	
Type	545B	Serial Numbers		100057-101593!
Type	546	Serial Numbers		100015-100038
Type	547	Serial Numbers		[100248-100530!
Type	567	Serial Numbers	101-749	
Type	581	Serial Numbers	101-Up	
Type	581 A	Serial Numbers		100013-1000631
Type	585	Serial Numbers	101-Up	
Type	585A	Serial Numbers		100038-100181:
Type	551 I	Serial Numbers	101-5299 and	\| 100001-100468!
Type	555 I	Serial Numbers	101-4859 and	L100159-100352

Type RM31 Serial Numbers 101-1000 Type
Type RM31A Serial Numbers 1001-2509 Type
Type RM32 Serial Numbers 101-Up Type
Type RM33 Serial Numbers 101-1000 Type
Type RM35 Serial Numbers 101-Up Type
Type RM41 Serial Numbers 101-1000 Type

RM41A	Serial Numbers	1001-Up
RM43	Serial Numbers	$101-1000$
RM43A	Serial Numbers	$1001-U p$
RM45	Serial Numbers	$101-1000$
RM45A	Serial Numbers	$1001-U p$
RM567	Serial Numbers	$101-239$

Plastic-foam air filter 378-0023-00 replaces aluminum air filters 378-0011-00. 378-0011-01 and nylon air filter 378-0011-02 (for Guernsey).

An aluminum grillo, $378-0762-00$ is included to maintain clearance between the fan blade and the filter.

NOTE: If the serial number of your instrument is above those listed, or if this kit has been installed, disregard the instructions as PN 378-0023-00 is a direct replacement.
Tris Parts Replacement Kit replaces 050-0123-00, which replaced the air filter in the Types 551 and 555 only.

Quantity Part Number
4 ea 213-0054-00
1 ea 378-0023-00
1 ea 378-0762-00

Description
Screw, $6-32 \times 0.312$, pnh, thread-forming Filter, air, plastic foam, 10.375 square Grille, fan

INSTRUCTIONS

A. TO REPLACE THE FILTER ON THE FOLLOWING INSTRUMENTS BELOW SN 5000: Types 531, 532, 535, 541 and 545
() 1. Remove the filter and filter housing.
() 2. Center the fan grille (from kit) over the fan opening in the cabinet.
() Mark and drill four 0.11-inch-diameter (\#36) holes in the cabinet for mounting
() Mount the new fan grille, using the four 6-32 thread-forming screws from the kit.
() 3. Place the new air filter over the grille, and between the two mounting screws.
() 4. Replace the filter housing.
() Record the part numbers of the new parts in your Instruction Manual.
B. TO REPLACE THE FILTER ON ALL REMAINING INSTRUMENTS LISTED ON PAGE 1:
() 1. Remove the filter and filter housing.
() 2. Loosen the two right hand (viewing from rear) fan ring mounting screws.
() 3. Remove the two left hand fan ring mounting screws.
() 4. Install the fan grille (from kit) under the two loosened screws, using the two notches provided.
NOTE: Mount with the curved area away from fan.
() 5. Replace the two screws removed in step B-3.
() 6. Tighten all four mounting screws securing the fan ring and filter screan.
() 7. Place the new air filter (from kit) over the screen and between the four mounting screws.
() 8. Replace the filter housing.
() Record the part numbers of the new parts in your Instruction Manual.

JT:jj

[^0]: © 1966, Tektronix, Inc.

[^1]: * DuPont Registered Trademark.

[^2]: 2 of 2

[^3]: © 1966, Tektronix, Inc.
 All Rights Reserved.

