15 Oct. 1977 Vol. 4, No 11

Staff: Burgess Laughlin (Editor) and Scott Sakamoto (Art Director) Ext. 5674 D.S. 50-462

TEKTRONIX RODC'I' LIABILITY TEAM

THE

Product Safety Engineering
sponsored product liability

- seminars on June 23, 1977 in the
Beaverton and Wilsonville
auditoriums. The purpose of the
seminars was to encourage
communication between the
engineering community and
Tektronix representatives most
concerned with product liability
and safety.

A short film prepared by
Employers Insurance of Wausau
(Tektronix’ liability insurance
carrier) presented the basic
concepts and problems of
product safety and liability. The
film emphasized the team effort
required to deal with product
liability problems. Members of the
product liability team include
Tektronix field representatives
(who must quickly report any
situations where product liability
claims may arise), design
engineers, legal counsel and the
insurance representative.

PRODUGT
LIABILITY
SEMINAR

INSURANCE

Nancy Mowlds briefly described
Tektronix’ liability insurance
program and pointed out that
there have been no successful suits
brought against Tektronix. We
have been named in suits but the
charge against us, in each case,
was dropped before the case went
to trial. She also reiterated the
need for team work between
manufacturing, marketing,
engineering, product safety, and
our insurance carrier. (For more
information, see the TEK-
TRONIX LIABILITY INSUR-
ANCE insert on page 4.).

UESTIONS AND
NSWERS

Where is the tradeoff between safety
and costs?

Unfortunately there is no direct
answer to the question. Adding
the latest safety features, as well as
documenting the safety decisions,
may mean higher costs and
therefore a higher price for the
product. The consumer may not
be willing to pay the extra cost if
there is a less expensive (though
less safe) alternative on the
market.

PANEL MEMBERS

Chairperson of the seminar was
Rich Nute (corporate product
safety engineer). Panel members
included Nancy Mowlds
(Tektronix’ insurance manager),
Eric Jorgensen (corporate legal
counsel), and Larry Krogh (a
product safety specialist from
Employers Insurance of Wausau).

PRODUCT SAFETY
ENGINEERING

Rich introduced the panel
members and then briefly
described the major functions of
Product Safety Engineering (PSE).
PSE (located in building 58)
reviews every new product at each
milestone of the new product
introduction phase system. PSE’s
review includes evaluations of
hazards under normal use and
forseeable misuse, and
documentation of constructions
which prevent hazards. Pete
Perkins is the manager of the
Product Safety Engineering group.

Rich Nute, corporate product
safety engineer.

Larry Krogh (Employers of
Wausau) told the story of a
manufacturer of power hand
tools who was the first in the field
to use double insulation rather
than third-wire grounding to
protect the user from shock. The
double insulation is a superior
system, but more expensive. The
manufacturer went broke because
consumers chose the less safe but
cheaper models.

The manufacturer’s documentation
should show the safety-versus-
costs tradeoffs that were made in
product development. One factor
that influences court decisions is
what standards and what
precautions other manufacturers
followed at the time the product
was sold. If a product can be
made safer with only a slight
increase in costs and if a
manufacturer fails to adopt those
extra safety precautions, then
juries and courts may impose
liability on the manufacturer.

What kind of safety precautions can
the designer assume the user will
take?

For most of Tektronix’ products
we assume that they will be used
indoors and not in a driving rain
or while the user is standing in a
puddle of water.

Does Tektronix print safety
warnings in other languages for
products sold in other countries?

No, we don’t. Most of the people
using our equipment know English
well enough to use the manuals
and therefore to read the
warnings.

How are liability cases handled in
other countries?

The U.S. is the only highly
industrialized country that awards
damages through jury trials. So,
defendants in damage suits in this
country face problems not faced
by defendants in other countries.
Awards or settlements here may
be as much as ten times larger
than they are in other countries.
Monetary settlement of liability
cases has not been a major
problem in other countries.

Are we liable for OEM equipment
we use in our products?

Yes, everyone involved in the
manufacture, design and
distribution of a product is
responsible for the safety of that
product. If we buy an assembly
from an OEM, we are responsible
for it. Of course, we can also.turn
around and sue the assembly
manufacturer to recover our loss if
we have been sued.

Eric Jorgensen, corporate legal
counsel.

Do we have a way to tell our
customers that we've discovered a
hazard in a product after it has
been sold?

Yes. So far we have had very few
hazards reported. Each instance
has been handled on an ad hoc
basis.

The Product Safety Engineering
group has drafted a "hazard
correction procedure” that defines
the spectrum of options available
for letting customers know about
hazards. The options range from
recall and repair to a simple
warning of the hazard.

Products are reviewed for safety
during NPI process, but when are
manuals and advertising reviewed?

They aren’t reviewed on a regular
basis. However, Product Safety
Engineering has been working
closely with the manual foﬁxgtting
committee and the individual
manuals groups, and contact is
maintained with the advertising
people.

Advertising is important in a
product liability program. Here’s
an example of how unintentionally
misleading advertising can affect a
product. In one of its advertising
brochures, a company showed a
product in the back of a boat
being rowed across a lake. UL
withdrew its listing. of the product
because the device was never
intended to be used in that kind of
environment.

MORE INFORMATION?

For more information call Pete
Perkins on ext. 7374.

Tektronix Liabhility

Insurance

Tektronix does have product
liability insurance, but this in no
way relieves us of our
responsibility to produce safe
products. Can you imagine what it
would do to our reputation if one
of our instruments injured
someone, or if we were involved in
a lengthy litigation because of our
products?

What does our product liability
insurance cover?

It covers all sums which
Tektronix becomes legally
obligated to pay for bodily
injury or property damage
arising out of goods or
products manufactured, sold,
handled, or distributed by us
when they are put into use by
others and away from the
premises.

It also covers defense of all
suits brought against
Tektronix alleging a cause of
action which comes within
the policy’s coverage, even if
such allegations are
groundless, false or
fraudulent.

What limits do we have?

Our primary policy, which is
with Employers of Wausau,
has a $1,000,000 limit. There
is a $25,000 deductible. We
have additional coverage on
our Umbrella Liability policy,
which takes over if the
primary limit is exhausted.

Who is covered by our product
insurance?

Any officer, director,
stockholder, or employee,
while acting within the scope
of his duties is insured. If
you, as an individual, are
sued in a products case, our
insurance company would
provide your defense and pay
any judgments.

What product liability claims have
we paid?

So far we have not had to
pay a single claim. We were
named in a suit several years
ago when a patient in an
operating room claimed to
have received injuries during
the operation. Our medical
monitor was in the room and
the manufacturers of all
equipment in the operating
room were named in the suit.
The judge ruled that the case
was one of medical
malpractice and not a
malfunction of any product.

What can be done to prevent
product liability claims?

A good communication
network is essential between
engineering, marketing,
manufacturing, insurance,
product safety, and our
insurance company. We must

ol pa, <
Nancy Mowlds, Tektronix
Insurance Manager.

keep records of all product-
safety complaints. They
should be reported to Rich
Nute.

Quality control in the areas
of design, purchasing
production, packaging, and
advertising is especially
important. From the
‘beginning of basic research
we need detailed written
records on each product. Any
decisions made during the
design phase involving cost
factors versus safety factors
should be documented. This
assumes, of course, that the
most safe alternative was
selected. Otherwise we would
have no defense against a
products claim.

We should avoid broad and
absolute terms to describe
our products in advertising
and selling. Warnings about
possible hazards and safety
instructions should be clearly
stated in manuals.

And, finally, if one of our
products does injure anyone
or damage any property, it
must be reported to me, Rich
Nute, or Eric Jorgensen,
immediately. Even a delay of
one day can be important.

Product Safety Engineering
and the NPl Process

The following discussion of the
role of Product Safety Engineering
in the new product introduction
(NPI) process has been abstracted
from the NPI Guidebook.

CONCEPT PHASE

Product Safety Engineering’s job
includes:

® Reducing hazards in the
product.

e Making sure the product
conforms to federal laws and
regulations, and to county and
city ordinances.

e Making sure the product
conforms to published safety
standards.

e Obtaining third-party
certification (by independent
laboratories such as
Underwriters Laboratories and
the Canadian Standards
Association). This usually meets
the requirement of the safety
laws, regulations and standards.
Third-party certification is a
definite plus for product sale.

® Minimizing Tektronix’ and its
employees’ liability if a claim is
filed.

The design engineer should
communicate with Product Safety
Engineering from the beginning of
the concept phase. The product
proposal should answer these
questions:

1. Is the product intended for
third-party certification (UL or
CSA for example). If not, why
not?

2. What published standards is
the product intended to
meet? For example, will the
product meet an IEC standard,
even though not intended for
third-party certification?

3. Are there special limits on safe
use of the product? (Is it safe in
a mine? in an operating room
with flammable anesthetics? is
it double insulated?)

DESIGN PHASE

Product Safety Engineering reviews
the product design, and docu-
ments the review. In layout and
design of a new or modified
product, the requirements of laws,
regulations, ordinance, standards
(such as UL, CSA, and IEC), and
internal safety policy must be con-
sidered. The project manager
maintains communication with
Product Safety Engineering during
the design phase. As the working
model materializes, it should be
available for Product Safety
Engineering’s investigation.

Pete Perkins, product safety
engineering manager.

EVALUATION PHASE

Product Safety Engineering checks
evaluation phase (A-Phase)
prototypes and documents its
findings. If these A-Phase units
fairly represent the final product,
then two units are sent to UL for
listing (certification). Tektronix
also sends UL a statement that
identifies the features that will be
improved before the final product
is released. However, if many
items need correction, one unit
from the A-Phase and later a
second unit from B-Phase (verifi-
cation phase) will be sent to UL.
If A-Phase units are very deficient
in safety features, both units sent
to UL will be B-phase units.

VERIFICATION PHASE

Product safety engineers (together
with product design and evalua-
tion engineers) appraise
verification phase (B-phase) proto-
types for safety. Units for third-
party certification laboratories
(such as UL) are selected and sub-
mitted at this time.

Product Safety Engineering
documents the safety status of the
product at this point. This docu-
ment goes to the engineering
release meeting. These questions
are answered: Is the product suffi-
ciently safe? Are there any
remaining deficiencies? Does the
product conform to the intended
standards? [l

Development Tools
for Microprocessor=
Based Instruments

Allen Hollister

Allen presented this paper at the Instrumentation Society of America conference in Las Vegas in May. The
paper will be printed in Instrumentation Technology magazine later this year.

If you would like more information about the topics discussed here, call Allen on extension 6250 or drop by

39-092.

ABSTRACT

This paper discusses some of the
problems (and solutions) which
show up in a microprocessor-
based instrument design. The
tools, both hardware and
software, which are needed to
solve these problems along with
the limitations of each tool are
discussed. Most of the problems in
a microprocessor-based instrument
design are software in nature. The
tools for their solution tend to be
oriented for software design and
troubleshooting. An effort has
been made to define the
terminology used in this
specialized area of computer

programming.

INTRODUCTION

Today, every designer needs to
know how to use microprocessors.
If you're not already familiar with
them, this paper can serve as an
introduction to the theory and can
provide a few hints on how to
handle them using some of the
newest tools for developing
microprocessor-based instruments.

A PRIMER ON MICRO-
COMPUTERS

A Microcomputer

At the onset, we need to define
some terminology. If you have
worked with minicomputers
before, then a microcomputer will
look like a less powerful
minicomputer. Microcomputers
have a smaller instruction set and
they are slower, but they are still
basically minicomputers. On the
other hand, with a hardware
background, a microcomputer will
look like a sequential state
machine that can replace
thousands of random-logic chips
with just a few chips.

A Microcomputer System

Physically, a microcomputer
consists of a microprocessor chip,
input/output capability, and
associated hardware such as clocks
and power supplies. A
microcomputer will also contain
either read-only memory (ROM)

or random access memory (RAM)

or both.

Microprocessor

The microprocessor is the heart of
the system. The microprocessor
gets an instruction from memory,
does what the instruction tells it to
do and then begins the cycle again
by fetching the next instruction.

ROM and RAM

For most systems, instructions
reside in ROM, but some systems
use RAM. Besides its control
lines, a ROM has a set of inputs
called address lines, and a set of
outputs called the data-out lines.
See figure 1.

When the ROM sees an address
word, a data word (a logical bit
pattern) appears on the output.
That word was programmed into
the ROM at the time of its
manufacture. The microprocessor
uses the data-out words as
instructions. It’s important to
remember that you can read data
out of a ROM, but you cannot
write into it. If the address lines
shown in figure 1 contain 1001
(where a3 is 1, a2 is 0, al is 0, and
10 is 1), the data lines will be 1101
(d3 will be 1, d2 will be 1, d1 will
be 0, and dO will be 1). The
number 1101 is the data word. A
RAM has the same address input
lines, and control lines, but you
can write data into memory as
well as read from it. Figure 2
shows an example of RAM.

Typical Microcomputer System

Figure 3 shows a typical
microcomputer system. In figure 1
the address word and the data
word were each four-bit words.
But, the more popular
microcomputers have an 8-bit data
word (8 data lines) and a 16-bit
address word. While those words
are binary numbers, most people
transform these numbers into
hexadecimal (base 16) code to
make them easier to understand.
As an example, instead of saying
that the next instruction is at
memory address 1001 1101 0011
1111, it is easier to say the address
is 9D3F. This convention makes it
easier for people to understand,
but the computer still needs to see
logical ones and zeros on the 16
address lines.

Figure 1. A ROM example.

Address

input

OO b do

Gy — d'l

d2——~ RAM (—— 2

an—t . i

Data

~Out

Figure 2. RAM nomenclature.

How to Program a
Microcomputer

The microprocessor-based
instrument designer’s biggest task
is programming the micro-
computer and verifying those
instructions. The instruction sets
for today’s microcomputers have

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1

MO OW>» © 0 90 dh W — O
—_— O O O O = —m = = O OO
— OO =~ —m 0O = =0 0~ ~0O ofl®

—_— 0 = O = O O =0~ O = O

e S R — I T — T — Y SN
SO~ OO0~ O~ O = =00 00
—_—0 = = 00O = =00~ =0 O
ooo»—-—-—-o'—-—-—-o-—oc‘o
?ooa\uocoo"rjum.hw>oo

Address Yo ——
Input ay ——
02 —_—

Az |

—»go Data

from 40 to 200 instructions. Each
instruction has two parts: an
operation code and an operand
(see figure 4).

The op code tells the
microprocessor what operation to
perform. The operand, however,
tells the microprocessor what to
operate on. Examples of opcodes
are:

Add

Branch on a condition
Add immediate

Load

Jump

Decrement

No operation

1IN lm
LIl

Figure 3. A typical micro-
processor system.

Figure 4. An instruction.

Every op code is represented by a
specific number.

The operand is either an address
or a piece of data but for some op
codes there is no operand. As an
example, an instruction, Add 2E
tells the microprocessor to go to
address 2E (in hex, but 0010 1110
in binary), get the data stored
there and add it to the data stored
in the accumulator (a register in
the microprocessor). The accu-
mulator stores the results of
arithmetic operations performed
by the processor.

Add Immediate 2E tells the micro-
processor to add the number 2E
to the data stored in the
accumulator. In the instruction
Add 2E, the operand (2E) was an
address. On the other hand, in the
instruction Add Immediate 2E, the
operand (2E) is the data itself.

The instruction Jump 2E causes
the microprocessor to go to
address 2E to obtain its next
instruction. There is an
unconditional jump in the
program flow. It is equivalent to
the GO TO statement in
FORTRAN. (The instruction set
will also have some conditional
jumps, equivalent to the IF
statement in FORTRAN.

AN EXAMPLE

Figure S illustrates a very simple
timing loop program. The
program begins at memory
location 5000, where a value of
A61s (16610) is loaded into the
accumulator. The next instruction,

Memory
address
(hexadecimal)

1000 0110
0100 1010
0010 0110

Decrement Accumulator, subtracts
one from the accululator. The
instruction stored at memory
address 5003 tests if the
accumulator has reached zero. If
not, it branches back to location
5002 and subtracts one again.

The program will loop through
this sequence 166 times before the
accumulator reaches zero; each
time through the loop, it will use
up 6 microseconds assuming a 1
MHz clock. Therefore, a full
millisecond will be consumed in
this delay loop. When the
accumulator finally goes to zero,
the program will continue at
location 5005. A delay loop such
as this is useful when it is
necessary to wait a short time to
let a switch settle, for example.

Two types of operands are
illustrated in this example. In the
instruction at location 5000 (Load
Accumulator Immediate), the
operand contains the actual data
to be loaded. In the instruction
at location 5003 (Branch if Not
Zero to 5002), the operand FD is
a relative address. In other
words, FD does not represent an
actual address; it represents the
number of words, in two’s
complement arithmetic, that are
to be jumped, minus three to
reach location 5002. (The
program counter is at 5005 while
this instruction is executed thus
it must jump back three places
to get to location 5002.)

Operand

(binary)
1010 0110

1111 1101

Figure 5. Sample time delay program for a Motorola 6800.

8

Hexadecimal

Equivalent

Programming Problems

Even in this short example we can
see some of the problems involved
in writing and storing a problem.
In the simplest case we might have
a front panel with 24 switches on
it, each of which could be set to a
logic 0 or 1 and could represent
an instruction (16 switches for
address, and 8 for data). Thus,
you could set each switch, push
another button to load the
instruction of data into memory,
and repeat this process for each
instruction. This would get tedious
very fast, especially if you have an
average length program, say 1000
instructions. And boredom would

be the least of your problems if
the power went out...thus erasing
your program.

There is another disadvantage to
front-panel programming. In
writing the initial machine
language program in hex, you
have to remember the op code
number in hex....with 200
opcodes, it is not a trivial
problem.

A third problem is keeping track
of all addresses. This is very
difficult. You can’t calculate some
of the addresses until the code is
written. For example, in a jump
instruction you wouldn’t know
where to jump to. Furthermore, if
you need to add code, then you
may have to change some
addresses. Because of those
problems, coding in machine
language is extremely difficult.

Description

Load Accumulator Immediate
Decrement Accumulator
Branch If Not Zero to 5002

The problem of initially storing
the program could be solved if
you had a paper tape reader and
the software required to operate
the reader. Then you could punch
the code onto paper tape and have
a permanent record. This is easier
to do than using a bunch of
switches, and you do have a
record if the power fails. How-
ever, paper tape has the
disadvantage of not being easy to
edit in case you make a mistake.
Paper tape readers are also slow
and inaccurate.

DEVELOPMENT TOOLS

Fortunately, some tools have been
developed to simplify the
programming process. The first
tool we'll consider is an assembler.
An assembler allows us to do
three things:

— use mnemonics for op codes

— use labels for addresses from
which the assembler will cal-
culate all of the actual
address locations. If you add
code to the program the as-
sembler will automatically
recalculate the addresses

— define constants which may
be used anywhere in the
program

If we wrote our sample program
in assembly language, it would
look like the program shown in
figure 6.

ORG $5000
LDA A #166
DEC A
NOP

NOP

NOP

NOP

NOP

NOP

BNE LOOP

Lo s e A R S e e s |
Figure 6. Sample assembly
language program.

START
LOOP

This program, after it has been
through an assembler, will
generate the same machine code
we generated by hand earlier.
BNE (Branch If Not Equal to
Zero), for example, is a lot easier
to remember than 26 hex.

Another advantage of using the
assembler is that we don’t have to
calculate address locations. The
assembler will do that. A mistake
in coding is easy to change and
rerun through the assembler which
then generates all new machine
codes with new addresses.

If the assembler resides in a com-
puter other than the computer for
which the code is being developed,
the assembler is a cross assembler.
For example, a cross assembler
may reside in a time-share
computer. The development
process is: log onto the timeshare
system, write the program into
timeshare memory, run it through
the assembler, then write the
program out in one of several
ways. You can punch a paper tape
with the machine code. You can
then transfer the program from
the tape into the memory of the
system you're developing, and run
it.

A second way of outputting the
assembled program is to load it
directly into your system'’s
memory. This method would
require using a modem, a direct
line, or programming some
programmable read-only memory
(PROM) and plugging that into
the system you are using.

If the assembler runs on the
machine for which it generates
code, it is a resident assembler.
The resident assembler is usually
cheaper to run than a cross
assembler. Using the resident
assembler avoids timeshare costs,
but it may be slower than the
cross assembler on a large
computer.

HIGH LEVEL
LANGUAGES

For large programs, coding for
assemblers can be very tedious. It
takes a long time to write the
program and to debug it (we all
make mistakes). High level
languages (HLL’s) have been
developed to solve those problems.
Using a HLL, you can write code
more quickly and find bugs more
easily. You will also be able to
create programs that will run on
more than one kind of
microprocessor.

FORTRAN is an example of a
HLL used in the scientific
computer world. For micro-
computer development the most
used HLL today is Intel’s PL/M.
The prime difference between a
HLL and an assembly language is
that an assembler generates one
machine language statement for
each assembler statement, but a
HLL generates many machine
statements for each source
statement. Thus the statement:

A =B/C

in FORTRAN (which says “divide
B by C, and store the results in
A”) might generate 30 assembler
statements. Now if you want to do
this task in assembly language,
you have to write those assembler
statements yourself. Each one
requires time to write, and each
one is a possible bug. If you use
the HLL, then the compiler (a
program that generates machine
code from a HLL program) auto-
matically generates the 30
assembler statements required to
divide B by C.

But there are disadvantages to
using a HLL. Today, HLL
generates more code than if the
program were written in an
assembly language. That’s
especially true for programs of less
than about 5000 words of machine
code. The HLL may run slower
than assembly language programs
do. But, as memory costs continue
to drop and development time
continues to rise, HLL's will
become more attractive.

MONITORS

After you get your program
written and assembled, you must
verify operation and then get the
logical errors out.

One way to verify and debug is to
use a monitor program. The
monitor usually resides in a ROM
set aside for this purpose. (This
ROM probably would not be
shipped in the final product to the
customer.) The user communicates
with the monitor program through
a computer terminal. The monitor
has several functions:

— to control the terminal,

— to accept data from the ter-
minal and deposit it in
memory,

— to display selected portions
of memory, preferably mak-
ing use of a dissassembler
which will decode the ma-
chine code to produce the
mnemonic for that code,
and give any equivalent ad-
dresses in hex. This is
called “dissassembly.”

The monitor program should be
able to transfer control to the user
program and then come back to
the monitor after some condition
is met such as:

— receiving a control
command,

— executing a certain number
of lines of code,

— hitting a breakpoint.

10

A breakpoint is an address (set by
monitor command) that causes the
program to go back to the moni-
tor whenever the program reaches
that address. The microprocessor
registers will also be saved so they
may be examined after the pro-
gram returns to the monitor
control.

The monitor’s functions also may
include trace capability. The trace
function follows the program
through execution and writes out
each instruction (as it is executed)
along with the contents of each
register resulting from the
instruction execution.

The monitor greatly aids in
debugging software and is the
minimum needed for that
function. By itself it can’t do the
whole job. For example, when the
monitor is performing some of its
functions, the system cannot run
in real time. If the monitor is busy
doing a trace, the user program
cannot run at full speed. This
makes it more difficult to check
out things like software timing
loops. For that reason, the
microprocessor system designer
may add extra hardware such as
hardware breakpoints and hard-
ware trace.

HARDWARE TRACE

Breakpoint and trace functions in
hardware allow the program to
run at full speed. When the
designer uses hardware trace, he
may also add features such as the
ability to store selected bus cycles,
selected op code cycles, or all bus
cycles.

How does the hardware trace
work? Hardware trace is a special
kind of logic analyzer which has
memory and the ability to trigger
(stops writing to memory). In
hardware trace, the designer sets
the condition that will trigger the
memory. Then the monitor gives
control to the user program which

runs in real time. When the logic
analyzer trigger condition is met,
the logic analyzer records the data
around that point and returns
control to the monitor.

ICE

There is one other tool which is
supplied with some development
systems, that is in-circuit
emulation (ICE). ICE lets the
designer unplug the microproces-
sor in the target system (the
system being tested), and plug in a
debug cable that goes to the
development system. The
development system emulates
(looks just like) the target system
microprocessor to the target
system. See figure 7.

ICE allows three modes of
operation:

— programs stored in RAM
within the development sys-
tem can operate the target
system with all data and I/O
coming from the target
system,

— programs that are resident
in the target system can
operate the target system
(again, all I/O and data
come from the target
system).

— a combination of the two
above.

Combining the two methods
allows the designer to patch in
parts of a program to try it out.

MICROPROCESSOR
DEVELOPMENT AIDS

Some manufacturers have recently
produced complete microprocessor
development aids (MDA) which
include all of the features we’ve
talked about: an assembler, a
HLL, a monitor, a terminal, ICE,
and hardware trace. The MDA’s
allow other peripherals such as
line printers, floppy disks, paper
tape reader/punch and a program-
mable ROM programmer
(PROM) to be attached. The
MDA'’s bring together the
essential tools for developing
microprocessor systems. In many
cases, MDA's are the optimum
solution for microprocessor
development.

HARDWARE AIDS

We haven’t looked much at the
hardware side of things (although
some of the tools discussed so far
are a definite aid in troubleshoot-
ing hardware). Most of the
problems encountered will be in
software or in software/hardware
interactions. Still there will be

problems for which some hard-
ware tools will be necessary. This
is especially true when the
hardware system is first being
brought up. Problems like getting
appropriate timing to the memory
elements, and finding glitches
must be solved.

A logic analyzer is one of the
better tools for hardware develop-
ment. It can asynchronously
sample many lines of data
(typically 16), because the sample
clock is derived from the logic
analyzer rather than from the
microprocessor clock. The logic
analyzer can also store this data in
memory for later viewing. Data is
captured around some trigger
condition. It is possible to cap-
ture data either before or after the
trigger has occurred. The

trigger itself usually is the output
of a word recognizer.

A word recognizer looks at
multiple lines and generates a
trigger when certain bit patterns
appear on those lines. As an
example if you had four lines
hooked up and you had the word

recognizer set to 10X1 (where X is
a don’t care condition), then you
would get a trigger out when
either a 1001 or a 1011 appeared
on those lines. The logic analyzer
then displays the results in timing
diagram form. Thus the designer
can look at timing on many lines
at once, search for and find
glitches, examine things such as
handshake logic, and debug
random logic in general. It is
possibly the most useful tool for
the hardware designer.

Another hardware tool is the
microprocessor analyzer. This tool
performs essentially the same
function as the hardware trace.
So, if your MDA has hardware
trace, you don’t need a micro-
processor analyzer to bring up a
system. The microprocessor analy-
zer could be very useful, however,
for servicing and perhaps for
manufacturing if all of the
features of a complete MDA are
not wanted.

TERMINAL

DEBUG CABLE

Figure 7. In-circuit emulation.

MDA SYSTEM

MAINFRAME

= R
VAR)

MICROPROCESSOR

FLOPPY DISC OR OTHER
MASS STORAGE UNIT

TARGET SYSTEM
users microprocessor system

11

<

60 55

Maureen Key

)

“Since our earliest days, we have

considered patents to be important
for the protection of our business.
This is as true today as it was in
the past. I would like to take this
time to remind each of you that
good patents come not only from
good ideas, but from good habits
and procedures.

First, an engineering notebook can
be a valuable piece of evidence.
Engineering notebooks are useful
for many things, but particularly
for jotting down the essence of an
idea or bit of work which could
lead to a patent. The second step
is to file a disclosure with the
Patents and Licenses Department
(ext. 5266). They will be happy to
help you.

Early completion of those two
steps allows time for patentability
evaluation and economic
evaluation of the idea. Not all
important ideas are patentable.
However, some will be and I
would like to ask each of you to
make an effort to see that these
are submitted so Tek may gain the
benefit of patent protection.”

Bill Walker

