

r

c

V.

CALCULATOR PRODUCTS

All Tektronix instruments are warranted against defective
materials and workmanship for one year.

Additionally, all Tektronix Computer Display Terminals

and related computer peripheral equipment are fully

warranted against ANY trouble for the first 90 days. Any

equipment trouble occurring to your Tektronix computer

terminal or related products during the 90 day period will

be repaired by Tektronix personnel at no charge.

Questions regarding warranty should be discussed with your

Applications Engineer.

Specifications and price change privileges reserved.

Copyright © 1973 by Tektronix, Inc., Beaverton, Oregon.

Printed in the United States of America. All rights reserved.

Contents of this publication may not be reproduced in any

form without permission of Tektronix, Inc.

U.S.A. and foreign Tektronix products covered by U.S. and

foreign patents and/or patents pending.

TEKTRONIX is a registered trademark of Tektronix, Inc.

31 OPERATORS
MANUAL

070-1575-00

CONTENTS

1 KEYBOARD

GETTING STARTED .1-1

INITIALIZATION 1-5

DATA ENTRY KEYS 1-7

MATH KEYS..1-13

TRIGONOMETRIC AND HYPERBOLIC KEYS 1-19

PARENTHESES 1-23

HIERARCHY.1-27

DATA REGISTERS 1-29

REGISTER ARITHMETIC 1-39

PERIPHERAL CONTROL.1-43

PRINTER 1-45

2 PROGRAMMING

INTRODUCTION TO PROGRAMMING .2-1

PROGRAM MEMORY 2-7

OPERATING MODES 2-9

PROGRAM CONTROL KEYS .2-13

MAG TAPE 2-23

SUBROUTINES 2-33

PROGRAMMING HINTS.2-43

DEBUG AND EDIT 2-81

PROGRAMMING WITH A PRINTER 2-99

CONTENTS

3 GENERAL INFORMATION

INITIAL OPERATION.3-1

OPERATING CHARACTERISTICS 3-7

VERIFICATION 3-17

4 APPENDICES (tabs)

ERROR MESSAGES

KEYBOARD SYNOPSIS

KEYCODES/KEYBOARD

INDEX

KEYBOARD

GETTING STARTED

"Mathematics, if it has a function at all in the sciences, has an indispensable one; and now

that man's relation to man has come to be treated in mathematical terms, it is impossible to

ignore or escape the new language any longer."

-ABRAHAM KAPLAN

Sociology Learns the

Language of Mathematics

1-1

Everyone uses mathematics — it is a language. You converse with the Tektronix calculator in

its language: Mathematics. Everybody knows it. Anyone can do it.

The most commonly used arithmetic operator keys are those which add +, subtract —,

multiply X, and divide These keys perform their indicated operations on successive

numbers that are entered into the display. The results are displayed whenever the equal

key, =, is pressed.

ON/OFF Switch (rear panel)

Turn on your calculator and press the red key labeled "CLEAR" to eliminate the flashing

display.
® TEK31

KEYBOARD

GETTING STARTED

Do a simple addition: 3 + 2=5

PRESS

The display reads 0000000005.

We disregard the leading zeros; they don't mean anything.

Now subtract: 6 — 2 = 4

PRESS
rr-?!

CUM (get ready)

PRESS 6
s

- I = [

Read the answer, 4, in the display.

Try multiplying: 10 X 5 = 50

PRESS CUM

LSJ

PRESS m s-1
5

Read the answer, 50, in the display.

Now divide 10 + 5 = 2

PRESS
|P=?|

CUM

LSI

PRESS

Read the answer, 2, in the display.

1-2

KEYBOARD

GETTING STARTED

Now try combining these examples by adding each example.

IS-71
PRESS

PRESS

CLEAR

fy 71
3

FFt 1 V]

j + ' 2
A—<

v
X W A-\

+

+

—71
6

V—U

rr "7 —=?
1 0 + =
=4 i-1

Read the answer, 61, in the display.

By now you see that anyone with an understanding of the meaning of the symbols +, —,

X, and -j- can use the calculator to add, subtract, multiply, and divide. Don't be confused

by the other keys, we'll get to them later. What's important now is that you realize that

the machine is designed to accept instructions from you in a conventional manner. The

calculator will communicate with you to the limit of your understanding of its language.

Mathematics is that language.

1-3
@ TEK31

KEYBOARD

GETTING STARTED

A WORD ABOUT HIERARCHY

The Tektronix calculator is designed to recognize the precedence or

hierarchy of the mathematical operators. Multiplying and dividing are higher

order operators than adding and subtracting. The machine recognizes this

fact. To the user this means that mathematical statements can be entered

and will be executed in the same manner they are written, according to the

rules of mathematics. (In a statement like 1+2X3, the multiplication is

done first and the answer is 7, not 9.) A further discussion of hierarchy can

be found in the HIERARCHY section.

® TEK31

1-4

KEYBOARD

INITIALIZATION
Before the calculator can be exercised with any particular problem it must be prepared to

accept your commands. Thus you should “initialize" the machine at the beginning of any

problem. The initialization procedure will become automatic to you and involves turning on

the machine, pressing the CLEAR key, and possibly changing the trigonometric operating

mode from radians to degrees.

ON/OFF Switch (rear panel)

The ON-OFF switch applies AC power to the calculator and is located on the back of the

machine, near the top. When the power is first turned on, the calculator will always react in

the following manner:

* All programmable memory is cleared. The memory was erased when the power was

turned off.

* The machine indicates a memory erasure by flashing the display.

* The calculator is set in the Idle mode. It is waiting for instructions.

* The trigonometric operating mode is set to radians, as indicated by illumination of the

RAD light under the display. (This will be discussed in detail in the TRIGONO¬

METRIC AND HYPERBOLIC KEYS section.)
@ TEK31

KEYBOARD

■nlTSALIZATiQn

CLEAR, abbreviated CLR, is the red key located on the right of the keyboard. Pressing the

CLEAR key prepares the calculator for a new set of calculations. As you become more

familiar with the machine you will find that you use this key quite often. When cleared, the

calculator reacts in the following manner:

* The display is cleared to all zeros.

* The calculator is reset to establish the starting point for a new calculation.

* Radian, RAD, operation is reestablished if the machine had previously been operating

in the degree, DEG, mode.

* Pressing CLR resets the calculator's error message (a flashing display). A flashing

display may be caused by:

1. A power interruption

2. An illegal operation

3. An out of range display

1-6
® TEK31

©
o©

□
□

KEYBOARD □

□ ■
DATA ENTRY KEYS

When using the calculator, you will be entering various numbers that are a part of the

particular problem you are solving. We refer to these numerical entries or inputs as 'data'.

The data you use will take several forms:

DATA FORMATS

DECIMAL
or ORDINARY 100 -512 .0001 243.123

SCIENTIFIC 1 X 102 -5.12 X 102 1 X io-4 2.43123 X 102

MIXED 10 X 101 -51.2 X 101 .01 x io-2 .00243123 X 105

iJ

Occasionally you will make errors in the keystrokes necessary to enter data and will need to

correct the mistakes before proceeding. The data entry keys allow all of the above

flexibilities.

The ten numeric keys, 0 through 9 are arranged in the standard adding machine format.

Pressing any of these keys causes the corresponding digit to be shown on the display.

Sequentially pressing the various keys results in a serial representation of the keystrokes.

The display accepts up to ten digits from the keyboard; further entries have no effect.

While only ten digits can be entered into the display, to maintain accuracy, the calculator

performs its computations with twelve digits. Thus, the result of any computation is

rounded to ten digits before it is displayed. The two digits which are not displayed are called

"guard digits". A further discussion of guard digits is contained in the section OPERATING

CHARACTERISTICS.

The decimal point key enters a decimal point into the display. Simply press this key at the

desired point in any numeric entry sequence. When entering integers, it is not necessary to

enter a decimal point; the machine will assume one after the last digit.

1-7
@ TEK31

KEYBOARD

SATA ENTRY KEYS

The CLEAR DISPLAY key is different from the red CLEAR key. As implied, the CD key

only clears the display, resetting it to all zeros. The CD key is used to erase a

numerical entry from the display and is mainly used to correct mistakes in data entry. As

distinct from the CLR key, the CD will not change or alter previous data entries or

operations — it does nothing more than erase the display. For example, the sequence

CLEAR

DSPLY

a mistake

DSPLY

I
erased -1

corrected

will result in the answer, 9, since the CD only eliminates the 3 from the expression.

EXAMPLE: DATA ENTRY

Enter the number 5

PRESS
CLEAR

DSPLY

PRESS 5
—kl

Enter the number 50.123

PRESS
CLEAR

DSPLY

PRESS 11 FT~7!

@ TEK

Note the location of the decimal point. Note that the use of CD does nothing more

than clear the current contents of the display.

1-8

KEYBOARD □
□
□

DATA ENTRY KEYS

When entering data with exponents in either mixed or scientific notation, the X1000 key

sets the display to accept entry of any one or two digit exponent.

* If more than two digits are entered for any given exponent, they replace the first and

second. Use this feature to correct improperly entered exponents without changing the

mantissa. Try pressing

—7]
3

Lb=£l
4 LL=iJ

* Use the + - key to change the sign of the exponents before or after the exponent

has been entered.

* Displayed data in ordinary or mixed notation within the range of the calculator may be

changed to scientific notation by use of the X1000 = keying sequence.

EXAMPLE: Change 180 to 1.8 X 102

PRESS
CLEAR

oeny

PRESS a
Display 0000000180

Display 1.800000000 02

1-9
0 TEK31

KEYBOARD

DATA ENTRY KEYS

The calculator assumes that any entered number is positive unless otherwise specified. To

change the sign of an entry, use the +/— key.

* To change the sign of a mantissa, press +/— before or after entry.

* To change the sign of an exponent, press +/— after X1000 (see below).

* When +/— is used to change the sign of any exponent or mantissa (except 7r), the

two guard digits are lost. (See OPERATING CHARACTERISTICS.)

7r enters the unrounded twelve digit value of 7r into the display. Whenever this key is used, it |

changes any existing display to 3.141592653. Since the display consists of only ten digits, "]j

only the first ten digits of ir are displayed. The other two digits are stored as guard digits.

The rounded value of n is obtained by pressing

® TEK31

1-10

KEYBOARD

DATA ENTRY KEYS

THE GOOGOL LIMITATION

A googol is defined as 1 X 10100 or 1 followed by 100 zeros. The range of the Tektronix

calculator is limited to slightly less than one googol. Is this really a limitation? How big is a

googol?

To answer these questions consider packing small objects into large volumes. Use the

following constants:

Earth's radius

Silicon crystal

volume of sphere =

one mile

one inch =

velocity of light =

3963.34 miles

1022 atoms/cm3 1

(4/3) 7rr3

5280 ft

2.54 cm

186,000 miles/sec

4.2 X 1037 atoms/mi3

Result: A sphere of crystalline silicon the size of earth would contain about 1 X 1050

atoms, which is 50 orders of magnitude less than a googol.

Result: The volume ratio of a silicon atom to the earth is about the same as the

volume ratio of the earth to a spherical googol of silicon atoms. Or, more

precisely

one Silicon atom _one earth_

one earth 10100 Silicon atoms

1-11
© TEK 31

KEYBOARD

DATA ENTRY KEYS

The diameter of the silicon sphere containing a googol of atoms exceeds ninety

million light-years!

Result: A googol is large indeed. In our world there might not be a googol of anything.

Finally then, it is intuitively difficult to conceive any practical problem that will yield

near googol results. As a consequence, a flashing display of all nines on the calculator is

usually the result of an illegal math operation. Granted, there are situations which will

legally drive the machine into an over-range condition, but careful inspection of a

problem will usually resolve these difficulties.

For further information on error messages and over-range conditions, please refer to the

section on OPERATING CHARACTERISTICS.

® TEK

1-12

KEYBOARD

MATH KEYS

The single operand function keys are those labeled with functions that require a single data

entry.

A single operand key performs its indicated operation on the number that is in the display

when the key is pressed, replacing the number in the display with the result of the operation

indicated on the key.

IZZJ
i

X

1/x will take the reciprocal of the displayed number and display the result.

EXAMPLES:

1. Find the reciprocal of 2.

PRESS CLEAR

IMPLY
Read the answer, 0.5, in the display.

2. Find x

PRESS

3. Find x

PRESS

2/(4 X 5)

CLEAR

DSPLY
4

lissil
5

Read the answer, 0.1, in the display.

FLASHING 9.999999999 99

The flashing display is the result of an illegal operation since division by zero is

undefined. You may wish to use the CD 1/x sequence later when programming to

indicate some condition. A CLR eliminates the flashing display.

1-13
@ TEK

KEYBOARD

x2 squares the number in the display and replaces the number with the result.

MATH KEYS

□
Xs

i/x computes the square root of the number in the display and replaces the number with

the result.

EXAMPLE: 52 = 25, y/75 = 5

PRESS CLEAR

DSPLY

PRESS vr

Display reads:
0000000025.

Display reads:
0000000005.

If you attempt to find the square root of a negative number, the calculator will ignore

the negative sign and find the square root of the positive number and present the result

in a flashing display. (Try calculating the square root of -4.)

int x truncates any display to its integer value. The sign is retained.

EXAMPLES:

Convert the ordinary, scientific and mixed forms of 123.4 to integer displays.

Integer Display
CtEAR -f| —4 —f| ■-

ORDINARY
CLEAR

DSPLY 1
A m

l

tL. i

[4J
intX 0000000123

SCIENTIFIC

CLEAR

DSPLY <1 000 int X
1.230000000 02

MIXED

CLEAR

DSPLY

T-1
1

t=A
2

tl—a [v A\
3 M T-1

xto00

LA \ 21 int X
1.230000000 02

Note the two forms of integer displays

1

V3T

eh
int X

1-14
® TEK31

■I l-l II I II

□

□

q □
z □
Bn

KEYBOARD

MATH KEYS

i i
logX

B-1

EZZ1
InX

logX converts the number in the display to its log (base 10). Note that log (-N) and log

(0) result in flashing displays of log (+N) and -9.999999999 X 10 99 respectively.

EXAMPLES:

Find log10 (1.234 X 102) = 2.09131516

PRESS
CLEAR

DSPLY 1
—71

bgX

Find log10 (1.234 X 10~2) = -1.90868484

PRESS CLEAR

DSPLY m logX

ex raises e, the base of Naperian or natural logarithms, to the power indicated in the

display. (e= 2.718281828)

InX computes the Naperian or natural log of the display. Again, as with log (base 10), the

natural log of a negative number and zero will result in flashing displays.

EXAMPLES:

Compute e1 = 2.718281828, and ln(e) = 1 DISPLAY

PRESS

PRESS

To compute ln(2)

2.718281828

0000000001.

I-1

xi

PRESS
InX

x! calculates the factorial of the number in the display.

EXAMPLE:

Calculate 4! = 4 X 3 X 2 X 1 = 24

.6931471806

1-15
PRESS CLEAR

DSPLY x\

REV. JAN 1974

0000000024.

®, TEK31

KEYBOARD

MATH KEYS

THE GOLDEN RATIO

b/2
\
J

In the following figure the golden ratio is defined as a/b. r
b

t

\
\

r
\
\

\
\

/i

/
/

/
/

.' j

— a -

a x/S" +1
The solution — = - has some interesting properties:

b 2

PRESS
CtEAR

DSPLY
jJlTjj L—1 + = -T- 2

>—K
= j

J--\
DISPLAY 1.618033989

PRESS •——* .6180339888
x

Note the equivalence of the decimal portions

PRESS 2.618033989

The golden ratio was known and used in the construction of the Great Pyramid about

3000 B.C. Try finding the ratio of the length of one face to one-half the base [IKb/2)].

Is it an accident that this approximates the golden ratio? What is the relationship

between the area of one face (A = l^'b'-^land the height squared ?What is the relation

between the ratio of the base to the height (b/h) and the constant 7r?

GREAT PYRAMID

height = 481.40 feet

length = 612.00 feet

base = 755.79 feet

@ TEK31

1-16

KEYBOARD
rrr

□

□

□
□
□

HATH KEYS

Vex1

1-17

V^*2 3S implied will calculate the square root of a sum of squares. In addition to its

obvious uses, this key has other applications, for instance, giving the absolute value of a

number.

EXAMPLES:

Solve the triangle X=^32 + 42

PRESS
CLEAR V-H

q rr DSPLY o Vix7

Did you get the answer, 5?

This key is also very useful for evaluating expressions of the following form

X = V^2 + b^ + • • • + n2

For example, to find y/32 + 42 + 52,

p m PRESS
CLEAR

DSPLY ViX7 yfZx7

The result should be equal to >/50. Is it? (This key is very useful when working

with vectors.)

When using this key, if data is not entered, the zero in the display is used.

For example, the key sequences

and

CLEAR

DSPLY
Vix7

jj

I =

CLEAR

DSPLY

rzr'
+ -

Vzx7

f

[VO2 + (-5)2]

[>/ (-5)* + 02]

will both produce the same result, 5. (Thus this key is also useful for obtaining the

absolute value of any number.)
@ TEK31

KEYBOARD

MATH KEYS

|x|a raises the magnitude of the number in the display to a power subsequently entered. It

is also useful in finding absolute values.

EXAMPLES:

Find 23 = 8

IJCl“
PRESS

CLEAR

DSPLY

EZH
IJtla

Find | —4| =4

PRESS
CLEAR y=f

DSPLY
i-—-si

Later, when you are programming, you may find need to test a number to see if it is either

zero or non-zero. On the calculator 0° = 0 and hence, with a number in the display, the

sequence

0° =0

N° = 1

will result in a zero if the displayed number was zero ora one if the displayed number was

non-zero. (This has natural applications for Boolean Algebra.)

NOTE: Since |x|a raises the magnitude of a number to a power, using this key to

raise a negative number to an odd power results in a positive rather than negative

number.

®, TEK31 REV.JAN 1974
1-18

m
m

□
□
□

KEYBOARD
i i urn

□

□

TRIGONOMETRIC AND HYPERBOLIC KEYS

DEG RAD

The calculator is always in one of two possible trigonometric modes: radians or degrees. The

current operating mode is signified by reference to the illuminated status indicators, 'RAD'

and 'DEG' under the display. One or the other of these indicators is always on, indicating

current status.

* With the calculator in the 'RAD' mode, pressing the D/R key converts a displayed

number in radians to its equivalent in degrees. The machine remains in the Degree

mode for all subsequent trigonometric calculations or until the Radian mode is

re-established by a second D/R keystroke or a CLR.

* The D/R key allows you to change the form of the displayed number from scientific

notation to ordinary notation. With a displayed number in scientific notation, say

1.234 X 103, press D/R twice to convert it to 1234.

Radians and degrees are two forms of angular measurement; there are it radians in 180

degrees.

EXAMPLE:

DISPLAY STATUS

PRESS CLEAR

LdJ 0000000000 'RAD'

PRESS 1 cm
7T

1 3.141592653 'RAD'

PRESS 1
deTTad

0000000180. 'DEG'

To convert from scientific to ordinary notation.

PRESS 0000000000 'DEG'

PRESS
7

1
7=7

8
7=7

2 1
L=± <L=4

0000000001.8 02 'DEG'

1-19
® TEK31

KEYBOARD

TRIGONOMETRIC AND HYPERBOLIC KEYS

PRESS
DEg”BAD

3.141592654 'RAD'

PRESS decTbao
0000000180. 'DEG'

Unless the operating mode of the calculator is changed to degrees prior to the use of any of

the trigonometric keys, all trigonometric calculations are done in radians. If the Degree

mode is desired, you may change the trigonometric operating mode with the D/R key.

Current trigonometric status is denoted by an illuminated status indicator light located

below the display. (Remember, pressing CLR will always restore the calculator Radian

mode.)

sin x, cos x, and tan x denote the three trigonometric keys for the sine, cosine, and tangent

functions. Each of these keys performs the indicated trigonometric operation on the

displayed number and replaces it with the result.

I~~1
sinX

izn
cosX

CZZJ
tanX

To find the angle that is the inverse trigonometric function of a displayed number, press

arc followed by the desired trigonometric function. arc

EXAMPLES:

Find the angle, in radians and degrees, whose tangent is unity.

6 = tan-Ml)

PRESS
P-?

CLEAA

O

■T-—

rn
lr—J

1=1 [=1
arc tanX

DISPLAY .7853981634 radians

PRESS 1 0EG~BAD DISPLAY 0000000045 degrees

1-20
@ TE K 31

KEYBOARD
TX

□

□

□
q □
Em

TRIGONOMETRIC AND HYPERBOLIC KEYS
Try solving the following triangle for all trigonometric functions of the indicated

angle. Exercise the arc key to return to the angle after an operation to correlate the

results.

Thus 6 is an angle of .5235987756 radians

PRESS
DEG RAD

or d is an angle of 30 degrees

PRESS

The sin of 30 degrees is .5

1-21

PRESS 1=3 1=
arc sin X

An angle whose sin is .5 is 30 degrees.

PRESS «=?

The cos of 30 degrees is .8660254038

PRESS
arc cosX

An angle whose cos is .8660254038 is 30 degrees

PRESS
tanX

The tan of 30 degrees is .5773502691

When calculating inverse trigonometric functions, arc tan or arc sin, the result will

always be an angle between -90 degrees (— tt/2) and +90 degrees (7r/2) and when

calculating arc cos the results will be an angle between 0 degrees and +180 degrees

KEYBOARD

TRIGONOMETRIC AND HYPERBOLIC KEYS

hyper when followed by any of the trigonometric function keys, will convert the display to

its hyperbolic function. To obtain the inverse hyperbolic functions the arc keystroke may

either precede or follow the hyper keystroke. Note that the arguments of the hyperbolic

functions do not have units and are therefore insensitive to the trigonometric mode

(Degree or Radian).

EZZ3
hyper

EXAMPLES:

The hyperbolic sin of x is written sinh(x) and is defined by

sinh(x) = ■
ex - e~x

Find the hyperbolic sin for x = .5 by two methods.

METHOD 1: Using the EXPONENTIAL KEYS

F
Lf JUt II II I • I I I I ^ I S k

e* PRESS 101

The result is .5210953055

METHOD 2: Using the HYPERBOLIC KEYS

PRESS
rr-

ClEAfl

=41
Iff 1=1 *=1 i] hyper sinX

Did you get the same answer?

EXAMPLE:

Find the number, x, whose hyperbolic tangent is 0.5

x = tanh-1 (0.5)

PRESS
—71
ClfAJI

!±=4J

hyper arc

or
tanX

arc hyper

The result is .5493061443 1-22

KEYBOARD
i ii i ii i r

PARENTHESES

The open parenthesis key, (, and the close parenthesis key,), are used to organize

complex mathematical statements.

If we enclose a series of terms and operators in parentheses, the calculator will execute the

enclosed terms before it executes the non-enclosed terms. To illustrate, consider the

equation below.

(a-b4 + a) • b + a = y (a and b are data entries.)

To solve this equation on the calculator we would enter the following keystrokes.

ENCLOSED TERMS

r
v- v-i IV^f]

1 [m X ill L =i tM

When the close parenthesis key is pressed, the calculator accumulates the result of the

enclosed terms and puts it in the display. The equation is thus reduced to

5!^
: :v: X m + [

Where c is the accumulated result of the enclosed terms.

1-23 @ TEK 31

KEYBOARD

PARENTHESES

USING THE PARENTHESES KEYS

In an expression a close parenthesis may be either of two types: enclosing or non-enclosing.

A definition of each is contained below.

NON-ENCLOSING

f * *
(**•) ”•) •** ('•*)) ”• (”•))

i_4_4
ENCLOSING

* An enclosing) calls for accumulation of the enclosed terms.

* A non-enclosing) calls for accumulation of all preceding operations.

EXAMPLE:

If you perform the following keying sequence, you will find that each time the close

parenthesis key is used, the result of preceding operations, as explained above, will

appear in the display.

Display Reads Display Reads

IF?I i LL==tJ

O. ■

t
+

v—'ir
) +

j-

>—f
(

V—1
1

£=±
+ [

3.

1

m

] + i + 2
FI) _

L=±1 t==L

Display
Reads

A 4 Display
Reads

(S) TE K 31

9. 9. 1-24

KEYBOARD

PAREiTHESES

The calculator will not recognize more than one successive (in an expression.

EXAMPLES:

These statements are valid This statement is not valid

2 X(2 + 5)= (2 X(2 + 5)) =

(2)X(2+5)=

In each of the above, the correct result, In the above, the second (is not rec-

14, will be obtained. ognized by the calculator and the result

will be 9, not 14.

From the above you may correctly deduce that it is not valid to nest parentheses but you

may chain parenthetical expressions.

Not valid:

Valid:

... | ...) ... (

...) ...) ...)

... j ... | ...)

1-25
@ TEK31

KEYBOARD

PARENTHESES

EXAMPLES:

Below are a few expressions that you might encounter while solving problems. Study

the keying sequences opposite the expressions to understand the techniques involved in

the use of parentheses.

1. (2 X 2) +3
7=F

2 X I2 +
SF"7

3
_

t~-L

2. 2 X (2 + 3)

or

7=7
2

A
X

-^
(

y~-< w y \
+ 3

>—

V-l” 'r-V V—V
2 X (

Lids
2 +

co |
—

k\

0

3. /32 + (4 + 5)2

or

rr > A Pi I + | w Jr-A rn

Id

_

Vi*7
V-f

l
12

+ 5
t~d

=

25
4. -

(3 + 2)

7=7
[2^

F^ 5

v—
2

[2
-T-

25
5. - + 7

(3 + 2)

F=7I
(

LLJJ

IS-71
3 2

ILZJsl

7=7
(

7=7
3 +

±=i t=L

p=71
2

2
F==fl

5
IOJ

(LLldJ

Following the above guidelines is generally simple and straight-forward. Usually only the

most complex statements need simplification. When simplification is called for the data

registers may be used to store intermediate results which can be recalled later to calculate a

final result. 1-26

KEYBOARD

HIERARCHY
Hierarchy refers to the priority or precedence of the mathematical operators. Consider the

equation, Y = A + B X C. When verbally expressing the relationships between A, B, and C,

care must be exercised to rule out misinterpretations. For example, does the expression

mean, "A plus the quantity B times C" or does it mean ''C times the quantity A plus B?

These expressions are different and only one is correct. The point to be made here is that

the calculator must interpret relationships of this kind, i.e., a hierarchy or priority of

operations must be established in order to rule out misinterpretations. The calculator does

this by using the hierarchy relationships that have been long established as a part of

everyday mathematics.

A mathematical statement consists of terms separated by operators, the operators giving the

relationship between the terms. Consider the statement below:

y = a-b4+a*b2+a(a and b are data entries)

The statement would be written on the calculator as

TERMS

*
OPERATORS

]

Inspection of the above reveals that each term is separated by an operator. The calculator

inspects the statement and accumulates the result of the operations according to the

hierarchy of the operators.

1. The highest priority is assigned to those operators which immediately perform a

complete operation on the term in the display. These operators are: the

trigonometric and hyperbolic keys, the register arithmetic keys, xl. In x , log x ,

int x , ex, x2 ,y/x, and 1/x. In the example, the x2 key has the highest priority

and is executed first. Hence the statement is reduced to

i*ia
b2 1-27

@ TEK31

KEYBOARD

2.
HIERARCHY

Operations involving |xa| and y/Xx? are done next. In the example the x4 term

receives second priority; the statement is reduced to

FF=i
X b4 +

VTZ?
:: X
mk

-1-
szzm is a
:;:ax: =

3. Multiplication and division receive third priority. In the example, a • b4 and a • b2

are calculated; the statement is reduced to

fTj a • b2 ■ + :®:| L=J
Addition and subtraction have lowest priority. In the example, the terms

a • b4, a • b2 and a are summed and the final result, y, is displayed. The statement

has been reduced to its solution;

DISPLAY

The calculator always follows the above sequences when accumulating the result of several

operations. The numerical examples below illustrate these relationships.

EXAMPLE 1:

In a statement containing multiple levels of hierarchy, operators with the highest

priority receive the first treatment.

-2 X 81 = 162

1 + 162= 163-

163 (Result)

EXAMPLE 2:

In a statement containing operators with equal levels of hierarchy, the operations are

performed on a first-come-first-served basis.

n I | k_yj
Vi*7)|lH

■ a/32 + 42 = 5 -I

i*i“

53 = 125 J

125 (Result)

© TE K 31
1-28

KEYBOARD
i i i — i i i

□
□
□

DATA REGISTERS

Data registers are those portions of the calculator memory that are devoted to data

storage. The data registers are of two types: K-registers and R-registers. The K-registers

differ superficially from the R-registers in that you will address and use them differently,

but for data storage purposes they are the same.

There are ten K-registers, K0 through l<9. Each of the K-registers has a single digit

address. In addition to their data storage functions, the K-registers are related to the

keys that perform register arithmetic. (These keys are discussed in the next chapter.)

In the basic calculator there are 64 R-registers. (With optional memories it is possible

to expand to 1000 registers.) The R-registers have three digit addresses and are

addressed either directly or indirectly. Data may be transferred from the R-registers to

magnetic tape and vice-versa through a tape transport mechanism.

REGISTER ORGANIZATION

The ten K-registers are identified by single digit addresses, 0 through 9. The digits

designate registers K0 through K9. K0 through K4 are related to the register arithmetic

keys.

The R-registers are organized into files. Each complete file contains 100 R-registers. (On

the basic calculator, the 64 R-registers partially fill the first file, file 0. Expanded

memories allow for 1000 R-registers or 10 complete files.)

1-29
@ TEK31

KEYBOARD

DATA REGISTERS

Every R-register can be identified by a three digit address, fdd. The first digit (f) specifies

the file number; the remaining two (dd) specify the R-register in the file. Whenever any

R-register is accessed by its three digit address, the calculator remembers the file number

(f) of the accessed register. The calculator will continue to operate in this file and the

registers in it may be subsequently accessed by their two digit addresses (dd) until the

current file is changed by accessing an R-register in a different file with another three

digit address. (The current file may be determined by entering the Learn mode. See

OPERATING MODES.)

Notice that there are two Register addressing keys on the keyboard. Rasa and R«. The

Ruuu key requires a 3 digit address and is used to access any register in any file. The

Raa key requires a two digit address and is used to access any register within the current

file as mentioned in the preceding paragraph.

There is one file addressing key on the keyboard. CLEAR R FILE. This key requires a one

digit file address and is used to clear all R-registers within the addressed file.
8-1

CLEAR
R FILE m

Whenever any R or K key is depressed, the calculator expects that an appropriate number

of digital addressing keystrokes will follow. This expectation is announced to you by

illumination of the Address Incomplete light. If the address is not completed before a

non-digit keystroke is entered, an error message (E 3) will appear in the display. Reset

this error message by completing the address. If a non-existent R-register is addressed, an

error message (E 2) will appear in the display. Reset this error message with a CLR. (See

APPENDIX for further explanation of error messages.)

@ TEK31

1-30

KEYBOARD

DATA REGISTERS

DIRECT STORAGE OPERATIONS WITH THE K AND R-REGISTERS

Pressing the equals key, =, prepares the calculator for a storage operation. Any register

addressing sequence that follows an = will cause storage of the displayed number in the

addressed register (K or R).

EXAMPLE: Store 7r in K5 and 1/ir in R49,

1) PRESS 1 to enter 7r into the display.

2) PRESS

3) PRESS

4) PRESS

1-31

RESULT: ■n is stored in K5 and Mir is stored in R049.

To display and examine the contents of any storage register, simply press, in sequence,

the keys that identify the register of interest. (Display Rf^d by pressing R«» f d d.

Examine the contents of by pressing K d.)

EXAMPLE: To recall the contents of the registers used in the previous example:

to recall the contents of K5 (tt).

~9^| to recall the contents of R049 (1 In).

1) PRESS

2) PRESS

r k J5J

i V) &==£

Note here that we did not use the full address of R049- This was not necessary

because we should be operating in file 0 from the previous example.

© TEK31

KEYBOARD

DATA REGISTERS
STORAGE AND THE PROGRAM CONTROL KEYS

When a displayed number is set for storage by an =, it remains set for storage through all

the following keystrokes

To illustrate,

K
V i

0

in addition,

any combination of

the above keystrokes

and

causes storage of the display in the K0

data register.

also causes storage of the display in the

K0 data register

This again prompts the suggestion that the = be used with care, and preferably only for

storage operations.

UTILIZING DIRECT STORAGE AND RECALL OPERATIONS IN PROBLEM

SOLUTIONS

Up until now, during each calculation you performed on the calculator, you have been

required to key-in each data entry as it was needed in the course of a solution. In

addition, you have been required to manually record or print each significant result. By

incorporating the added flexibilities of the storage registers, a significant portion of the

efforts involved in problem solutions are reduced and you thus gain another degree of

freedom in the methods by which problem solutions may be implemented.

To illustrate this point, consider the form of the equations below:

y = Mx + B = K0 X l<1 + K2

Obviously, M K0

x K,

b - k2 1-32
@ TEK 31

KEYBOARD

DATA REGISTERS

If we store the numerical values of M, x, and B in the storage registers K0, K1# and K2,

respectively, we may then solve the equation in terms of the contents of these registers

and thus negate the necessity of keying-in the data entries as they are needed during the

solution.

Suppose M = 2.571

x = 11.72

B = 5.713

Store the data in the appropriate storage registers. (Here we will use the K-registers, but

the R-registers could be used with equal ease.)

Now proceed with the solution.

>—

C\J

[
O

 w, m
T)
h-s

= (IK '
y—f

0

w

>—f
1

v—
7 = Tj

}—s

w.

—f
• V—i

7
>—f

i
M Ui (k '

lLL

Y—f
2 I

PRESS

CLEAR

DSPLY

CLEAR

DSPLY

CLEAR

DSPLY

PRESS

(The result is 35.84512)

You may wish to repeat the calculation with new variables and store the new results.

First, store the old result in K3.

PRESS m
Now suppose we wish to evaluate the equation for x = 3.7; store the new x in K4.

PRESS
CLEAR

DSPLY
ITfJI —71

K

1-33 Now repeat the solution and store the new result in Kg .
® tek 3

KEYBOARD

DATA REGISTERS

PRESS

K

ILL
o X E30E100E1E10

(The result, which is stored in K5, is 15.2257)

We may now recall all of the information from the storage registers.

2.571 M

11.72 x (first one)

5.713 B

35.84512 y (x =11.72)

3.7 x (last one)

15.2257 y (x =3.7)

In a more complex expression you may want to reduce the expression to several less

complex expressions, store the intermediate results in the storage register, then accu¬

mulate these intermediate results to obtain the total result. For example the equation

aex + b . . .
y = —-- — (a- sin x + 3)(tan x'c'

2c+ d

might be evaluated as follows:

aex + b R0o i

2c + d R002

a* sin x + 3 R003

tan x/c R004

Rbbb 0 0 1^ Rms 0 0 2 Final

— Rbbb 0 0 3 xa Rbbb 0 0 4 = Result 1-34
Q TEK 31

Intermediate

Results

PRESS

S"

fF” o
k i

71
K

M

mm
F

Display reads:

Display reads:

Display reads:

Display reads:

Display reads:

Display reads:

KEYBOARD

DATA REGISTERS

Here, you have at your fingertips the ability to assign labels to the variables in a problem

and recall them into the display at will.

Later you will find that the calculator not only has this ability, but also possesses the

ability to store and remember keystrokes. This is programming, which will be covered

later in the manual.

INDIRECT ADDRESSING

Indirect addressing is a method of addressing one R-register with the contents of a second

R-register. The number stored in the second becomes the address of the first.

The indirect addressing sequence is similar in form to the direct addressing sequence

except that there is one extra R keystroke. Later in this section we will discuss the

relationships between the two R keys in indirect addressing but for now we will stick to

the generalities of the technique using only the R key, R«". The indirect addressing

sequence is:

Rm« Rqhh f d d where fdd is a complete R-register address.

If nnn are the 3 least significant digits of a number stored in Rfdd, then the sequence

above will cause nnn to be taken as the address of the first R«" in the sequence.

Rnnn is Rr^ when nnn are the 3 least significant

digits of the number stored in Rfdd

1-35
(a) TEK 31

KEYBOARD

DATA REGISTERS

The storage and recall sequences are similar to the sequences used in direct addressing. To

store, precede the addressing sequence with an equals keystroke, and to recall, simply use

the addressing sequence alone.

STORAGE: = Rbbh Rm f d d

RECALL: Rm* Rbsb f d d

To illustrate indirect addressing, consider the following operations:

1) Store the number 17 in register R 033-

PRESS:
IS-71

Qil 0
2) Now store n indirectly in register R017.

PRESS:

3) The result of the above is that the calculator will inspect the 3 least significant

digits of the contents of R033 and find that they are 017 which are then used as

the address for the first R in the sequence. Thus, n is stored in R017.

4) To check that the above is true, recall tt from R017; this may be done either

directly or indirectly. Try it both ways.

Direct Recall, PRESS

Indirect Recall, PRESS:

TEK 31
1-36

KEYBOARD

DATA REGISTERS

When using indirect addressing, any number may be stored in the address register, but

only the last three digits (least significant) will be used as the indirect address.

EXAMPLE:

Store the number 1024 in R001,

PRESS:

0 1

Now store it indirectly through R001.

PRESS:
F—r V -f F-^ V i V 1 LsJ R

(
S

»

>
-

 w 0 1

Result: Find 7r in R024.

On the basic calculator (64 R-registers), if a number greater than 064 had been stored in

R001, then the calculator would have found that it did not possess the addressed register

and an error message, (E 2), indicating no such register, would result in the display. The

same applies with other memory options: An error message will result whenever a

non-existent register is addressed.

1-37
@ TEK31

KEYBOARD

DATA REGISTERS

RELATIONS OF THE R-REGISTER KEYS IN INDIRECT ADDRESSING

Either of the two R keys, R®®® or Ra® may be used in the indirect addressing sequence.

The results will vary with the order and sequence used.

Remember that the first digit (f) of the three digit address (fdd) that follows the Rans

keystroke will change the operating file number. With this in mind, realize that care must

be exercised when mixing the indirect addressing keystrokes in order that you do not

inadvertently change the operating file and proceed to call R-registers from the wrong file

with the short form addressing sequence, R®« R®H d d.

* If the second keystroke is R®"® as in

Ram Rood

or fdd

R®®« Rbhb

then the address in Rf^d becomes the address for the first R in the sequence and

the file is changed to coincide with the just-entered f keystroke.

* If the second keystroke is R®® as in

R®® R®®

or d d

R®a® R®®

then the address in register dd of the current file becomes the address for the first R

in the sequence and the file number remains unchanged. 1-38
© :k 31

KEYBOARD
ILL

□

□
P □

□
□

REGISTER ARITHMETIC

The term 'register arithmetic' loosely groups the set of keys that simplify some of the

addition, multiplication and counting operations commonly used in programming. Each

of these keys manipulates specific combinations of stored or displayed data, altering the

contents of one of the five storage registers, K0 through K4, in the manner indicated on

the keys. The individual keys perform the following operations:

I.
Display + K0 = K0 (display unchanged)

I,
Display + K1 = K1 (display unchanged)

1
k3 + K2 = k2 (K3 and display unchanged)

n4
Display X K4 = K4 (display unchanged)

A,
(-0.1) X k3 = k3 (display unchanged)

These keys do not prevent the use of the storage registers for other purposes, do not

change the display, and do not affect the hierarchy of a statement. They perform

without affecting any calculation in progress.

I 1 So Adds the displayed data to the current contents of register K0 and stores the sum in

K0. The display remains unchanged.

[
2, i Si Same as So except it uses the K., register.

EXAMPLE:

Twenty eight is a 'perfect' number; all of its integer factors add to 2 X 28. Use the

storage register K0 to sum the factors 1, 2, 4, 7, 14, and 28.

1-39
@ TEK31

KEYBOARD

REGISTER ARITHMETIC

Display K0

0000000000 0

0000000001 1

0000000002 3

0000000004 7

0000000007 14

0000000014 28

0000000028 56

Now recall contents of K0

PRESS
—7]

K

LLLiJ

(The next perfect number is 496.)

0000000056 56

® TEK 31

1-40

KEYBOARD □

□

□ □
□
□

REGISTER ARITHMETIC

CZJl
IL

114 multiplies the displayed data by the current contents of register K4 and stores the

product in K4. The display remains unchanged.

EXAMPLE:

Obtain the product of a series of entries

K„

PRESS CLEAR

DSPLY

FT

CLEAR

DSPLY

=7]
CLEAR

DSPLY

To recall the product

PRESS n n 5 4 y~ i til

Display

=
0000000001

n4 0000000002

,_,
n4 0000000003

0000000006

fc || 3S2 adds the current contents of K3 to the current contents of K2. The contents of K3 are

3-^2 unchanged and the display is not affected.

EXAMPLE:

Store 0 in K2 and 5 in K3. Sum the contents of K3 in K2 six times.

1-41

PRESS

CLEAR

DSPLY

rr-fi

,E,

.1.
>£, ,1 ,1,

K-

5

15

30

PRESS
rr^i

Is the result 30?

K,

5

5

5

® TE K 31

KEYBOARD

REGSSTER ARITHMETIC

A3 multiplies the current contents of register K3 by —0.1 and stores the result in K3.

The display is unaffected.

EXAMPLE:

PRESS

me d <1

s—f P7
K

i=y
3

k3

1000

1=1 -100
A,

1=1 +10
As

A, 1

As

+.1

This key is useful in finding the roots of equations through iterative zero-crossing search

techniques.

1-42
® TEK 31

KEYBOARD
n

□

□

□
□

t=m

PERIPHERAL CONTROL

II REMOTE, RMT, sets the calculator to control a remote peripheral device.

REMOTE
■ ■

This key is used to send data to or receive data from remote instruments.

The RMT key can be used as a direct address key, or can be used with a K-register for

indirect addressing. Each peripheral to be used with the calculator is assigned a two-digit

identification number.

To directly address a given peripheral

PRESS a; 31 m
Efeg-iJ

where the two digit keys represent the address of the peripheral.

To indirectly address a peripheral, the address digits must be the two least-significant

digits of the mantissa stored in a given register R^d

PRESS

and the calculator will look in R^d find the address digits, and access the designated

peripheral.

Details of peripheral operations are given in the peripheral manuals.

1-43
@1 TEK31

KEYBOARD

PERIPHERAL CONTROL

PERIPHERAL CONNECTOR

KEYBOARD

PRINTER

The paper detector arm (shown in the above illustration) will place the calculator in the

Busy mode if the printer runs out of paper. If this should occur either turn off the

printer or install a new roll of paper. DO NOT ATTEMPT TO DEFEAT THE PAPER

DETECTOR. Serious damage to the thermal print head and/or roller may result if the

paper detector mechanism is defeated.

1-45
@ TEK 31

KEYBOARD

To turn the printer on, depress the printer ON-OFF switch located on the printer

mechanism on top of the calculator.

To advance the paper, depress the PAPER FEED switch located in front of the

printer ON-OFF switch.

The remaining printer control keys are a part of the basic calculator keyboard and are

included on all calculators, whether or not a printer is actually installed. If your

calculator was not originally equipped with the silent thermal printer, one may be

installed at any time without keyboard replacement. The printer control keys generate

their respective program codes independently of the printer itself, hence programs with

print-control commands may be written, executed, and recorded on calculators not

equipped with printers.

The print key, PR NT, commands the internal printer to print the contents of the display,

and then advance the paper by one line, without changing the display.

* All numbers are printed as displayed, except that non-significant leading 0's are

suppressed. Displays consisting of all zeros are printed as "0".

* If the display is flashing when printed, a pound sign will appear in the printout, as

illustrated: M
9 = 9 9 9 9 9 9 9 99#-*- 9 9
9,9 9 9 9 9 9 9 9 9 #4-9 9
9 = 9 9 9 9 9 9 9 9 9 # 4- 9 9
3 = 9 9 9 9 9 9 9 9 9 # -4 9 9

The paper feed key, PF, advances the paper one line each time it is depressed. I-1
PAPER
FEED

@ TEK31

1-46

PROGRAMMING

INTRODUCTION TO PROGRAMMING

Until now, our discussion has centered upon the use of the calculator as a sophisticated

adding machine; by now you know how the various keys on the lower half of the

keyboard operate relative to the display and to each other. You also know, from our

discussion on Storage Operations, that the calculator has some sort of memory — at least

so far as data is concerned. But this is only the half of it; remember, the calculator is

programmable. This means, quite simply, that the calculator has the ability to remember,

in its program memory, all that you have become familiar with in the preceding text.

Heretofore we have looked at the keys on the lower half of the keyboard; now we will

discuss the remainder, the programming keys. But first, let's look at programming in

general.

What is a program? A program is a series of instructions (keystrokes) that, when stored in

the calculator program memory, may be executed by the calculator in a continuous

manner, from start to finish. The instructions that make up a program are of two kinds.

You are already familiar with the first kind of instructions, these are the keys on the

lower half of the keyboard — you- have used them before, and they need no further

explanation except that they are programmable. The second kind of instructions are

those associated with the keys on the upper half of the keyboard. Generally, these keys

relate to program flow, directing the order and manner of execution of program steps

that may be physically separated from each other in memory, but are linked by virtue of

program organization.

Let's look at some sample programs in order to clarify the above. The simplest kind of

program is one that contains no branches. That is, the instructions in the program are

located adjacent to one another in memory and are executed sequentially by the

calculator, one after another. As an example, enter a program that will take a number

from the display, store it in K0, and stop.

2-1
@ TEK 31

PROGRAMMING

INTRODUCTION TO PROGRAMMING

PRESS

i-1

CLEAR

DSPLY

IEARN

Set the calculator at the beginning of its

memory, location 0000.

Enter the Learn mode, in which the calculator

will remember keystrokes, at 0000.

These keystrokes — as you already know —

cause the number in the display to be

stored in the K0 data register.

Clear the display.

This will be the last program step, an

instruction to the calculator telling it

to STOP program execution.

Exit the Learn mode; we are done programming.

The program and its flowchart look like this:

PROGRAM

f
0000 = \

0001 K
memory

< 0002 0
locations

0003 CD

0004 STOP

/

stored

keystrokes

FLOWCHART

To run the program, enter a number into the display and press START. The START

causes the calculator to execute the instructions in its memory, starting at location 0000.

Thus, the display is stored in K0, cleared, and the program stops — note that the STOP

light is on. Recall the contents of K0 to verify storage (press K 0). 2-2

PROGRAMMING

INTRODUCTION TO PROGRAMMING

Now let's enter another program into the calculator memory. Have this second program

recall K0, add one, and then STOP with the sum displayed (l<0 + 1). Locate the new

program beginning at location 0100 in memory.

PRESS
n

i Set the calculator to memory

location 0100.

r i
LEARN

LEARN

The program and flowchart look like this:

Enter the Learn mode.

Recall K0 into the display.

Add one to K0.

Stop and display the sum.

Exit the Learn mode.

PROGRAM

0100 K

0101 0

0102 +

0103 1

0104)

0105 STOP

FLOWCHART

To execute the program press GO TO 0 10 0 and CONT. As directed, the calculator will

recall K0, add one, and STOP with the sum in the display.

2-3
(3) TEK31

PROGRAMMING

INTRODUCTION TO PROGRAMMING

Now let's link the two program segments together. To do this, enter the Learn mode at

location 0004, the location of the STOP in the first program. Then enter the program

instructions: GO TO 0 1 0 0 to direct program flow to the beginning of the second

program segment. After this, exit the Learn mode.

PRESS

LEARN

Set the calculator to the memory

location of the STOP in the first

program.

Enter the Learn mode.

These instructions, which overwrite

the previous ones, direct

the calculator to go to 0100,

the location of the second program.

LEARN
We are done; exit the Learn mode.

As before, to run the program enter a number into the display and press START. As a

result, the number in the display will be stored in K0, incremented by one, and

displayed.

2-4

PROGRAMMING

INTRODUCTION TO PROGRAMMING

Our program and flowchart now look like this:

PROGRAM

0000 =

0001 K

0002 0

0003 CD

0004 GO T

0005 0

0006 1

0007 0

0008 0

[0Q09

ignored <

[0099

0100 K

0101 0

0102 +

0103 1

0104)

0105 STOP

FLOWCHART

2-5
® TEK31

PROGRAMMING

INTRODUCTION TO PROGRAMMING

Now look again at the flowchart and program. Notice that the program steps,

GO TO 0 1 0 0 are not shown in the flowchart, GO TO and the address digits

following it are only intended to achieve continuity in program execution and are not

necessary in the program flowchart. This is true of most of the remaining keys on the

upper half of the keyboard; they control the program and tell the calculator information

about the program. All of the computation in this or any other program is done with the

keys on the lower half of the keyboard.

Notice that in our simple program example we have used RESET, LEARN, STOP,

START, and GO TO, five of the 31 keys on the upper half of the keyboard. You

already understand what these keys do in a program and you will find the rest of the

keys equally simple to understand. Programming is really quite simple — just a series of

instructions, executed one at a time. You are at step five of 31. Now get with the

program! Turn the page to execute the next step.

2-6
@ TE K 31

PROGRAMMING
let

□

□

□
p □

n

PROGRAM MEMORY

The portion of memory devoted to the storage of program steps is called the program

memory. On the basic calculator without additional memory options, the program

memory consists of 512 program steps. Each step is capable of storing a single keystroke.

With expanded memory, as many as 8192 program steps are available.

MEMORY ORGANIZATION

Program steps in memory are organized into pages. Each page contains 1000 program

steps. On the basic calculator there is only one page, page 0, partially filled with 512

steps. There are as many as eight full pages in the expanded memory.

PROGRAM STEP COUNTER

Sequential entry or execution of program steps is controlled by means of the program

step counter. At any given time, the program step counter points to a single memory

location. The step counter is automatically advanced one step when a program step is

either entered or executed at the indicated location.

ENTERING AND STORING A PROGRAM

There are two methods of entering a program into the calculator program memory. The

first method involves the entire keyboard; ; the second involves only a few keys and the

magnetic tape cartridge. Here we will discuss program entry from the keyboard. For

information on tape entries please refer to the section entitled MAG TAPE

To enter a program from the keyboard, first direct the calculator to the location in

memory where you wish to begin storing the program steps. To start programming at

step 0000, direct the calculator to the 0000 location with either of the two following

keying sequences:

2-7
® TE K 31

PROGRAMMING

PROGRAM MEMORY

or

y—7
RESET

To start programming at any other location, the sequence

tf a ■ (d = any digit)

will direct the calculator to step dddd of the program memory.

Once the starting address is properly located, enter the Learn mode by pressing the green |

learn key, LRN. When the Learn mode is entered, the display will change form to show learn

the program step currently indexed by the program step counter, an octal keycode

representing the keystroke presently stored at that memory location, and a single digit

showing the last accessed R-register file number.

dddd ddd d - Last addressed R-register file number

Octal keycode of stored keystroke

Presently indexed program step number

Entry into the Learn mode is also indicated by illumination of the learn light that is

located under the display.

As program steps are keyed in, the program step counter advances one step at a time,

and the display will always show the keystroke presently stored at the indexed location.

After the program is entered, exit from the Learn mode is accomplished by pressing LRN

a second time. The learn light will extinguish and the program step counter will

automatically be set to step 0000. The calculator will then wait there, in the Idle mode,

for further instructions. 2-8

PROGRAMMING

OPERATING MODES

Current machine status or Operating mode is indicated by illumination of one or more of

the status lights located below the display.

ADDR
RAD DEG LEARN BUSY STOP

INCOMP

In the preceding keyboard sections we have already discussed DEG and RAD, two of the

six status lights. The remaining four convey program entry and operation information,

informing you whether the calculator is currently learning a program, busy executing a

program, has stopped program execution, or is waiting for an address.

IDLE MODE

In the Idle mode: the learn and busy lights are extinguished and the calculator may be

directed into any other mode.

LEARN MODE

The Learn mode is activated by pressing the green learn key, LRN, and is indicated by

illumination of the learn light under the display. In the Learn mode, the programmable

memory is opened to accept and retain sequential entry of all keystrokes except LRN

and the editing keys. (The editing keys are located in the row immediately below the

display.)

In the Learn mode the display consists of three number segments. The first segment of

the display shows the four digit address of the program step currently indexed by the

program step counter. The second segment gives an octal keycode representing the

keystroke presently stored at this memory location. The last segment of the display

consists of a single digit which indicates the file number of the last addressed R-register.

2-9
@ TE K 31

PROGRAMMING

OPERATING MODES

I t_! Last addressed file number

Octal keycode representing stored

keystroke.

Program step currently indexed by
counter.

Certain of the editing keys can only be used in the Learn mode.

They are:

Exit from the Learn mode is accomplished by pressing LRN a second time. Exit from the

Learn mode is always into the Idle mode.

BUSY MODE

The Busy mode is indicated by illumination of the busy light under the display. The

calculator is put into the Busy mode whenever it is actually processing information. This

occurs momentarily after every keystroke and is most noticeable during lengthy operator

computations. (Try 6 9 x!). The Busy mode is also entered when the calculator is

executing a program, transferring information to/from tape, and when it is performing

certain editing functions. Busy mode also occurs whenever the calculator is under control

of a remote peripheral device.

2-10
@ TE K 31

PROGRAMMING

OPERATING MODES

A programmed RSET (and under certain conditions, an END) encountered by the

calculator during program execution will cause exit from the Busy mode. In addition, a

programmed or manual STOP command will also cause exit. After a STOP is encountered

the program step counter remains at the location following the encountered STOP.

^

CONT
Resumption of the interrupted program is accomplished by pressing CONT. An en¬

countered RSET (and under certain conditions, an END) will set the program step

counter to step 0000.

Exit from the Busy mode is always into the Idle or stop mode.

NOTE

Except for the STOP key, the keyboard is disabled during the Busy mode. To abort

any program being executed, press the STOP key and then reset the calculator by

pressing the RESET key.

STOP MODE

The Stop mode is indicated by illumination of the stop light under the display. Entry

into the Stop mode is accomplished whenever the calculator encounters a programmed

STOP command. A programmed STOP will cause the calculator to halt program

execution at the location following the STOP.

To re-enter the Busy mode and resume program execution press CONT. This will cause

the interrupted program to resume execution at the step after the encountered STOP

command.

2-11
@ TEK31

PROGRAMMING

OPERATING MODES

ADDRESS INCOMPLETE MODE

This mode is indicated by illumination of the address incomplete light under the display.

Entry into this mode follows all encountered keystrokes that require a subsequent address.

These keys are:

Requires a four digit address (dddd)

Requires a three digit address (ddd)

Requires a two digit address (dd)

Requires a two digit address (dd).

Requires a one digit address (d)

Requires a one digit address (d)

Requires a one digit address (d)

Requires a one digit address (d)

Requires a one key address (d)

Requires a one key address (d)

Exit from the Address Incomplete mode is accomplished by satisfying the required

address. If the proper address is not entered before pressing another key, an error code

(E 3) is displayed along with the step, keycode, and file.

2-12
@ TEK 31

PROGRAMMING
■ Hina

PROGRAM CONTROL KEYS

The program control keys are used to control the execution of your program. When

placed in your program, they direct the calculator to branch, stop, make a decision

pause, or terminate the program execution.

RESET

In the Idle mode, RSET directs the program step counter to step 0000. The calculator will

wait in the Idle mode for further instructions. If you desire to start execution of the

program steps starting at 0000, follow the RSET command with a START keystroke or

CONTINUE keystroke.

A programmed RESET causes exit from
the Busy mode with the counter at 0000

In the Idle mode
a RESET directs
the calculator to
wait at 0000

nnnn+1

\
This address is
stored in the
address register

In the Busy mode, when the calculator encounters a stored RSET command, it reacts by

directing itself to step 0000. The calculator will then exit the Busy mode, enter the Idle

mode, and wait for further instructions.

2-13
@ TEK31

START

PROGRAMMING

PROGRAM CONTROL KEYS

In both the Idle and Busy modes, a STRT will direct the calculator to step 0000 and

begin program execution.

A programmed START is a command to
Joop to 0000 and continue execution

strt —»

nnnn nnnn+1

\
This address is
stored in the
address register

\ 0000 0001
A manual START
in the Idle mode
begins program
execution at 0000

STOP

The STOP command halts program execution. It is the only key that remains functional

in the Busy mode, and may be used at any time to manually halt program execution.

s
STOP

s M II /
- STOP -
/ I I I l N

A manual STOP interrupts program
execution anywhere in memory

If a program execution is interrupted by a manual STOP command, the calculator will

stop at the step following the step that was being executed when the manual STOP was

entered; to resume, press CONT, or to terminate the program, press RESET.

2-14
@ tek 31

PROGRAMMING m

□

□

q □
z □
Em

PROGRAM CONTROL KEYS

In the Busy mode, whenever the calculator encounters a programmed STOP, program

execution will halt at the location following the STOP and enter the Stop mode with the

stop light illuminated. The program step counter will contain the address of the location

following the STOP.

\ i i l i ✓
-STOP-
' I I I I N

/
A programmed STOP halts execution at
the location following the STOP command.

In the Stop mode the keyboard is fully functional.

1=1

1=1
= 0

1=1
< 0

IF CONDITION

The condition part of the IF CONDITION term refers to the state of either the display

or flag. When the calculator encounters a programmed IF keystroke, it examines the

display or flag and queries them about their existing condition. The query has a yes or

no answer; a yes applies when the CONDITION exists, and a no applies when the

CONDITION does not exist.

2-15
(£) TEK31

PROGRAMMING

KEYSTROKE

fZZi

rnuunnm bull

CONDITION YES NO

Is the display greater The display is greater The display is

than or equal to zero? than or equal to zero. negative.

Is the display equal to The display is equal The display is

zero? to zero. p o s i t ive or

negative.

Is the display neg¬ The display is neg¬ The display is

ative? ative. positive or

zero.

Is the display flash¬ The display is flash¬ The display is

ing? ing. not flashing.

Is the FLAG set? The FLAG is set. The FLAG is

not set.

I-1
FLASH

The FLAG is an internal latch that is set by means of the SET FLAG key, SFG, which is

located above and to the right of the IF CONDITION keys. The flag is cleared by

pressing CLEAR FLAG or RESET.

FLAG

2-16
0 TEK 31

PROGRAMMING TL TL

□

□

q □
z □
Bn

PROGRAM CONTROL KEYS

When the condition ()

When the condition () is
fulfilled, the program steps
following the IF are executed.

If the calculator finds, after inspection of either the display or the flag, that the stated

CONDITION is true (yes), the calculator will execute the program steps immediately

following the IF statement. If the CONDITION is found to be false (no), the calculator

will branch to and execute the program steps following the next stored CONT keystroke.

GO TO

The GO TO command, GT, must be followed by a four digit address, dddd, which will

extinguish the Address Incomplete light. If GT is followed by a non-existent address,

error code (E 1) will result. If GT is followed by an incomplete address (less than 4

digits) error code (E 3) will result.

In the Idle mode, GT dddd will cause the calculator to branch to program step dddd

and wait there in the Idle mode for further instructions.

2-17
(2) TEK31

PROGRAMMING

PROGRAM CONTROL KEYS

B H p;
A manual GO TO command directs the
calculator to the addressed memory 1 location, dddd, where it will wait in the
Idle mode for instructions

WAIT
IDLE

BUSY mode is not interrupted.

In the Busy mode, whenever the calculator encounters the programmed sequence, GT d d

d d , the calculator branches to step dddd and execution of the stored program continues

at that location. GT d d d d is considered to be an unconditional branch command. (For

a further discussion of branching, please refer to the section entitled PROGRAMMING

HINTS.)

STEP —>

The STEP FORWARD key, STP—is non-programmable and is used to advance the

program step counter one step at a time in the Learn and Idle modes.

In the Busy mode, STP-»- is non-operable.

In the Idle mode, STP-*- is used to sequentially execute stored program steps. To

accomplish execution of program steps stored at any location, simply direct the

calculator to the program steps of interest with a GT d d d d and press STP-*-

sequentially. Further discussion of the STP — key is contained in the section entitled

PROGRAM EDITING AND DEBUGGING.

I 2-18
@ TEK31

PROGRAMMING □

□

q □
z □
Em

PROGRAM CONTROL KEYS

GO TO DISPLAY and RETURN ADDRESS

Whenever the calculator encounters a GO TO DISPLAY keystroke, GODP, the calculator

will branch to the program step number given by the four least-significant digits in the

display. If the display does not contain a valid address, an error code, (E 1), will appear

instead.

In the Idle mode, GODP will cause the calculator to branch to the displayed step

number.

In the Busy mode, GODP will cause the calculator to branch to the displayed step and

execution of the program will continue from that location.

I=Jl
GO TO

DISPLAY

□
RETURN

ADDRESS

The GO TO DISPLAY key is normally used in conjunction with the RETURN

ADDRESS key, RADR. When the calculator encounters a RADR keystroke, it recalls to

the display an address that was previously stored in a special address register. The stored

address is the address of the program step that follows any of these sequences:

2-19
@ TEK31

PROGRAMMING

PROGRAM CONTROL KEYS

3 H
SyiWbbt

to OOOO

Idle

to 0000

Busy ADDRESS REGISTER

to Symbol
•Qw iVi * •) aaaa

Busy

to dddd

Idle

To Symbol +1

Idle

/
This is the address of
the program step that
is currently indexed
when any of the manual
keying sequences to left
are entered.

The RADR keystroke works the same in both the Busy and Idle modes.

This sequence causes the
branch and places 0236 in
the address register

RETURN ADDRESS
places the contents
of the address
register, 0236,
into the display.

GOTO DISPLAY
causes a branch
to the displayed
location, 0236.

CAUTION: RADR overwrites the current contents of the display. For further explana¬

tion of the Return Address key, see the section on SUBROUTINES.

@ TEK31
2-20

PROGRAMMING □

□

q □
z □
Em

PROGRAM CONTROL KEYS

PAUSE

LABEL

HOLD FOR
ALPHA

PAUSE

In both the Idle and Busy modes, the programmable PAUSE keystroke, PAUS, is used to

delay the program execution for approximately one second. Sequential pauses cause

correspondingly longer delays. Program one or more PAUS when you wish to observe the

result of a programmed calculation in the display without stopping program execution.

Subroutines programmed into the calculator may use the LABEL key, LBL, in the

sequence LABEL SYMBOL where SYMBOL is the labeling keystroke. SYMBOL may be

any one of 151 keys (including alpha keys). The LABEL key, however, should be avoided as

a SYMBOL.

ALPHA symbols may be obtained by pressing the HOLD FOR ALPHA key while pressing

any of the alpha keys. The alpha keys are the parentheses, numeric, and those designated by

adjacent blue squares.

The EXECUTE keystroke, EXC, is always followed by another keystroke, SYMBOL,

which informs the calculator which (labeled) subroutine to execute.

2-21
© TEK31

PROGRAMMING

PROGRAM CONTROL KEYS

In the Idle mode, the sequence EXC SYMBOL (where SYMBOL is a label) will cause the

calculator to branch to the beginning of the subroutine that is labeled SYMBOL. After

finding the subroutine, execution of the program steps contained in it will proceed until

an END is encountered or until a key code is encountered that will take it out of the

Busy mode.

In the Busy mode, the programmed sequence EXC SYMBOL will cause the calculator to

branch to and execute the program steps contained in the subroutine labeled SYMBOL.

Note that any END contained in the subroutine will be ignored by the calculator when

the subroutine is executed as a result of a programmed EXC SYMBOL command.

END

The END key is used in subroutines. When a subroutine containing an END is executed

from the keyboard by EXC SYMBOL, the END causes the calcuator to branch to step 0000

and END execution. The first END stop encountered terminates execution even if it is a

subroutine that is called by the original subroutine. However, when a subroutine containing

an END is executed as a result of a command such as STRT or CONT, the END is ignored.

nnnn nnnn+1
Main
Program \ Placed in

address register

© TEK 31

2-22

PROGRAMMING

MAG TAPE

The calculator has a volatile program memory. That is, the contents of the calculator's

programmable memory are erased whenever AC power to the calculator is interrupted.

However, it is possible to compose a permanent record of stored programs and data, that

is a recording placed through the magnetic tape transport mechanism onto a magnetic

tape. On the mag-tape we can record both R-register data and program steps. The process

is simple. Equally simple is the loading process, in which the contents of a prerecorded

tape are loaded into the calculator memory. In addition, using a combination of

recording and loading, programs and data files may be conveniently altered at will; this is

editing.

The mag-tape cartridge contains an endless loop of high quality digital magnetic tape. The

tape is divided into six segments, called blocks, that are separated from each other by a

series of punched-out holes. The holes in the tape allow optical identification of the

various blocks by means of a photo-transistor mounted in the transport mechanism.

2-2 3
@ TEK31

PROGRAMMING

MA6 TAPE

On the front of the cartridge is a hole designed to accept a rubber button. When the tape

cartridge, with rubber button in place, is inserted into the transport mechanism, the

button depresses a microswitch which allows you to record on the tape. When the cartridge

is write-protected (rubber button removed), no information can be recorded on the tape,

it can only be read. In order to record information onto the tape the rubber button must be

inserted. If you attempt to write on a write-protected cartridge, an error message (E 8) will

appear in the display.

Both program steps and R-register data may be recorded on the mag-tape. Remember

that a page consists of 1000 program steps and a file consists of 100 R-registers. Each of

the six tape blocks will accept a full page, a full file, or portions thereof; however, page

and file information (program steps and data) may not be mixed on a block of tape.

When information is transferred from the calculator memory to a tape block, the

information previously recorded on the tape block is replaced by the new information. The

information stored in the calculator memory is not altered by the transfer.

When information is transferred from a tape block to specified locations in the calculator

memory, the current information contained in the calculator memory is replaced by that

coming in from the tape block. The information on the tape block is not altered in this

process.

When either page or file contents are transferred from the calculator to a tape block, the

calculator recognizes the end-of-page (program step d999) or the end-of-file (R-register

f99). When either is encountered, even if a full page or file has not been recorded, the

rest of the tape block is erased. Thus only page or file contents up to their respective

boundaries (d999 or f99) are recorded. This will be extremely useful when you are later

manipulating (editing) program steps and data with the mag-tape.

2-24
@ TEK31

PROGRAMMING

MAG TAPE

RECORDING PROGRAM STEPS OR DATA ON TAPE

To record program steps or R-register data on a tape block, we must first tell the

calculator where in its memory to begin the recording. The address key, ADR, is used for

this purpose.

When transferring program steps, the ADR keystroke is followed by GO TO and a four

digit addressing sequence, dddd, that identifies the location in memory where the

recording is to begin. To transfer file information, follow the ADR keystroke with Rm

or R«" (whichever is appropriate) and their respective digits to indicate the starting

R-register.

Once the beginning program step or R-register has been specified as above, a TO TAPE

keystroke, TTP, informs the calculator that we wish to transfer the previously specified

information to a tape block. A final keystroke, b, indicating the tape block (0 — 5) that

is to receive the new information will initiate the transfer process.

The complete sequences look like this:

ADDRS GT dddd TTP b Transfers program steps, starting at dddd

and ending at the end-of-page, to tape

block b.

ADDRS d d TTP b Transfers R-register data in current file,

starting at dd and ending at the end-of-

file, to tape block b.|

ADDRS Rmm f d d TTP b Transfers R-register data in file f, starting

at dd and ending at the end-of-file, to

tape block b.

2-25
® TEK31

PROGRAMMING

MAG TAPE

The transfer process begins as the calculator enters the Busy mode and searches the tape

for the specified tape block, b. During this time a STOP will interrupt the process. Once

the specified block has been found, information from the calculator, up to the

end-of-page or file, is recorded on the tape block. During this period a STOP has no

effect. When the transfer is complete, the calculator exits the Busy mode and re-enters

the Idle mode.

An error message (E 7) will result whenever either the tape cartridge is not fully inserted

into the transport mechanism, or when a non-existent tape block number (b greater than

5) is called for. An error message (E 8) results whenever the sequence, TO TAPE b, is

used and the cartridge is write-protected (rubber button removed).

Error message (E 9) results whenever a bit error occurs during tape transfer. A bit error is

defined as more than eight bits in a character. Since only eight bits may be stored in one

location in memory or tape, more than eight bits will result in some sort of an error. A

bit error may occur under a variety of anomalous circumstances but is typically due to

either a power line glitch or dirt on the tape head. When (E 9) occurs, repeat the

transfer.

CLEANING TAPE HEAD AND CAPSTAN

Use a cotton swab and denatured alcohol to clean the tape head and capstan. The

capstan can be rotated by depressing the left-hand orange SWITCH with a pencil and

pressing FROM TAPE 0 keys. Hold the cotton swab lightly against the capstan to

remove dirt. When finished press STOP to stop the capstan from rotating.

® TEtC 31

SWITCH

CAPSTAN 2-26

PROGRAMMING
LI LI I II ■ I

MAG TAPE

LOADING PROGRAM STEPS OR DATA FROM TAPE INTO THE CALCULATOR

To load prerecorded program steps or data into the calculator memory, as before, we

must first indicate the beginning of the memory locations which will receive the new

information.

PRESS d d d d for program steps

or

PRESS
—U

d d

or

f d

for data

d

Now press the FROM TAPE key, FTP. Follow this with a single digit keystroke, b, to

indicate the tape block from which the information is to be taken. Thus the only

difference between loading and recording is the use of the TO TAPE key in recording

and the FROM TAPE key when loading.

The complete sequences look like this.

fF=7|
GOTO
■ ■■■ d d d d Loads contents of tape block b into the

calculator memory starting at location

dddd.

A DDRS

U==kI
f d d Loads the data contents of tape block b

into file f, starting at register dd.

ADDRS
V—i

R d d FROM
TAPE

>-A i£L
Loads the data contents of tape block b

into the current file, starting at register dd.

2-27
© TEK31

PROGRAMMING

MAG TAPE

After the b keystroke, the transfer process is initiated as indicated by illumination of the

BUSY light. As before, during the time that the calculator is searching for the specified

tape block, a manual STOP will interrupt the transfer process. After the block has been

found and actual information transfer commences, a STOP will no longer halt the

process. When the transfer is complete, the calculator exits the Busy mode, enters the

Idle mode, and is again ready to execute further manual or programmed instructions.

Again, error messages (E 7) or (E 9), as discussed previously, will result when their

respective error conditions occur; (E 7) when a non-existent tape block is addressed or

when the cartridge is not fully inserted into the transport mechanism, and (E 9) when a

bit error occurs during the transfer.

EXAMPLE:

Starting at 0000, enter the following program into the calculator memory.

PRESS

F F=7I Fr=7!

Enter the Learn mode

at 0000.

m
Add one to R00, store sum

in Rf 'oo-

—71 m m Store R00 in Rr
oo

To 0000 and repeat

program.

LEARN

® TEK31

Exit the Learn mode.

2-28

PROGRAMMING

MAG TAPE

To run the program initialize R000 to zero (CD = R«m 0 0 0) and press START. The

program will place the address digits of each R-register in each R-register (1 in R01, 2 in

R02, etc.). When all the R-registers have been filled, the calculator will stop program

execution and display error message (E 2), indicating that a non-existent register has been

addressed. This means that all available registers have been filled.

Now let's make a recording of the program. Place the recording on tape block zero.

1.

2.

3.

Insert the write-enable button into the front of the cartridge.

Place the cartridge firmly into the transport mechanism.

To record the program, press

fv- VI

Same as ADR GT 0 0 0 0

Instruction to record on block zero

4. When the BUSY light extinguishes, the transfer is complete; tape block zero now

contains a complete recording of the program.

You may wish to check the contents of the tape to verify that we have a complete and

accurate record of the program. To do this, let's first alter the original program by

inserting a STOP at 0000.

PRESS
LEARN

Enter the Learn mode at 0000.

INSERT
Insert a STOP at step 0000.

LEARN
Exit the Learn mode.

2-29
@ TEK31

PROGRAMMING

MAG TAPE

As the program now stands, the calculator will exit the Busy mode and enter the stop

mode whenever the STOP at step 0000 is encountered. Try it after re-initializing R000 to

zero.

Now load the pre-recorded program into the calculator, starting at step 0000.

PRESS Same as ADR GT 0 0 0 0

When the BUSY light extinguishes, signaling completion of the loading process, press

CD = R«hh 0 0 0 to initialize the program. Then press START. You should get the same

results as before. This verifies that the recorded program is correct.

Now let's record the R-register data that we have generated in the program. Store the

record of file zero (R0oo — ^099) on taPe block one.

PRESS mm Record is to begin at R0oo

F—71
1-4
esa

Record above on block number one.

When the BUSY iight extinguishes the transfer is complete.

To check that the record is accurate, let's first destroy the data in file zero.

PRESS

@ TEK31

Clear all data from file zero

I 2-30

PROGRAMMING

MAG TAPE

Now load the data back into the file;

PRESS
F“7I

0 Specify beginning register.

Load contents of block number one

into the calculator R-register

memory starting at the specified

location.

TAPE TRANSFERS DURING PROGRAM EXECUTION

At times you may find it desirable to transfer data or program steps back and forth

between the calculator and the various tape blocks during program execution. Since the

tape commands are programmable, you may do this provided you understand the

following items.

* Register manipulation is implemented in the same manner as discussed on the

previous pages. You may program the sequence

fv"

or or

anywhere in a program to achieve file transfers.

2-31

* You may transfer program steps to a tape block by programming the sequence

anywhere in a program. Remember that the transfer process will not affect the

program steps stored in the calculator; therefore, the above sequence will not affect

program operation.
® TEK31

PROGRAMMING

MAG TAPE

* You may load program steps into the calculator from a tape block by programming

the sequence

anywhere in the program. If the transferred program steps are loaded into the same

page as the program steps currently being executed by the calculator, the program

step counter is directed to step 0000, and execution of the program will proceed

from there.

When any transfer is initiated under program control, as soon as the calculator recognizes

the tape block digit, b, in the transfer sequence, the transfer begins and the calculator

waits until the transfer is complete. During the time that the transfer is taking place, the

program step counter is set to the program step following the b keystroke in the calling

sequence. After the transfer is complete, program execution is resumed at the current

location of the program step counter, or, as described above, when the new program

steps are loaded into the same page as those just executed, the program will resume

execution at step 0000. In any case, during the time that the transfer is taking place, the

calculator remains in the Busy mode; the only indication that a tape transfer is going on

is the slight sound produced by the transport mechanism.

2-32
® TEK31

PROGRAMMING

SUBR0U1MES

Subroutines are program segments that are subordinate to the main program. They are

designed to be used by the main program during its execution. These program segments

are self-contained mini-programs, and are executed under control of a master program.

This may seem complex, but it's really not when you realize that every time you use an

arithmetic key in a program, you are actually calling for execution of a subroutine. Take

\fx, for instance. If you remember the longhand method of computing square roots, you

know that the process is somewhat complicated. But when using the calculator, all you

have to do is enter a number into the display, press y'x-and the displayed number is

immediately replaced by its square root. There is no magic here; when you press y/x, the

calculator does the longhand calculation for you by executing an internally stored

program that results in the desired solution. Thus, all of the arithmetic keys are really

subroutine execution commands.

The subroutine capabilities of the calculator allow you to write your own mini-programs

that can be executed by the calculator as easily as those related to the various arithmetic

keys.

Subroutines are important because they simplify programming. They are useful because

they are self-contained and can be used from either the keyboard or any location in the

main program.

2-33

SYMBOLIC LABELING

A symbolically labeled subroutine is a set of programmed instructions beginning with the

key sequence LABEL and SYMBOL, where the SYMBOL is any programmable keystroke

For example, a subroutine might be symot?lically labeled LABEL 1,

LABEL A, or LABEL x2. The fact that a subroutine has the symbolic label x2, does not

mean that the subroutine squares a number; x2 is just a name that has been arbitrarily

assigned to the subroutine.

@ TEK31

PROGRAMMING

SUBROUTINES
It is not necessary to assign a symbolic label to a subroutine. You might want to place a

subroutine somewhere in memory without assigning it a name. Under these circum¬

stances, you will have to remember where you placed the subroutine, and if you have

several unlabeled subroutines in your program, keeping track of each subroutines location

might be difficult.

Symbolic labeling of subroutines removes this burden. The calculator has the ability to

search its memory and find labeled subroutines.

SUBROUTINE EXECUTION COMMANDS

A subroutine execution command is a series of keystrokes that tells the calculator to go

to a certain portion of memory, then resume or begin program execution. This is often

referred to as calling a subroutine. The keystrokes used to call a subroutine usually

depend upon the type of subroutine being called, either labeled or unlabeled.

To call a symbolically labeled subroutine, use the calling sequence EXECUTE SYMBOL,

where SYMBOL is the symbolic label (keystroke) assigned to the subroutine. For

example, in EXECUTE 1, EXECUTE A, and EXECUTE x2, the symbolic labels are 1, A,

and x2. The calling sequence causes the calculator to do two things: 1) the address

immediately following the calling keystroke sequence is placed in the address register, and

2) the calculator goes to the beginning of its memory (location 0000) and begins a search

for the labeled subroutine. When the calculator finds the subroutine with the label that is

used in the calling sequence, it begins execution with the first program step after the

label.

oooo
(3) Resume execution

Note: Subroutines may be located anywhere in memory.

@ TE K 31

nnnn

(1) Stored in
address
register 2-34

PROGRAMMING

SUBROUTINES

Labeled subroutines may be easily located for editing or debug purposes. When the

calculator is in the Idle mode, the key sequence LABEL SYMBOL will set the program

step counter to the program step immediately following the corresponding stored

SYMBOL keystroke.

To locate a subroutine
in memory, press

r
LABEL

To execute, press CONT
Press DISPLAY PROGRAM
to reveal location

Wait
Idle

body of subroutine

A subroutine, labeled or unlabeled, may be called using the GO TO key. The key

sequence used is GO TO dddd where dddd is the first program step in the subroutine. As

with the EXECUTE SYMBOL sequence, using GO TO dddd causes the calculator to do

two things: 1) the address of the program step following the GO TO dddd sequence is

placed in the address register and 2) the calculator program step counter is set to dddd.

The calculator then resumes execution to step dddd.

To execute a subroutine
from the keyboard in the
Idle mode, press

EXECUTE

m

or

LABEL
• -Sywiboi

CONT

To execute a subroutine
under program control, program
these sequences

for symbolically
labeled subroutines

or

for non-labeled
subroutines

2-35
location of beginning
of subroutine

@ TEK31

PROGRAMMING

SUBROUTINES

SUBROUTINE TERMINATIONS

After your program has called a subroutine and the program steps in the subroutine have

been executed, the subroutine generally returns program control to the main program by

setting the program step counter to the program step following the last keystroke in the

calling sequence.

The simplest way to terminate your subroutines is with the keystrokes RETURN

ADDRESS and GO TO DISPLAY. RETURN ADDRESS places the return address from

the address register into the display. GO TO DISPLAY sets the program step counter to

the displayed address and the calculator resumes program execution at the address.

MAIN PROGRAM

The subroutine may be
located anywhere in memory

RETURN ADDRESS places the
contents of the address
register (nnnn) into the
display

GO TO DISPLAY causes the
calculator to branch to the
return address given in
the display (nnnn).

2-36
@ TEK31

PROGRAMMING

SUBROUTINES

Thus, when you call a subroutine from some point in your program, the calculator

automatically stores the return address in the address register. When the subroutine program

steps are completed, the key sequence RETURN ADDRESS and GO TO DISPLAY

automatically returns the calculator to the calling point. Notice that this capability allows

you to call one subroutine from several points in your program and automatically return to

the correct point every time.

The ease with which you can return from subroutines when using the RETURN ADDRESS,

GO TO DISPLAY sequence, combined with the symbolic labeling of subroutines, makes it

easy to write your programs by using subroutines as building blocks. The main program is

then simplified to a series of EXECUTE SYMBOL keystrokes.

The preceeding discussion assumes that the subroutine was called by the program. Since a

subroutine may be a mini-program that is complete within itself, you might want to execute

just the subroutine without executing the entire program. For example, perhaps you have

written a financial analysis program, which contains a subroutine for calculating monthly

payments. Often, you may only want to calculate the monthly payment on a loan without

calculating all of the rest of the parameters the entire program might furnish. In other

words, you would like to be able to instruct your calculator to execute a single subroutine

and terminate the calculation at the end of the subroutine.

The END key furnishes you with this capability. The END key is recognized by the

calculator only if the subroutine was called from the Idle mode with the EXECUTE

SYMBOL key sequence. If the subroutine is called during program execution, the calculator

will ignore the END key.

When a subroutine is called from the Idle mode by the EXECUTE SYMBOL key sequence,

the calculator terminates the calculation when it encounters the END instruction and

returns to the Idle mode after resetting the program step counter to 0000.

2-37
@ TEK31

PROGRAMMING

SUBROUTINES

Subroutine execution from

address register

If the subroutine is called by the main program, the calculator ignores the END instruction

and proceeds with the normal execution of the program.

If the RETURN ADDRESS, GO TO DISPLAY sequence is used to terminate the

subroutine, the END keystroke should immediately precede these keystrokes. If the END

keystroke doesn't precede these keystrokes, the calculator will execute the RETURN

ADDRESS, GO TO DISPLAY sequence and never get to the END keystroke. Instead, it will

branch to the address in the address register,

(3) TEK31

2-38

PROGRAMMING

SUBROUTINES

SUBROUTINE LOCATION

Subroutine placement is not restricted. Subroutines may be placed anywhere in memory;

preceding, following, or in the main program.

SUBROUTINE 1 MAIN PROGRAM SUBROUTINE 2 SUBROUTINE 3

If your program uses symbolically labeled subroutines that are to be called hundreds of

times during the program execution, you may choose to place these subroutines near the

beginning of the memory (location 0000). This will minimize the time the calculator uses to

search for labeled subroutines. (Remember, when you call a symbolically labeled

subroutine, the calculator begins its search at memory location 0000.)

NESTING OF SUBROUTINES

Subroutines are said to be nested when program control is transferred from one subroutine

to another before it is returned to the main program.

Main Program

Return address in main program

RADR here would
recall bbbb

i_^

V,

Return address in subroutine A-N^
over-writes previous (nnnn). y

/

\
erroneous

branch

Recalls bbbb

2-39
@ TEK31

PROGRAMMING

SUBROUTINES

In the preceding illustration, when the calculator encounters the EXC A keystrokes in the

main program, the return address for the main program is stored in the address register. In

subroutine A, the EXC B keystrokes causes the return address for subroutine A to be stored

in the address register, OVER-WRITING THE RETURN ADDRESS FOR THE MAIN

PROGRAM.

When nesting subroutines, further provision must be made in order to return from the

nested subroutines back to the main program. The simplest return address book-keeping

method is to use the K or R registers to store the various return addresses. This technique is

illustrated and explained below:

MAIN PROGRAM

1) EXC A causes the return address in the main program to be stored in the address

register.

2) In subroutine A, the RADR causes the main program return address to be called

into the display. This return address is then stored in Kj with the storage sequence,

= K d.

2-40
@ TEK31

PROGRAMMING

SUBRSMTINES

3) EXC B, in subroutine A, then causes the return address in subroutine A to be

stored in the address register, and its current contents (main program return

address) are lost.

4) After the calculator completes subroutine A, the return address in the main

program is recalled from into the display and the GODP causes program

control to be returned to the main program at the proper address.

The preceding example showed how to achieve single-level nesting: (only one subroutine

was nested). However, there is no restriction, except memory size, on the number of

subroutines that may be nested in a program. Multiple-level nesting may be achieved most

simply by extending the method already given. This is illustrated below for two-level

nesting; inspection will show that you may use this technique for more than two levels.

Main program

2-41
© TEK31

PROGRAMMING

SUBROUTINES

INTERACTIVE USE OF SUBROUTINES

The subroutines may be called any number of times in the main program. Each time the
subroutine is called, a new address is placed in the return address register.

MAIN PROGRAM

First call Second call Third call

SUBROUTINE

® TEK31

2-42

PROGRAMMING

PROGRAMMING HINTS

A programmable calculator is most useful in performing the complex data manipulations

that involve repetitious calculations, decision making, and branching. This is not to

minimize the value of doing straight-forward calculations, but by now you are well aware

of these capabilities. More exciting, however, are the potential applications of program¬

ming that couple straight-forward calculations with branching, looping, and decisions;

these broaden your horizons in programming to include the kind of problems that, up

until now, could only be solved on the more costly, large, and inaccessible computers. It

follows, then, that if you wish to use the calculator as a computer with the above

capabilities, you must understand how to write programs that accomplish these functions.

The following discussion of programming hints is intended to give at least a basic

understanding of the various means by which you may direct the calculator to

accomplish true computer-like operations.

In order to demonstrate some of the basic concepts of programming as they relate to the

calculator, let's teach the calculator how to count. We will start with a simple addition

program and gradually expand it into a generalized counting program. Along the way we

can demostrate some of the programming techniques that will help cement your

comprehension of the whys and wherefores of programming.

As always though, before we actually start programming, we should examine the task at

hand. Counting, you'll agree, is a simple process. Let's examine counting, per se, to see

what the process might reveal. In this manner, as with all programs, we start at the

beginning; a definition of the problem.

Before counting begins, we must first define a starting point, a stopping point, and a

counting increment. The starting point tells us where to begin counting; the counting

increment tells us what to count by (ones, twos, fives, etc.); and the stopping point is

2-43
@ TEK31

PROGRAMMING

PROGRAMMING HINTS

where to stop counting. After we have this information, the counting process begins: Add

the counting increment to the starting value and remember the sum. At this point, forget

the starting value; all that is important now is the new value just obtained. Continue by

adding the counting increment to the new value, always retaining the new value for the

next addition. Each time a new sum is obtained, it must be compared to the stopping

point. When the new value is equal to the stopping point, the count is complete.

Now let's teach the calculator how to count. Have the count start at zero and end at one

hundred. Set the counting increment at one. Use the K0 data register to store the

numbers generated in the count. First, then, initialize K0 to zero.

PRESS CLEAR

DSPLY

= K
FP oj

Now, in a series of programmed instructions, take K0, add one, and store the result in

l<0. Display the result. Locate the program segment beginning at location 0100 in

memory and make the segment a subroutine by beginning it with LABEL and the

labeling keystroke, D/R.

PRESS

GOTO

A==£ i

Py—71

1
t=sL

0

±==i

CZZl
LABEL
■

deITrad

ill I

] + [m

t—i

LEARN

[-I Enter the Learn Mode at 0100.

The labeling keystrokes.

Old value plus one stored in K0.

Stop and display new value.

Exit the Learn mode.

© TEK31

2-44

PROGRAMMING

PROGRAMMING RENTS

Our program may be executed from the Idle mode by either of the four following

methods:

1.

2.

3.

4.

PRESS
EXECUTE

G
i be'cTrao

With an overlay installed.

PRESS
LABEL ■ DEGJJAD

PRESS >-“f
GOTO
■ ■■■

±==4 13

press the D/R key.

CONT

Any of the above keying sequences will cause execution of the program steps stored in

memory at 0100, labeled with D/R. Each time this subroutine is executed, K0, as

evidenced by the display, will increment by one. Alternately, the program segment may

be executed under program control by programming either of the two sequences given

below.

PRESS

Enter the Learn mode at 0000.

A

\ Either of these will work.

y

Exit the Learn mode.

Notice that the first program requires two program steps, while the second requires five

— herein lies one of the advantages of using subroutines.

2-45
(a) TEK 31

PROGRAMMING

PROGRAMMING HINTS

Our instructions to the calculator now consist of a main program and a subroutine.

To execute the program press START. Notice that each time you do this, the number in

the display, K0, increments by one digit, as before. What happens is that the START

keystroke causes execution of the program steps starting at 0000. The first program steps

to be executed, then, are those that command execution of the subroutine D/R. The

program then branches to 0100, the location of LABEL D/R, and executes these program

steps, the last of which is STOP. Hence, the new value of K0 is displayed and the STOP

light comes on when the calculator finishes the subroutine. Another START will cause a

repeat of the above process. But this is not very much good to us; we can count to 100

almost as fast as we can press START one hundred times. Let's program a START in the

subroutine after the STOP.

MAIN PROGRAM SUBROUTINE

PRESS

li-1 Enter the Learn mode at the
LEARN

location following the STOP.

F“tl GOTO

ISI m
The new program step.

Exit the Learn mode.

PROGRAMMING

PROGRAMMING HINTS

To run the program press START and subsequently press CONT. Remember that the

STOP is still in the program and is executed as before. However, when CONT is pressed,

START is executed, and as a result, the program branches from the location of the

START to 0000, the beginning of memory. The subroutine is executed again, and the

program again stops at the STOP. Press CONT to repeat. But this is not any better than

before; now, because of the STOP, we just use CONT instead of START. Let's delete the

STOP from the subroutine.

Enter Learn mode at location

>f STOP.

Delete step 0109, the STOP.

Exit the Learn mode.

The main program and the subroutine now look like this.

SUBROUTINE

Notice that the START is now in the location that was previously occupied by the

STOP; the DELETE reordered the program.

MAIN PROGRAM
^_

8 8 8 0 E X C _
8 0 0 i D G / R

PRESS

(V—71 s={
GOTO

B
0 1

h=L\

0
±=i h

SZ=1

2-47
® tek

PROGRAMMING

PROGRAMMING HINTS

A flow chart of the
program looks like this.

We have established a loop in the program; the START is an unconditional branch

command causing program control to loop back to the beginning of the program and

repeat the program steps in a continuing manner. What do you suppose will happen if we

execute the program as it now stands? Try it and find out; press START.

As you might have expected, the calculator has entered the loop and is performing

exactly as instructed by the program steps in the loop. The loop, as we've defined it, has

a beginning but no end — we have thus far neglected to give the calculator any

instructions about a stopping point. Therefore, unless we interrupt the loop with a

manual STOP command, the calculator will continue counting ad-infinitum. By now the

count has gone way past 100, our original goal. The program as it now stands can serve

no more useful purpose than to demonstrate one of the pitfalls you might later

encounter when programming. On a large computer a loop of this kind could be an

expensive mistake — computer time is valuable.

@ TEK31

2-48

PROGRAMMING

PROGRAMMING HUTS

What we will do now is insert a conditional branch into the program. A conditional

branch is similar to the unconditional branches (START and EXC D/R) we have been

using except that the program will branch only when the proper condition is fulfilled. In

our case that condition must be K0 = 100, and we would like to display K0 and STOP

when the condition (K0 = 100) is fulfilled. Otherwise, we would like to CONTINUE the

count. The way we will achieve this is to compare K0 to 100 and when K0 is equal to

100, we will stop.

Program the following keystrokes starting at location 0109, the present location of the

programmed START command.

PRESS

rr-71

Enter the Learn mode at the

location of the START.

Subtract 100 from K0.

Is l<0 - 100 = 0?

If l<0 = 100, display K0 and stop.

2-49

CONT If K0 is not equal to 100,

continue.

Loop to 0000 and resume the count.

LEARN
Exit the Learn mode

Start the program by again initializing K0 to zero and press START. As a result, the loop

will be executed until K0 is equal to 100, at which time the calculator will recognize this

fact (in the program steps we have just entered) and STOP with the desired value of K0

in the display.

© TEK31

PROGRAMMING

PROGRAMMING HINTS

The complete program now looks like this.

MAIN PROGRAM

0Q00 E K C...
0 0 01 D G ••••' R

The flow chart looks like this.

@ TEK 31

SUBROUTINE

0 1 0 0 L. BL¬
0101 DG,-R
0 1 0 2 K_
0 1 0 3 0
01 0 4 +
0 1 05
ia i :7-: ■—

1
r _: X ~‘J D
0 1 0 7 K...
0 1 0 8 0
0 1 M 9 -
0 1 1 0 1
0111 0
0112 0
0113 j

0 11 4 I F = 0
0 1 1 5 l< _
0 1 1 6 M
0117 STOP
0 1 1 8 CONI
0119 STRT

1
Display K0

2-50

PROGRAMMING

PROGRAMMING HINTS

In the flow chart notice how the IF statement is diagramed. The diamond shape is always

used to indicate a question when flow charting a program. There are two exit paths from

the diamond; the yes path (yes, the condition is fulfilled), and the no path (the condition

is not fulfilled). Note that there are five IF CONDITIONS on the calculator; each of

them may be used whenever required.

But still, the calculator does not know enough — it can only count by ones and it can

only count to one hundred. This is not very impressive. In addition, we have to

re-initialize the starting point each time we begin the count — not very convenient. Let's

alter the program so that the starting point, the counting increment, and the stopping

point are all entered into the program as part of the program. In this manner, the

program becomes interactive with you, the programmer.

First, then, rewrite the main program so that it calls for execution of an initialization

subroutine that we will call 'arc'.

PRESS Enter the Learn mode at 0000.

arc
Call for execution of subroutine

arc.

Call for execution of subroutine

D/R.

dZI Exit the Learn mode.
LEARN

2-51
© TEK31

PROGRAMMING

PROGRAMMING HINTS

We must now write the initialization subroutine. But before we do this, we must alter the

counting subroutine, D/R. Enter it according to the keystrokes below.

OLD SUBROUTINE

NEW SUBROUTINE

LBL D/R

K 0 + 1 (K1 is the new -

counting increment.)

LEARN

= K 0

— 10 0) - (K2 is the new stopping

point.)

I F=0

K0 STOP

CONT

START - (The new looping

command.)
LEARN

In the above we have replaced the old counting increment, one, with a variable counting

increment, Kr Also, the old stopping point, one hundred, is replaced with a variable

stopping point, K2. The old starting value, K0, remains the same, but note that the

START in the old subroutine is replaced by EXECUTE D/R; the subroutine is now

calling for execution of itself. (This is perfectly valid, but remember what will happen to

the return address.)

2-52
® TEK31

PROGRAMMING

PROGRAMMING HINTS

Now we can write the initialization subroutine in which the starting point (K0), the

counting increment (K.,), and the stopping point (K2), will each be initialized and stored

for later recall. Put the new subroutine in memory starting at location 0200.

PRESS

I-1 Enter the Learn mode at 0200.

Clear the display and stop.

Store display, starting point,

in K0.

Clear the display and stop.

Store display, counting

increment, in K1.

Clear the display and stop.

Store display, stopping point,

in K2.

Put the return address into

the display.

Direct program control to the

location shown in the display.

m LEARN LABEL

CLEAR

DSPLY
STOP

_ V ~oT
SI

CLEAR

DSPLY STOP

V—<
— K ttt

CLEAR

DSPLY

0

2-53
LEARN

Exit the Learn mode.

@ TEK31

PROGRAMMING

PROGRAMMING HINTS

To execute the program press START. The program will STOP with zeros in

the display. Enter the starting value, the counting increment, and the stopping point.

After each entry press CONTINUE. When CONTINUE is pressed the third time, the

program will run as before.

SAMPLE EXECUTION

PRESS

Enter

CONT

Starting point

Counting increment

000 Stopping point

The program will run and stop with 100 in the display.

Now try to run the program with a counting increment of three, and everything else as

before. What happens? The calculator is again in a loop. The reason, of course, is that we

have overlooked one detail — namely, it is not possible to count to exactly 100 by threes

with our program! Starting at zero, one hundred is not an integer-multiple-sum of three.

Hence, the branching condition, (K0 — K2 = 0) is never met. Therefore we must change

the program so that it exits the loop when the value of the count is greater than or equal

to the stopping point. To do this, replace the present IF condition (IF=0) with IF>0.

PRESS

i l Enter the Learn mode at the
LEARN

location of the IF statement.

I I The new IF condition
>0

Exit the Learn mode

2-54 LEARN

@ TEK31

m h

PROGRAMMING

PROGRAMMING HINTS

The complete program now looks like this:

MAIN PROGRAM INITIALIZATION

SUBROUTINE

COUNTING

SUBROUTINE

0 0 0 0 E K C.... 8 2 8 0 L B L...
0 0 0 1 fi R 0 0 2 01 fi R C
0 0 0 2 E K C... 0 2 0 2 CL DP
0 0 0 3 DG/R 0 2 8 3 STOP

0 2 0 4
0 2 0 5 K_
8 2 8 6 8
0207 CL DP
0 2 0 8 STOP
0 2 0 9 ~
8 7 1 0 K._
0211 1
0212 CL DP
8213 STOP
02 1 4 =

0215 K-
02 1 6
0217 R fiD
0218 GO DP

Now try the program with a counting increment of three:

81 8 8 Lei.
0101 DG/R
0 i 0 2 K_
01 0 3 0
0 1 0 4 +
01 0 h K_
8 1 0 f, 1
0107 in

0108 K._
0 1 0 9 0
0110
0111 K_
011 2 /

81.1 3 }
0114 IF)™
0 11 5 K...
0 1 1 6 0
0117 STOP
0118 COHT
0119 EKC_
0 i 2 0 DG/R

PRESS START

tot CONT

tlrf corn

L=1 0
F=7|

o
—^

Enter the starting point.

Enter the counting increment.

Enter the stopping point.

The program will stop with 102 in the display; 102 is the least multiple integer sum of

three that is greater than or equal to 100.

2-55
® TEK 31

PROGRAMMING

PRQGRAMminSG HINTS

A flow chart of our counting program looks like this:

MAIN PROGRAM SUBROUTINES

Execute

Initialization

Subroutine

d
Execute

Counting

Subroutine

yes

INITIALIZE;

Starting point (l<0)

Counting increment (K.,)

Stopping point (K2)

ZZZI-

© TEK 31

2-56

STOP

PROGRAMMING

PROGRAMMING HINTS

The calculator now knows how to count. However, it does make some rather simple

assumptions. For instance, what will happen if you tell it to count from zero to a

negative number with a positive counting increment? What will happen if you give it a

negative counting increment with positive starting and stopping points? As you might

guess, the calculator takes your inputs quite literally, and performs only the program

steps it has in its memory. In the first instance, it only counts once — up to the counting

increment. In the second instance, we again enter an unterminated loop as the calculator,

with a negative counting increment, will count backwards from the starting point and

never reach the positive stopping point.

Thus we see that the calculator, quite literally, must be taught everything that is does not

already know. In addition to this, since programmable memory is volatile, the calculator

will forget all that you have taught it whenever AC power to it is even momentarily

interrupted. This suggests that you record, on mag-tape, any program that you feel is

worth repeating at some later date. Let's go through this exercise and record the program

we have just written.

1) Insert a mag-tape cartridge into the tape transport mechanism. (Don't forget to

first insert the write-enable button.)

2) Record the program on block zero of the six possible blocks.

You now have a permanent record.

Now, when you come back later, you can re-enter the counting program by following

the simple sequence,

RESET
Vro*i

TAPE

5=7
Oj

2-57
@ TEK31

PROGRAMMING

PROGRAMMING HINTS

If you wish to put the program into memory at a non-0000 location, simply replace the

RESET with the sequence.

p-f
A DORS GOTO

■ ■■■

-S t=±

Heretofore, we have discussed three of the most important building blocks of computer

programming: looping, branching, and decision making. Each of these were used in the

preceding discussions, and each performed a unique purpose. If you have read all the

preceding sections of this manual and understand them, you now possess all the tools

required to become a successful programmer, provided that you recognize the fact that it

is not only the tools, but also techniques that are required. In this sense you have access

to the tools (all the functions on the calculator) but the techniques are of two

disciplines: programming and mathematics. The mathematics involved in computer

programming range from the simple to the elegant. Here we will keep on the simple side,

but this does not rule out application of more elegant use of the language. Now for

programming: to iterate the idea given in the introduction, programming is nothing more

than organized thought. What is required here is not so much work as you might at first

believe. Rather, the most important ingredient is a willingness to sit down and really

think about the problem at hand. Once you think you understand how to solve the

problem, by whatever methods you have available, then is the time to think about

programming the solution. Remember, programming is organization, and a program is a

series of steps, each chipping away at a problem. The chips that fall do not of themselves

mean anything—but it is the order and which chips that fall that finally reduces a granite

problem to a sculptured solution.

2-58
@ TE K 31

PROGRAMMING

PROGRAMMING HINTS

LOAN CALCULATION PROGRAM

Oftentimes we are confronted with financial problems that unless wisely resolved will

result in undue strain to our usually tenuous budgets. Most financial problems involve

nothing more than juggling, but at times, like when we want to buy a house or car, the

information we need is simply not available unless we consult the local bank or have a

smart calculator at hand to answer our financial questions. Typical loan questions are:

♦ What is the monthly payment on a new loan?

How much was the principal (amount owed) reduced on a loan during the last N

periods?

& How much of the last payment was applied to the principal?

* How much of the last payment was interest?

Let's write a program that will answer these questions. First, the problem must be

defined. The equation that gives the payment per period on an amortized loan is given

below.

P i
A = -

1 - (1 + i)“n

(A is rounded up.)

A = Payment amount, dollars per period.

P = Principal amount, dollars

i = Interest rate per period, expressed

as a decimal

n = Number of payment periods

A period is the time between loan payments

and may be days, months, or years.

2-59
® TEK

PROGRAMMING

PROGRAMMING HINTS

When loan payments are computed, they consist of a principal payment and an interest

payment. The interest payment is computed as the interest rate times the remaining

principal. The interest payment is rounded up.

The interest per period is expressed as

Interest payment per period, Aj = i P (Aj is rounded up) (Eq 1)

The principal payment per period is then computed by subtracting the interest payment

(Aj) from the payment per period (A). This is expressed as

Principal payment per period, Ap = A — Aj (Eq 2)

When a payment. A, is made for a given period, the principal is reduced by Ap, the

principal payment for the period. When the next payment is made, the interest payment,

Aj, is then computed using the reduced principal. In this manner, as the loan progresses,

the total payment remains constant. However, the amount paid in interest and principal

changes as the remaining principal is reduced during each period. The last payment is not

A, but is computed so that the remaining principal is reduced to zero after the interest is

computed.

Now let's program the calculator to do computations on the amortized loan. Compute

the payment per period (A), given the principal amount (P), the interest rate (i), and the

number of payment periods (n). For simplicity, let's enter the yearly interest rate and use

monthly payments.

Study the following flow chart to determine how this program is organized — subroutines

are indicated on the flow chart. Enter the main program into memory, starting at 0000.

The subroutines may be placed anywhere in the memory.

2-60
® TEK31

PROGRAMMING

PROGRAMMING HINTS

2-61
®1 TEK 31

PROGRAMMING

PROGRAMMING HINTS

MAIN PROGRAM

@ TEK31

Start the main program at 0000

Call subroutine for loan variable

entry

Call subroutine to compute

monthly payment

Stop and display monthly payment

subroutine for amortization

Subroutine for loan variable entry

Enter principal, store in R00

Enter term of loan in months,

store in R01

Enter yearly interest rate in

percent, convert to decimal

monthly rate, store in R02

main program

2-62

PROGRAMMING

PROGRAMMING HINTS

1=1 (2

RETURN
ADDRESS

rn m s
CLEAR

DSPLY

—7i
1 +

i

Subroutine to compute monthly

payment

Store return address in Kg

(1 + i)

(1 + i)-n

(1 - (1 + i)-n -1

y f V—f
x 0 2 jl Exact monthly

payment

Call for rounding subroutine

Store rounded payment in R
k_iJ 12=2

Recall return address from K

Return to main program

03

9

Initialization subroutine

Establish remaining principal

Initialize K0 and K1 to zero

Initialize K2 and K3 to one

Enter number of payments

made to date

Transfer control to subroutine 4

2-63
@ TEK 31

PROGRAMMING

PROGRAMMING HINTS

Subroutine to compute amortization

3 E X R 2
iJ

Monthly interest, exact

EXECUTE int X

5
i.

+ -

LJj

Pv^l
R

JJ

c—
3

Ii~.ii z,

3

00
m 0

IS"

Call for rounding subroutine

Sum interest in K0

Principal payment, summed in K1

Compute remaining principal

Lil 0

0
“TI
0

fy

il 0

=7]
0
y

Compare counter to number of

payments made

If counter is equal to number of

payments made, display remaining

balance. A manual CONT will cause

a branch to LBL 3.

Compare counter to (n — 1)

Py f] 1 i 10

,E,

® T'*3'

If counter = (n - 1), next payment

is last payment; execute subroutine

5 to compute last payment.

Increment counter

Loop to beginning of subroutine for another calculation.

2-64

PROGRAMMING

PROGRAMMING HINTS

—71 7=7
0

Lhli
2 [

Subroutine to compute last

payment

Last interest payment, exact

Call for rounding subroutine

Accumulate in K0

Last Principal accumulated in K1

Last payment displayed

Rounding subroutine

Multiply by 100

Add .999999999999

Take integer value and divide by

100

RETURN GO TO
ADDRESS DISPLAY

Store in R50

Return to calling point

2-65
® TEK31

SAMPLE EXECUTION

PROGRAMMING

PROGRAMMING HINTS

Say you want to buy a house that costs $20,000 and the present annual interest rate on

a 25 year, 90% mortgage is 7.5%. What are the monthly payments on this loan? After

one year, what is the remaining balance on the loan? How much interest will be paid

during this period?

1. PRESS

2. Enter

3. Enter

m 0 0

4. Enter IT"71

5. The monthly payment is $133.02

6. PRESS

Amount borrowed

a

Term of loan in months

Yearly interest rate, %

7. Enter m 0 Number of payments made on loan

8. The remaining balance after twelve payments is $17745.19

9. The total interest paid during this period is in register K0: $1341.43

10. The total principal paid during this period is in register K,: $254.81

If you desire to compute the interest expense between two periods, enter the first period

at step 7 and record the interest paid when this computation is complete. Then press

CONT — since the next programmed instruction after the STOP in subroutine LABEL 4

is EXECUTE 3, the program will loop back to the beginning of the initialization

subroutine, LABEL 3, and here you can enter a new period. When the computation is

again completed, simply find the difference between the interest expenses.

® TEK 31

2-66

PROGRAMMING

PROGRAMMING HINTS

A BALLISTICS PROBLEM

The word ballistics, with roots in the Greek verb ballin — to throw, today means the

study of moving projectiles and is derived from the ancient Roman use of the term

ballista to label what we now know as the catapult. Before their obsolescence by

cannon in the Middle ages, catapults were developed with power sufficient to hurtle

projectiles weighting 300 pounds a distance exceeding 300 yards. This translates to a

launch velocity of about 170 feet per second.

As an exercise in programming let us construct and solve a hypothetical ballistics problem

that you might have encountered in the role of a Middle Ages artillery sergeant

participating in the seige of a walled fortress held by the nasty and cruel Feudal Lord.

We make two assumptions: 1) a Newtonian understanding of trajectories, and 2)

possession of a Tektronix calculator.

THE PROBLEM: The enemy defenders are on top of a wall, h feet high and t feet wide,

located a distance, d, from your catapult. Your army is in front of the wall and

attempting to scale it with ladders. Your task is to hit the top of the wall by determining

a launch angle in degrees. You know the size of the wall and its location, along with the

initial velocity of your projectile in feet per second.

2-67
@1 TEK 31

PROGRAMMING

PROGRAMMING HINTS

The trajectory, y, is a function of:

1) Launch angle, 6

2) Initial velocity, V0

3) Force of gravity, g = 32 ft/sec2

4) Distance, x, from the launch point

The trajectory equation is quadratic and of the form.

Ax2 + Bx + C = 0

At y = 0, C = 0, and the point of impact is

ximpact
A 2-68

PROGRAMMING

PROGRAMMING HINTS

Study the figure below to determine hit-miss conditions.

To solve the problem, first manually enter all variables except the launch angle:

Initial velocity, vQ, in feet per second = K 0

Distance to wall, d, in feet = K 1

Height of wall, h, in feet = K 2

Thickness of wall, t, in feet = K 3

Start the programming by entering the launch angle, 0; store in K4. Evaluate the

trajectory at x = d and x = (d + t). If the projectile hits the top of the wall, display

flashing zeros. If it hits the face of the wall, display (flashing) the height of the hit above

ground. If the projectile misses the wall, calculate and display the impact distance relative

to the face of the wall; negative display for impact in front of the wall, and positive

display for an impact behind the wall. Provide for looping so that new angles may be

entered easily for subsequent calculations.

2-69
@ TEK 31

PROGRAMMING

PROGRAMMING HINTS

2-70
® TEK31

PROGRAMMING

PROGRAMMING HINTS

MAIN PROGRAM

CLEAR

DSPLY
STOP

= n
i rf XA

m 7=7
1

iy~^i
= a n

CONT

CONT

Store displayed launch angle in K4

Set x at d

Call for trajectory subroutine

y(d) stored in R01

Set x at (d + t)

Call for trajectory subroutine

y(d + t) stored in R02

Recall y(d)

If y(d) negative, calculate miss

Otherwise, continue

Compare y(d + t) to h

If y(d + t) > h, calculate miss

Otherwise, continue 2-71
© TEK 31

PROGRAMMING

PROGRAMMING HINTS

MAIN PROGRAM (cont)-

Compare y(d) to h

If y(d) > h, hit on top

Otherwise, continue

Hit on face

SUBROUTINES

Trajectory subroutine

(vQ cos 6)2

|^2(v0 cos d)2] 1

Complete x2 term

y(x), the trajectory

7=7
2

Store in R22

Return to main program

2-72

PROGRAMMING

PROGRAMMING HINTS

DEG RAD

71

s—^

F=? n P^l
0 1 STOP

i—i

2-73

Impact subroutine, for miss

(v0 cos 0)2

2 tan 6 (v0 cos 0)2

Impact relative to x = 0

Display impact relative to face

of wall

Loop to beginning of program

Subroutine for hit on top of wall

Display flashing zeros

Reset error message

Re-establish degree operation

Loop to beginning of program

Subroutine for hit on face of wall

Display height of hit above

ground (flash)

Reset error message, establish

degree operation, and loop to

beginning of program

® TEK31

SAMPLE EXECUTION

PROGRAMMING

PROGRAMMING HINTS

Hit the top of a wall that is 20 feet high and 10 feet thick. The wall is located 120 feet

away from the catapult which has a launch velocity of 100 feet per second.

First, enter the constants, vQ, d, h, and t, into their assigned registers.

mm CLEAR

DSPLY 0

CLEAR

DSPLY _ ^
jvf

|0i

CLEAR

DSPLY 2
?=f=?

W W
CLEAR

DSPLY

Tf i
-f M El

Now press CLEAR and D/R so as to establish degree operation.

PRESS ENTER DISPLAY

START 10 CONT -13.11 (hit in front)

CONT 15 CONT Flashing 7.45 (hit on face)

CONT 20 CONT Flashing 17.58 (hit on face)

CONT 21 CONT Flashing 19.62 (hit on face)

CONT 22 CONT 97.08 (hit background)

CONT 21.5 CONT Flashing zeros (hit on top)

CONT 80 CONT -13.11 (hit on front)

CONT 79 CONT - 2.93 (hit in front)

CONT 78 CONT Flashing zeros (hit on top)

Thus, the two angles that will

hit the top of the wall are

21.5 and 78 degrees.

2-74
@1 TEK 31

PROGRAMMING

PROGRAMMING HINTS

RANDOM NUMBERS AND GAMES

Most computer games, whether they are based on chance or probability, must by

necessity include a random number generator. The one we will use here is based on the

equation given below.

xn = (xn_-| + 7r)8 — integer (xn_1 + 7r)8 0 < xn < 1

To generate a random number between zero and nine, simply take the value of xn,

multiply it by 10, and take the integer value of the product.

Here is a program that will generate random numbers between 0 and 9.

"The following subroutines will be used in later examples"

0200 MAIN PROGRAM

Call for execution of subroutine

that contains random number

generator. Display random number

and stop.

0100 SUBROUTINES

Beginning of subroutine

CtEAR

DSPLY

11 = m w
M M

Store return address in K9

Initialize constants

2-75
®I TEK 31

PROGRAMMING

PROGRAMMING HINTS

Check to see if the FLAG is

set, and if it has been set, recall

the return address into the display

and exit the subroutine.

Loop to LBL arc

To execute the program press START. After a few seconds press STOP, SET FLAG, and

CONT. The result that appears in the display is a number from zero to nine that is

randomly dependent on the time that you waited to press STOP. To view all the random

numbers as they are computed, insert a STOP or a PRINT DISPLAY before the IF

statement.

2-76
@1 TEK31

PROGRAMMING

PROGRAMMING HINTS

SOME SIMPLE CALCULATOR GAMES

ESP

One simple game you might wish to program is called ESP. Program the calculator to

accept a number of your choice (0 through 9). Store the chosen number in a data

register and then call the random number generator subroutine. Upon return to the main

program compare the chosen number with the random one; if they match, indicate with

a flashing display. If no match occurs display the random number and guess again.

0000 MAIN PROGRAM

Stop to enter choice of number

Execute random number subroutine

Compare choice with random number

If they match, flash display

If no display random number

To run the program press START. The STOP Mode will immediately be indicated. Enter

your choice of digits 0 to 9. Wait for a few seconds and press STOP, SET FLAG, and CONT.

If you have guessed right your choice will appear flashing in the display. If you guessed

wrong, the random number will appear in the display.

2-77
®1 TEK 31

PROGRAMMING

PROGRAMMING HINTS

ASK SWAMI

If you have a printer you can program the calculator to answer yes-no questions

(randomly). Generate a random number and upon return to the main program, execute,

according to the random number, any of ten subroutines that contain various forms of

yes and no answers as listed below.

Label Printout (yes) Label Printout (no)

0

1

2

3

4

TO BE SURE 5

MOST ASSUREDLY 6

CERTAINLY 7

DOUBTLESS 8

UNQUESTIONABLY 9

NOT AT ALL

NOT IN THE LEAST

IMPOSSIBLE

BY NO MEANS

NAY

MAIN PROGRAM

0000

0008

EXECUTE JEG RAD 0 X 0 —n
4

2

TYPICAL SUBROUTINE

LBL 8 B Y SPC 0 SPC

M

@1 TEK31

N PF RSET
2-78

PROGRAMMING

PROGRAMMING HINTS

For those who have the optional printer, it is possible to write programs that prompt the

user for input. Let us go back to the Ballistics program that required that 4 values be entered

in order to begin. As you may recall, the Velocity was in K0, the Distance to the wall was in

K1, the Height of the wall in K2 and the thickness of the wall in K3.

Using the printer and the alphabetic capability of the calculator you can initialize these values

interactively. After you have keyed in the Ballistics program from pages 2-73 to 2-74, Key

in the interactive initialization routine with the following keys.

LABEL
B

0EG~RAO PAPER UtU_HAU FEED

PRESS

HOLD FOR
ALPHA

RELEASE

ENTER INITIAL l=ZI
HOLD FOR

ALPHA
PAPER
FEED

PRESS

t—i
HOLD FOR

ALPHA

RELEASE

VELOCITY IN IZZZ1
HOLD FOR

ALPHA
PAPER
FEED

PRESS RELEASE

FEET PER SECOND tZ=l

STOP

PRESS RELEASE

ICZI DISTANCE TO WALL

PRESS RELEASE

IN FEET

rrri

PRESS RELEASE

1=1 HEIGHT OF WALL

Move to end of Ballistic

Program and enter Learn.

2-79
® TEK31

PROGRAMMING

PROGRAMMING HINTS
PRESS RELEASE

IN FEET

PRESS

K

li=4l

RELEASE

THICKNESS OF

PRESS

HZ1

RELEASE

WALL IN FEET

Pv HI E3 m 1=1
PAPER PAPER
FEED FEED

Now to initialize

PRESS

Exit the LEARN mode.

As each question is asked
enter the value and press CONT.

2-80
@1 TEK31

PROGRAMMING

DEBUG & EDIT

DEBUGGING

Realize that the calculator can only perform the execution of a program according to the

instructions contained within the program. This means that when the calculator is not

performing an execution as you think it should, an error probably exists in the program.

You must then proceed to find (debug) and correct (edit) this error.

Suppose that you have written a program that does not work. How should you proceed

to find and correct the error? First, check the calculator memory to see if it contains the

program steps you think should be there; you must obtain a listing of your program.

Address the portion of memory that contains the program steps in question (press

GO TO d d d d). Now press LIST.

I 1

The display will sequentially list all memory locations and the octal keycodes of the

program steps they contain. The format of the list is given below. Each display lasts

for approximately one second before it is replaced by the next.

0212 0124 0

Location 0212 contains x2.

The current file is 0 —

2-81
© TEK31

PROGRAMMING

DEBUG & EDIT

With a printer, simultaneous with the display readout, LIST will result in a printout

showing both the location and mnemonic of each stored program step. The format is

given below in a sample listing that shows the program steps x2 + K 0 = stored in

memory beginning at location 0212.

The listing will continue until interrupted by a manual STOP, or until the end of

memory is reached. Upon reaching the end of memory, an (E 0) error message will

appear in the display. Reset this error message by pressing the LEARN key. With a listing

thus obtained, compare the listed memory contents against your own listing. To correct

any discrepancies, enter the Learn mode at the proper location, press the desired key,

and exit the Learn mode; the entered keystroke replaces the erroneous one. You may

then proceed to find other errors or run the corrected program, whichever is appropriate.

Instead of obtaining a complete list of a program, you may decide that discrete portions

of the program need close examination. Address the questionable program step as before

(GO TO d d d d) and press DISPLAY PROGRAM; the addressed location and its

stored program step are revealed in the display. Press STP-^to reveal subsequent

locations. If you do not know or remember the keystroke that corresponds to the

displayed octal code, press PRINT DISPLAY; the location and mnemonic of the

displayed program step will be printed. To illustrate, suppose we have an x2 stored in

memory at location 0212;

dl
DISPLAY

PROGRAM

® TEK 31

2-82

PROGRAMMING

DEBUG & EDIT

PRESS DISPLAY
PROGRAM

Display: 0212 124 0

PRESS
fP=?l

PRINT
OSPLY

r~^S

Printout:

Again, when you find an erroneous keystroke, enter the Learn mode at the appropriate

location, enter the desired keystroke, and exit the Learn mode.

Another method of program error detection is stepwise execution, in which program

steps are executed in a step-by-step manner. As each program step is executed, the result

of each execution appears in the display, just as if the stored program steps were

manually entered from the keyboard. Stepwise execution requires that you understand

roughly what the approximate result of each program step should be, and thus, when an

unexpected result appears in the display, indicating what might be an error, you can then

inspect the suspicious program step by the methods previously discussed. During stepwise

execution, a DISPLAY PROGRAM will reveal the next program step to be executed.

E=p
STEP

2-83

To stepwise execute a stored program, address the beginning of the locations of interest

(GO TO d d d d) and sequentially press STP*- the result of the execution of each

stored program step is revealed in the display. If at any time you desire to inspect the

next program step to be executed, press DISPLAY PROGRAM. A PRINT DISPLAY will

then reveal, as before, the mnemonic of the stored program step. If you see during

stepwise execution that an erroneous program step was executed, press LEARN and

STP-*-to index the counter to the just-executed program step. Then enter the desired

program step, and exit the Learn mode with a second LEARN keystroke. (The second

LEARN sets the counter back to 0000.)

@ TEK 31

PROGRAMMING

DEBUG & EDIT

Note that during stepwise execution, whenever DISPLAY PROGRAM is in effect,

although the display only reveals program information, execution results are not lost.

That is, a second DISPLAY PROGRAM will put current results back into the display, in

accordance with the program steps that were executed while the DISPLAY PROGRAM

was in effect.

Stepwise execution of stored programs is probably the most useful method of debugging

and is especially advantageous on programs with many branches. However, in programs

with loops, stepwise execution may not be the best method of debugging. Here, it may

be better to examine a listing of the program and carefully check it against a flow chart.

EDITING

Program editing refers to program revision and final preparation. For example, when we

write a program, our primary concern is usually the basic computation and smooth

program flow from start to finish. However, somewhere along the line, we typically find

need to insert extra program steps that we overlooked the first time through; we also

may find need to delete extraneous program steps. In addition, in order to make wise use

of our time and that of the calculator, it is often advantageous to totally revise the

organization of a program. For instance, an often-called subroutine buried deep in

memory may be better placed near the beginning of memory in order to minimize search

time during program execution.

Using the editing capabilities of the calculator, all of the above operations are easily

accomplished. In order to illustrate these techniques' let's try a sample problem. First

enter the following program — it will put 0123456789 into the display.

2-84
@ TEK31

PROGRAMMING

DEBUG & EDIT

PRESS Enter the Learn mode at OOOO

CLEAR

DSPLY

7=7 v=?

2
>—s

j 7 8

y
—

/

CO

El
The program

Exit the Learn mode

To run the program press START; the display will show 0123456789, as expected.

To list the program press RESET and LIST; since RESET directs the counter to 0000,

that is where our list begins. (Press STOP to stop the list after the program has been listed.)

MEMORY DISPLAYED WITH

LOCATION OCTAL CODES PRINTER

0000 040 CLDP

0001 061 1

0002 062 2

0003 063 3

0004 064 4

0005 065 5

0006 066 6

0007 067 7

0008 070 8

0009 071 9

0010 043 STOP

2-85
© TEK31

PROGRAMMING

DEBUG & EDIT

Stepwise execution is accomplished with a RESET and STP*-, STP-^, STP—, etc. Note

that each STP-*- results in the entry of the executed keystroke into the display; the

eleventh STP~»- executes the STOP and causes illumination of the STOP light. During

stepwise execution, press DISPLAY PROGRAM at any time to display the octal keycode

of the next step to be executed.

INSERT

The INSERT key is non-programmable. In the Idle mode, this keystroke will cause an (E 4)

error message (requires Learn mode). In the Learn mode, any keystroke that follows INSERT

will be inserted into the program at the location currently displayed and the currently

displayed program step and all program steps following the displayed step are displaced in

memory by one location. To insert several steps, press INSERT the appropriate number

of times and then press the corresponding keystrokes for the steps you want to insert.

To illustrate the above, let's insert a 3 at location 0003 in the example program.

PRESS
7—f

GOTO

■■■■/ 0 ?=7
0

LEARN

Enter the Learn mode at the

designated location

INSERT
Insert a 3 at step 0003

LEARN
Exit the Learn mode

© tek
2-86

I I I It I It-

□

□

p □

□

□

PROGRAMMING

DEBUG & EDIT

The program now looks like this:

0000

0001

0002

0003

0004

0005

0006

0007

0008

0009

0010

0011

CLDP

1

2

3 This is the inserted program step

3

4

5

6

7

8

9

STOP

To run the program press START; the display shows 1233456789. Note the difference

between this display and the previous one — the extra 3 is a result of the inserted

program step. Note also that the new program contains one more program step and every

program step after step 0003 has changed one location downward in our listing.

2-87
Q TEK 31

PROGRAMMING

DEBUG & EDIT

DELETE

l-1
Like INSERT, DELETE is non-programmable and its use in the Idle mode will result in w" • ■

an (E 4) error message. When DELETE is used in the Learn mode, the keystroke that is

presently displayed will be removed from the program and all program steps following it

will be moved up in memory one location.

To illustrate this, let's remove the extra 3 from the example program.

PRESS m nm urn im *-1 Enter the Learn mode at 0003

Delete program step 0003

Exit the Learn mode

The program is thus restored to its original form. To run it, press START; the display

shows 0123456789, as before. A list of the program will reveal that the extraneous 3 is

deleted.

@1 TEK 31

2-88

PROGRAMMING

DEBUG & EDIT

PROGRAM EDITING WITH THE MAG-TAPE

Often, insertion and deletion of program segments is necessary. In these circumstances

the mag-tape can be used to edit programs. The following discussions depict the methods

by which this is achieved.

UTILIZING MEMORY BOUNDARIES

When a memory boundary (end of page, file, or memory) is encountered while program

steps or R-registers are transferred to a tape block, the portion of the tape block

following the boundary is erased.

2-89
@ TEK 31

PROGRAMMING

DEBUG & EDIT

Later, when the contents of the tape block are loaded into the calculator memory, only

the recorded information is transferred; the erased portion of the tape will not change

the rest of the page or file.

This technique allows you to transfer a given program segment to any location within a

page of memory without altering those steps which follow the transferred program

segment.

To arrange a program segment on tape , consider the following example.

A program segment begins at memory location mmmm and is N steps long.

mmmm ■

For this EXAMPLE assume mmmm

is 0200 and N is equal to 50 steps

@ TEK31

2-90

PROGRAMMING

DEBUG & EDIT

(1) Transfer the program segment to tape so that the first step recorded on the tape

is the first step of the program segment.

ADR GT mmmm TTP d

(2) Transfer the program segment back into the calculator memory so that the last

step of the segment is the last step in a memory page.

ADR GT eeee FTP d

end-of-page

2-91

eeee equals end-of-page address minus

N, where N is the number of steps in

the program segment

@ TEK31

PROGRAMMING

DEBUG & EDIT

(3) Transfer the program segment back to the tape so that only the program segment

is transferred to the tape and the rest of the tape is erased.

ADR GT eeee TTP d

end-of-page

n V—1 F"?
ADORS GOTO

■ ■■■ 0 tLL
rm m s

M m 2

Tape block d

The program segment is now recorded on the tape and may be transferred into the

calculator memory so that only N steps of the memory will be altered. Notice that if

subroutines are stored on tape in this manner, it becomes a simple process to build a

program from these subroutines.

Often, you may be concerned only with the arrangement of program segments and not

concerned with what is contained in the program memory following the newly arranged

program segments. In this case, it is not necessary to isolate the program segments on a

single tape block. The following examples illustrate the techniques used.

2-92
® TEK31

PROGRAMMING

DEBUG & EDIT

MOVE A PROGRAM SEGMENT IN MEMORY:

A program segment, A, with beginning address, xxxx may be moved in memory so that it

begins at another location, yyyy.

beginning address, xxxx

PROGRAM

SEGMENT

A

Record program segment A on tape

block 1- ADR GT XXXX TTP 1

Enter contents of tape block 1

into the calculator memory

starting at location yyyy.

(Note: All the program steps from

address X to the end of the page

will be recorded on block 1.)

ADR GT yyyy FTP 1

beginning address,yyyy

PROGRAM

SEGMENT

A

2-93

Result of above: Program segment

A is now in memory starting at

beginning address, yyyy.

@ TEK31

PROGRAMMING

DEBUG & EDIT

LINKING SEPARATED PROGRAM SEGMENTS:

Suppose we have two program segments, A and B, separated from each other by

unwanted or unused program steps. Suppose further that we wish to edit the program so

that A and B are adjacent in memory.

beginning

address, wwww

ending + 1 is xxxx

PROGRAM
address, yyyy

PROGRAM

SEGMENT SEGMENT

A B

ending + 1 is zzzz

The wwww and yyyy are the starting addresses of program segments A and B respectively,

xxxx and zzzz the ending addresses plus one. (wwww < xxxx < yyyy < zzzz).

w

To LINK B with A:

> t
a

V i
GOTO
■ ■■■ yyyy

s~7
I*
L- L

ADDRS H XXXX M

Record B on tape block 0

Enter B into memory starting at X

m

B

A

To LINK A with B:

T t Tf GO TO

s
y

ADDRS GO TO
■ ■■■

wwww

yyyy

Record A on block 1

Record B on block 2

® TEK 31

2-94

PROGRAMMING

DEBUG & EDIT

Now enter the taped program segments into the calculator memory starting at location

mmmm, where mmmm is any starting address.

Enter B into memory starting at

location mmmm.

Now, find the end of the new B program segment. Here we will call it nnnn.

Enter A into memory following the

last step of the new, relocated B

segment.

INSERTING A PROGRAM SEGMENT BETWEEN TWO OTHERS

Suppose that A and B are adjacent in memory and we wish to insert another program

segment, C, in between A and B.

PROGRAM

SEGMENT

C

Y

2-95 ■
@1 TEK31

PROGRAMMING

DEBUG 8 EDIT

1.

2.

3.

4.

Pi
ADDAS

--A

Pi GOTO
aaeal

Y f
ADDAS GOTO

■ ■■■

ri
ADDRS

J— \

[goto]

H
[goto
[■■■a

xxxx

yyyy

xxxx

zzzz

Record B on tape block 1.

Record C on tape block 2 .

Enter C into memory starting at X.

Enter B into memory starting at the program

step following the last step in the just-entered

C; here we call that Z.

RESULT: As diagrammed below, program segment C is now inserted between program

segments A and B.

PROGRAM

SEGMENT

A

xxxx

zzzz

PROGRAM

SEGMENT

C

PROGRAM

SEGMENT

B

2-96

PROGRAMMING

DEBUG & EDIT

DELETING PROGRAM SEGMENTS WITH THE MAG-TAPE

Suppose that we have three adjacent program segments, A, B, and C, and that we wish to

delete the B segment from the program.

yyyy

xxxx

PROGRAM

SEGMENT

A

PROGRAM

SEGMENT

B

PROGRAM

SEGMENT

C

1 Delete

this

segment

ADORS GOTO
0(900 xxxx TAPE Tf

,1-J £==i A==£
Record C on tape block 1.

>-f
ADORS

-\
GOTO
■ ■■■ yyyy

PT"71
Enter C into memory starting at yyyy.

2-97
(a) TEK 31

PROGRAMMING

DEBUG & EDIT

RESULT:

yyyy

PROGRAM

SEGMENT

A

PROGRAM

SEGMENT

C

Program segment B is deleted.

© TEK 31

2-98

PROGRAMMING

PROGMMMINS WITH A PRtiTEB

PROGRAMMING WITH THE PRINTER

The printer on your calculator may be used for several purposes. There are two main

purposes: 1) The printer is used to list programs — both during and after program entry.

2) With the printer and its alpha capabilities, you can write interactive programs, an

example of which might be directing the calculator to ask you for specific data inputs

and print out titled solutions.

A programmed PRINT DISPLAY will cause the current contents of the display to be

printed. All displays are printed as they appear with the following exceptions:

* Flashing displays are printed with a # between the mantissa and exponent. For

example,

FLASHING PRINTED

3.141592653 3.141592653#

1.234567890 -03 1.234567890#-03

* Leading zeros are suppressed from the printout and a display consisting of all zeros

is printed as a single zero.

DISPLAY PRINTED

000001.2303 1.2303

0000000000 0.

* When a PRINT DISPLAY is encountered by the calculator while a program is being

executed and a DISPLAY PROGRAM is in effect, the location and mnemonic of the

program step following the print command are printed. To illustrate, enter the

following program:

2-99
@2 TEK31

PROGRAMMING

PROGRAMMING WITH A PRINTER

CLEAR

DSPLY

ry—
PRINT

l-I

Enter the Learn mode at OOOO

—fl
3

Print the contents of the display

Loop back to 0000 and begin again

Exit the Learn mode

Enter 1234 into the display

A START will execute the program; press STOP to terminate. The printouts are given

below.

PRINTOUT WITH

NORMAL DISPLAY PROGRAM

PRINTOUT IN EFFECT

In the above, note the difference between the two printouts — when the DISPLAY

PROGRAM is in effect, the step following the print command is printed; this is

useful when tracing the locations of various print commands in lengthy programs.

NOTE: When running a program with DISPLAY PROGRAM in effect, the calculator

will not print alpha messages.
© TEK31

2-100

PROGRAMMING

PROGRAMMING WITH A PRINTER

PROGRAMMING ALPHA

Alpha printouts are used to format data entries and subsequent printed solutions. In

order to enter alpha information into the calculator memory, understand the following:

* All available alpha characters, except digits and parenthesis, are printed in the blue

squares adjacent to their respective keys. The numeric keys and parenthesis keys

have no blue squares, but are used to print their corresponding alpha characters.

* Actuate alpha input by depressing the blue HOLD FOR ALPHA key, HFA, during

any alpha keystrokes.

* The paper will contain sixteen characters on a line.

* Alpha information in a program is printed when a total of sixteen characters have

been entered, or when the alpha program steps are followed by any programmed

non-alpha command. To illustrate:

This program

0 0 0 0 CLDP
0 0 0 1 H
0 0 0 2 B
0 0 0 3 f:
0 0 0 4 D
0 0 0 5 E
0 0 0 6 F
0 0 0 7 b
0 0 0 8 hi
0 0 0 9 l
0 0 i 0 ,t
001 1 K
0 0 1 9 L
0 01 3 M
0 0 i 4 N
0 0 1 5 n
0 0 1 6 P
0017 0
0018 R
0 0 1 9
0020 T

Results in this printout

The first sixteen alpha

characters are printed

when the line is full.

The other ten characters

are printed as a result

of the STOP command, as

it is the first keystrike

following the alpha.

2-101
© TEK31

PROGRAMMING

PROGRAMMING WITH A PRINTER

* A PRINT DISPLAY following alpha instructions will cause both the alpha

information and the contents of the display to be printed, alpha first, and display

second, For example, the program steps, CD ir L 0 0 K PRINT DISPLAY

will cause the following printout:

The same applies in the Idle mode; that is, the above instructions in the Idle mode

will cause the same printout.

A good practice program with the alpha keys is to program in your own personal address

label. The one shown here may be used as a guide.

1
8 8 0 1 E

IA s A % ! •L1 KJ \-s "T :

0 0 3 5 0
8 0 0 2 K 0036 N
8 0 8 3 T 0 0 3 t ?
0 0 0 4 R 0 0 3 8
0 0 0 5 0 0 0 3 9 0
0 0 0 6 N 0 8 4 8 R
0 007 I 8841 E
0 0 0 8 X 0042
0 0 0 9 80-43 PR PR
Pi Pi 1 Pi T 0 8 4 4
0011 N 0045
Pi Pi 1 2 f: 0 0 4 6
0013 0 8 4 7
0014 PflPR 8 O 4 8
0015 P 8 0 4 9
0016 Pi Pi 5 Pi
0 0 1 7 O 0051
8 01. 8 0 0 5 2
0 0 1 9 0 8 5 3
0 0 2 0 B Pi Pi 5 4 9
0 0 2 1 0 0055 7
0 0 2 2 X 0 8 5 6 8
0 0 2 3 8 0 5 7 0
0 0 2 4 5 8858 5
0 025 0 0 8 5 9 P H P R
8 O 2 6 0 0068 PH Phi
0 027 P Pi P R 0 0 fo i r H r K
0 8 2 8 B 0062 PHPR
0 0 2 9 E 0 0 6 -5 P H P K
Pi Pi 5 Pi H 8064 STK!
0031 U 8065 NULL
Pi Pi 5 ? F At . _ .
0033 R

TEKTRONIX INC.
r . 0 . B 0 K in Pi Pi
BEnMERTON? ORE,

9 7 0 0 in

TEKTRONIX INC.
P , 0. 8 0 X d @ 8
BERUERTON? ORE,

9 r' 8 8 5

TEKTRONIX INC.
P . 0 . B 0 X 5 0 0
BERUERTON? ORE,

9 7 0 8 5
2-102

GENERAL INFORMATION

MHIM OPERATION

BACK PANEL

The back panel contains the on-off switch, power cord plug-in, fuse holder, information

on operating power ranges, the serial number, the fan filter, and a plug for the peripheral

connector.

ON-OFF Switch

LINE VOLTAGE

Line voltage is single phase, grounded neutral with nominal voltages; 100, 110, 120, 220, or

240 AC volts. Satisfactory calculator operation is achieved within a ±10% range of the

above voltages. An indicator on the back panel shows the rated voltage set at the factory.

Before you connect the calculator to a power source, verify that the rated voltage

matches that of your source —

3-1
® TEK

GENERAL INFORMATION

IHiTiAL OPERATION

CHANGING RATED VOLTAGE

To change the rated voltage to 100, 110, 120, 200, 210, or 240, follow the steps

outlined below:

1. Turn off power.

2. Remove the lid as follows: loosen the two screws on the back panel, then bend the

vertical surfaces of the lid slightly as shown below to release the lid. Lift the lid straight

3. The power supply board has three rows of five pins each. The pins are jumpered by

a connecting block which contains jumper wires. Remove the block by pulling it

out. Change the jumper wires as indicated below for 100 to 120 or 200 to 240 volt

operation.

3-2
@ TEK31

GENERAL INFORMATION

INITIAL OPERATION

4. Place the connector back onto the pins according to the desired voltage rating.

5. Re-install lid and change fuse.

6. Indicate new voltage rating on back panel.

FUSES

The fuse holder is located on the rear panel. For 100 to 120 VAC operation, use 1.6 amp

slow-blow fuse. For 200 to 240 VAC operation use 1/2 amp slow-blow fuse.

If a new fuse blows immediately on replacement, check FUSES above to verify that you

have installed the correct fuse for the rated voltage. If the correct fuse was blown a

second time, DO NOT replace it with one of higher current rating — this may lead to

damage of the calculator. Instead, call your Tektronix Field Office for assistance.

3-3
0 TEK31

GENERAL INFORMATION

INITIAL OPERATION

LINE FREQUENCY

Satisfactory operation is achieved with line frequencies from 48 to 62 Hz.

POWER REQUIREMENT

The power requirement is a maximum of 100 voltamperes.

GROUNDING REQUIREMENTS

World safety standards suggest that frame, chassis, and keyboard cabinet be grounded

(earthed) to minimize electrical shock hazards. The calculator is equipped with a three

conductor power cord set that will efficiently ground it when used in conjunction with

an appropriately grounded power source receptacle.

POWER ON-OFF SWITCH

0 TEK31

3-4

GENERAL INFORMATION

INITIAL OPERATION

LOADING PRINTER PAPER

If your calculator is equipped with a printer, load it with paper according to the

following procedure:

1. Raise the Printer Access Cover.

2. Remove any core remaining from an old roll or lift out any remanant of a remaining

roll (tear cleanly and feed out the scrap by pressing the PAPER button on the

printer).

3. Unwind soiled paper from new roll and cut off or tear cleanly.

4. Insert the new roll according to the diagram on the underside of the Printer Access

Cover.

5. Close the access cover.

3-5
0 TEK 31

GENERAL INFORMATION

Standard Accessories:

one power cord set

one verification tape cartridge

one blank tape cartridge

1.6 AMP slow-blow fuses

0.8 AMP slow-blow fuses

User definable cards

INITIAL OPERATION

Optional Accessories:

handle

ROM pack

five rolls printer paper

@ TEK31

3-6

GENERAL INFORMATION

OPERATING CHARACTERISTICS

This chapter is devoted to discussions giving general information about the calculator and

its operating characteristics, especially those that are not unique to any particular key,

but are characteristic to the calculator as a whole. For the most part, detailed

descriptions of individual keys are contained in preceding sections — here we will

elaborate on particular key operations only to illustrate generalities of operation.

KEYBOARD ARRANGEMENT

The calculator keyboard is divided into two major sections: one for basic arithmetic

operations and the other for programming operations.

Contained in the major sections are keys that control the mag-tape mechanism, thermal

printer, and remote peripheral devices.

KEYBOARD COLOR CODING

The keys on the keyboard are color coded for quick identification. Adjacent to the

various keys, the blue tints on the keyboard designate the alpha characters that are

available for printout when these keys are used in conjunction with the blue HOLD FOR

ALPHA key.

STATUS INDICATORS

The calculator display includes a group of six status indicators which, when illuminated,

indicate current machine status or operating mode.

RAD DEG LEARN BUSY STOP ADDR
INCOMP

3-7
@ TEK31

GENERAL INFORMATION

GPERA?!NG CHARACTERISTICS

RAD and DEG indicate current trigonometric operating mode. RAD indicates radian

operation, and DEG indicates degree operation. According to the status indicated, the

calculator will take displayed numbers as either being in degrees or radians whenever any

of the trigonometric keys are used. Change the trigonometric operating mode by pressing

the D/R key. A CLEAR will always revert the trigonometric status to RAD.

LEARN indicates that the calculator is in the Learn mode; the program memory is open

to accept and retain sequential entry of programmable keystrokes. In the Learn mode,

the display consists of three numbers: the first number indicates the currently indexed

memory location, the second number is the octal keycode of the keystroke stored at that

location, and the third number, a single digit, indicates the presently accessed R-register

file.

BUSY indicates that the calculator is engaged in one of the following activities:

Program execution

Printing

* Computing an arithmetic operation

* Transferring information to or from mag-tape

Exit from the Busy mode is achieved when the current activity is completed. During

certain times in tape transfers and at all times during program execution, exit from the

Busy mode may be accomplished by pressing STOP.

STOP indicates that a programmed STOP command has been executed, or that an

activity, as discussed above, has been interrupted by a manual STOP keystroke.

3-8
@ TEK31

GENERAL INFORMATION

OPERATING CHARACTERISTICS

ADDR INCOMP indicates that the calculator is waiting for memory location address

digits, data register (K or R) address digits, a subroutine lable, a file number, a tape block

number, or a remote peripheral address. The keys that require addresses are so indicated

by the appropriate number of embossed white squares. (For instance, the K key requires

a single digit address. This is indicated by one square on the key.)

Normally, when the calculator is not in the Busy or Learn modes (BUSY and LEARN

lights out) the calculator is said to be in an Idle mode. In the Idle mode, the keyboard is

fully functional. In the Busy mode, the keyboard is not functional and the only key that

has any effect is the STOP key. In the Learn mode, all programmable keystrokes are

entered into the program memory.

RANGE OF OPERATION

The operating range of the calculator is essentially from zero to ±9.999999999 X 10".

This is best expressed on the number line as,

-9.999999999 X 10" to -1 X 10-9 9

0 ■ | +x

+1 X10-" to 9.999999999 X 10"

Symbolically, this range may be expressed as.

+ 1 X 10-" < |x| < 9.999999999 X 10" , and x = 0

Operations resulting in results outside of this range will switch the calculator into what is

called an overrange condition, which is indicated by a flashing display.

GENERAL INFORMATION

OPERATING CHARACTERISTICS

FLASHING DISPLAY AS ERROR INDICATION

A moment after turn-on, the calculator display will come on and flash, on and off about

twice per second. To stop this flashing, press the CLEAR key. The flashing display is the

principal mathematical operations error indicator and also occurs following any power

interruption, indicating memory erasure. The flashing display is used to indicate that an

illegal mathematical operation has been performed, or that the result of an operation

exceeds the calculator operating range, as outlined above. Forbidden operations include

the square root and log of a negative number, division by zero, and trigonometric

functions outside the range of allowable arguments. A print command executed during a

flashing display will cause a # to be printed between the mantissa and exponent.

It is noteworthy to mention here that a flashing display is an error message only. Given a

flashing display, you may choose on one hand to acknowledge and CLEAR the flashing

display, or you may choose to ignore the flashing display and continue your com¬

putations. In this case, the calculator will perform correctly in subsequent commands.

The flashing display can only be returned to its former appearance by a CLEAR.

In some situations you may wish to deliberately create a flashing display to indicate that

a certain condition exists in a program. The simplest way to do this is with a CD and 1/x

(divide by zero). A flashing display of all zeros is achieved by following the above with

another CD.

@ TEK31
3-10

GENERAL INFORMATION

OPERATING CHARACTERISTICS

ERROR MESSAGES

Aside from overrange and illegal operations, which are indicated by flashing displays,

other errors on the calculator are indicated by a series of ten displayed error messages, (E

0 through E 9). These error messages appear in the exponent portion of the display

whenever the calculator determines that it has received erroneous keystrokes or when

certain conditions exist that are important for you to know. The error messages are fully

described in the appendix devoted to this topic. Briefly, they are as follows:

E 0 End of memory

E 1 No such step

E 2 No such register

E 3 Requires a digit

E 4 Requires Learn mode

E 5 No such label

E 6 Illegal code in memory

E 7 No cartridge, no paper, or no

such tape address

E 8 Write protected cartridge

E 9 Bit error

DISPLAY AND DATA FORMATS

The calculator will accept input data in a variety of notations. Each of the following

formats is equally acceptable and may be intermixed at will.

DATA FORMATS

DECIMAL

or ORDINARY 100 -512 .0001 243.123

SCIENTIFIC 1 X 102 -5.12 X 102 1 X 10-4 2.43123 X 102

MIXED 10 X 101 -51.2 X 101 .01 X 10-2 .00243123 X 105

3-11
@ TEK 31

GENERAL INFORMATION

OPERATING CHARACTERISTICS

The calculator can display a maximum of twelve digits, a decimal point, and two signs. In

ordinary or decimal notation, the calculator displays a ten digit mantissa with sign and a

decimal point. In scientific notation, the display consists of a ten digit mantissa with a

decimal point immediately to the right of the first significant digit, and a two digit

exponent with sign.

When scientific notation has not specifically been called for (by using other notations),

results of calculator operations are displayed in ordinary decimal notation when they are

in the range of fixed point displays:

1 X 10_ 10 < |x| < 1 X 10+9 (range of decimal notation)

When any calculation exceeds the above range, the calculator will switch the display to

scientific notation; it will revert to ordinary notation whenever the range of the display

returns to the range of ordinary notation given above — unless scientific notation has

been specified by entering data in scientific notation.

3-12
@ TEK 31

GENERAL INFORMATION

OPERATING CHARACTERISTICS

GUARD DIGITS

Both data and internal results of calculations are stored in the calculator to twelve

decimal places, but are displayed to ten decimal places. The remaining two digits are

called the guard digits — they function to maintain ten digit accuracy through successive

calculations and provide for automatic rounding of the least significant displayed digit.

To demonstrate the above, divide 5 by 3 and then multiply the result by 3. After the

division the result is 1.66666667, after the multiplication the result is 5, as expected.

Now repeat the calculation but destroy the guard digits by pressing +/— twice after the

division, then do the multiplication. The result is 5.000000001. The reason is that when

we destroyed the guard digits, our accuracy suffered and the error of 0.000000001 is a

result.

The guard digits are not normally displayed, but if you wish to examine them, simply

subtract the two most significant digits from any display. For example, let's examine the

guard digits on

Display: 1.732050808

Display: 3.205080756 -02

The guard digits are 56. In the first display, 756 is rounded to 8.

3-13
@ TEK31

GENERAL INFORMATION

OPERATING CHARACTERISTICS

In certain calculator operations the rounding action of the guard digits may seem to

cause incorrect or anomalous displays. For example, if you compute 210, the display will

yield 1024, as expected. But if you take the integer value of the display, you get 1023.

If you examine the guard digits in the first display you will find that the 1024 is actually

1023.99999989 rounded up.

When programming certain kinds of trigonometric calculations or logic operations, you

may at times wish to discard or kill the guard digits. To do this PRESS +/— twice; once to

Kill the guard digits, and a second time to restore the original sign of the display. Alternate

to this, keying in a 0 will accomplish the same purpose.

@ TEK31

3-14

GENERAL INFORMATION

OPERATING CHARACTERISTICS

USING THE OVERLAY

The overlay furnishes you with the ability to redefine the function of each of the keys

on the lower-left quadrant of the keyboard. For instance, suppose you have occasion to

compute the area of a circle, given the radius in the display. Normally, you would press

x2 X 7r to arrive at the desired result in four keystrokes. However, by utilizing the

overlay, this computation could be accomplished in a single keystroke. To do this, we

would program the following subroutine into the calculator memory:

LABEL

This keystroke identifies the following keystrokes as a

subroutine, arc is the label here, but any other of the 24 keys

in the quadrant would suffice.

These keystrokes compute the area of the circle from the radius

given in the display.

The END signals the calculator that the computation is complete.

3-15
@ TEK31

GENERAL INFORMATION

OPERATING CHARACTERISTICS

On the overlay opposite the arc key we would write some appropriate identification such

as "AREA" to indicate the function of the subroutine that this key labels. Now, for all

practical purposes, with the subroutine in the memory and the overlay installed, the arc

key is an AREA key. In this manner you may use any and all of the 24 keys in the

quadrant to freely define your own special purpose functions, each of which may be

executed by pressing the key adjacent to the appropriate label. When the overlay is

removed, the keys revert back to their original functions.

In large programs containing many subroutines, individual subroutines may be of

themselves useful to you, independent of their functions in the main program. Thus, you

may desire to call upon these subroutines to individually perform their designed purposes.

This may be done provided that the subroutines you call from the keyboard contain

END commands (as outlined previously), and the overlay is labeled appropriately with

the purpose of each utilized subroutine. In this manner the overlay would contain

information regarding the function of each subroutine in the program and you would

thus instruct the calculator to perform the functions that you have defined on the

overlay, as opposed to those printed on the keyboard. For instance, suppose that you

have a program that contains several subroutines; one for initialization, one for

computation, and one for plotting. Utilizing the overlay, it would be marked with words

such as "INITIALIZE", "COMPUTE", and "PLOT" opposite the keys that serve as labels

for these respective subroutines. Then, with the overlay in place, each of these functions

could be executed by singular keystrokes that are identified on the overlay with clear

intent.

@ TEK31

3-16

GENERAL INFORMATION

VERIFICATION

If you feel that your calculator is not operating properly the verification tape cartridge

supplied with your calculator may be used to verify operation. Insert the verification tape

into the tape transport as illustrated below.

After the program has been transferred into the calculator memory, press START. The

calculator will stop with a cleared display. Enter the total number of R-Registers in your

calculator and press continue.

The calculator will stop several times with various numbers in the display. Follow the table

below to verify the operation of your calculator. (NOTE: the display should not be flashing

unless so indicated.)

DISPLAYED NUMBER

1

2

3

4

5

6

7

8

9

10

FLASHING

FLASHING

FLASHING

FLASHING

PRESS CONTINUE

n

3-17 11 FLASHING

® TEK

GENERAL INFORMATION

VERIFICATION
After pressing CONTINUE the busy light will come on while the calculator loads the

next set of program steps from the tape. After this search is completed, the program will

automatically resume.

PRESS CONTINUE

12 FLASHING

13 FLASHING

14

15

16

17

18

19

20

After pressing CONTINUE the calculator will again search for the next series of

program steps and the program will automatically resume.

21 PRESS CONTINUE

22 PRESS CONTINUE

At this point, if you have the printer option installed and turned on, the following will be

printed: ??????????

If the program does not run as outlined, contact your local Tektronix Field Office.

After performing the above verification procedure,

PRESS [iciuiifl 1 1 IT2TI The display should remain cleared. 3-18
®J TEK31

REV. JAN 1974

r
)

r

1

APPENDICES

ERROR MESSAGES

Any error message may be reset by pressing LEARN twice in succession.

EO End of memory; the program being executed, written or loaded has exceeded the

number of program steps available in the memory of the calculator. (Reset by

pressing RESET.)

El No such step; a branching command addresses a non-existent address. (Reset by

pressing CLEAR or RESET.)

E2 No such register or file; a non-existent register or file has been called. (Reset by

pressing CLEAR or RESET.)

E3 Requires a digit; GO TO, R"«, R««, K, FTP, TTP, and REMOTE all require a

specific number of digits following them. The E 3 error message will appear

whenever a non-digit key is pressed before the appropriate number of digits have

followed the above keystrokes. (Reset by entering a digit or pressing LEARN

twice.)

E4 Requires Learn mode; STEP, INSERT, and DELETE can only be used in the

Learn mode. (Reset by pressing RESET or CLEAR.)

E5 No such label; a subroutine has been called that does not exist in memory. (Reset

by pressing CLEAR or RESET.)

E6 Illegal code in memory; an illegal code such as LEARN or STEP is stored in

memory. (Reset by pressing LEARN twice.)

© ™ i K 31

4-1

APPENDICES

ERROR MESSAGES

E7 No cartridge, no such tape block number, or no paper in the printer; results when

there is no cartridge when a tape transfer is called, or when a non-existent block

number is entered following TTP or FTP. This error message also occurs when the

calculator is trying to print when there is no paper. (Reset by pressing CLEAR or

RESET.)

E8 Write-protected; results when attempt is made to record a program and the rubber

button on the front of the cartridge is removed, write-protecting the cartridge.

Replace the button and repeat. (Reset by pressing CLEAR or RESET.)

E9 Bit error; during a tape transfer an unusual circumstance resulted in an incorrect

number of bits in a character, and thus the code has not been stored or recorded

correctly. (Reset by pressing RESET.)

4-2
0 TEK31

K
E

Y
B

O
A

R
D
 S

Y
N

O
P

S
IS

APPENDICES

KEYBOARD SYNOPSIS

Keystroke Mnemonic Pressed In Idle Mode Executed In A Program Learn Mode

STEP STP -► Executes program
step currently in¬
dexed, advance
counter

Not programmable Advances counter

STEP STP-m- E4; requires Learn
mode

Not programmable Decrements counter

INSERT NSRT E4; requires Learn
mode

Not programmable Increments displayed
step and all program
steps after displayed
step one location in
memory. Next pro¬
grammable keystroke
is inserted at dis¬
played location.

DELETE DLT E4; requires Learn
mode

Not programmable Deletes displayed step
from program. De¬
crements all subse¬
quent steps one loca¬
tion in memory.

LIST LIST Starts a program
list starting at pre¬
sently indexed loca¬
tion.

Not programmable Same as Idle mode

DISPLAY
PROGRAM

DSPG Displays present lo¬
cation, keycode of
program step stored
at that location, and
presently accessed
file number.

Not programmable Same as Idle mode

HOLD FOR
ALPHA

HFA Any keystroke en¬
tered while HFA is
depressed is taken
as an alpha key¬
stroke

Not programmable Same as Idle mode
except it is used when
storing alpha key¬
strokes in memory.

LEARN LRN Causes entry into
Learn mode

Not programmable Causes exit from
Learn mode (entry
into Idle mode)

@ TE K 31

4-3

APPENDICES

KEYBOARD SYNOPSIS

4-4

Keystroke Mnemonic Pressed In Idle Mode Executed In A Program Learn Mode

EXECUTE EXC Causes execution of
labeled subroutine
when followed by
labeling keystroke.
END is recognized.

Same as Idle mode,
except that END is
not recognized.

Programmable

LABEL LBL When followed by
labeling keystroke,
counter indexes to
first-step in corre¬
sponding subroutine

Indicates beginning
of symbolically
labeled subroutine

Programmable

END END No effect When subroutine
containing END is
executed from Idle
mode, END causes
termination of ex¬
ecution. Otherwise,
when subroutine is
executed under pro¬
gram control, END
is ignored.

Programmable

RETURN
ADDRESS

RADR Puts contents of
address register into
display

Same as Idle mode Programmable

GO TO
DISPLAY

GODP Branch to displayed
location (last four
digits) and remain
in Idle mode

Branch to displayed
location and con¬
tinue execution

Programmable

CLEAR CLFG Clears flag Clears flag Programmable
FLAG

SET SFG Sets flag Sets flag Programmable
FLAG

CLEAR
R FILE

CFI Clears all R-registers
in file indicated in
following keystroke

Same as Idle mode Programmable

PAUSE PAUS No effect Causes a pause in
program execution.

Programmable

Pause is approxi¬
mately one second
in duration.

® TEK31

APPENDICES

KEYBOARD SYNOPSIS

Keystroke Mnemonic Pressed In Idle Mode Executed In A Program Learn Mode

> 0 IF>0 No effect When condition is
fulfilled, program

Programmable

= 0 IF=0 No effect steps following the
1F statement are

Programmable

< 0 IF< 0 No effect executed. Oth¬
erwise, the program

Programmable

FLASH IFFL No effect branches to the
next progammed

Programmable

FLAG IFFG No effect CONT Programmable

RESET RSET Branch to 0000.
Remains in Idle
mode

Branch to 0000,
exits Busy mode and
enters Idle mode.

Programmable

START STRT Starts program ex¬
ecution at 0000.

Branch to 0000. Programmable

ADDRS ADR Used when spec¬
ifying Mag-tape
transfers, always
followed by GO TO
or one of the R
keys.

Same as Idle mode Programmable

GO TO GT When followed by
address digits, this
is an unconditional
branch command.
Branch to specified
location, remains in
Idle mode.

Same as Idle mode
except program ex¬
ecution is continued
at specified location.

Programmable

© TEK 31

4-5

APPENDICES

KEYBOARD SYNOPSIS

Keystrokes Mnemonic Pressed In Idle Mode Executed In A Program Learn Mode

DEGRAD D/R Changes trigonometric operating mode from degrees to
radians and vice-versa. Affects the trigonometric keys,
ARC, TAN, COS, SIN.

Programmable

Used also to convert displayed numbers from radians to
their equivalent in degrees, and vice-versa.

Programmable

arc arc Used in conjunction with other trigonometric keys to
find inverse arguments of displayed trigonometric vari¬
ables.

Programmable

hyper hyp Used in conjunction with trigonometric keys when
finding hyperbolic functions.

Programmable

tan x tan Tangent of the displayed angle. Programmable

cos X cos Cosine of the displayed angle. Programmable

sin x sin Sine of the displayed angle. Programmable

x! X Factorial of the integer of the displayed number Programmable

n4 n4 Multiply K4 by display and store the result in K4 Programmable

^3 A3 Multiplies contents of K3 register by —0.1 and stores
result in K3

Programmable

3^2 3^2 Adds contents of K3 to K2 and stores the result in K2 Programmable

Adds display to K1 and stores the result in K., Programmable

20 20 Adds display to K0 and stores the result in K0 Programmable

In x In Natural log of displayed number Programmable

log x log Log, base ten, of displayed number Programmable

int x int Integer value of displayed number Programmable

Square root of the sum of the squares. Operates on
sequentially entered numbers

Programmable

|x|a |x|a Raises display to a power subsequently entered. Programmable

REMOTE RMT Used to address peripheral devices. Programmable

ex

4-6
ex e, the base of naperian logarithms (2.71 . . .) is raised to

the displayed power and put into display.
Programmable

@ TEK31

APPENDICES

KEYBOARD SYNOPSIS

Keystrokes Mnemonic Pressed In Idle Mode Executed In A Program Learn Mode

R«i« Rhb Causes recall of stored contents of register
specified by digit keystrokes that follow; the
first digit indicates the file, and the second
two indicate the R-register in the indicated
file.

Programmable

Rm Rm Causes recall of stored contents of register
specified by the digit keystrokes that follow.
Recall is from current file.

Programmable

(Note: When an = precedes either of the
above, the display is stored in the specified
register.)

TO TAPE TTP Used in mag-tape transfers of information to
tape. This keystroke is followed by a single
digit indicating the tape block to which the
information is to be transferred. (0-5)

Programmable

FROM
TAPE

FTP Used when transferring information from
mag-tape to the calculator memory.
Followed by single digit keystroke indicating
the tape block from which the information
is to be taken. (0-5)

Programmable

STOP STOP No effect except to
illuminate the
STOP light under
the display

Interrupts program
execution. STOP is
the only key that is
functional while the
calculator is in the
Busy mode.

Programmable

CO NT CONT This is an execution
command directing
the calculator to
begin execution of
the program at
wherever the
counter is presently
indexed.

Performs no opera¬
tion.

Programmable

4-7
@ TEK31

APPENDICES

KEYBOARD SYNOPSIS
Keystrokes Mnemonic Pressed In Idle Mode Executed In A Program Learn Mode

X2 X2 The display is squared Programmable

Takes square root of displayed number Programmable

1/x 1/x Takes the reciprocal of the displayed number Programmable

7T 7T Puts 7r (3.14159...) into the display Programmable

PAPER
FEED

PF Advances paper in printer one line at a time Programmable

X 1000 X 1000 Used to enter exponent or convert a number to scientific
notation

Programmable

((Opens a parenthetical entry Programmable

+— +/- Changes sign in display

)) Closes a parenthetical expression, two will always close a Programmable
statement.

0 0 Used for numerical entry. May be used as subroutine Programmable

1 1 labels.
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9

Decimal point. Programmable

l< K Used to access data registers. Register is identified and
recalled by digit that follows. Display storage into these
registers is accomplished by preceding K and its fol¬
lowing digit with = (= K 9, for example).

Programmable

-r Divide Programmable

X X Multiply Programmable

— — Subtract Programmable

+ + Add Programmable

4-8 0 TEK31

APPENDICES

KEYBOARD SYNOPSIS

Keystrokes Mnemonic Pressed In Idle Mode Executed In A Program Learn Mode

CLEAR

= Equals. Causes accumulation of all entered arithmetic Programmable
statements. Also causes display storage in a data register
when followed by a data register address. (See STOR¬
AGE OPERATIONS AND DATA REGISTERS.)

CLR Resets calculator to begin again on a new set of Programmable
operations and data entries.

PRINT
DISPLAY

PRNT Print the display (and alpha if entered).

CLEAR
DISPLAY

CD Clears display to all zeros. Does not alter previously Programmable
entered operations.

(S) TEK31

4-9

APPENDICES

KEYCODES

OCTAL
CODE

PRINT
OUT

KEY SYMBOL

100 K
■ K

101 :.J DEG~RAD D/R
102 h K: 1 arc arc
103 h Y r hyper hyp

104 i H f 1 tan X tan
105 cos X cos
106 i N sinX sin
107 i X'. x!

110 . r i :i- IL IT

111 is L ! •./- a3 a3
112 •_.= 3 ^2
113 •:.= ••...= : : .:. I, 2i
114 o u ;i y E.

115 L H In X In
116 InflX log
117 ini X int

120 k y y i v sTLx’ VSx2

121 >•; t h 1X1° xa

122 Ri'l.
REMOTE RMT

123 E t N ex ex
124 >i 12 x2 x^

125 SORT VY Vx
126 i x 1/x
127 P X 71 77
130 k 1 r: k PAPER

FEED PF
131 x i 01 xio00 io00
132 C 0 E; CONT CONT
133 R H C RETURN

ADDRESS RADR
134 •f ■••• +^” +/-

135 G ij D P GO TO
DISPLAY GODP

136 E h u FLAG IFFG
137

•

t N D k END ENDR

OCTAL
CODE

PRINT
OUT

KEY SYMBOL

001 LIU. LABEL ■ LBL
002 k T P.... TAPE FTP

003 7 T P _ TO TTP
004 Ext,.. ■ EXC
005 CF 1.... rCfTeR. CFI
007 b 0 10 GOTO GT
010 R.. R' Rxxx
Oil R.._ r" ■■ Rxx
040 CL DP CLEAR

DSPLY
CD

041 I F r L FLASH IFFL
042 S :• G fSl£aTg SFG
043 STOP STOP STOP
044 PR N T PRINT

DSPLY PRNT
045 CL.R CLEAR CLR
046 Pm US PAUSE PAUS
047 C L. F G CLEAR

FLAG CLFG
050 < ((
051))
052 X X

053 + +

054 P; S ’ T RESET RSET
055 — -
056 * •
057 -j- -r

060 0 0 0

061 I 1 1
062 / 2 2

063
.....

3 3
064 4 4 4

065 5 5

066 § 6 6
067

....
7 7

070 3 8 8
071 Q 9 9
072 RDF: A DORS ADR

073 SIR T START STRT

074 I F T 6 <0 IF<0
075 =.: = =

076 1 F > = >0 IF>0
077 1 F - 0 = 0 1 F=0

4-10
@ TEK31

OCTAL

CODE
PRINT

KEY SYMBOL
OCTAL PRINT

KEY SYMBOL
OUT CODE OUT

201 LABEL
S3 LBL 300 @ @ @

202
FROM
TAPE
■ FTP 301 H A A

203
TO

TAPE TTP 302 B B B

204 EXECUTE
■ EXC 303 f: C C

205 CLEAR
R FILE ■ CFI 304 D D D

207 BELL BELL 305 E E E

210 SPACE SPC— 306 F F F

211 TAB TAB 307 G G G

220 STEP STP — 310 H H H

221 INSERT NSRT 311 I 1 1

222 DELETE DLT 312 .1 J J
223 STEP STP — 313 K K K
224 UST LIST 314 L L L
225 DISPLAY

PROGRAM DPRG 315 H M M
226 LEARN LRN 316 N N N
240 SPACE SPC 317 n O 0

241 -u ! ! 320 P P P

242 : r " 321 \) Q Q

243 # # # 322 R R R
244 $ $ $ 323 s S S
245 y % % 324 T T T

246 & & 325 u U U

247 ' # 326 IJ V V

250 < ((327 y w w
251 j)) 330 X X
252 >!•:

* *
331 Y Y

253 + + 332 z z
254 f 333 r [[
255 ... — - 334 \ \
256 :: 335 j]]

A 257 / / 336 t \
260 M 0 0 337 _

T

261 i 1 1
262 z 2 2

263 •j 3 3
264 4 4 4
265 .J 5 5

266 6 6 6
267 i 7 7
270 o 8 8
271 9 9 9
272 =

273 ji *

274 s < <
275 = =

276 > >
277 ? ?

K
E

Y
C

O
D

E
S

/K
E

Y
B

O
A

R
D

The keyboard location of each key and the page number where it is discussed 4-11

K
E

Y
C

O
D

E
S

/K
E

Y
B

O
A

R
D

IN
D

E
)

APPENDICES

INDEX

A

Absolute values, 1-17, 1-18

AC power, 3-1 to 3-4

Accessories, 3-6

Accuracy, 1-7

Addition, 1-1

ADDRESS, 2-25

Addresses

GO TO, 2-17, 2-18

incomplete, 1-30, 2-12, 3-9

indirect, 1-35 to 1-38

K-register, 1-29

mag tape, 2-25

peripheral, 1-43
R-register, 1-29, 1-30

starting, 2-8

Address register, 2-19, 2-40

Alpha, 2-21,2-100, 2-101, 2-102

Arc, 1-20
Arithmetic operator keys, 1-1, 1-3

B

Back panel, 1-44, 3-1 Branch, 2-17, 2-22, 2-36, 2-49

Ballistics problem, 2-67 to 2-74, 2-79, 2-80 Busy mode, 1-45, 2-10, 2-22, 3-8

Block, tape 2-23

Cleaning, tape head and capstan, 2-26

CLEAR, 1-1, 1-5, 1-6

CLEAR DISPLAY, 1-8

CLEAR FLAG, 2-16

CLEAR R FILE, 1-30, 2-12, 2-30

Closed parenthesis, 1 23 to 1-26

Data entry
correcting, 1-8, 1-9

example of, 1-8, 1-9

scientific notation, 1-9

sign of, 1-9, 1-10
storage, 1-29 to 1-38

Data formats, 1-7

Data registers, 1-29 to 1-38

Debugging, 2-81 to 2-84

Decimal notation, 1-7, 1-14, 3-11

Decimal point, 1-7

DEG/RAD, 1-5, 1-6, 1-19, 2-9, 3-8

Conditional branch, 2-49

CONT, continue, 2-11

Cos X, 1-20
Counter, 2-7, 2-8, 2-32, 2-83

DELETE, 2-10, 2-88

Direct addressing, 1-29 to 1-35, 1-43

Display, 3-11,3-12

during programming, 2-8 to 2-10

flashing, 1-5, 1-6, 1-12, 1-46, 2-99, 3-10

DISPLAY PROGRAM, 2-82 to 2-84, 2-99

Division, 1-1

. © TEK

4-12

APPENDICES

INDEX
E

E-0, 2-82, 3-11
E-1, 2-17, 2-19, 3-11

E-2, 1-30, 1-37, 2-29, 3-11

E-3, 1-30, 2-17,3-11

E-4, 2-86, 2-88, 3-11

E-5, 3-11

E-6, 3-11

E-7, 2-26, 2-28, 3-11

E-8, 2-24, 2-26, 3-11

E-9, 2-26, 2-28, 3-11

Editing, 2-10, 2-84 to 2-98

END, 2-11,2-22, 2-37,2-38

End-of-file, 2-24, 2-89

End-of-page, 2-24, 2-89

Entering a program, 2-7, 2-8

Equal, 1-1, 1-32

Error message, 3-11

clearing 1-6, 1-30, 2-82

Errors, finding them, 2-81 to 2-84

F

Factorial, 1-15

File, 2-24

File number, 1-29, 1-30, 1-38

FLAG, 2-16

G

Games, 2-77 to 2-79

Golden ratio, 1-16

Googol limitation, 1-11, 1-12

GO TO, 2-17, 2-18, 2-35

H

Hierarchy, 1-4, 1-27, 1-28, 1-39

HOLD FOR ALPHA, 2-21, 2-79, 2-80, 2-101

I

Idle mode, 1-5, 2-8, 2-9, 3-9

IF conditions, 2-15 to 2-17
diagram, 2-51

Illegal operation, 1-13, 1-15, 3-10

Incomplete address, 1-30, 2-12, 2-17

Examples:

ballistics problem, 2-67 to 2-74

data entry, 1-8, 1-9

games, 2-77 to 2-79

hierarchy, 1-28

IF, 2-49, 2-54

indirect address, 1-36 to 1-38

loading tape, 2-28 to 2-31, 2-57, 2-58

loan calculation, 2-59 to 2-66
math key, 1-13 to 1-18

PARENTHESES, 1-24 to 1-26

program execution, 2-45

PROGRAMMING HINTS, 2-43 to 2-80
random numbers, 2-75, 2-76

register arithmetic, 1-40 to 1-42

storage, 1-31, 1-33, 1-34, 1-36 to 1-38

trig, 1-19 to 1-22
EXECUTE, 2-21,2-34, 2-35

Execution of program, 2-45

stepwise, 2-83, 2-84, 2-86

Expanded memory, 1-29, 2-7

Exponent, 1-9

change of sign, 1-10

FLASH, 2-16

Flashing display, 1-5, 1-6, 1-12, 1-46, 2-99, 3-10

FROM TAPE, 2-27

Fuses, 3-1, 3-3, 3-6

GO TO DISPLAY, 2-19, 2-36, 2-38

Grounding, 3-4

Guard digits, 1-7, 1-10, 3-13, 3-14

Hyperbolic, 1-19 to 1-22

Indirect addressing, 1-35 to 1-38

peripherals, 1-43

Initialization, 1-5, 1-6

INSERT, 2-10, 2-86, 2-87

Inverse trigonometric function, 1-21, 1-22

K

K-registers, 1-29, 1-39

4-13
@ TEK31

APPENDICES

INDEX
L

LABEL, 2-21,2-33, 2-34
LEARN mode, 2-8 to 2-10, 2-83, 2-86, 3-8

Left parenthesis, 1-23 to 1-26

Linking, 2-94, 2-95

LIST, 2-81, 2-82

M

Mag tape, 2-23 to 2-32, 2-89 to 2-98

Magnitude, 1-18

Main program, 2-33, 2-36, 2-39, 2-40

examples of, 2-46
Memory boundaries, 2-89 to 2-92

Memory, data, 1-29

Memory, program, 1-5, 2-7, 2-8

Mixed notation, 1-7, 1-14, 3-11

N

Natural log, 1-15
Nested subroutines, 2-39 to 2-42

O

ON-OFF switch

calculator, 1-1, 1-5, 3-1

printer, 1-45, 1-46

Open parenthesis, 1-23 to 1-26

P

Page, 2-24

Panel, back, 3-1

PAPER FEED, 1-46

Paper, printer, 1-45, 3-5

Parentheses, 1-23 to 1-26

PAUSE, 2-21

Peripherals, 1-43, 1-44, 3-1

Pi, 1-10
Power, AC, 3-1 to 3-4

R

R-registers, 1-30, 2-24

RAD/DEG, 1-5, 1-6, 1-19, 2-9, 3-8

Random numbers, 2-75, 2-76

Range of calculator, 1-11, 3-9

Reciprocal, 1-13
Recording programs and data, 2-25, 2-26

Register arithmetic, 1-39 to 1-42

Loading tape
programs or data, 2-27 to 2-32

during program execution, 2-32

Log base 10, 1-15
Log Base e, 1-15

Loop, 2-48, 2-54

Modes, 3-7 to 3-9
address incomplete, 2-12

Busy, 1-45, 2-10, 2-22

DEG/RAD, 1-19, 2-9

Idle, 1-5, 2-9, 2-22

LEARN, 2-8 to 2-10

STOP, 2-11

Multiplication, 1-1

Numeric keys, 1-7

Operator precedence, 1-27, 1-28

Operators, arithmetic, 1-1 to 1-3

Options, 3-6

Overlay, 2-45, 3-15, 3-16

PRINT DISPLAY, 1-46, 2-82, 2-99, 2-102

Printer, 1-45, 1-46, 2-79, 2-80, 2-99 to 2-102, 3-5

Printout, 2-82
Priority of operators, 1-27, 1-28

Product of a series, 1-41

Program execution, 2-45
Program memory, 1-5, 2-7, 2-8

Program segments, 2-93 to 2-98

REMOTE, 1-43
RESET, 2-11,2-13
Return address, 2-40, 2-41
RETURN ADDRESS, 2-19, 2-36, 2-38

Right parenthesis, 1-23 to 1-26

Roots of equations, 1-42

Rounding, 3-13, 3-14

@ TEK 31

4-14

APPENDICES

INDEX
s

Scientific notation, 1-7, 1-9, 1-14, 1-19, 3-11, 3-12

Search time

minimizing, 2-84

SET FLAG, 2-16

Sign, change of, 1-10

Single operand keys, 1-13

Sin X, 1-20

Square root, 1-14

Square root of sum of squares, 1-17

Squaring, 1-14

START, 2-14

Status indicators, 3-7 to 3-9

T

Tan X, 1-20

Tape transfers during program execution, 2-31, 2-32

editing with, 2-89 to 2-98

Tape blocks, 2-23

U

Unconditional branch, 2-18

V

Verification, 3-17, 3-18

W

Write enable, 2-24

X

X1000, 1-9

Z

Zero suppression, 1-46, 2-99

STEP, 2-10, 2-18, 2-82, 2-83

Step counter, 2-7, 2-8, 2-32

Stepwise execution, 2-83, 2-84, 2-86

STOP, 2-11, 2-14, 2-26, 3-8

Storage, data, 1-29 to 1-38

program, 2-7, 2-8

Subroutines, 2-21, 2-22, 2-33 to 2-42, 2-84, 3-16

execution of, 2-34, 2-35, 2-37

nesting, 2-39 to 2-41

termination of, 2-36 to 2-38

Subtraction, 1-1

TO TAPE, 2-25

Trigonometric, 1-19 to 1-22

Truncation, 1-14

Turn-on, 1-5

Voltage, line, 3-1 to 3-4

Zero test, 1-18

4-15

MANUAL CHANGE INFORMATION

At Tektronix, we continually strive to keep up with latest electronic

developments by adding circuit and component improvements to our

instruments as soon as they are developed and tested.

Sometimes, due to printing and shipping requirements, we can't get

these changes immediately into printed manuals. Hence, your manual

may contain new change information on following pages.

A single change may affect several sections. Sections of the manual

are often printed at different times, so some of the information on the

change pages may already be in your manual. Since the change infor¬

mation sheets are carried in the manual until ALL changes are per¬

manently entered, some duplication may occur. If no such change pages

appear in this section, your manual is correct as printed.

Fill out and return this card for your free subscription to the Tektronix Calculator journal, which talks

about new applications, programs, etc.

What additional features would you like to see?

Additional Keys

Peripherals

Other

Which TEKTRONIX product do you currently have?

Tek 21 Tek 31

Are you using TEKTRONIX software?

Statistics Mathematics Other (specify) _

Numerical Control

Other (specify)

What additional software would you like to see?
Graphing

Surveying

Mathematical
Educational

Electronic Design

Business Application

General Scientific
Mechanical Engineer

What are the most important applications for your calculator?

Consulting

Design/Development

Engineering Support

Information, Data Processing

Maintenance, Service

Management

Manufacturing, Production

Marketing, Sales

Purchasing

Research

Standards, QC

Teaching, Instructional

Other (Specify)

Company or Organization?

Banking

Business Analysis

Chemical

Civil Engineering

Communications

Data Processing

Education

Electronics

Engineering

General Science

Govt., Military

Govt., Non-Military

Insurance

Medical

Metallurgy

Meteorology

Nuclear

Oceanography

Oil

Physics

Steel

Transportation

Utilities

Other (Specify)

Please put me on your list to receive information on new application programs.

Yes No

Name: _

Title: _

Company: __

City: _ State _ Zip

Comments:

^FOLD

ATTEN: CALCULATOR MARKETING

FOLD

STAPLE OR TAPE

