>

=g O] 3

-3 3 33
)

~y —

B |

B ;

e |

Tektronix, Inc.
P.O. Box 500
Beaverton, Oregon 97077

MANUAL PART NO.
070-2657-00

TektronD¢

COMMITTED TO EXCELLENCE

Please Check for
CHANGE INFORMATION
at the Rear of this Manual

4027
COLOR GRAPHICS
TERMINAL

PROGRAMMER'S
REFERENCE MANUAL

First Printing DEC 1978
Revised JUN 1981

SUPPORT POLICY

This software product is designated Support Category B, as
shown on the applicable software data sheet existing at the
time of order. Tektronix' sole obligation shall be to correct
defects (non-conformance of the software to the data sheet)
as described below, without additional charge.*

During the one (1) year period foliowing delivery, if the
customer encounters a problem with the software which his
diagnosis indicates is caused by a software defect, the
customer may submit a Software Performance Report (SPR) to
Tektronix. Tektronix will respond to problems reported in
SPRs which are caused by defects in the current unaltered
release of the software via the Maintenance Periodical for the
software, which reports code corrections, temporary
corrections, generally useful emergency by-pass and/or no-
tice of the availability of corrected code. Software updates, if
any, released by Tektronix during the one (1) year period, wilt
be provided to the customer on Tektronix’ standard distribu-
tion media as specified in the applicable data sheet. The
customer will be charged only for the media on which such
updates are provided, unless otherwise stated in the applica-
ble data sheet, at Tektronix’ then current media prices.

*In addition to the locations within the contiguous forty-eight
(48) United States and the District of Columbia, this service is
available in those areas where Tektronix has software support
capability.

Copyright © 1978 by Tektronix, Inc, Beaverton, Oregon.
Printed in the United States of America. All rights reserved.
Contents of this publication may not be reproduced in any
form without permission of Tektronix, Inc.

This instrument, in whole or in part, may be protected by one
or more US. or foreign patents or patent applications.
Information provided on request by Tektronix, Inc., P.O. Box
500, Beaverton, Oregon 97077.

TEKTRONIX is a registered trademark of Tektronix, Inc.

— =

e
-

. C CC CC o oo

-

(—

—3

3 3 1

=3

.

=3

=3 3 3 3

=) O3 3

-~

-3 a2 3

)

D

This manual supports the following versions of this product:

MANUAL REVISION STATUS

m PRODUCT: 4027 Color Graphics Terminal

REV. DATE DESCRIPTION
@ DEC 1978 Original Issue
A JuL 1979 Revised: H-3.
B MAY 1980 Revised: E-4.
AB JUN 1980 Revised: pages 5-12, 9-30, 10-3, 11-22, 11-24.
@ JUL 1980 Added: pages 5-12a, 5-12b,5-20a and 5-20b.
A JUL 1980 Revised: pages iii, 3-4, through 3-6, 5-19, 5-20, 5-31, 5-32 and 9-28.
A OCT 1980 Revised: pages 2-4, 3-12, 5-1, 8-28, 8-32, 8-33, and IDX-3.
B OCT 1980 Revised: page 11-22.

4027 PROGRAMMER’S

OCT 1880

Versions 1.1 and 1.1 Options

2 03 3 3 3 } -3 7 7y 3y Oy O "Iy 1y O3 'y IO

) J D)

::l/::]:
D

n Section 1
i
1
1
n Section 2
77

Section 3

a 13 a3 1

-3 2 >

y

4027 PROGRAMMER'S

-]

CONTENTS

INTRODUCTION Page
About ThisManual 1-1
Related Documentation............. i i, 1-2
The 4027 Computer Display Terminal 1-2
4027 Featureso e 1-2
Optional Featuresc. it 1-4
The Split Screen: Workspace and Monitor. 1-5
The 4027 Keyboard i 1-7
ASCH KBYS . ot e 1-8
Cursor/NumericPad Keys........ ..., 1-8
Function Keyso e 1-9

Programmable Keyboard 1-11

4027 COMMAND STRUCTURE

How to Find Commands in ThisManual 2-1
The Format of 4027 Commands 2-2
Delimited ASCII Strings. i 2-4
Continuinga Command. i, 2-5
The Syntax of Command Descriptions 2-6
Selecting the Command Character 2-7
COMMAND Command. ... 2-9

HOST PROGRAMMING FOR THE 4027

Textand Commands.ot 3-1

Computer-to-4027 Communications. 3-1
Sending Numeric Parameters. 3-3
ContinuingaCommand. i i 3-4
A Noteon Invalid Commands, 3-5
Displayinga CommandFile............., 3-7

4027-to-Computer Communications. 3-8
Typing Intothe Monitor. 3-8
SEND Command e e 3-8
REPORT Command e 3-11

@

Section 4

Section 5

PROGRAMMING THE KEYBOARD Page
Programminga Key. ... 4-1
LEARN Command. ...t 4-2
Special Considerations 4-5
Macros and the EXPAND Command....................... 4-6
EXPAND Command ... 4-7
The LEARN Command and the COMMAND Command 4-7
Key Programming and Keyboard Lockout 4-8
Clearing Key Definitions iiat. 4-9
CLEAR CommMaNnd i 4-9

SYSTEM STATUS AND INITIALIZATION

Terminal Status Commands..........o, 5-2
COMMAND Command.t 5-2
WORKSPACE Command i, 5-3
MONITOR Commandttt 5-5
MARGINS Command i 5-7
STOPS Command. e 5-9
FORM Command.ttt 5-10
SNOOPY Commando i 5-11
PAD Command. ... 5-12-a

Communications Status Commands 5-13
BAUD Command 5-13
PARITY Command 5-15
ECHO Command. i 5-17
BUFFERED Command............ 5-19
EOL {(End-of-Line) Command 5-21
PROMPT Command........... i, 5-23
DELAY Command........ 5-25
FIELD Command............. i i 5-26
EOF (End-of-File) Command............. ..., 5-28
DUPLEX Command. 5-29
DISCONNECT Command 5-31
BREAK Functions 5-31

Status MesSSages oo 5-32
The STATUS Key and the STATUS Message............... 5-32
SYSTAT and the SYSTAT Message 5-32
TEST Command. e 5-35
GTEST Command. e e 5-37

REV A, JUN 1980 4027 PROGRAMMER'S

— - CC CC

(<
(.

- O

G

(—

—
J—

(

| G

\

J

| S

n
i ™

N Section 6
n

n

n

n

n

n

n

33

™)

4027 PROGRAMMER'S

—1

CONTROLLING THE DISPLAY Page
The CursorCommands i, 6-1
JUMP Command 6-2
UPCommand........ i, 6-5
DOWNCommand, 6-8
RIGHT Command 6-10
LEFT Command. 6-12
TheTab Commands 6-14
TABCommand. 6-14
BACKTABCommand. ..., 6-16
The ScrollingCommandsc....... 6-18
RUP (Roll Up)y Command., 6-18
RDOWN (Roll Down) Commandcccoo.... 6-20
Additional Commands 6-22
ERASECommand. ...t 6-22
BELL Command. 6-23

4027 COLOR COMMANDS

The ColorCommands. i, 7-1
COLORCommand ...t 7-2
MAP Command i 7-3
RMAP (Relative Map) Command 7-5
MIXCommand 7-7
PATTERNCommand, 7-8

GRAPHICS

The GraphicsCommands i, 8-1
GRAPHIC Command 8-2
ENABLECommand........... 8-4
DISABLECommand............ ... i, 8-6
VECTOR Command 8-7
RVECTOR (Relative Vector) Command 8-9
LINECommand i 8-11
POLYGON Command ...t 8-12
RPOLYGON (Relative Polygon) Command................. 8-14
PIECommand. i 8-16
CIRCLECommand 8-19
INKCommand i, 8-22
STRINGCommand............ ... i, 8-24
ERASE GCommand i 8-26
SHRINK Command............. i 8-28

@

Section 8 (cont)

Section 9

GRAPHICS

Effects of a GraphicRegion.......................
4010-Style Graphicsonthe 4027
Addressing the VectorBeam....................
Graph ModeMemoryo ..
Alternate CharacterFonts.
SYMBOLCommand...............c.c.coviviinn...
FONTCommand...........oiiiiiiinanann.
DFONT (Delete Font) Command.................

FORMS AND FORM FILLOUT

Form FilloutMode i,
FORMCommand.............coiiiiiiieeannnnn
Creatinga Formccoiiniiiiiiiiiiiiiinns
Field Attributes and Field Attribute Codes..........
Font Attributes. i
Logical Attributeso
Visual Attributes o
Color Attributes.l
Inverted Attributes.l
Blinking Attributes............
4025-Style Visual Attributes
Field Attribute Codes Withina Line..............
CreatingFields............ ... i i,
ATTRIBUTECommandc.cooivn..
Creating Fields with JUMP.
RUINGS . o
HRULE (Horizontal Rule) Command
VRULE (Vertical Rule) Command................
Making Correct Junctions

The Effect of Form Fillout on 4027 Commands

TypinginForm Fillout
TABinFormFillout........
BACKTAB in FormFillout.......................
ERASE in Form Fillout.........
The HOME Key and JUMP in Form Fillout........
Transmitting Forms and FormData
SEND inForm Fillout
FIELD in Form Fillout............
Some Sample Transmissions

4027 PROGRAMMER’S

N

| G

| G

| G

. C o

| G

|

oo

3/:3 -3
D

\
Section 10

Section 11
\

a2 O30 33 32 3 22

J

-3 3 3

D

4027 PROGRAMMER'S

TEXT EDITING

The Text-EditingCommands 10-1
DCHAR (Delete Character) Command 10-1
ICHAR (lnsert Character) Command. 10-3
DLINE (Delete Line) Command.c.cccivuunnnnnn. 10-6
ILINE (Insert Line) Commandcovvvnann. 10-10

PERIPHERALS

Initializing the 4027 for Peripheral Communications 11-1
SETCommand. e 11-2

Printer Parameters. i 11-2
Tape UnitParameters., 11-4
Plotter Parameters.......... ... i, 11-5
PERIPHERALS Commandot 11-7
The REPORT Command and Peripherals 11-8
Tape Unit e 11-8
Plotter .. e 11-9
Printer ... e 11-10

Communicating with Peripherals 11-11
ALLOCATE Command............ccciiiiiiiiiiiinenn. 11-11
DIRECTORY Command.coiiiiiiiiiiiiiiannn 11-14
KILL Command i 11-16
PASS Command e 11-17
COPY Command.oovii i e e 11-21
Auto-Incrementing The Tape Unit............... 11-25
Copying the Workspace to the Plotter 11-25

CopyingonaHardCopy Unit. 11-26
HCOPY (Hard Copy) Commandccovuunnnnn. 11-26

@

vi

vii

Appendix A
Appendix B
Appendix C
Appendix D
Appendix E
Appendix F
Appendix G
Appendix H
Appendix |

Appendix J

TEKTRONIX 4027 COLOR STANDARD

THE ASCII CODE

4010-STYLE GRAPHICS CODES

ALTERNATE CHARACTER FONTS

SAMPLE PROGRAMS

MEMORY CONSIDERATIONS

PROGRAMMER’S REFERENCE TABLE

OPTION SUMMARY

ROUTINE EXTERNAL CONVERGENCE BOARD ADJUSTMENTS

COMMAND LISTING

4027 PROGRAMMER'S

(\
. C C C. o

—

C - . - . - T

D

)

D)

8-10

11-1

4027 PROGRAMMER’S

ILLUSTRATIONS

Description Page
The 4027 Color Graphics Terminal frontis
The Split Screen; Workspace and MonitorScrolls 1-6
The 4027 Keyboard. i e e 1-7
Command Format. i 2-1
String Delimiters. o 2-2
Status MesSSage e 5-32
The 4027 SYSTATMeSSageooiiii i i 5-34
4027 'TEST <CR>Results. 5-36
4027 IGTEST <CR> Results e 5-38
The Workspace Window and the Workspace Scroll 6-3
AGraphic Region. e 8-3
The VECTOR Command. ...t e e 8-8
The RVECTOR Commandt 8-9
VECTOR Line TYPeS .. oot e e e e e e i 8-11
An RPOLY Command Using 0,0 as the First Coordinate Pair.......... 8-14
An RPOLY Command Using 150,0 as the First Coordinate Pair....... 8-15
Drawinga LineinINKMode.......... i 8-23
The STRING Command i it 8-25
A Graphic Display ... 8-30
A Graphic Display After The SEND Command 8-31
A User-Defined Symbol 8-36
Sample FOrm ... e e 9-1
The Partsof a Form e e e 9-4
Rulings Junction Chart. i 9-19
Peripherals Data List. i 11-7
Tektronix 4027 Color Standard............ A-1
Cross Section of the 4027 Color Standard A-3
Adjusting the External Convergence Board. -1

@

viii

Table

5-1
8-1
11-1
11-2
11-3
11-4
11-5
B-1
B-2
C-1
D-1
D-2
F-1
G-1
J-1

TABLES

Description Page
Snoopy Mode MnemoniCs.ot e 5-12
4010-Style Graphics Required Byte Transmissions. 8-33
Tape Error Codes. ... 11-9
Piotter Language Commands. ...t 11-18
Transmitting Plotter Commands UsingPASS 11-20
4027 COPY Parameters.ottt e 11-21
4027 COPY SWitChes. 11-22
ASCII Code Chart. B-1
ASCII Control Characterst e B-2
4010-Style Graphics Code Chart........ i, C-1
4027 Alternate Character Fonts o i D-1
Ruling Junctions Chart. D-2
Graphic Memory Capacity. F-2
Programmer's Reference Table.......... o oo, G-1
Command Listing. ... i e J-1

@ 4027 PROGRAMMER'S

| .

C__

L

g

. [

o/

. - .. — [*C_

| G

COMMAND LISTING

ALLOCATE 11-11
ATTRIBUTE. 9-10
BACKTAB 6-16, 9-23
BAUD 5-13
BELL i:isswisminninsansssoninsas 6-23
BUFFERED 5-19
CIRCLE 8-19
CLEAR 4-9
COLOR.: vvziaessimimbemnenemens 7-2
COMMAND 2-9, 5-2
COPY . 11-21
DEHARG. i vovsim5 05565 voswsiwss s 10-1
DELAY ... 5-25
DFONT ... 8-38
DIRECTORY i..ssiasanimsanmimsnsnss 11-14
DISABLE 8-6
DISCONNECT 5-31
DLINEiiuisiasiasanissinis 10-6
DOWN. i 6-8
DUPLEX........... 5-29
ECHO :s:siivinaiaimuinsmsminssmss 5-17
EOF 5-28
EOL.. ... 5-21
ENABLE......................... 8-4
ERASE (Workspace and Monitor) . 6-22, 9-25
ERASE G(Graphics).............. 8-26
EXPAND. 4-7
FIELD 5-26, 9-29
FONT ... 8-32
FOBRM :::iis:cusmsininsaniniinsmns 5-10, 9-3
GRAPHIC. 8-2
GTEST ... 5-37
HGOPY. osassmsmsinicsinisss 11-26
HRULE 9-16
ICHAR. ... 10-3
ILINE: : : inimsaasnnsmmosmsmssssens 10-10
INK. . 8-22

4027 PROGRAMMER’S

Figure 1-1. 4027 Color Graphics Terminal.

@

2656-100

4027 PROGRAMMER'S

N N B O a I O BN R ED I D I B EE

e = B

D

-1 O O 3 53 33 2

1 3 O

S

-2 3 O3 3313 3O 1

D

Section 1

INTRODUCTION

The 4027 Color Graphics Terminal belongs to the class of machines popularly known as
“smart terminals.” It is a computer terminal that carries communications between the
operator and a host computer. In addition, the 4027 contains its own microprocessor and
supporting electronics. With this electronics, the 4027 responds to its own set of
commands, independently of the host computer.

The 4027 is not intended to be a stand-alone computing system. Rather, its computing
ability complements that of the host computer, enabling the user to make full use of the
4027’s information display capabilities.

ABOUT THIS MANUAL

The purpose of this manual is to acquaint you with these capabilities and to describe in
detail the commands to which the 4027 responds. You can then use the full potential of
the 4027 for problem solving and information display.

Two assumptions are made concerning the reader of this manual. First, the person shouid
be familiar with computer operations in general and with at least one programming
language. Second, the person should have access to the 4027 Operator’'s Manual.

The 4027 Programmer’s Reference Manual is organized along broad functional lines.
Section 1 gives an overview of the 4027 Color Graphics Terminal. Each succeeding
section explores one class of commands related to a basic terminal function.

An alphabetical Command List is included following the list of Tables to provide an easy
means of locating the various commands in this manual. Also, Appendix J is an
alphabetical command list which includes additional information.

The 4027 has a variety of parameter settings, most of which are set by command, and the
action of other commands may be influenced by these settings. When this is the case,
commands are cross-referenced.

4027 PROGRAMMER'S @

1-1

INTRODUCTION

1-2

RELATED DOCUMENTATION

Information related to programming for the 4027 can be found in the following
documentation:

4027 Color Graphics Terminal Operator’'s Manual
4010B0O1-4010BOS5 Plot 10 Easy Graphing Software documentation

A 4027 Programmer’s Reference Guide, containing a summary of information in this
manual, is also available.

The 4027 can be used in a polling environment. For information related to poliing, see the
4020 Series Polling Reference Manual.

THE 4027 COLOR GRAPHICS TERMINAL

The 4027 Color Graphics Terminal (Figure 1-1) is an interface between the terminal
operator and a host computer. It is designed especially for creating color graphic
displays, including a variety of character fonts, in 64 different colors. In addition, it may be
used for applications involving text editing and display and processing of forms.

The 4027 consists of a display unit and a keyboard attached to the display unit by a thin
cable. The display unit contains a 13 inch, refresh-style color cathode ray tube {crt), a
microprocessor with supporting electronics, and a standard RS-232 interface. The
terminal operator types information on the keyboard. Information from both the keyboard
and the host computer is displayed on the crt.

4027 terminal operations are controlled by the microprocessor and its associated
firmware (programs for the microprocessor which are stored in Read Only Memory chips,
or ROMs). With this firmware, the 4027 responds to several dozen commands,
independently of the host computer. These commands determine settings of the 4027
system parameters, control the screen display, and perform various functions useful in
applications programs.

4027 Features

® Workspace and Monitor — The 4027 display memory can be divided into two
portions (or scrolls). One portion, called the workspace, serves as a composition
area for creating color graphics, editing text, filling out forms, or displaying the
results of applications programs. The monitor portion of memory stores messages
to and from the computer and any 4027 commands typed on the keyboard.

@ 4027 PROGRAMMER’S

L

— [—

| 4

.

—

| G

L. L

L

—

—

-1

D

D)

D

INTRODUCTION

® Split Screen — The 4027 screen can be divided into two areas or windows,

corresponding to the two portions of the display memory. The upper area is the
workspace window and displays information from the workspace. The lower area
is the monitor window and displays information from the monitor without writing
over the workspace display. The portions of the screen allotted to each of these
windows are set by command.

Color Graphics — The 4027 can store and display graphs and a variety of
geometric shapes in the workspace. Solid lines and several types of dashed lines
can be drawn. All graphs, shapes, and lines can be displayed in any of 64 colors.

Color Display — The 4027 can display up to eight of it's palette of 64 colors at one
time. Eight colors are assigned to color numbers CO-C7. If other colors are
desired, the colors set by each of the color numbers may be changed by using the
MAP, RMAP, or MIX commands.

Visual Enhancements — Characters can be displayed with the standard (CO)
attribute (white on black background) or on one of six other colors on a black
background. In addition, the characters may be inverted {black characters on a
colored background). Characters may also blink between colors, or between
inverted and noninverted. In addition, various combinations of characters and
background colors may be defined by the operator to provide an even wider
variety of attributes. Screen contrast is controlied manually by the operator but
screen brightness is internally set.

Scrolling — When either the workspace window or the monitor window is full,
information in that window scrolls up to display additional information. Infomation
scrolled off the screen is saved as long a memory is available; the scrolled text
may be reviewed by scrolling down.

Forms — The workspace can display a form. When the operator has filled in the
blanks of the form, the data in these blanks can be sent to the computer with a
single command.

Locally or Remotely Controllable — Commands to the 4027 can be typed on the
keyboard or sent from the computer.

Programmable Operating Parameters — Various operating parameters (such as
parity, workspace margins, tab stops, etc.) can be set by commands given either
from the keyboard or from the computer.

Programmable Baud Rate — The 4027 baud rate can be set by command.

4027 PROGRAMMER'’S @

INTRODUCTION

14

Buffered Operation — In buffered mode, a line of text (up to 80 characters) in the
monitor is saved for proofing or local editing before it is sent to the computer.

Programmable Keyboard — Almost all of the keys on the keyboard can be
programmed to generate a different character or character string than the default
one. This allows commonly used character strings or commands to be generated
by pressing a single key.

Local Text Editing — Using the editing keys or commands, one can edit text held
in the workspace before sending it to the computer.

Status Messages — The 4027 can display status messages which indicate
parameter settings, the command character, and the amount of unused memory in
the terminal.

Modules — Display unit and detached keyboard. The keyboard can be located up
to eight feet from the display unit.

Optional Features

® Printer Copies — Text in the workspace or in the computer can be copied on a

Tektronix 4642 Printer. The printer cannot copy graphics.

Hard Copies — The 4027 can make permanent copies of all information on the
screen using a Tektronix 4632 Hard Copy Unit. The 4632 Video Hard Copy Unit
with Option 6 (Enhanced Gray Scale) will copy forms and graphs just as they
appear on the 4027 screen (substituting gray scale for color).

Additional Graphics Memory — Standard graphics memory is 48K. Options
provide 96K, 144K, or 192K total graphics memory.

Additional Display Memory — Standard display memory is 8K. Options provide
either 16K or 32K bytes total display memory.

Optional Interfaces — Options allow the 4027 to use a 20 mA current loop or an
RS-232 peripheral communications line. A polling interface allows the terminal to
operate as one of several “slave” display stations which communicate with the
computer through a polling controller.

GPIB Interface — The 4027 can communicate with four Tektronix 4924 Digital
Cartridge Tape Drives and two Tektronix 4662 Interactive Digital Piotters, using a
GPIB (General Purpose Interface Bus).

@ 4027 PROGRAMMER'S

‘

—

| G

— =

—

G

| G

— [(=

B |

=2 O3 11 T3 12
)

—3 -0

. |

1

)

a

INTRODUCTION

® Half Duplex — A half duplex optional interface is available. With this option the
DUPLEX command is added to the terminal command set.

® Alternate Character Fonts — The Math Characters font provides a variety of
symbols useful in mathematical applications. A number of fonts containing 128
characters each may be assigned by the user for graphics or other purposes. 32
fonts are available, of which 30 may be user defined.

® Rulings — The Ruling Characters font provides a variety of ruling characters.
Using this font, the 4027 can draw horizontal and vertical rulings to highlight the
structure of a form displayed in the workspace.

® Polling Controller — The 4027 can act as a “polling controller” to supervise
communications between several 4027 or 4024/4025 “slave display stations”
and a host computer, using IBM 3270-Bisynchronous EBCDIC protocol.

THE SPLIT SCREEN: WORKSPACE AND MONITOR

Information sent to the display unit from the keyboard or the computer is stored in a part
of the terminal’s memory called the display list. This display list can be divided into two
sections or scrolls — the workspace scroll (or simply workspace) and the monitor scroll
(or simply monitor).

Information from the keyboard can be directed into either scroll, as can information from
the computer. Each scroll has specific uses, and the 4027 processes information in the
workspace differently than it processes information in the monitor.

The workspace serves as a composition area. The operator can use it to create text to
send to the computer, to edit text, to create graphics, to create or fill out forms, or to
display results of applications programs. Text typed into the workspace is stored there
until the terminal is commanded to send data in the workspace to the computer. Data is
not transmitted as it is typed.

The monitor is used to display commands typed on the keyboard and messages to and
from the computer. The monitor cannot contain forms or graphics. In general, the monitor
allows (1) the operator to communicate with the terminal or the computer, and (2) the
computer to issue error messages or prompts, without this information being written over
the contents of the workspace.

There is always a monitor defined; hence there is always a monitor window of at least one
line. There may, however, be no workspace defined. If no workspace is defined, there is no
workspace window; the entire screen is devoted to the monitor.

4027 PROGRAMMER'S @ 15

INTRODUCTION

WORKSPACE
AKSPACE WINDOW
P ORT';?:';PLAYEDmnow
/ woRksPACE W —
WORKSPACE /
SCROLL / MONITOR

o HONITOR WINDOW
POR L ISPLAYED 1y
/ mONITOR W!
MONITOR
SCROLL

Figure 1-2. The Split Screen; Workspace and Monitor Scrolls.

24021

When the terminal is powered up or RESET (using the reset button on the back panel), the
monitor window occupies the entire 34 lines of display, no workspace is defined, and text
from the keyboard and text from the computer are directed into the monitor. Appropriate
commands to the 4027 define a workspace, select the number of lines in each window,
and direct text from the keyboard and text from the computer into the desired scrolls.

NOTE

If the command character is not known, pressing the shift STATUS key
displays the command character, whether the terminal is in buffered or
unbuffered mode, and the number of blocks of display memory available.
The command character must be known so that commands may be given
to define the workspace and monitor regions of the display. If the
workspace and monitor areas have not been defined, text will not appear
on the screen.

1-6 @ 4027 PROGRAMMER’S

— —

A

—

3 320 32 3 2
J

1 a2

s |

D

INTRODUCTION

For each scroll there is a cursor — a pointer in the display list indicating where the next
character entered in the scroll will be stored. The cursor appears on the screen as a
bright underline one column wide. Only one cursor will be visible at a given time. (There
may be brief periods, while the terminal performs certain routines, when neither cursor is
visible.)

If the workspace window is full and additional text is entered in the workspace, the
workspace automatically scrolls up to display the new text. Text scrolled off the screen is
saved in the display list so long as that memory capacity is not exceeded. The operation
of the monitor is similar, except that information scroiled off the monitor window will be
discarded if that memory space is needed for other purposes.

Scrolling commands and scrolling keys roll the workspace and monitor up and down,
independently, to display various portions of text.

THE 4027 KEYBOARD

The 4027 keyboard is shown in Figure 1-3.

2657-1

Figure 1-3. The 4027 Keyboard.

As indicated in Figure 1-3, the keys on the 4027 keyboard fall into three categories:
ASCII keys, cursor/numeric pad keys, and function keys.

4027 PROGRAMMER'S @ 1-7

INTRODUCTION

1-8

ASCIl Keys

The ASCII section of the keyboard resembles an
ordinary typewriter keyboard. Each key in this
section, except the BREAK key, sends a character
of the ASCII code to the computer. (See the ASCII
Code Chart, Appendix B.) The BREAK key sends a
break signal which interrupts the computer’s opera-
tion.

Cursor/Numeric Pad Keys

The cursor/numeric pad is the group of 11 keys to
the right of the ASCIi section of the keyboard. This
group of keys functions either as a cursor pad or as
a numeric pad.

When the NUMERIC LOCK function key is off
(unlighted), the group functions as a cursor pad. In
this mode the four keys marked with arrows move
the cursor and the two keys marked with triangles
scroll the display list. If the terminal has been given
the ENABLE command, the four keys marked with
arrows move the crosshair in the direction indicated.
The zero/crosshair (0/+) key and the ENABLE com-
mand may be used to ENABLE the crosshair on the
4027. The remaining pad keys have no effect.

When the NUMERIC LOCK function key is on
(lighted), the group functions as a numeric pad,
generating the digits O - 9 and the decimal point
(period). The shifted versions of the appropriate pad
keys still move the cursor and scroll the display list.

ASCI| KEYS

CURSOR/NUMERIC PAD

o117 OO O111 Oornm

P) A1

CURSOR MOVEMENT KEYS

011 00 01 01

R

SCROLLING KEYS”

NUMERIC LOCK

N

OO oo O11]

O

L]

T
111
|

\llll

L4
NUMERIC KEYS

4027 PROGRAMMER’S

| GURGE GIE SubE

—

r—

—

-
o e

—
R

C
- C

. = Z X

|

| G

—

\/

INTRODUCTION

J

Function Keys

The function key group consists of the ERASE key, SEEE SEEE EEEE EEES

the PT (Pad Terminator) key, and the sixteen keys

along the top of the keyboard. w .
|

The ERASE key is at the extreme upper left of the FUNCTION KEYS

ASCII section of the keyboard. This key erases
whichever scroll (workspace or monitor) receives
text from the keyboard.

= 3 =0 0] 00 2

The PT (Pad Terminator) key is the large key to the
right of the cursor/numeric pad. The default defini-
tion of this key is “undefined.”

—3 =

The sixteen keys along the top of the keyboard are
divided into four groups of four keys each. Each key in
the rightmost group includes an LED which, when
lighted, indicates the key is “on.” These sixteen keys
have the following definitions.

>

F1 — Undefined

F2 — Undefined

F3 — Undefined

F4 — Undefined

F5 — HOME

F6 — Undefined

F7 — Undefined

F8 — SEND **

F9 — DELETE CHARACTER

F10 — DELETE LINE

F11 — ERASE & SKIP

F12 — INSERT LINE

F13 — INSERT MODE *

F14 — TTY LOCK *

F15 — NUMERIC LOCK/LEARN *
F16 — COMMAND LOCKQUT/STATUS *

=3 3 =

* — lighted keys
** — The SEND key has no definition until
q programmed.
‘'
4027 PROGRAMMER'S @ 19

el |

INTRODUCTION

Function keys F1-F4 and F6-F8 have default definitions of “undefined”; these keys cause ‘

no action unless they are programmed. bt

Function key F5 is the HOME key. Pressing this key returns the visible cursor to its ;
e

“home” position in row 1, column 1 of its scroill.

Function keys F9-F16 perform the functions indicated by their keyboard labels. These
keys are discussed in detail in the 4027 Operator’s Manual.

The default definition of the SEND key is “undefined.” Since the 4027 command set
includes two different types of SEND commands, the shifted and unshifted versions of the
SEND key may be programmed, each with a different type of SEND command.

- o

The LEARN key is the shifted version of the NUMERIC LOCK key. The STATUS key is the
shifted version of the COMMAND LOCKQOUT key. Neither the LEARN nor the STATUS key
is a lighted key; each operates independently of the corresponding unshifted key.

The action of the DELETE CHAR, DELETE LINE, INSERT LINE, INSERT MODE, and LEARN
keys can be duplicated by 4027 commands discussed later in this manual.

—

There are no 4027 commands which correspond exactly to the HOME, ERASE & SKIP,

TTY LOCK, NUMERIC LOCK, COMMAND LOCKOQUT, or STATUS keys. The action of the v
HOME, ERASE & SKIP, and COMMAND LOCKOUT keys can be duplicated by certain

command sequences discussed in later sections of this manual. There are no command

sequences which duplicate the action of the TTY LOCK or NUMERIC LOCK keys.

|

NOTE

C
- —

In a 4027 which contains a Polling Controller (Option 11), the definitions
assigned to some of the function keys will be different than those
discussed in this section. Refer to the 4020 Series Polling Reference
Manual for relevant details.

- - 2 ™

9

1-10 @ 4027 PROGRAMMER'S

J

-2 O3 33 3

= O 3

e |

)“‘]

= 3 0

J

=3

INTRODUCTION

Programmable Keyboard

Most of the keys on the 4027 keyboard can be programmed with definitions other than
the default ones. This aliows the operator to generate commonly used character strings,
commands, or command sequences by pressing a single key.

Ail of the keys on the keyboard can be programmed except the following six keys.

® The rightmost three lighted function keys — TTY LOCK, NUMERIC LOCK, and
COMMAND LOCKOUT. (Neither the shifted nor the unshifted versions of these
keys can be programmed.)

® The three ASCIl keys — SHIFT, CTRL, and BREAK.

Key programming can assign different definitions to the shifted and unshifted versions of
the same key. For example, the upper case A key and its unshifted version, the a key, may
be programmed with different definitions.

Function keys F1-F4, F6-F8, and the PT (Pad Terminator) key have no definitions
assigned to them. These keys are reserved specifically for programmed definitions. The
SEND key (function key F8) is usually programmed with some version of the SEND
command.

4027 PROGRAMMER’S @ 111

-3 T T4y -3 "3 T/)Yy 9y 47,3 Ty 1y 9y 0y 1)

)), D,

C C C

2-0

COMMANDS DISCUSSED IN THIS SECTION:

COMMAND Command

@ 4027 PROGRAMMER'S

\

-

—

-

| S

- - -

. |

S |

I |

—3

a

Section 2

4027 COMMAND STRUCTURE

HOW TO FIND COMMANDS IN THIS MANUAL

The 4027 responds to several dozen commands. This manual is organized functionally.
Each command, with a description of its structure and what it does, is listed in the
appropriate section of the manual: the UP and DOWN commands are described in
Controlling the Display, the HRULE and VRULE commands in Forms and Form Filiout, and
so forth. The first section in which a command appears contains a complete description of
the command syntax.

If the presence of certain modes or settings affects the action of the command, these
effects are discussed in the relevant section. The TAB command, for example, causes a .
different action when the terminal is in form fillout mode, and the action of TAB in form
fillout mode is discussed in the Forms and Form Fillout section.

In addition to these command descriptions, Appendix J is a convenient alphabetical
listing of commands and additional information. Also, following the Table list in the
Contents section is an alphabetical list of commands including the section and page
where each command is found.

4027 PROGRAMMER'S @

2-1

COMMAND STRUCTURE

THE FORMAT OF 4027 COMMANDS

Each 4027 command is represented by an English-style ASCII string. In addition to the
English-style commands, the 4027 graphics commands have counterparts on existing
4010 Series terminals and PLOT 10 software. When these commands are sent from the
computer, they can be represented using the 4010-styie codes.

A 4027 command consists of four parts:
® The command character
® The command keyword
® The command parameters

® The command terminator

The command character is a unique, user-selectable character that does not normally
occur in text. This character informs the 4027 that the information which immediately
follows is a command. The exclamation point (!) is selected as the command character
before the 4027 is shipped from the factory. The operator or programmer can change the
command character by using the COMMAND command. (See Selecting the Command
Character later in this section.) The exclamation point (!} is used as the command
character throughout this manual.

The command keyword is a single word that identifies the command to be executed. This
keyword can be spelled out entirely or, if it contains more than three letters, it can be
truncated to the first three letters. Two exceptions are the DISCONNECT and DISABLE
commands which each require four letters. The keyword must immediately follow the
command character; no spaces or other characters are allowed between the command
character and the keyword.

The command parameters, if any, follow the keyword. The type and number of parameters
depend on the particular command; some commands take no parameters at all.
Parameters can be numbers, character strings, or words. A parameter word can be
abbreviated to its first letter.

Parameters which are characters or character strings must be separated from the
keyword and from each other by separators. A separator can be a comma or one or more
spaces. The separator between a numeric parameter and the keyword or between a
numeric parameter and neighboring alphabetic parameters can be omitted.

@ 4027 PROGRAMMER'S

/

C

[

COMMAND STRUCTURE

D,

The last character in a command, whether a parameter or the final character of the
keyword, is separated from subsequent information by a command terminator. A
terminator can be a semicolon, a carriage return, or another command character. If the
command is the final string on a line of text, then the terminator is a carriage return. If the
command is followed by text, a semicolon terminates the command and separates it from
the text. If the command is followed by another command, then the command character of
the following command can serve as the terminator.

Figure 2-1 illustrates the format of 4027 commands.

IBE LL < CR > (NO PARAMETERS)

Ll

COMMAND

KEYW
CHARACTER ORD TERMINATOR

I BAUD 1200 2400 <CR>

?.J e J
COMMAND
CHARACTER \ \ TERMINATOR

D

” SEPARATOR SEPARATOR PARAMETER
! KEYWORD PARAMETER
n (KEYWORDS ABBREVIATED;
I WQR 20K! MAR 10 70 <CR> UNNECESSARY SEPARATORS
n UL .. L J AND TERMINATOR OMITTED)
' ABBREVIATED TERMINATOR
KEYWORD PARAMETER PARAMETER
n COMMAND PARAMETERS ABBREVIATED SEPARATOR
CHARACTER (SEPARATORS KEYWORD (NECESSARY)
OMITTED)
COMMAND
CHARACTER
(SERVES AS
TERMINATOR)

2402-3

Figure 2-1. Command Format.

D,

4027 PROGRAMMER'S @ 2-3

COMMAND STRUCTURE

24

Consider the following line in Figure 2-1.

'WOR 20 H;THIS IS THE WORKSPACE!MON H!BEL <CR>
The ; terminates the IWOR H command. The ! of the |BEL command terminates the IMON
H command. The <CR> terminates the |BEL command and the entire line. The string

THIS IS THE WORKSPACE, since it is not preceded by a command character, is treated
as text and printed in the workspace.

Separators followed by + signs can be omitted. The command
IRVE +5,0,—20,—-110,+35,—110<CR>

may be written
'RVE+ 5,0,—20,—110+ 35,—110<CR>

The separator between + 5 and O cannot be omitted. The separators followed by — signs
cannot be omitted.

Delimited ASCII Strings

Some of the 4027 commands accept delimited ASCII strings as parameters. A delimited
ASCII string consists of any string of printing ASCH characters with a delimiter at each
end of the string. The delimiters mark the beginning and the end of the delimited string.

The characters which can be used as delimiters are shown in Figure 2-2.

(L ' @ & ¢ % ~ & x () _(underline)

+ =)}y 1 ~ "7 > ? s/ N .(period)
2402-4

Figure 2-2. String Delimiters.

The symbol currently used as the command character cannot be used as a delimiter. The
hyphen (—), space, semicolon (;), and comma () cannot be used as delimiters (although
their shifted versions can be used), since these symbols have special uses in 4027
command syntax.

REV A, OCT 1980 4027 PROGRAMMER'S

C

C

C

|

COMMAND STRUCTURE

D,

The same symbol must be used for both delimiters of a string. You may write

ILEARN F1 [!SEND MOD;[<CR>

but not

'LEARN F1 [{SEND MOD;]<CR>

The delimited string must not contain its own delimiter. To set the end-of-line string to the
ASCll string **x/%, for example, we could write

IEOL =*xx/%x <CR>.
Neither the * nor the / may be used here as a delimiter.
Some commands restrict the length of a delimited string. In general, a delimited string

should not contain the command character (except in the LEARN command). See the
individual command descriptions for details.

Continuing a Command

~31 O3 IO

>

Commands typed from the keyboard may be continued to the next line by simply typing
beyond the end of the current line and allowing the command or parameter string to “wrap
around” to the next fine.

Some 4027 commands sent from the host require a continuation character when
commands are continued from one line of code in the host program to the next line of
code. This is discussed in the Host Programming for the 4027 sections.

- O 3

- J O3 O 31
D,

4027 PROGRAMMER'S @ 2-5

—3

COMMAND STRUCTURE

THE SYNTAX OF COMMAND DESCRIPTIONS
e
The 4027 command descriptions which appear in this manual use the following
conventions: §
® The exclamation point (!} is always used as the command character.
hed

® In a keyword or parameter string which can be abbreviated, the necessary part of
the string is written in uppercase; the optional part is written in lower case. For
example,

STOps

means that any of the strings STO, STOP, or STOPS can be used as the keyword
in a STOPS command. Usually the choice will be STO for efficiency or STOPS for
readability.

® Expressions in angle brackets, < ... >, are parameter names (except the
expression <CR>, which always means carriage return). When a command is
given, the parameter name is replaced by one choice from a specified set of valid
replacements. The set of valid replacements for the parameter name is listed or
described. The DLINE command, for example, is described in this way:

(C:

— [. . C—

IDLIne [<count>]<CR>
where <count> is a positive integer.

e Optional parameters or parameter names are enclosed in square brackets. In the
DLINE command noted above,

[<count>]

means that the <count> parameter may or may not be specified. Default values
are given for all optional parameters.

| -

1
2-6 @ 4027 PROGRAMMER'S LJ

N
|
N
|
N
i
f
i

&

~

|
i
i
d
N
)

[}

N
N
nr\
i
|

COMMAND STRUCTURE

® Whenever a list appears, with the members of the list separated by vertical bars,
(]), this means that one element is to be chosen from the list. For example, the
FORM command syntax reads:

'FORm [Yes |[No]<CR>

This means that either Yes or No may be specified, but not both. Neither of these
have to be specified. The notation Yes means that Y, YE, and YES are all valid
parameter names and define the same command; likewise for No. Thus,
'FOR<CR>, IFOR Y<CR>, IFORM YES<CR>, IFOR N<CR>, and {FORM
NO<CR> are all valid commands.

® The carriage return, <CR>, is always used as the command terminator when a

single command is listed. In particular, in the command descriptions, <CR>
always terminates the command.

SELECTING THE COMMAND CHARACTER

When the 4027 is shipped from the factory, it recognizes the exclamation point (!) as the
command character. The command character can be changed by the computer or the

operator by using the COMMAND command. The 4027 remembers its command character

even when it is RESET or powered off. The only way to change the 4027’s command
character is to give the COMMAND command.

Whenever the terminal receives the command character, it tries to interpret the
information immediately following as a command. If this information is not intended to be
a command, confusion may result. Therefore, the command character must be selected
with care. It should not interfere with normal printing of text or terminal/computer
communications. '

Symbols such as carriage return, line feed, or space, which are normally
used during communications between the 4027 and the computer, should
NOT be used as command characters.

The command character may vary from one applications program to another. In a text-
editing program the exclamation point (!} would be a risky choice for the command
character, since this symbol is occasionally used as a punctuation mark. Another symbol,
perhaps # or @, should be chosen.

4027 PROGRAMMER'S @

2-7

COMMAND STRUCTURE

At the end of a program the command character should always be reset to the
exclamation point. In this way, the next user will know the proper command character and
be able to command the terminal as needed. If this has not been done, the command
character may be found by pressing the shift STATUS key and observing the display on
the screen.

2-8 @ 4027 PROGRAMMER’S

o/

C- CC

| .

| G

. . [

COMMAND STRUCTURE

D)

COMMAND Command

The COMMAND command is used to select a new command character.

Syntax
ICOMmand <character> <CR>

where <character> is a single ASCIl character or a two- or three-digit ASCIl Decimal
Equivalent (ADE) of an ASCII character.

Action

This command sets the command character to the symbol designated by <character>. If
<character> is a single numeral, that character is the new command character. If
<character> is a two- or three-digit numeral, that numeral is the ADE of the new
command character.

)

Examples

ICOMMAND #<CR> Sets the command character to the number sign (#) whose

ICOM#<CR> ADE is 35.

ICOM 35<CR>

ICOM 8<CR> Sets the command character to the ASCH character 8.
ICOM 08<CR> Sets the command character to the ASCI!I BS (backspace)

character, whose ADE is 08.

D

4027 PROGRAMMER'S @ 29

-3

—3 1 __1]

C C C

3-0

COMMANDS DISCUSSED IN THIS SECTION:

REPORT COMMANG .« . oottt e e e e e e e e e e e 3-11
SEND COMMANG. . oottt et e e e e e e e 3-8
@ 4027 PROGRAMMER'S

C CC e

| S

[- [

| G G

dl

c

D)

)

Section 3

HOST PROGRAMMING FOR THE 4027

This section discusses how to use programming language statements to communicate
with the 4027. Application programs for the 4027 can be written in any programming
language which can display alphanumeric information on the terminal screen and accept
data from the terminal.

TEXT AND COMMANDS

All information received by the 4027, whether sent from the computer or typed on the
keyboard, can be divided into two categories: commands and text. A command causes the
4027 to modify its internal status in some way — perhaps to select a new command
character, to redirect text from the computer, etc. Text is information which is printed
verbatim on the terminal screen.

The 4027 distinguishes between text and commands by the presence of the command
character. When the 4027 receives the command character, it assumes a command
follows and tries to process incoming data as a command. When not processing a

command, the 4027 treats information as text and displays it in the appropriate text
window.

COMPUTER-TO-4027 COMMUNICATIONS

Any programming statement which sends alphanumeric data can be used to send text
and commands to the 4027. Common examples are the PRINT statement in BASIC, the
WRITE statement in FORTRAN or PASCAL, and the DISPLAY statement in COBOL.
Suppose we are programming in BASIC. The BASIC statement

100 PRINT “IWOR 20 K”

creates a workspace of 20 lines and directs text from the keyboard into the workspace.

4027 PROGRAMMER’S @

31

HOST PROGRAMMING

NOTE

When the PRINT statement is executed, the computer sends a < CR> after
!WOR 20 K. This < CR> serves as the command terminator.

- O C ==

_

In contrast, the BASIC statement !
200 PRINT “WOR 20 K” -
causes the text WOR 20 K to be displayed in whichever scroll receives text from the L

computer. The command character in line 100 makes the difference; it indicates to the
4027 that the information which follows is a command.

Suppose you wish to initialize the 4027 by establishing a 20 line workspace to receive
text from the computer, signat the operator by printing the message THIS IS THE
WORKSPACE in the workspace, and ring the terminal bell. The BASIC statement

G

100 PRINT “IWOR 20 H K;THIS IS THE WORKSPACE!BEL”
causes the following events:
® The 4027 receives the first |, signaling that a command follows.
® The 4027 recognizes the string WOR 20 H K; as a valid command and executes it.
® The 4027 receives the string THIS IS THE WORKSPACE. As long as the terminal

does not see the command character, it treats incoming information as text and
prints it in the workspace, which now receives text from the computer.

® The 4027 receives the second !, signaling that another command follows.

|

® The 4027 receives the string BEL, followed by the <CR> sent by the computer at
the end of the PRINT statement. The 4027 recognizes the BEL<CR> as a valid
command and executes it.

C_

When the 4027 receives information from the computer, it processes that information as it

is received. Consider the example: -
100 PRINT “IWOR 20 H K;THIS IS THE WORKSPACE!BEL” _i
i

L

@ 4027 PROGRAMMER'S

| G

D)

—1 O T3 3

-3 =

-3 a3 =1

D,

HOST PROGRAMMING

The 4027 executes the IWOR 20 H K; command as soon the ; is received, while
continuing to receive information from the computer. The information THIS IS THE
WORKSPACE, since it is not a command, is sent to the workspace as soon as the 'WOR
20 H K; command has been executed. When the terminal receives the <CR> it executes

the IBEL <CR> command.
In contrast to this, suppose the following line is typed on the keyboard:
'WOR 20 H K;THIS IS THE WORKSPACE!BEL < CR>
No information is processed until the <CR> is typed. Then the line THIS IS THE

WORKSPACE is displayed in the workspace. If the line came from the host it would be
displayed in the monitor.

Sending Numeric Parameters
Consider the 4027 VECTOR command:
'VEC 100,100 200,100 150,200 100,100<CR >
In BASIC, this command can be sent to the 4027 in any of the following ways.
1. Include the VECTOR command parameters as alphanumeric data in the PRINT
statement:

495 PRINT “IVEC 100,100 200,100 150,200 100,100"

(The PRINT statement provides its own <CR>. This <CR> terminates the
VECTOR command.)

2. Send the VECTOR command parameters as data.
495 PRINT “IVEC”;100,100,200,1 00,150,200,100,100

3. Define, by host programming, BASIC variables X1 =1 00, X2=150, X3=200, Y1 =
100, and Y2=200. Then use the BASIC statement

495 PRINT “IVEC”;X1,Y1,X3,Y1,X2,Y2,X1,Y1

This method is most versatile, since the values of the variables can be modified
by input from the 4027 operator or by the program itself.

The 4027 graphic commands are discussed in detail in the 4027 Graphics section.

4027 PROGRAMMER'S @ 3-3

HOST PROGRAMMING

34

Continuing a Command

Some 4027 commands can be continued from one line of code in the host program to the
next line of code by inserting a continuation character at the end of the line. There are two
cases where this can be done:

®iha VECTOR, RVECTOR, POLYGON, RPOLYGON, PATTERN or SYMBOL
command, the ampersand, &, can be inserted after a parameter to continue the
command to the next line, provided that the only characters separating the
command lines are the ampersand followed by < CR> or the ampersand followed
by < CR/LF>.The BASIC statement

100 PRINT “IPOLYGON 0,0,175,175,0,175,0,0”
can be written as two lines of code:

100 PRINT “IPOLYGON 0,0&” <CR>
101 PRINT “175,175,0,175,0,0" <CR>

For 4027 instruments with version 1.2 firmware: in addition to the ampersand, the
parentheses may be used to aliow for interline characters that some host systems
insert between lines. In this case, the ampersand is followed by left parenthesis,
&(, then a series of characters which may include <CR>, DC1, etc,, then right
parenthesis)), to resume the command. The BASIC statement

100 PRINT “!IPOLYGON 0,0,175,175,0,175,0,0”
can be written as two lines of code:

100 PRINT “IPOLYGON 0,0&(*“ .. .interline characters . ..
101 PRINT “)175,175,0,175,0,0" <CR>

® In a command which takes a delimited ASCI! string as a parameter, the delimited
string can be divided into two delimited strings on two consecutive lines of code
using the hyphen (—) as a continuation character. For example, the BASIC
statement

REV A, JUL 1980 4027 PROGRAMMER'S

\»/

—

-

—

— = o

C

SRR

C

—"
S

HOST PROGRAMMING

200 PRINT “ILEARN F1 /ISEND ALLIERA W/13"
can be written as two lines of code:

200 PRINT “ILEARN F1 /ISEND ALL/- "

n 201 PRINT “/IERA W/13”
ﬂ The line of text to be continued in this way should NOT be divided between the
command character and the keyword, within the keyword, within a numeric
H parameter, or between a number and its plus or minus sign (if the sign is present).
Commands typed from the keyboard may be continued to the next line by simply
typing beyond the end of the current line and allowing the command or parameter
ﬂ string to “wrap around” to the next line.
Individual commands may tolerate minor variations in syntax. See the command
ﬂ descriptions for details.

D

A Note on Invalid Commands

Since not all programs run correctly the first time, some information is in order concerning
what to expect from the 4027 when it receives data which confuses it.

—3 =2

When the 4027 receives an invalid command (that is, a string preceded by the command
- character but which the 4027 cannot recognize as a command), the results depend on the

origin of this invalid command. In the following examples the command keyword STOPS is

misspelied STEPS:
-

1. Suppose the invalid command
™ ISTEPS 20 40 60<CR>
is sent from the computer in the BASIC PRINT statement
gy
100 PRINT “ISTEPS 20 40 60"

a

n 4027 PROGRAMMER'S REV A, JUL 1980 356

HOST PROGRAMMING

The 4027 treats this invalid command as text and prints the entire string, !
ISTEPS 20 40 60, in whichever scroll receives text from the computer.

2. When the invalid command

ISTEPS 20 40 60<CR>

is typed on the keyboard, an error message is printed and the invalid command
is repeated:

WHAT?
ISTEPS 20 40 60

This calls the operator’s attention to the source of the error.

3. Suppose this same invalid command is part of a sequence of commands sent
from the computer as in the foliowing BASIC statement:

100 PRINT “1ERA WISTEPS 20 40 60!BEL”
The 4027 erases the workspace, prints the text ISTEPS 20 40 60 in whichever \ v
scroll receives text from the computer, and rings the bell. No error message is
given; whatever the terminal cannot recognize as a command is treated as text.
4. If the sequence of commands

'ERA WISTEPS 20 40 60!BEL<CR>

is typed on the keyboard, all information preceding the invalid command is
processed. Then an error message, the invalid command, and the remainder of
the line are all printed in the monitor:

WHAT?
ISTEPS 20 40 60!BEL

If the 4027 receives a command that requires workspace and no workspace is defined,
the command is ignored. Nothing will be executed and no error message will appear.

\/

3-6 REV A, JUL 1980 4027 PROGRAMMER'S

—

1 ¢

-

—

o

— - =

(-
S —

-] a3 O3 30 3 32 1 13

):IJ

-1 =3

- O

~

-3

|

HOST PROGRAMMING

Displaying a Command File

How does one display a file containing 4027 commands so that it can be read, modified,
or debugged? There are two ways this can be done:

The 4027 operator can press the COMMAND LOCKOUT key and then display
the file on the screen. When this key is lighted, the 4027 treats all information,
inciuding the command character, as text and prints it in the appropriate scroll.

Press COMMAND LOCKOUT (LED comes on).
: (Display file containing ! as the command

. character, review and edit this file, and
. return edited file to the computer.)

Press COMMAND LOCKOUT again (LED goes off).
The operator or the computer can change the command character to a symbol
which does not appear in the file to be reviewed. In a file which does not contain
the symbol #, one might have
ICOM #<CR> (Change command character to #.)

. (Display file containing ! as the command

: character, review and edit this file, and
: return edited file to the computer.)

#COM | (Reset command character to !.)

The 4027 can also stay execution of commands by using the 4027 COPY command (see
the Peripherals section).

4027 PROGRAMMER'S @ 3-7

HOST PROGRAMMING

3-8

4027-TO-COMPUTER COMMUNICATIONS

There are three ways to send information from the 4027 to the computer: type into the
monitor, use the SEND command, or use the REPORT command.

Typing into the Monitor

One way to enter information into the computer is to type it into the 4027 monitor. if the
4027 is in unbuffered mode, information typed into the monitor is sent to the computer
character by character, as it is typed. If the 4027 is in buffered mode, information typed
into the monitor is sent to the computer line by line, as each line is terminated by a
carriage return. Buffered and unbuffered modes are discussed in more detail in the
System Status and Initialization section.

SEND Command

A second way to send information to the computer is to first enter that information in the
4027 workspace. When the operator or the computer gives the SEND command, all the
information in the workspace is sent to the computer.

Syntax

ISENd <CR>

This command causes all information in the 4027 workspace to be sent to the computer.

Usually the SEND key is programmed to give the SEND command, so that the operator
can send the workspace contents to the computer, simply by pressing the SEND key at
the appropriate time.

The SEND command is used in conjunction with whatever input request statement is
available in the programming language. In BASIC, for example, the INPUT statement is
used; in COBOL, the ACCEPT statement is used.

NOTE

The key labeled SEND on the 4027 keyboard is NOT pre-programmed. It
may be programmed to give the SEND command using the LEARN
command or the LEARN key.

@ 4027 PROGRAMMER'S

\/

-

[&-

| el

| e

C

—
—

L

—

<~ =

C

C

G

S
—

(

D

The following program asks the operator to type a one-line message in the workspace and
press a key to send this message to the computer. When the computer receives the
message, it prints it back in the monitor, so that the operator can verify the message was
correctly received.

3 O

LIST

NONAME ©3:29 AM 25-Rpr-78

1080 REM---CREATE A CLEAN WORKSPACE

118 PRINT ’'WOR 28 K’

128 REM---PROGRAM SEND KEY (FUNCTION KEY 8) TO GIVE !SEND COMMAND

13@ PRINT '!LEA F8/!SEND/13 10’

140 REM---INFORM OPERATOR

150 PRINT ’!MON H’

168 PRINT ’This program accepts a message from the 4827 Workspace’

161 PRINT ’and verifies the message was received. When you type your’
162 PRINT ’message, it appears in the workspace. UWhen you press the’
163 PRINT ’SEND key, your message is sent to the computer. The computer’
164 PRINT ’verifies your message by printing it back to you, in the’
165 PRINT ’monitor. Now type your message and press the SEND key when’
166 PRINT ’ready.’

200 REM-—-ACCEPT INPUT FROM TERMINAL

218 INPUT RS

228 REM---GEND MESSAGE RECEIVED BACK TO TERMINAL

238 PRINT ’Your message was received. It read:’

D

D R |

,‘

-]

249 PRINT
258 PRINT A$
268 PRINT
270 PRINT
r 999 END
q 2657-2
;
N
1
1

4027 PROGRAMMER'S @

-

HOST PROGRAMMING

39

—

HOST PROGRAMMING

(—

—

NOW IS THE TIME

- = CC

This program accepts a message from the 4827 Workspace

and verifies the message was received. When you type your
message, 1t appears in the workspace. khen you press the
SEND key, your message 1s sent to the computer. The computer
verifies your message by printing it back to you, in the
monitor. MNow type your message and press the SEND key when

ready.
?

 GUDRE Gy

Your message was received. It read:

C

NOW IS THE TIME

2657-3 \./

.

NOTE
When the SEND command is given from the computer, it must be placed in | 4
the applications program before the input request statement. In BASIC, for LJ
example, write
i
100 PRINT “ISEND” L‘

110 INPUT A$

Do not write

200 INPUT A$
210 PRINT “ISEND”

| O

In the latter case, the program never executes line 210. It halts at line 200, u
waiting for data which never comes. ‘

——

The use of the SEND command in form fillout applications is discussed in the Forms and
Form Fillout section. \ /

3-10 @ 4027 PROGRAMMER'S \

B

=3 3 32 3 432 3 232 2

=3

)

3

3 3

HOST PROGRAMMING

REPORT Command
A third way to send information to the computer is for the computer to issue the REPORT
command to the 4027.
Syntax
IREPort <device> <CR>

where <device> is an integer from 00 to 14.

Action

This command causes the 4027 to send a report to the computer. The report has the
following format:

IANS <device>,<data field>;

The report identifier ANS (for “answer”) is followed by one space, the two-digit <device>
number, then a comma, then the <data field >, and finally a semicolon.

The <data field> parameter contains one or more fields, separated from each other by
commas. The format of <data field> depends on the value of <device>; that is, on the
device reporting. For a given device, however, the format of <data field> is always the

same. This allows the applications program to correctly extract data from <data field>,
knowing which device was interrogated.

Examples

1. The command

'REP 00<CR>

causes the 4027 to report the system status block to the computer. This report
is in the following format:

IANS 00,<p1>,<p2>;

4027 PROGRAMMER'S @ 3-11

HOST PROGRAMMING

where L

<p1> is a four-digit decimal number specifying the number of unused blocks

of memory. (A block consists of 16 8-bit bytes.)
et
<p2> is a three-digit number representing the decimal equivaient of a binary
number which specifies the system status byte. The numbers which may be
displayed and the condition they represent are: —
004 — monitor present (always true). -
005 — monitor present, buffered mode. 8
006 — monitor present, form fillout mode. ‘ i
i
)

007 — monitor present, form fillout mode, buffered mode.

2. The command

C

IREP 01 <CR>

causes the 4027 to report the status of the alpha cursor within the workspace
to the computer. If no workspace is present, all zeros are returned. This report is
in the following format:

| G G

IANS 01,<p1>,<p2>,<p3>,

where

e
<p1> is a three-digit decimal number specifying the row of the workspace in
which the cursor is located. ®!
<p2> is a three-digit decimal number specifying the column of the workspace ;
in which the cursor is located. _j

< p3> is a single character, the character displayed at the cursor position.
If the cursor is located under an alternate character, such as rulings, the
alpha character representing that position is transmitted. If it is located
under a graphics cell, any one of the 128 ASCII characters may be
transmitted.

c- C-

C

3-12 REV A, OCT 1980 4027 PROGRAMMER'S

D

31 3 3 23 13 43O 3 I3 3 43

3 3 O3 313 1 1

3 O
)

HOST PROGRAMMING

The command
'REP 02 <CR>

causes the 4027 to report the position, color, and shrink factor of the graphic
beam. This report is in the following format:

!ANS 02,<data 1>, <data 2>, <data 3>, <data 4>
where

<data 1> is a three-digit decimal number which indicates the current x-
coordinate of the graphic beam position.

<data 2> is a three-digit decimal number which indicates the current y-
coordinate of the graphic beam position.

< data 3> is a three-digit decimal number preceded by C or P which indicates
the current color (CO-C7) or pattern number (PO-P119).

<data 4> is a three-digit number indicating the current shrink factor. The
number may be:

001 = 4010

002 = hardcopy
003 = both 4010 and hardcopy

NOTE

Hardcopy shrinking is not necessary on the 4027, but is included for 4025
compatibility.

4027 PROGRAMMER’'S @ 3-13

HOST PROGRAMMING

3-14

4. The command
IREP 03<CR>

Causes the 4027 to report the status of the crosshair; whether it is present and
its position. This report is in the following format:

IANS 03, <data 1>, <data 2>, <data 3>;
where

<data 1> is a three-digit decimal number that indicates whether the crosshair
is visible (000 is off, 001 is on, 002 is on in 4010 mode).

<data 2> is a three-digit decimal number that indicates the current x-
coordinate of the crosshair.

<data 3> is a three-digit decimal number that indicates the current y-
coordinate of the crosshair.

The REPORT command can be used for purposes other than straightforward interrogation
of the system status block, the workspace cursor, graphic beam information and
crosshair positioning.

As an example, suppose the applications program is sending large amounts of data to the
4027 at relatively high baud rates. it is possible for the computer to overrun the 4027’s
input buffer, resulting in loss of information. Occasionally inserting the pair of statements
(here in BASIC)

XXX PRINT “IREP 00"
XXX+1 INPUT AS

causes the program to pause at each input statement and not continue until it receives
input for A$ (that is, until the 4027 has processed its entire input buffer and ANSwers the
REPort command). This prevents the program from sending more data to the terminal until
the terminal has processed its input buffer. What the terminal ANSwers is not important,
only that it ANSwers.

@ 4027 PROGRAMMER’S

— C C-

| G

.

D

D

D

HOST PROGRAMMING

The REPORT command is also used to obtain information about peripherals which may be
attached to the 4027. Details are contained in the Peripherals section. Appendix E
contains a program segment in PASCAL to illustrate how the input from a REPORT
command can be processed.

Listed below is a summary of the REPORT command <device> numbers and the devices
they reference.

Device number: Reports:
00 . system status block
O alpha cursor information
O . graphic beam information
O3 . crosshair information
Od . tape unit 1
O tape unit 2
OB . tape unit 3
O tape unit 4
OB . reserved
OO . reserved
10 reserved
1 T reserved
L2 plotter 1
1 plotter 2
T4 printer
4027 PROGRAMMER'S @ 3-15

D))

C C C

L

i

COMMANDS DISCUSSED IN THIS SECTION:

CLEAR COMMANG. . . oo e e e e e e e e 4-9
EXPAND CoOmMMANG . . oottt et et e e e e e e e e 4-7
LEARN COMMAND. . . .ottt et e e e e et et e e e e 4-2

C— =

¢ o

4-0 @ 4027 PROGRAMMER'S

C C .

1 32 T

Section 4

PROGRAMMING THE KEYBOARD

The 4027 keyboard is programmable; that is, most of the keys can be programmed to
generate a character or string of characters other than the default ones. When a key is
programmed, the new definition assigned to that key is stored in the 4027 RAM (Random
Access Memory). If the terminal is RESET or powered off, the definition is lost and the key
reverts to its defaulit definition.

Key programming enables the operator to give a command or sequence of commands by
pressing a single key. During an applications program the operator can log on or log off
the computer, change terminal parameters, send information to the computer, page
through text, or perform any of several convenient functions just by pressing a key. Key
definitions may be part of terminal initialization or may occur at convenient points in a
program. A key can have several different definitions in a single program.

The user can also use the LEARN command to define sixteen macros (M1-M16). Macros
are cgmmand or text strings defined in the same way as programmed keys. However, a
macrq is not executed by depressing any key. Instead, a macro is executed when the
EXPAND command is received from the host computer or the keyboard.

All the keys on the 4027 keyboard can be programmed except the following six keys:
® The rightmost three lighted function keys — TTY LOCK, NUMERIC LOCK/LEARN,
and COMMAND LOCKOUT/STATUS. (Neither the shifted nor the unshifted

versions of these keys can be programmed.)

® The SHIFT, CTRL, and BREAK keys.

PROGRAMMING A KEY

A key may be programmed with a new definition in one of two ways:
® The operator may use the LEARN key.
® The operator or computer may give the LEARN command.

The LEARN key performs the same action as the LEARN command. The 4027 Operator's

Manual describes the use of the LEARN key.
|

4027 PROGRAMMER'S @

PROGRAMMING THE KEYBOARD
LEARN COMMAND

LEARN Command

Syntax

ILEArn <key> [<string>]<CR>

. .

where

<key> designates the key or macro to be programmed.

<string> designates the character or character string to be assigned to the
designated key.

— °

Action

—

This command redefines the key or macro designated by the <key>> parameter,;
whenever this key is pressed or macro called, it generates the character string defined by
<string>.

¢

Range of Parameters
The <key> parameter may be any of the following:
® A single printing ASCIl character.

® A two- or three-digit ADE (ASCII Decimal Equivalent) value from 00 through 127,
inclusive. (See the ASCII Code Chart Appendix B.)

® A mnemonic representing a non-ASCIl key (function key or cursor/numeric pad

key):

FI —F12 Function keys 1 through 12

S1 —812 Function keys 1 through 12 with SHIFT
depressed

PO — P9, P, PT Numeric pad keys and Pad Terminator key

® M1 — M16 Internal macros 1 through 16 set by giving
the LEARN command from keyboard or host.
4-2 @ 4027 PROGRAMMER'S U

PROGRAMMING THE KEYBOARD
n LEARN COMMAND
M
ﬂ ® A “psuedo-ADE value” representing a non-ASCI! key:
128 Function Key 1 144 SHIFT-Function Key 1
n 129 Function Key 2 145 SHIFT-Function Key 2
) 130 Function Key 3 146 SHIFT-Function Key 3
131 Function Key 4 147 SHIFT-Function Key 4
n 132 Function Key 5 148 SHIFT-Function Key 5
V 133 Function Key 6 149 SHIFT-Function Key 6
134 Function Key 7 150 SHIFT-Function Key 7
n 135 Function Key 8 151 SHIFT-Function Key 8
136 Function Key 9 152 SHIFT-Function Key- 9
137 Function Key 10 153 SHIFT-Function Key 10
n 138 Function Key 11 154 SHIFT-Function Key 11
139 Function Key 12 155 SHIFT-Function Key 12
n 140 Function Key 13 156 SHIFT-Function Key 13
160 Pad Key O 172 ERASE
161 Pad Key 1 173 SHIFT-ERASE
162 Pad Key 2 174 BK TAB

163 Pad Key 3

164 Pad Key 4

165 Pad Key 5

166 Pad Key 6

167 Pad Key 7

168 Pad Key 8

169 Pad Key 9

170 Pad Key .

171 Pad Terminator Key

ﬁ_)

The <string> parameter may be any of the following:
® One or more ADE values
® One or more pseudo-ADE values
® One or more delimited ASCII strings
® Any combination of the above
If the <string> parameter is omitted, the key is assigned its default meaning (the

standard keyboard meaning). The <string> parameter may be any length as long as the
terminal’s display memory capacity is not exceeded.

D,

4027 PROGRAMMER'S @ 4-3

PROGRAMMING THE KEYBOARD
LEARN COMMAND

44

Examples

ILEARN # /(End-of-Page)/<CR>
ILEA 35 /(End-of-Page)/<CR>

ILEA 35 13<CR>

ILEA F8 “ISEND MOD:"13<CR>
ILEA 135 “ISEND MOD:"13<CR>

Redefines the # key (SHIFT-3 key), whose
ADE is 35, to generate the parenthetical
comment (End-of-Page). The definition of the
3 key is unchanged.

Redefines the # key to mean carriage
return.

Programs function key F8, whose pseudo-
ADE is 135, to give the ISEND MOD com-
mand.

ILEA 148 /\WOR!ERA W;READY FOR NEXT PROGRAM/ 7 7 7 /IMON;/13<CR>

ILEA 148<CR>

Programs the SHIFT-HOME key, whose
pseudo-ADE is 148, to direct text from the
keyboard into the workspace, erase the
workspace, print the message READY FOR
NEXT PROGRAM there, ring the terminal bell
three times, and return the keyboard to the
monitor.

Restores the SHIFT-HOME key to its default
meaning (undefined).

ILEA M1/The rain in Spain falls mainly on the plain./<CR>

Programs macro M1 to print the delimited
string. M1 may be invoked by giving the
EXPAND M1 command from the keyboard or
the host computer.

ILEA M16/IRVE 0,0 20,0 0,100 —10,—50/ 13 <CR>

Defines macro M16 to be the specified RVEC-

TOR command.

ILEA F1/IRMAP C2 30,—25,—-50/ 13 <CR>
ILEA 128/!RMAP C2 30,—25,—50/ 13 <CR>

Defines function key F1 to the specified RMAP

command.

@

4027 PROGRAMMER'’S

C

o/

—

D, D

D,

-3 =3

PROGRAMMING THE KEYBOARD
LEARN COMMAND

NOTE

When programming a key to give a command or sequence of commands,
always include the ADE 13 as the last character of < string> (outside the
delimiters). This insures that pressing the programmed key causes the
command(s) to be executed.

Special Considerations

When the LEARN command is given from the computer, it may be continued from one line
of program code to the next by using a hyphen (—) as a continuation character. This
causes the next <CR>, up to one <LF>, and all NULs, RUBOUTSs, and SYNCs to be
ignored until another character is received. The LEARN command

'LEA F3 /THIS COMMAND IS TOO LONG TO FIT ON ONE LINE./ 13<CR>
can be written on two consecutive lines of BASIC program code as foliows:

100 PRINT “!ILEA F3 /THIS COMMAND IS TOO /-"
101 PRINT “/LONG TO FIT ON ONE LINE./ 13"

This does not apply to a LEARN command entered from the keyboard. If the command is
entered from the keyboard, one simply continues typing until the command is complete. if
the command is longer than one line (80 characters), the cursor wraps around to the next
line; the command is not terminated until <CR> is pressed.

Since delimited strings may contain only printing ASCII characters, any control
characters or non-ASCIl characters included in a LEARN command must be encoded
using ADEs or pseudo-ADEs outside the delimited string. Thus, the command

ILEA$ 13 10<CR>

programs the $ key (SHIFT-4 key) to mean <CR> <LF>. In contrast, the command
ILEA$/1310/<CR>

programs the $ key to print the ASCII string 13 10.

If one of the ASCII numeral keys (0-9) or the period key (.) is programmed, the
corresponding numeric pad key (with the NUMERIC LOCK key lighted) is also
programmed. Likewise, if the numeric pad key (with NUMERIC LOCK on) is programmed,
the corresponding ASC!l numeral or period key is programmed. Programming an ASCIli
key does not program the corresponding cursor pad key with NUMERIC LOCK off.
Likewise, programming the cursor pad key with NUMERIC LOCK off does not program the
ASCIl key marked with the same symbol.

4027 PROGRAMMER'S @ 4.5

PROGRAMMING THE KEYBOARD
MACROS

4-6

If the character string assigned to a programmed key includes one or more commands,
those commands are executed but not displayed on the screen when the programmed key
is pressed.

The <string> parameter may include the CLEAR command, discussed later in this
section. Suppose we program the F1 function key as follows:

'LEARN F1 /IERA M!CLEAR!BEL;Goodbye for now.!MON/13<CR>.

Pressing F1 causes all of the commands to be executed and the text “Goodbye for now.”
to be printed in the workspace, even though the CLEAR command is given early in this
string. The string will be executed only the first time the key is pressed.

Function key pseudo-ADE’s can be included in the <string> parameter, but those ADE’s
generate default definitions instead of previously programmed definitions. Consider the
command sequence:

ILEARN 172 /IERA WIBEL/13<CR>
ILEARN 128 172<CR>

The first LEARN command programs the ERASE key (pseudo-ADE 172) to erase the
workspace and ring the bell. the second LEARN comand programs function key F1 to
mean the same as the unprogrammed ERASE key.

NOTE
The SEND keys (keys F8 and S8, with pseudo-ADEs 135 and 151,
respectively) have no meaning until programmed. Normally, these keys will
be programmed to give the SEND ALL or SEND MOD cormmand, or some
command sequence which sends information to the computer.

Macros and the EXPAND Command

The EXPAND command is used to execute macros which were defined by the LEARN
command.

@ 4027 PROGRAMMER'S

—— =

C

— . . o

C
— [

—

—1

D,

D

-3 3 O

-3 =3

)._

=3 =3

PROGRAMMING THE KEYBOARD
EXPAND COMMAND, LEARN AND COMMAND

EXPAND Command
Syntax
IEXPand <macro no.> <CR>

where <macro no.> is a macro name (M1, M2, . . . , M16).

Action

This command is used to invoke any macros specified by the LEARN command. EXPAND
may be given by the keyboard or the host computer. Thus, a command or series of
commands or a string may be sent by the host or the operator by giving the EXPAND
command.

Example
IEXPand M1 <CR>

causes the string assigned to the given macro (M1) to be inserted in the input queue in
place of the EXPAND command. Macros are numbered M1 through M16.

The LEARN Command and the COMMAND Command

Do not confuse programming a key using the LEARN command and selecting a new
command character using the COMMAND command. These operations are different.

Programming a key with the LEARN command causes the programmed key to generate a
different character or character string than it normally generates. In contrast to this,
selecting a new command character does not change the character string generated by
any key. Rather, it changes the way the 4027 processes the default symbol generated by
one particulr key. The same key generates the same symbol, but that symbol, when seen
by the terminal, now has a different effect.

When the COMMAND command selects a new command character for the 4027, this new
selection is stored in the 4027 battery-maintained RAM. This means that the 4027
remembers the new command character, even when it is turned off or RESET. The only
way to change the 4027's command character is to give a new COMMAND command.
When a key is programmed using the LEARN command, however, the learned definition is
lost if the terminal is turned off or RESET, and the key returns to its default definition.

4027 PROGRAMMER'S @ 4-7

PROGRAMMING THE KEYBOARD
KEYBOARD LOCKOUT

4-83

KEY PROGRAMMING AND KEYBOARD LOCKOUT

When a key is programmed, the new definition assigned to that key is generated
whenever the key is pressed; however, the default character assigned to that key can stiil
be sent to the terminal. It is not the default character, but the key itself, which generates
the new definition.

Suppose we execute the following sequence of commands:
ILEA 127 34!LEA 34 /IWOR 20 H K/13<CR>

The RUBOUT key (ADE 127) is now programmed to mean quotes () and the quotes key
(ADE 34) is programmed to mean !WOR 20 H K< CR>. The ASCII quotes character can
be sent to the terminal with its usual meaning, either by sending the ASCII quotes

character (ADE 34) from the computer or by pressing the RUBOUT key on the keyboard.

It may be desirable to prevent an operator from issuing arbitrary commands to the
terminal during an applications program, but still allow him to issue certain specific
commands or command sequences. During a form fillout program for exampte, the
operator should not be able to modify the form itself, but should be able to give the SEND
MOD command.

Key programming can accomplish this. Suppose ! is the command character. If the
computer sends the command

'LEARN 33 00<CR>

to the 4027, the ! (SHIFT-1) key is programmed to generate the ASCII NUL character. This
prevents the operator from using the ! key to generate the command character. Yet the
computer can send command characters to the terminal and can program function keys
to issue commands when pressed by the operator. Only the operator’s ability to issue the
command character arbitrarily from the keyboard is impaired. At the proper time, the
computer returns control of the 4027 to the keyboard by sending the command

ILEARN 33<CR>

This returns the ! key to its default meaning.

@ 4027 PROGRAMMER'S

- - .

- - C_ .

| G

-

| S

| GOUREE, GRRUEE SR S

C— T

Lo

Y

== 3 3 003 33 3 41132 1
D

)

-3

PROGRAMMING THE KEYBOARD
CLEAR COMMAND

CLEARING KEY DEFINITIONS

To restore a single key to its default definition or to clear macro definition, use the LEARN
command with the <string> parameter omitted. The command

ILEARN <key> <CR>

will restore the <key> key or macro to its default meaning.

CLEAR Command

To clear all programmed key definitions and all macro definitions simultaneously, use the
CLEAR command.

The command

ICLEar<CR>

clears all key and macro definitions generated by LEARN commands or by the LEARN
key. All keys revert to their default definitions; all macros become undefined.

4027 PROGRAMMER'S @ 49

=1 T3 a3 4/)]} 3 Ty T3 Ty T oy Ty Ty 1231 T

C C C

C- = & D C DD e

COMMANDS DISCUSSED IN THIS SECTION:

Terminal Status Commands

COMMAND Command.t i e 5-2
FORM COmMMANG. . oottt ettt ettt e e e e et 5-10
MARGINS Command . ..ottt e e e e 5-7
MONITOR ComMmMand. . ..o ottt et et et 5-5
SNOOPY COMMANG. . o oottt et et et e e e e e i 5-11
STOPS COMMANG. .. .ottt e e e e 5-9
WORKSPACE Commandttt et 5-3
Communication Status Commands
BAUD COmMMaANd . ..o ottt it e et et e e e 5-13
BUFFERED COmMMand.ottt ittt e e 5-19
DELAY ComMmMaNnd. ... oottt e e e 5-25
DISCONNECT COmmMaNndootitit ittt e 5-31 ,
DUPLEX COMMANGo ottt ettt 5-29 W/
ECHO ComMmMaANG. . oottt ettt e et e e e e e e 5-17
EOF (End-of-File) Command. ...ttt e 5-28
EOL (End-of-Line) Command ittt e 5-21
FIELD COMMANG. . . ottt et e e e e e 5-26
PARITY COmMMANd . ..ottt ettt ettt e e i 5-15
PROMPT COMMANG . ..ot i ettt et e e e e e e et e e e 5-23
Additional Commands
GTEST ComMMAaNd. ..ottt e e e 5-37
TEST COmMMANG . ..ottt e e e e e 5-35
SYSTAT CommAaNndt e e 5-32
o/
@ 4027 PROGRAMMER’S

- CC

8

=1 3 T3 33 2
D

-3

=

= 7
)

-3

)

a—.

Section 5

SYSTEM STATUS AND INITIALIZATION

The 4027 has many operating parameters which can be set from the keyboard or from the
computer. This allows the 4027 to interface with a variety of host systems, as well as run
many different applications programs easily and effectively. Some of these parameters
(the end-of-line string, for example) must be set when the terminal is first installed and
are changed infrequently, if at all. Other parameters (the form fillout mode setting, for
example) will be changed more often, perhaps several times within the same program.

Clearly, it is necessary for the host and the applications program to be well informed of
the status of these parameters. Since these settings may be changed from the keyboard
without the host’s knowledge, the first task of any applications program is to initialize the
terminal; that is, the terminal must be set to a known and desired state which facilitates
execution of the program. When the program is completed, the terminal should be
returned to a known reference state for the convenience of future users.

Some parameters affect the status of the terminal itself. Other parameters affect the
status of communications between the terminal and the host computer. This section first
discusses the terminal status commands which determine the status of the terminal itself.
These are the COMMAND, WORKSPACE, MONITOR, MARGINS, STOPS, FORM, SNOOPY,
and PAD commands. Then the communication status commands which determine the
status of communications between the 4027 and the host computer are discussed. These
are the BUAD, PARITY, ECHO, BUFFERED, EOL, PROMPT, DELAY, FIELD, EOF, DUPLEX,
and DISCONNECT commands.

4027 PROGRAMMER’S REV A, OCT 1980 5-1

| G

STATUS/INITIALIZATION
COMMAND COMMAND

((:'

TERMINAL STATUS COMMANDS

COMMAND Command

The syntax of the COMMAND command is

| SO G

ICOMmand <character> <CR>

where <character> is a single printing ASCII character or the ADE {(ASCII Decimal
Equivalent) of an ASCIl character. The syntax and action of this command were
discussed in the 4027 Command Structure section; however, some additional comments
regarding terminal initialization are in order here.

Since each command to the 4027 must be preceded by the command character, the

computer must know the command character at all times. Although the terminal operator

can discover the command character by pressing the STATUS (SHIFT-COMMAND

LOCKOUT) key, the computer cannot do this. Therefore, at the end of each applications

program the command character must be set to a reference symbol. This insures the next

user proper access to the terminal. The exclamation point (!) is recommended as the v
reference symbol. It is the command character when the 4027 is shipped from the factory.

It is also used as the command character throughout this manual and throughout the

4027 Operator’'s Manual.

. . .

O

The command character can be changed at the beginning of an applications program, or
anytime during the program, by using the COMMAND command. But the program should
always reset the command character to the reference character, !, before reieasing
control of the terminal. Consider a text-editing program. Since the ! symbol is used
occasionally as a punctuation mark, one may wish to avoid using it as the command
character in this situation. Such a program might begin by choosing another command
character, say the @ character, and resetting to ! at the end of the program:

-

. .

ICOM @ <CR>

-

—— T

(Body of program)

@ COM I<CR>
End of execution

(:(C.'Z

b-2 @ 4027 PROGRAMMER'S U

-3 -

)

=2 O 13 3 O3 33
)

3 33 2
)

i |

STATUS/INITIALIZATION
WORKSPACE COMMAND

WORKSPACE Command

When the 4027 is powered up or RESET, there is no workspace or workspace window, the
entire 34-line screen is devoted to the monitor window, and text from both the keyboard
and the computer is directed into the monitor. Before an applications program is run, the
4027 terminal screen must be initialized:

® Divide the screen into a workspace window and a monitor window to display
information from the corresponding scrolis.

® Direct text from the computer and from the keyboard into the appropriate scrolls.

One of the commands used to initialize the screen is the WORKSPACE command.

Syntax

'WORkspace [<number>] [Host] [Keyboard] <CR>

where <number> is an integer between 0 and 33, inclusive.

Action

If <number> is included, this command erases the entire display list (the monitor, and if
a workspace is defined, the workspace also). The terminal then defines a workspace and
allots the top <number> lines of the screen for the workspace window. The remaining
34-<number> lines are used for the monitor window. At least one line is always reserved
for the monitor window.

If 4 (Host) is specified, text from the host computer is directed into the workspace. If K
(Keyboard) is specified, text from the keyboard is directed into the workspace.
(Commands typed on the keyboard are still displayed in the monitor.)

4027 PROGRAMMER'S @ 5-3

STATUS/INITIALIZATION
WORKSPACE COMMAND

5-4

If only the <number> parameter is specified, text from the keyboard and text from the
computer go to the same scrolls as before. A WORKSPACE 0 command directs text from
both the keyboard and the computer into the monitor, since this command destroys the
workspace.

If no parameters are specified, and the command comes from the host computer, a
WORKSPACE H command is executed. If no parameters are specified and the command
is typed on the keyboard, a WORKSPACE K command is executed.

Examples

IWOR 20 H K<CR> Erases the display list, reserves the top 20 lines of the
screen for the workspace window, and directs text
from both the computer and the keyboard into the
workspace.

IWOR 25<CR> Erases the display list, reserves the top 25 lines of the
screen for the workspace window. Does not change
the destination of text from the computer or of text
from the keyboard.

IWOR O<CR> Erases the display list, reserves the entire 34-line
screen for the monitor window. Directs text from both
the computer and the keyboard into the monitor, since
no workspace is defined.

IWOR H<CR> Directs text from the computer into the workspace.
Does not erase the workspace or change the position
of the workspace cursor.

IWOR<CR> If this command comes from the computer, it directs
text from the computer into the workspace. If the
command comes from the keyboard, it directs text
from the keyboard into the workspace.

@ 4027 PROGRAMMER'S

— o . - . . -

|

| G

-~

.- _ -

G

| G S

_

-3 -

3

)

=3 3

= 3

A

STATUS/INITIALIZATION
MONITOR COMMAND

MONITOR Command

The WORKSPACE command does not allow you to specify which devices (Host,
Keyboard) send information to the monitor. The MONITOR command allows you to do this,
as well as create text windows.

Syntax
IMONitor [<number>]1[Host] [Keyboard] <CR>

where <number> is an integer between 1 and 34, inclusive.

Action

If <number>> is included, this command erases the entire display list (the monitor, and if
a workspace is defined, the workspace also). The terminal then defines a workspace and
reserves the top 34-<number> lines of the screen for the workspace window. The
remaining <number> lines are used for the monitor window. At least one line is always
reserved for the monitor window.

If H (Host) is specified, text from the computer is directed into the monitor. If K (Keyboard)
is specified, text from the keyboard is directed into the monitor.

If <number> is the only parameter specified, text from the computer and from the
keyboard go into the same scrolis as before. A MONITOR 34 command directs text from
both the computer and the keyboard into the monitor, since this command destroys the
workspace.

If no parameters are specified and the MONITOR command comes from the host
computer, a MONITOR H command is executed. If no parameters are specified and the
MONITOR command is typed on the keyboard, a MONITOR K command is executed.

Examples
IMON 10 H K<CR> Erases the display list, creates a monitor window of 10
lines and a workspace window of 24 lines, and directs
text from the computer and from the keyboard into the
monitor.
4027 PROGRAMMER'S @ b5

STATUS/INITIALIZATION
MONITOR COMMAND

5-6

IMON 4<CR>

IMON 34<CR>

IMON H<CR>

IMON<CR>

Erases the display list, creates a monitor window of 4
lines and a workspace window of 30 lines. Text from
the keyboard and text from the computer go into the
same scrolls as before.

Erases the display list and reserves the entire 34 lines
of screen for the monitor window. Directs text from
both the computer and the keyboard into the monitor,
since no workspace is defined. Equivatent to a WORK-
SPACE 0 command.

Directs text from the computer into the monitor; does
not erase either scroll.

If this command comes from the computer, it directs
text from the computer into the monitor. If the com-
mand comes from the keyboard, it directs text from the
keyboard into the monitor.

@ 4027 PROGRAMMER'S

| G

| G

| G

|

C.-

G

— .

/

| O

- . .

| G

| g

v

— -

—1

B

3 2 O30 313 T3 3 3 4O 3

)

32 3 3 3

A

-3 J 3 131 3

STATUS/INITIALIZATION
MARGINS COMMAND

MARGINS Command

Workspace margins are set with the MARGINS command. (Monitor margins are always
set to columns 1 and 80, and cannot be changed.)

Syntax
IMARgins [<left>] [<right>]<CR>

where <left> and <right> are integers between 1 and 80, inclusive, and <left> is less
than <right>. If only one parameter is specified, it is taken to be the <left> parameter;

in this case, the <right> parameter remains unchanged. If both parameters are omitted,
<left> and <right> default to 1 and 80, respectively.

Action

This command sets the workspace margins — the left margin to column <left> and the
right margin to column <right>.

When the terminal receives a <CR> from the computer or from the keyboard, the cursor
moves to column <left>. All cursor movement keys and almost all commands which
move the cursor respect the left margin: if the left cursor key is pressed repeatedly, the
cursor moves left to column <left>, then wraps around to column 80 of the previous line;
the BACKTAB key does not move the cursor past column <left>. (The one exception is
the JUMP command. See the Controlling the Display section.)

If a character is typed into column <right>, the terminal bell rings. This is the only action
which occurs. If more characters are entered in the workspace, those characters are
displayed on the same line, and the cursor continues moving right until either (1) the
cursor moves past column 80 and wraps around to the next line, or (2) the terminal
receives a <CR> as a signal to begin a new line. In either case, the cursor moves to the
left margin in column <left> of the next line.

Examples

IMARGINS 10 70<CR> Sets the left workspace margin to column 10 and the
right margin to column 70.

4027 PROGRAMMER'S @ 5-7

STATUS/INITIALIZATION
MARGINS COMMAND

IMAR 25<CR> Sets the left margin to column 25; leaves the right v
margin unchanged. J

IMAR<CR> Sets the left and right margins to their default settings:
columns 1 and 80, respectively. o
The 4027 remembers its right and left margins when it is powered off or RESET. -
NOTE

buatt

Unless stated otherwise, it is always assumed in this manual that the left

margin is set to column 1.

s
|
i
ol
et

~

i

5-8 @ 4027 PROGRAMMER'S

p

}‘”:3:::3::]
)

5

=

STATUS/INITIALIZATION
STOPS COMMAND

STOPS Command

Tab stops are set with the STOPS command.

Syntax

ISTOps [<stop 1>] [<stop 2>] ... [<stop 16>]<CR>
where each <stop n> parameter is a positive integer between 2 and 80, inclusive, and
parameters are arranged in increasing order.
Action
This command sets up to 16 tab stops by listing the columns in which stops are defined.
Stops are defined in both the workspace and the monitor simultaneously. Only the stops
specified are defined; all previous stops are deleted. Stops may be set to the left of the
feft workspace margin, to the right of the right workspace margin, and between the

margins.

If no parameters are specified, all tab stops are cleared.

Examples
ISTO 10 20 35 45 60<CR> Defines monitor and workspace tab
stops in columns 10, 20, 35, 45, and 60. No other
stops are defined; any previously defined stops are
deleted.

ISTO<CR> Clears all tab stops.

The 4027 remembers its tab stops when powered off or RESET.

4027 PROGRAMMER'S @ 5-9

STATUS/INITIALIZATION
FORM COMMAND

FORM Command

The FORM command places the 4027 in form fillout mode and removes it from form fillout
mode.

Syntax

IFORm [Yes|No]<CR>

Action
The FORM YES command (or equivalent) places the 4027 in form fillout mode. The FORM
NO command {(or equivalent) removes the 4027 from form fillout mode. A detailed

discussion of form fillout mode is found in the Forms and Form Fillout section.

If no parameter is specified, Y (Yes) is assumed.

Examples
IFORM YES<CR> Places the 4027 in form fillout mode.
IFOR Y<CR>
IFOR<CR>
IFORM NO<CR> Removes the 4027 from form fillout mode.
IFOR N<CR>

The 4027 always powers up and RESETs to FORM NO.

5-10 @ 4027 PROGRAMMER'S

. . o

D D,

-1 3 O O 330 11O 33 O3

STATUS/INITIALIZATION
SNOOPY COMMAND

SNOOPY Command

The 4027 has a “snoopy” mode of operation. In snoopy mode, the non-printing ASCII
characters (contro! characters) are represented on the screen by two letter mnemonics.
The RUBOUT (or DELETE) character is represented by a blotch of fine diagonal lines.
Entering and leaving snoopy mode is controlied by the the SNOOPY command.

Syntax
ISNOopy [Yes |No]<CR>

If neither parameter is specified, Yes is assumed.

Action

The SNOOPY YES command places the 4027 in snoopy mode. The SNOOPY NO
command removes the 4027 from snoopy mode.

Snoopy mode is useful for troubleshooting and debugging, since it allows the operator to
examine all ASCII characters received by the terminal, not just printed characters. It is
also useful for inserting control characters into text stored in the workspace. Commands
are still executed in snoopy mode.

To see the ASCIlI NUL character printed when examining incoming data, it is necessary to
have the 4027 parity set to “data.” (See the discussion of the PARITY command in this

section.)
Examples
ISNOOPY YES<CR> Places the 4027 in snoopy mode.
ISNO Y<CR>
ISNO<CR>
ISNOOPY NO<CR> Removes the 4027 from snoopy mode.

ISNO N<CR>

The 4027 always powers on or RESETs to SNOOPY NO.

4027 PROGRAMMER'S @ 5-11

STATUS/INITIALIZATION
SNOOPY COMMAND

5-12

Table 5-1

SNOOPY MODE MNEMONICS

Control Snoopy Mode| Control | Snoopy Mode
Character Mnemonic | Character Mnemonic

NUL N DLE ?

SOH $ DCH g

STX % DC2 %

ETX E DC3 %

EOT € DC4 %

ENQ g NAK %

ACK A SYN %

BEL 8 ETB %

BS g CAN %

HT H EM u

LF L SUB %

VT v ESC %

FF R FS s

CR % GS g

SO % RS %

sl $ Us %
RUBOUT %

REV A, JUN 1980

4027 PROGRAMMER'S

C C

C— [C CC C C

D

m

-1

STATUS/INITIALIZATION
PAD COMMAND

PAD Command for the 4027 with Version 1.2 Firmware

The PAD command is used to perform two 4027 functions, keyboard lock and delete
ignore. Keyboard lock enables the host program to control keyboard operation and data
entry. Delete ignore enables the delete character (ADE 127) to be cancelled when it is
received by the 4027.

Syntax

IPAD [205/203] < CR>

Action

The PAD 205 command places the 4027 in keyboard lock mode. With the keyboard
locked, no data or commands may be entered from the keyboard. Any attempt to enter
data or commands from the keyboard rings the bell. The PAD 203 command, which can be
given only from the computer, removes the 4027 from keyboard lock mode. Keyboard lock
mode may be exited without the computer PAD 203 command by pressing the BREAK key
two times in rapid succession.

Examples

IPAD 205 < CR> Places the 4027 in keyboard lock mode.
IPAD 203 <CR> Computer only — Removes the 4027 from keyboard lock.
BREAK-BREAK Keyboard only — Removes the 4027 from keyboard lock.

Syntax

IPAD [209/207] <CR>

Action

The PAD 209 command places the 4027 in delete ignore mode. With delete ignore
invoked, any delete characters (ADE 127) are cancelled as they are received by the 4027.
This feature permits operation with computers which randomly output delete characters
to the terminal. When operating in 4010-style graphics mode, the unwanted delete
characters can distort the graphics display. The delete characters can also interrupt
4027 commands if transmitted within a command string.

4027 PROGRAMMER'S @, JUL 1980 5-12-a

STATUS/INITIALIZATION
PAD COMMAND

Examples

IPAD 209 <CR> Places the 4027 in delete ignore mode.
IPAD 207 < CR> Places the 4027 in full 128-character receive mode.

5-12-b @ , JUL 1980

4027 PROGRAMMER'S

— =

— —

| G

CC CC

-

STATUS/INITIALIZATION
BAUD COMMAND

D

COMMUNICATIONS STATUS COMMANDS

BAUD Command

The simplest communications system consists of a device to transmit information, a
device to receive information, and a communications link or “line.” The rate at which
information is transferred over a communications line is calied the “baud rate.” This rate
is given in bits/second; a baud rate of 1200 means information is transferred at the rate
of 1200 bits/second.

During any communication, the rate at which the transmitting device transmits information
must be the same as the rate at which the receiving device receives it. If the host
computer is sent data to the 4027 at 1200 baud, the 4027 must be set to receive data at
1200 baud or greater.

The 4027 has a “‘receive baud rate” and a “transmit baud rate.” These need not be the
same: i.e, the terminal may receive information at a different rate than it transmits
information.

The 4027 baud rates are set using the BAUD command.

Syntax
IBAUd <transmit>[<receive>]<CR>
where both <transmit> and <receive> are chosen from the following list:

(0]50|75|110] 134 | 150 | 300 | 600 | 1200 | 1800 | 2400 | 4800 | 9600)

Action

This command sets the transmit baud rate to <transmit> and the receive baud rate to
<receive>. A baud rate of O means a “times 1" external clock is used.

If <receive> is omitted, it is set equal to <transmit>.

D

4027 PROGRAMMER'S @ 5-13

STATUS/INITIALIZATION

BAUD COMMAND 3
|
U
Examples v U
IBAU 300,1200<CR> Sets the transmit baud rate to 300 baud and the
receive baud rate to 1200 baud. U
IBAU 2400<CR> Sets both transmit and receive baud rates to 2400
baud.
st
When the 4027 is turned off or RESET, it remembers the current baud rate.
et
el
ot
Yt

C
-

- C. -

—

\/

I
I

b-14 @ 4027 PROGRAMMER'S

)

—1

3 IO 333 33 T

D

- |

D

STATUS/INITIALIZATION
PARITY COMMAND

PARITY Command

In the ASCII code, each of the 128 ASCII characters is represented by a 7-bit binary
number. When a character is transmitted, an eighth bit, called a “parity bit,” is also
transmitted. Some computers use this extra bit for error checking, some use it as a data
bit, and some simply ignore it.

The 4027 parity must be set to correspond with that of the computer to which it is
connected. This is done by using the PARITY command.

Syntax
IPARIty [Even |Odd | None | High | Data]<CR >

If no parameter is specified, the 4027 parity defaults to None.

Action

This command sets the 4027 parity. If the parity is set to Even, the terminal transmits
characters with even parity and checks incoming characters for even parity. If the parity
is set to Odd, the terminal transmits characters with odd parity and checks incoming
characters for odd parity. If the parity is set to None, the terminal transmits characters
with parity bit set to zero; the parity of characters input to the terminal is ignored. If the
parity is set to High, the terminal transmits characters with parity bit set to one; the parity
of incoming characters is ignored. If the parity is set to Data, the parity bit of each
character input to the terminal is treated as data; the parity bit is set to zero on characters
output from the terminal. Note that with parity set to data, if a character is received which
has the parity bit set to one, it will be treated as a pseudo-ADE rather than a real ASClI
character (since real ASCli is in the range of 0 to 127). Thus a parity setting of data
should only be used if the programmer can control how the computer sets the parity bit.

Examples
IPAR E<CR> Sets the 4027 to even parity.
IPAR O<CR> Sets the 4027 to odd parity.
IPAR N<CR> Sets parity to “‘none;” the 4027 ignores the parity bit
on input characters and sets it to zero on output
characters.
4027 PROGRAMMER’S @ b-15

STATUS/INITIALIZATION
PARITY COMMAND

(_ﬂ

IPAR H<CR> Sets parity to “‘high;” the 4027 ignores the parity bit on
input characters and sets it to one on output charac-
ters.

— =

IPARD<CR> Sets parity to “‘data;” the parity bit is read as a data bit
for incoming characters and set to zero on output
characters.

—

The 4027 remembers its parity setting when powered off or RESET.

— = = =

¢

C

. CC oo

5-16 @ 4027 PROGRAMMER’S

)

J

1 0 a0 IO 330 33 3 33 =3 3

D

STATUS/INITIALIZATION
ECHO COMMAND

ECHO Command

When the bperator types into the monitor in unbuffered mode, there are two ways that the
characters typed may be displayed on the screen: remote echo and local echo.

In remote echo communications, characters typed into the monitor are sent to the
computer without being displayed. As the computer receives each character, it “echoes”
it back to the terminal. (In some systems, a modem may provide the echo.) I is the
received echo, rather than the original transmitted character, that the 4027 displays on
the screen. In remote echo communications:

® As each character is typed into the monitor, the operator can tell immediately
whether the computer has received that character correctly.

® Selective echo is possible. The computer can be programmed to decide which
characters to echo. In timesharing systems, for example, the computer is usually
programmed not to echo a user’s password.

In local echo communications, as each character is typed into the monitor, the 4027
supplies its own echo. It displays each character sent to the computer without waiting for
the computer echo. Local echo communications may be used with haif duplex
communications links, while remote echo requires full duplex communications.

it is important that the 4027 be set for the proper echo. If the 4027 is set to remote echo
and neither the host nor the modem provides an echo, characters typed on the keyboard
are not displayed at all. If the 4027 is set to local echo and either the host or the modem
also provides an echo, characters typed in the keyboard are displayed twice.

The type of echoing which the 4027 uses is selected with the ECHO command.

Syntax
IECHOo [Local | Remote] <CR>

If neither L nor R is specified, L is assumed.

Action

This command selects the echoing used by the 4027 when text from the keyboard is
directed into the monitor and the 4027 is in unbuffered mode.

4027 PROGRAMMER'S @ 5-17

STATUS/INITIALIZATION

ECHO COMMAND
Examples
IECH<CR> Sets the 4027 for local echo.
IECH L<CR>
IECHR<CR> Sets the 4027 for remote echo.

The 4027 remembers its ECHO setting, even when powered off or RESET.

5-18 @

4027 PROGRAMMER'S

—

— —

l

| G

|

— = o

C

i

B |

1 =3

-3 =1

M

STATUS/INITIALIZATION
BUFFERED

BUFFERED

The terminal can operate either in unbuffered or buffered mode. These modes of
operation differ in the way that the terminal processes information from the keyboard and
from the computer. The terminal powers up in unbuffered mode. It remains in unbuffered
mode until placed in buffered mode by the BUFFERED command.

When the terminal is in unbuffered mode, each character typed into the monitor is
immediately transmitted to the host. Under these circumstances, it is not possible to
locally edit the information displayed in the monitor. As soon as a character appears in
the monitor window (if in local echo), it is sent to the computer. Text typed into the
workspace is not sent to the computer until the SEND command is given and executed.
When the SEND command is executed, all the text in the workspace is sent to the
computer in an uninterrupted stream.

When the terminal is in buffered mode, characters entered in the monitor are stored in the
keyboard buffer until RETURN is pressed. Anytime before RETURN is pressed, the
current line can be edited locally. When RETURN is pressed, the terminal marks the end
of the line and stores the line in the transmit buffer. The line remains in the transmit buffer
until it is processed. By comparison, each line typed in the workspace is stored there and
can be edited locally, even after RETURN is pressed. When the SEND command is given,
the entire workspace contents are read into the transmit buffer for processing.

The contents of the transmit buffer are processed line by line on a first-in/first-out basis.
To do this, the terminal uses a handshaking process involving prompts (prompt strings)
from the computer and EOL (end-of-line) strings from the terminal.

When the computer is ready to receive data, it sends a prompt and delay to the terminal.
When the terminal receives this prompt followed by the delay, it knows that the computer
has finished its transmission and is ready to receive data. The terminal waits for the
programmed delay time before transmitting. The terminal then processes the oldest (first-
in) line in its transmit buffer. Information destined for the computer is sent there and any
terminal commands entered from the keyboard are executed. When a line is sent to the
computer, an EOL terminates the line. When the computer sees the EOL string, it knows
that the terminal has finished sending a line and is waiting for another prompt or data
from the computer. If the computer has data for the terminal, it sends this out, followed by
a prompt; if the computer has no data but wants another line from the terminal, it simply
sends a prompt. A more detailed description of each command and its operation follows.

The commands which relate to buffered mode are PROMPT, DELAY, and BUFFERED. The
PROMPT command sets the prompt string to be used by the computer to request a line
from the terminal. The DELAY command sets the time interval between a computer prompt
and a transmitted line, plus sets the time measured after a prompt string to assure that
the string is actually a prompt rather than text. These two commands are described on the
following pages under PROMPT and DELAY.

4027 PROGRAMMER’S REV A, JUL 1980 5-19

STATUS/INITIALIZATION
BUFFERED

5-20

The BUFFERED YES and BUFFERED NO commands are used to enter and exit buffered
mode and can be invoked either from the computer or keyboard. The effect of the
BUFFERED commands and the sequence of buffered mode events differ depending upon
the source of the commands, computer or keyboard.

Syntax
IBUFfered [Yes]< CR> from the keyboard
IBUFfered [Yes]< CR> from the computer
IBUFfered [Yes]; from the computer

Yes is assumed if not specified

Action

The BUFFERED YES command puts the terminal in buffered mode regardless of the
source of the command or previous buffered/unbuffered condition. If previously in
unbuffered mode and the !BUF command is given from the keyboard, the output buffer is
armed to send the first line placed in the transmit buffer without the need of a host
prompt. If already in buffered mode when the keyboard |BUF command is given, there is
no change to the original first line condition, and a prompt is required for each additional
line in the transmit buffer.

If the computer is the source of the |BUF command, the functions are threefold. First, the
'BUF command places the terminal in buffered mode. Second, the computer |BUF
command cancels any previous prompt which may have the transmit buffer in an armed
condition. This is used prior to communication of any computer commands to prevent
the terminal processor from attempting a transmit while in computer command mode. And
third, the computer 1BUF command places the workspace in keyboard type-ahead. When
the terminal is in type-ahead, keyboard characters directed to the workspace are not
immediately displayed. Type-ahead prevents interaction between simultaneous work-
space display of computer and keyboard information.

When the computer is ready for the terminal to proceed, the prompt string is sent to the
terminal. If the defined prompt string is followed by the specified DELAY time (no CR,

NUL, SYNC, or other characters), the above condition of type-ahead is cancelled,
releasing keyboard data to the workspace, and the transmit buffer is armed for one line.

REV A, JUL 1980 4027 PROGRAMMER'’S

— ==

—

— T

C

- -

| -

. . C . -

s |

D

=3 O 33 1]

a

STATUS/INITIALIZATION

BUFFERED

Syntax
IBUFfered [No]< CR> from the keyboard
IBUFfered [No]< CR> from the computer
IBUFfered [Nol; from the computer

N or No must be specified
Action

The BUFFERED NO command puts the terminal in unbuffered mode and transmits any
lines remaining in the transmit buffer. If the keyboard is the source of the IBUF N
command, the command is placed in the keyboard buffer. (The keyboard buffer holds
keyboard data and is separate from the transmit buffer.) if there are lines or commands in
the keyboard buffer awaiting prompts, the keyboard IBUF N command does not execute
until the lines or commands are prompted in sequence. If the keyboard buffer is empty,
execution of the |IBUF N command is immediate. The terminal exits buffered mode and
transmits the remaining lines to the host.

If the computer is the source of the |BUF N command, execution is always immediate. The
terminal exits buffered mode, transmits any remaining lines to the computer, and
executes any commands waiting in the keyboard buffer.

Examples

keyboard 'BUF<CR> Places the terminal in buffered mode. If
previously unbuffered, arms transmit buffer.

keyboard !BUFISEN<CR> Places the terminal in buffered mode. Sends
the workspace to the transmit buffer. If
previously unbuffered, transmits one line.

computer 'BUF<CR> Places the terminal in buffered mode. Can-

!BUF; cels an outstanding prompt. Places the

workspace in keyboard type-ahead.

computer < prompt/delay> Follows the above host command. Waits the
delay then arms the transmit buffer. Re-
moves the workspace from type-ahead.

computer !BUF;< prompt/delay> Places the terminal in buffered mode. Can-
cels an outstanding prompt. Waits the delay
then arms the transmit buffer.

4027 PROGRAMMER'S @, JUL 1980

5-20-a

STATUS/INITIALIZATION

BUFFERED

computer !BUFIJUM n n; Cancels an outstanding prompt. Directs host
output to terminal display.

computer <prompt/delay> Follows the above host command seguence.
Waits the delay then arms the transmit
buffer. Removes the terminal from type-
ahead.

keyboard 'BUF N< CR> Exits buffered if keyboard buffer is empty.
Transmits all lines in transmit buffer.

computer 'BUF N<CR> Exits buffered mode. Transmits all lines in

5-20-b

IBUF N; transmit buffer. Executes any buffered key-
board commands.

The computer should always transmit ‘display’ command sequences (IJUM, IATT, etc) to
the terminal starting with !BUF and ending with a < prompt/delay>. This minimizes the
possibility of keyboard entry interfering with the computer commands. Once the !BUF has
executed, there is no chance of interaction.

For example, use: IBUFIJUMIATT E;ENTERIATT S!JUM10,20; < prompt/delay>

Computer sequences which include ‘output’ commands (ISEN, |REP, etc.) should start
with |BUF and include a < prompt/delay> prior to the output command. The computer
should not use sequences such as |BUF!SEN.

For example, use: |BUFIJUMIATT E;STOP!ATT S; < prompt/delay> !SEN;

Initialization commands (IDEL, |PRO, IWOR, IMON, IEOL, etc.) should be done prior to
displaying computer information and entering buffered mode. A minimum of 500
milliseconds should follow a command to set up the workspace/monitor screen ({WOR n
H K) before sending a buffered < prompt> to the terminal. When prompting the terminal,
the host should not send in excess of eight prompt strings within one delay time.

Break Function

In addition to the previously described BUFFERED NO commands, the BREAK key can be
used to exit buffered mode. When pressed two times in rapid succession, the terminal
exits buffered mode, cancels all data in the transmit buffer, and sends a break signal to
the computer. BRK-BRK should be used only when it is desireable to cancel data in the
buffers.

@ ,JUL 1980 4027 PROGRAMMER'S

C

| GG ENE GRS ORI G e

—

—

m———

- = t—— [

—

- . CC

——
o

C

i

D,

e |

D

:]:] s |
D

=3

STATUS/INITIALIZATION
EOL COMMAND

EOL (End-of-Line) Command

When the 4027 sends information to the computer, it sends an end-of-line string at the
end of each line of text. This end-of-line string tells the computer where one line of text
ends and the next line begins. In buffered mode, it also informs the computer that the
terminal has finished current processing tasks and can receive data from the computer.
Some computers expect to see <CR> (carriage return) at the end of each line; others
may expect to see <CR> <LF> (carriage return, line feed) or other strings at the end of
each line.

When the operator types text into the monitor destined for the computer, an end-of-line
string is inserted whenever RETURN is pressed. When text from the workspace is sent to
the computer (with a SEND command), an end-of-line string is inserted at the end of each
line of text. (In buffered mode, as the computer requests each line of text from the
terminal, the terminal sends that line, and inserts an end-of-line string at the end of the
line.) The EOL command is used to set the 4027 end-of-line string.
Syntax

IEOL [<string>]<CR>
where <string> may be:

1. One or more delimited ASCI! strings.

2. A sequence of ADE values separated by spaces, or commas.

3. Any combination of 1 and 2.

The end-of-line string defined by this command must not be more than ten characters in
length. If <string> is not specified, it defaults to <CR> (carriage return).

Action

This command sets the end-of-line string which the 4027 sends to the computer at the
end of each line of text.

4027 PROGRAMMER'S @ 5-21

STATUS/INITIALIZATION
EOL COMMAND U

—

Examples
IEOL<CR> Sets the 4027 end-of-line string to carriage return, ‘
IEOL 13<CR> <CR>, with ADE 13. L
IEOL 1310<CR> Sets the end-of-line stringto <CR> <LF>.

—

IEOL /**$/ 13 10<CR> Sets the end-of-line string to the ASCII string
**$<CR><LF>.

The 4027 remembers its end-of-line string when it is powered off or RESET.

C‘
CZ C D 1o

|

\/

—

5-22 @ 4027 PROGRAMMER'S U

3 3

D

)

D,

-3 23 3 0] 3 33 3 11

—_

STATUS/INITIALIZATION
PROMPT COMMAND

PROMPT Command

in buffered mode, when the host computer is ready to accept another line of text from the
4027, it sends a prompt or prompt string as a cue for the terminal to transmit another line.
The prompt must always be the last character(s) sent by the computer. If characters are
received by the terminal after the prompt character(s), the terminal may assume that the
computer is still transmitting. If there is any doubt about control characters being sent
after the prompt, the program can be run in SNOOPY, UNBUFFERED mode so that the
output may be examined. Prompt strings vary with the computer and with the program; but
the prompt to which the 4027 responds must agree with the prompt sent from the
computer. The 4027 prompt string is set using the PROMPT command.

Syntax
IPROmpt [<string>]<CR>
where <string> may be:
1. One or more delimited ASCII strings.

2. A sequence of ADE values separated by spaces or commas.

3. Any combination of 1 or 2.

The <string> parameter may not define a string of more than ten ASCII characters.
if <string> is omitted, the prompt string is set to the line feed character, <LF>.

Action

This command sets the 4027 prompt string to <string>. In buffered mode, the 4027
waits to receive <string> from the computer before processing the next line in its
transmit buffer.

4027 PROGRAMMER'S @ 5-23

STATUS/INITIALIZATION
PROMPT COMMAND

Examples

IPRO /**$/<CR>

IPRO 13 10<CR>

IPRO /*%$/13 10<CR>

IPRO<CR>

Sets the prompt string to **$. In buffered mode, the
4027 must receive this string from the host before it
sends a line of text from its transmit buffer.

Sets the prompt string to <CR> <LF>, with ADEs 13
and 10, respectively.

Sets the prompt stringto **$<CR> <LF>.

Sets the prompt string to the default setting, <LF>.

The 4027 remembers its prompt string when RESET or powered off.

5-24

@ 4027 PROGRAMMER'S

S—
PN,

C

o
- —

- = CZ

—

.
-—

- —

L

| GOEE S

-
-——

r-‘- -
P -

=

-
—

. = &

=3 3 3
D

3

=3 20 0 33 33 2

>

-3 =

STATUS/INITIALIZATION
DELAY COMMAND

DELAY Command

Sometimes it is desirable that the 4027 not respond immediately to a prompt from the
computer. If the 4027 is executing a SEND command on a rather full workspace and the
computer’s input buffers are small, it is possible for the 4027 transmission to overrun this
input buffer. Information is lost and communications are garbled.

The prompt string may be used in other ways as well. Suppose the prompt string is <LF>
and the computer is sending a paragraph of straight text to the 4027. There will be many
line feeds which are not intended as prompts. If the 4027 waits before responding to a
<LF>, and another character is received, the 4027 knows to cancel the planned
response and keep listening to the computer for more text.

The 4027 transmission delay is set using the DELAY command.

Syntax
'DELay <time><CR>

where <time> is a positive integer.

Action

This command sets the transmission delay to <time> milliseconds. In buffered mode,
after a prompt is detected, the 4027 waits at least <time> milliseconds before
transmitting anything back to the computer.

Examples
IDEL 20<CR> Causes the 4027 to wait at least 20 milliseconds
before responding to a prompt from the computer.
IDEL O<CR> The 4027 responds immediately to a prompt from the

computer.

The 4027 remembers its delay time when it is RESET or powered off.

4027 PROGRAMMER'S @ b-25

Gy

STATUS/INITIALIZATION

FIELD COMMAND

5-26

(=

FIELD Command

G

When the 4027, in form fillout mode, sends form fields to the host computer in a SEND
operation, the computer must know when a new field begins. This can be arranged in two
ways:

| G

® Fields sent to the computer are preceded by a field separator character; each time
the computer sees this character it knows a new field immediately follows. If a
field has not been completely filled out, only the filled out portion of the field is
transmitted; trailing spaces are not sent.

® Each field is sent in its entirety, including trailing spaces. The choice of which
method to use is determined largely by the programming language used. (See
Forms and Form Fillout for details.)

- T T T

The 4027 is instructed how to send form fields to the host by using the FIELD command.

| G

Syntax

C

IFIEId [<character>]<CR>

where <character> is a single printing ASCIl character, or a 2- or 3-digit ADE between
00 and 127, inclusive.

If no parameter is specified, it is assumed to be NUL.

-

—

Action

e

This command sets the character which precedes fields of a form when they are
transmitted to the computer by the 4027. If no value is supplied, then no character is
inserted before a field, and trailing spaces are sent. Common choices for the field
separator are TAB, CR, and US.

- Z

-
-

\/

— T

@ 4027 PROGRAMMER'S

| G

-

STATUS/INITIALIZATION
FIELD COMMAND

5

-

Examples
IFIE@ <CR> Sets the field separator to the @ character, with ADE
IFIE 64<CR> 64. This character precedes each field of a form sent
to the computer.
IFIE<CR> When fields of a form are sent to the computer, no field

separator is used. Each field is sent in its entirety,
including all trailing spaces.

The 4027 remembers the field separator when RESET or powered off.

>

-

=3 3 3 33 3 12

5

4027 PROGRAMMER’S @ 5-27

-

| G

STATUS/INITIALIZATION
EOF COMMAND

|

EOF (End-of-File) Command (Requires Option 3 or 4)

| G

The 4027 can copy a file from one device to another by using the COPY command. When _
the data comes from the host, the 4027 looks for an end-of-file string to know when to J
stop the COPY operation. It also sends the EOF string to the host at the end of a copy.

The end-of-file string is selected using the EOF command.

—

Syntax
st
IEOF [<string>]<CR>
where <string> consists of: -
1. One more delimited ASCII strings. L

2. A sequence of ADE values separated by spaces or commas.

-

3. Any combination of 1 and 2.

S

This command may not define an ASCII string of more than ten characters. If <string> is
not specified, it defaults to /x*.

Action ~
This command sets the end-of-file string. This string marks the end of a file transferred by _J
a COPY command. See the Peripherals section.
i
|
Examples ~
IEOF/$*x/<CR> Sets the end-of-file string to the ASCII string, $ * *. This J
string marks the end of a file transferred by a COPY
command. J
'EQF 27 27 T<CR> Sets the end-of-file string to ** <ESGC>.
IEOF<CR> Sets the end-of-file string to its default value, /*. J

-

The 4027 remembers the EOF setting when RESET or powered off.

\»/

5-28 @ 4027 PROGRAMMER'S

- CC

)

-3 3 0303 3313 33 13 3>4

)

STATUS/INITIALIZATION
DUPLEX COMMAND

DUPLEX Command (Requires Option 1)
The 4027 with Option 1 may be set for either full duplex or half duplex communications.
Full duplex mode is used with full duplex communication lines, which permit both terminal

and host to transmit at the same time. Half duplex is used with half duplex communications
lines, over which only one device (terminal or host) can transmit at a time.

Half duplex communications can use either normal or supervisor mode.
In half duplex communications, the 4027 can also be set to respond to either “line
turnaround only” or “prompt string plus line turnaround” as the prompting condition in

buffered mode.

The DUPLEX command is used to set the 4027 for half duplex or full duplex
communications.

Syntax
IDUPlex [<fulldup> | <halfdup>]<CR>

where <fulldup> = Full
<halfdup> = Half [Supervisor | Normall[Line | Prompt]

If no parameters are specified, full duplex operation is assumed. If half duplex is chosen,
supervisor mode and line are the default parameters.

Action

This command sets the 4027 for either full duplex or half duplex communications. If half
duplex is chosen, either Supervisor or Normal mode is chosen. Also, the prompt condition
to which the 4027 responds in buffered mode is set to either Line (line turnaround only)
or Prompt (prompt string plus line turnaround).

Examples
IDUP<CR> Sets the 4027 for fuli duplex.
'DUP F<CR>
4027 PROGRAMMER’S @ 5-29

STATUS/INITIALIZATION
DUPLEX COMMAND

5-30

IDUP H<CR>
IDUPHS<CR>
IDUP H 8 L<CR>

IDUP H 8 P<CR>

IDUP HN<CR>
IDUP H N L<CR>

'DUP H N P<CR>

Sets the 4027 for half duplex with supervisor. In
buffered mode the prompt condition is line turnaround
only.

Sets the 4027 for half duplex with supervisor. In
buffered mode the prompt condition is the prompt
string plus line turnaround.

Sets the 4027 for half duplex normal. In buffered mode
the prompt condition is line turnaround only.

Sets the 4027 for half duplex normal. In buffered mode
the prompt condition is the prompt string plus line
turnaround.

The 4027 remembers its duplex setting when RESET or powered off.

@ 4027 PROGRAMMER'S

\/

STATUS/INITIALIZATION
DISCONNECT COMMAND

D,

DISCONNECT Command (Requires Option 1)

== O O

Syntax

IDISConnect<CR>

Action
This command sends a signal to the modem, causing it to disconnect the 4027 from the
communications line. (The terminal turns off the “data terminal ready” signal on the RS-

232 interface for about one second. This causes the modem to disconnect from the
communications line.)

Example

IDISC<CR> Disconnects the 4027 from the communications line.

3 O O] 3 33 3

D

NOTE
DISCONNECT may not be abbreviated to the first three letters (DIS) as this
would conflict with the DISABLE command.

BREAK Functions

The BREAK key is used to signal an interrupt to the computer and to terminate a variety of
local operations regarding buffered mode and peripheral functions. The effects of a single
press of the BREAK key differ from two presses of the BREAK key as follows:

BREAK (Version 1.2 firmware). The RS232 TDATA communication line is held active for
350 milliseconds. Internal terminal operations are not affected.

BREAK-BREAK. The TDATA break time is 350 milliseconds*, buffered mode is exited,

transmit and receive buffers are cancelled, keyboard lock is exited, COPY and
DIRECTORY operations are terminated, and a multiple HCOPY command is discontinued.

*200 msec in V1.1

D

4027 PROGRAMMER'S REV A, JUL 1980 5-31

—3

STATUS/INITIALIZATION
STATUS

5-32

STATUS MESSAGES

In addition to the commands which set the 4027 terminal parameters and communica-
tions parameters, there are four “status” messages which display, on the screen,
information about the parameter settings and internal status of the terminal. These are the
STATUS message, the SYSTAT message, the system TEST message, and a GTEST
(Graphic Test) message.

The STATUS Key and The STATUS Message

At any time, the 4027 operator may press the STATUS (SHIFT-COMMAND LOCKOQOUT)
key to get a brief STATUS message. This message is displayed in the monitor, without
disturbing the contents of the workspace. The STATUS message shows whether the 4027
is in buffered or unbuffered mode, the command character, and the number of unused
blocks of terminal memory. The actual number of blocks is determined by display memory
option. (A block consists of 16 eight-bit bytes. One block holds at most 14 characters.) A
status message is shown in Figure 5-1.

U ' 988

UNBUFFERED COMMAND CHARACTER 988 BL.LOCKS OF
1S 1"

MODE MEMORY LEFT

B \ 988
BUFFERED COMMAND CHARACTER 988 BLOCKS OF
MODE 1S "\ MEMORY LEFT

(2401) 2657-4

Figure 5-1. STATUS Message.

SYSTAT and The SYSTAT Message

The 4027 has a SYSTEM STATUS, or SYSTAT, message which lists most of the
parameter settings discussed in this section. The SYSTAT command displays the
SYSTAT message in the monitor.

Syntax

ISYStat<CR>

REV A, JUL 1980 4027 PROGRAMMER'S

C

¢

D,

)

-3

STATUS/INITIALIZATION

SYSTAT

SYSTAT Parameters

The 4027 SYSTAT message lists the following parameters, using the abbreviations

shown.

B — Transmit baud rate

RB — Receive baud rate

DL — Delay time

LM — Left margin

RM — Right margin

WL — Number of workspace lines displayed on the screen

V# — Firmware version number

TS — Tab stops

cC — Command character

FS — Field separator

PR — Prompt string

EL — End-of-line string

DU — Duptex (DU=F means full duplex, DU=H means half duplex.)

BU — Buftered mode (Y means buffered, N means unbuffered.)

EC — Echo (EC=R means remote echo, EC=L means local echo.)

FF — Form fillout mode (Y means yes, N means no.)

SN — Snoopy mode (Y means yes, N means no.)

KB — Keyboard (KB=M means text typed on the keyboard is directed to the monitor,
KB=W means text from the keyboard is sent to the workspace.)

CM — Communications line (CM=M means text from the communications line is
directed to the monitor, CM=W means such text is sent to the workspace.)

PA — Parity (N means none, D means data, E means even, O means odd, H means
high.)

CO-C7 — Color numbers CO-C7 are displayed with color samples and the HLS
parameters for each color.

If the 4027 contains Option 10 (Polling Interface) an additional field, PL=, appears. This

field is followed by a two-digit decimal number indicating the polling address of this

display station.

If the 4027 contains Option 1 (Half Duplex) and the 4027 is set for half duplex

communications, the DU field may contain one or two additional letters. See the DUPLEX

command description earlier in this section for details.

4027 PROGRAMMER'S @ 5-33

STATUS/INITIALIZATION

SYSTAT
e
If a parameter is set to an ASCII control character, the two-letter mnemonic for that
character is shown in the parameter setting. The SYSTAT message is illustrated by Figure bt
5-2.
‘zsystat
TB= 24060 PB= 2488 D= g M=1 M=5S W=98 Y#=1.9
TS= 4 718 13 @3 8 84 8 B 84 8 8 g 8 23 49
Co=1 FS=t% PR=GIME:%Y¥
Bl =%

DiJ=F BU=H EC=R FF=M SN=NH KkB=M CM=M PR=N

CEQ 2, 199, 106 128, S8, 108 C a, =\, 104
Caf15a, 59, 109 300, S8, 109 > 2, 2,100

2857-5

Figure 5-2. The 4027 SYSTAT Message.

CC CC T

When the 4027 is turned off or RESET, it remembers some of the parameter settings in
the SYSTAT message, and resets others to default settings. Those settings which are
remembered are: TB, RB, DL, LM, RM, TS, CC, FS, PR, EL, DU, EC, and PA (and the PL
setting, if present).

¢

When the 4027 is powered up or RESET:

e WL = O (There is no workspace defined.) U
e BU = N (The 4027 is in unbuffered mode.) L
e FF = N (The 4027 is not in form fillout mode.)
® SN = N (The 4027 is not in snoopy mode.) L
e KB = M and CM = M (Both the keyboard and the computer direct text to L
the monitor.)
@ CO-C7 = (All eight colors are displayed with their default HLS parameters. !
Color C7 (black) is not visible.) Li
The V# setting will not change unless a different firmware version is installed in the U
4027.

5-34 @ 4027 PROGRAMMER’S

D D,

STATUS/INITIALIZATION
TEST COMMAND

TEST Command
The command:

ITEST<CR>

or

ITES<CR>

causes the 4027 to run a program which checks whether the terminal memory and
display are operating properly. The following actions occur:

® The terminal erases the entire display list and creates a 34-line monitor window.

® System ROM (Read Only Memory), system RAM (Random Access Memory), and

display RAM are checked. The four system ROM checksums are displayed. An
error in display RAM prevents a bad block of memory from being used; the number
of free blocks is reduced, but the terminal operates correctly.

After the memory test, the lights on the four lighted function keys are turned on, all
128 ASCIl characters are displayed in the monitor in snoopy mode, and all Font 1
characters (ruling characters) are displayed. (If this character set is not installed,
each of its characters is displayed as a dot matrix with every dot turned off.)

After the two character sets are displayed, a sample of colors CO-C6 is
represented by displaying three upper-case letter A's in each color. Color C7
(black) is not visible.

® At the end of the test, the lights on the function keys are turned off and the bell is

rung.

Should the test reveal a failure in the system RAM, the message “RAM ERROR” appears.
If such a message appears, call your Tektronix service personnel.

NOTE

Running this test destroys any text or key definitions which may have been
Stored in the 4027 memory.

An example of the display created by a successful TEST on the 4027 is shown Figure 5-3.

4027 PROGRAMMER'S @ 5-35

STATUS/INITIALIZATION
TEST COMMAND

4 141 TF 44
BRI Y PFRH IR % LB % L B W BES VUHENEC (R, —, /B1E34567T89: ; < = PEARBCIDEF GHIITKLIMNG

'é

— C [=

PORSTUWINX Y ZL .1 _ abcdef hi klmr\opqr‘:tu'awx z_l
mm wﬁ! mmmlmﬁmmmﬂ
4 141 77 44 SYSTEM ROM
CHECKSUMS
hd
B SR RAR B R H AR OO BRERES YR | CHENE T (R+, —, ~B1Z34S67T89: ; ¢ = - P@EBCDEF GHITKLIMNG |
THE 128 ASClI
CHARACTERS IN
PORSTUMWXYZL -1~ _"abcdefghi jk Imnoparstuswxyz{ J7% _SNOOPV MODE g
HH i HH - HR0 | 5 D | inbinininind P73 SR 9 SRRBR AN e | - ik HH HEEER |
CHARACTERS
ot
1 SSE-H | B | ik PP SBEEE Y SRR TR = || .
SEVEN)
]VISUAL
5 aee a'e ATTRIBUTES J
R e el et atba s e
CoO C1 C2 €3 C4 C5 Cs
(2656) 2657-6
,‘ V ‘ u
Figure 5-3. 4027 !TEST<CR> Results.
5-36 @ 4027 PROGRAMMER'S U

STATUS/INITIALIZATION
GTEST COMMAND

D

GTEST Command
The 4027's Graphics Memory can be tested by the command:
IGTEST<CR>
or
IGTE<CR>
causes the 4027 to test its graphic memory.

When this command is executed, the entire display list is erased and a 34-line monitor
window is created. The terminal then tests its graphic memory. After a delay of about 15
seconds while it performs the test, the terminal displays the test results in the monitor,
starting with font 1 and proceeding to font 31. If no RAM is installed for a particular
character set, the 4027 displays a “NO MEM” message. If RAM is installed, each
character is tested twice (each bit is tested for both 1 and 0). If the RAM passes the test,
the 4027 displays “OK" for each of these two tests. If the RAM for a particular character
set fails the test, the 4027 displays the “RAM ERROR” message and an error code for use
by Tektronix service personnel.

A sample display of a successful GTEST is shown in Figure 5-4.

D,

4027 PROGRAMMER'S @ 5-37

STATUS/INITIALIZATION U
GTEST COMMAND ‘
1 ROM FOINT— ROM Font 1 Enabled U
2 NO MEM RAM and ROM Not Enabled
3 ROM FOINT— Font 3 Enabled
4 NO MM J
g % MEM RAM and ROM Not Enabled
7 NO MEM
38 NO MM
3 NO MEM
18 NO MEM
11 NO MEM Y gam Not Enabled J
12 NO MEM
13 NO MEM
14 NO MEM
1S NO MEM U
16 0K)
17 OK
18 0K U
19 OK
28 0K
21 oK -
22 0K U
23 OK »———— RAM Fonts 16-31 Enabled
24 K and Functioning
25 0K .
26 K -/ U
27 oK
28 0K .
29 0K U
38 OK
31 OK)
TEST COMPLETE U
2657-7
Figure 5-4. 4027 |GTEST<CR> Results. U
5-38 @ 4027 PROGRAMMER’S U

C C C

6-0

COMMANDS DISCUSSED IN THIS SECTION:

Cursor Commands

Scrolling Commands

RDOWN (Roll Down) Command
RUP (Roll Up) Commandccoveveenniii ..

Additional Commands

BELL Command i,

>
%
w

——

C_

4027 PROGRAMMER'S

—

Section 6

CONTROLLING THE DISPLAY

Before information is displayed on the terminal screen, decisions must be made regarding
the set-up of the screen: how the screen’s 34-line display is to be divided between the
workspace window and the monitor window; which scroll is to receive text from the
computer and which from the keyboard; and margins and tab stops. The commands which
set these parameters are discussed in the System Status and Initialization section. We
assume here that these parameters have been set. Throughout this section we assume
the left workspace margin is set to column one.

THE CURSOR COMMANDS

Explanation of the 4027 will involve reference to three cursors. One, called the graphic
cursor or crosshair, is used in the creation of graphic displays and is discussed in the
Graphics section. This section will discuss only the other two cursors; the workspace
cursor and the monitor cursor. Only one of these is visible at a given time. Since, in either
window, the cursor indicates the position at which new information will be printed on the
screen, one may wish to change the cursor position at various times.

The programmer uses commands to position the cursor at a desired location. (The
operator may give these same commands from the keyboard or use the corresponding
keys.) The commands which affect the cursor position are the cursor commands (JUMP,
UP, DOWN, RIGHT, LEFT) and the tab commands (TAB, BACKTAB). In addition, even
though there is no “HOME” command corresponding to the HOME key, the JUMP
command can be used to simulate the action of the HOME key. (See discussion of the
JUMP command.)

NOTE

If a cursor movement command, tab command, or scrolling command is
typed on the keyboard and text from the keyboard is directed into the
monitor, execution of the command inserts a line just below the line on
which the command is typed.

4027 PROGRAMMER'S @

6-1

CONTROLLING THE DISPLAY
JUMP COMMAND

6-2

JUMP Command (Workspace only)

Syntax
IJUMp [<row>[<column>]]<CR>

where <row> is a positive integer, and <column> is a positive integer not greater than
80. If only one parameter is specified, it is assumed to be the <row> parameter. If neither
parameter is specified, both <row> and <column> default to one.

Action

This command positions the workspace cursor in the row and column of the workspace
designated by <row> and <column>, respectively.

Picture the workspace scroll as a long table with an indeterminate number of rows, each
row having 80 columns (Figure 6-1). The topmost row in the workspace, (whether it
contains text or is blank) is labeled row 1, the next row is row 2, and so forth. In each row,
columns are labeled column 1, column 2, .. ., 80. This establishes an absolute coordinate
system in the workspace scroll. Portions of this scroll may be visible in the workspace
window.

The JUMP command moves the workspace cursor to the specified row and column of the
workspace, expressed in absolute workspace coordinates. The destination of the cursor
does not depend on its current location. (This is in contrast to the other cursor movement
commands, whose parameters specify positions relative to the current cursor position.)

If the <row> parameter specifies a row of the workspace below the bottom of the
workspace window, the workspace rolls up and stops with the line containing the cursor
at the bottom of the window. If <row> exceeds the current number of lines in the
workspace, blank lines are created at the bottom of the workspace and the <row>-th row
is displayed as the last row in the workspace window.

If the <row> parameter specifies a row of the workspace above the top of the workspace

window, the workspace rolls down, stopping with the row containing the cursor at the top
of the window.

@ 4027 PROGRAMMER'S

CONTROLLING THE DISPLAY
JUMP COMMAND

fLine 1 O
Line 2

| WORKSPACE

(N,1) (N,80) WINDOW
Row N, Column 1 Row N, Column 80

2402-9

Figure 6-1. The Workspace Window and the Workspace Scroll.

NOTE

This command applies only, and always, to the workspace cursor. It is not
necessary for the workspace to receive text from the computer or the
keyboard for this command to move the workspace cursor. When the
workspace cursor next appears, it appears at the location specified in the
JUMP command (assuming no other instructions which affect the
workspace cursor location have been given to the terminal meanwhile).

4027 PROGRAMMER'S @ 6-3

CONTROLLING THE DISPLAY
JUMP COMMAND

Examples
1. The command
IJUM 3,10<CR>
moves the workspace cursor to row 3, column 10.
2. Either of the commands

IJUM 3<CR>
IJUM 3,1 <CR>

moves the workspace cursor to row 3, column 1.
3. Any one of the commands
IJUM<CR>
IJUM 1 <CR>
IJUM 1,1<CR>
moves the workspace cursor to row 1, column 1. Each of these commands is

equivalent to pressing the HOME key when the workspace cursor is visible and
the terminal is not in form fillout mode.

6-4 @ 4027 PROGRAMMER'S

CONTROLLING THE DISPLAY
UP COMMAND

UP Command

Syntax
IUP [<count>]<CR>

where <count> is a positive integer. If <count> is not specified, it defaults to one.

Action

This command is equivalent to pressing the up cursor key (pad key 8, marked 1)
<count> times.

This command can be used to move either the workspace cursor or the monitor cursor. If
the command is typed on the keyboard, it moves the cursor in that scroll which receives

text from the keyboard. If the command is sent from the computer, it moves the cursor in

that scroll which receives text from the computer.

Suppose text from the computer is printed in the workspace and the command
IUP <count><CR>

is sent from the computer. This command moves the workspace cursor up <count> lines
from its current position, leaving the column location unchanged.

If <count> is large enough to move the cursor to a line not visible in the workspace
window, the workspace rolls down so that the line which the cursor moves to is the top
line in the window. However, the cursor will not move past the first line of the workspace,
regardless of how large <count> is.

If text from the computer is printed in the monitor and this command is sent from the
computer, it has the same effect on the monitor cursor.

4027 PROGRAMMER'S @ 6-5

CONTROLLING THE DISPLAY
UP COMMAND

Examples

Suppose text from the computer is printed in the
workspace, with the cursor in line 23, column 5:

1. The command
JIUP 3<CR>

positions the cursor in line 20, column 5.

2. The subsequent command
IUP 7<CR>

causes the workspace to roll down and
positions the cursor in line 13, column 5.

(Line 1
Line 2

g

Line 20
Line 21
Line 22
Ling 23

e CURSORIN LINE 23,
{inead COLUMN 5

(Line 1
Line 2
Line 3

Line 20

Line 24
Line 25

Lines5————— AFTER !UP 3<CR>
Line 22 CURSOR IN LINE 20,
Line 23 COLUMN 5

Line 3

(Line 1 O
Line 2

Line_t

: COLUM
Line 20
Line 21

4027 PROGRAMMER'S

! AFTER IUP 7<CR>
14
Ling CURSOR IN LINE 13,

CONTROLLING THE DISPLAY
UP COMMAND

3. The subsequent command S —

)
AFTER |UP 13<CR>
CURSOR IN LINE 1,

COLUMN 5

'UP 13<CR>

rolls the workspace down, leaving the cursor
in column 5 of line 1. Since the workspace
will not scroll past the first line, the com-
mands

'UP 14<CR>
IUP 15<CR>

each have the same effect.

4027 PROGRAMMER'S @ 6-7

CONTROLLING THE DISPLAY
DOWN COMMAND

6-8

DOWN Command
Syntax
IDOWn [<count>]<CR>

where <count> is a positive integer. If <count> is not specified, it defaults to one.

Action

This command is equivalent to pressing the down cursor key (pad key 2, marked |)
<count> times.

This command can be used to move either the workspace cursor or the monitor cursor. If
the command is typed on the keyboard, it moves the cursor in that scroll which receives
text from the keyboard. If the command is sent from the computer, it moves the cursor in
that scroll which receives text from the computer.

Suppose text from the computer is printed in the workspace and the command
IDOW <count> <CR>

is sent from the computer. This command moves the workspace cursor down <count>
lines from its current position, leaving the column location unchanged.

If <count> is large enough to move the cursor to a line not visible in the workspace
window, the workspace rolls up until the line which the cursor moves to is at the bottom of
the window. If <count> is large enough to move the cursor past the last line in the
workspace, enough blank lines are created at the bottom of the workspace to
accommodate this command.

If text from the computer is printed in the monitor and this command is sent from the
computer, it has the same effect on the monitor cursor.

Pressing the LINE FEED key <count> times has the same effect on the cursor. Pressing
this key also generates the ASCII Line Feed character, while pressing the down cursor
key does not.

@ 4027 PROGRAMMER’S

Examples

Suppose a workspace window of ten lines is
defined, and the workspace contains 20 lines of text
(some of which may be blank). Suppose also that
line 1 is the top line in the workspace window and
the cursorisin line 1, column 6.

~ 1. The command

'DOW 8<CR>

moves the cursor down eight lines to line 9,
column 6. No roll up occurs.

2. The subsequent command

'DOW 5<CR>

moves the cursor to line 14, column 6; the
workspace rolls up four lines.

3. The subsequent command

'IDOW 10<CR>

adds four blank lines at the bottom of the
workspace and rolls the workspace up 10
lines. The cursor stops in the last blank line
created, at the bottom of the workspace

window.

4027 PROGRAMMER'S

CONTROLLING THE DISPLAY
DOWN COMMAND

)
— CURSORINLINE 1,
COLUMN 6

Line |
Line 2

Line 3

Line 10

Lnn.e 9 J

Line 19
Line 20 D

Line 1
Line 2
Line 3

. AFTER !DOW 8 <CR>

: / CURSOR IN LINE 9,
Line g COLUMN 6

Line 10

Line 19
Line 20 ’)

Line 1 \)
Line 2

AFTER !DOW 5<CR>
-~ CURSORIN LINE 14,
COLUMN 6

Line 19
Line 20 ’)

(Line 1)
Line 2

Line 3

Line 15

Line 20

Line 21 (blank)

Line 22 (blank) AFTER 'DOW 10<CR>
Line 23 (blank) // CURSOR IN LINE 24,
Line 24 (blank) COLUMN 6

L eem

6-9

CONTROLLING THE DISPLAY
RIGHT COMMAND

RIGHT Command

Syntax
IRIGht [<count>]<CR>

where <count> is a positive integer. If <count> is not specified, it defaults to one.

Action

This command is equivalent to pressing the right cursor key (pad key 6, marked —)
<count> times.

This command can be used to move either the workspace cursor or the monitor cursor. If
the command is typed on the keyboard, it moves the cursor in that scroll which receives
text from the keyboard. If the command is sent from the computer, it moves the cursor in
that scroll which receives text from the computer.

Suppose text from the computer is printed in the workspace and the command
IRIG <count><CR>

is sent from the computer. This command moves the workspace cursor <count>
columns to the right.

If <count> is large enough to move the cursor beyond column 80, the cursor wraps
around to the left margin of the next line and continues moving right a total of <count>
columns. If this action requires the cursor to move to a line which is not visible in the
workspace window, the workspace rolls up so that the line in which the cursor stops is
the bottom line in the window. If this command requires the cursor to move beyond the
last line of the workspace, enough blank lines are created at the bottom of the scroll to
accommodate this command.

If text from the computer is printed in the monitor and this command is sent from the
computer, it has the same effect on the monitor cursor.

6-10 @ 4027 PROGRAMMER'’S

Example

Suppose there is a workspace window of ten lines,
with ten lines of text in this window. The left margin
is set at column 1 and the cursor is in column 1 of

line 8.

1. The command
IRIG 7<CR>

moves the cursor right seven columns to
column 8 of line 8.

2. The subsequent command
IRIG 153<CR>

moves the cursor through the remaining 73
columns of line 8 to column 1 of line 9, then
through the 80 columns of line 9 to column 1
of line 10. No roll up occurs.

3. The subsequent command
IRIG 167 <CR>

moves the cursor through the 80 columns of
line 10, creates a blank line 11 and moves
the cursor through the 80 columns of line
11, creates a blank line 12 and moves the
cursor through seven columns to column 8
of line 12. The workspace rolls up to display
line 12 as the last line in the workspace
window.

4027 PROGRAMMER'’S @

CONTROLLING THE DISPLAY
RIGHT COMMAND

Line 1
Line 2

€8 CURSORINLINES,
ine 9 COLUMN 1
Line 10

Line 1
Line 2

N AFTER IRIG 7<CR>
Line8 . """ CURSOR INLINE 8,
Line 9 COLUMN 8

AFTER !RIG 153<CR>
CURSOR IN LINE 10,
COLUMN 1

Line 1
Line 2

Line 3
Line 4

Line 9
Line 10 AFTER IRIG 167 <CR>
Line 11 (blank) " CURSOR IN LINE 12,

Line 12 (blank) - COLUMN 8

6-11

CONTROLLING THE DISPLAY
LEFT COMMAND

LEFT Command
Syntax
ILEFt [<count>]<CR>

where <count> is a positive integer. If <count> is not specified, it defaults to one.

Action

This command is equivalent to pressing the left cursor key (pad key 4, marked <)
<count> times.

This command can be used to move either the workspace cursor or the monitor cursor. If
the command is typed on the keyboard, it moves the cursor in that scroll which receives
text from the keyboard. If the command is sent from the computer, it moves the cursor in
that scroll which receives text from the computer.

Suppose text from the computer is printed in the workspace and the command
ILEF <count><CR>

is sent from the computer. This command moves the workspace cursor <count>
columns to the left.

If <count> is large enough to move the cursor to the left of the left margin, the cursor
wraps around to column 80 of the preceding line and continues moving left a total of
<count> columns. If this action requires the cursor to move to a line which is not visible
in the workspace window, the workspace rolls down so that the cursor stops in the top
line of the window. However, the cursor will not move above the first line in the workspace.
Thus this command does not insert blank lines at the top of the workspace.

If text from the computer is printed in the monitor and this command is sent from the
computer, it has the same effect on the monitor cursor.

6-12 @ 4027 PROGRAMMER'S

Examples

Suppose a workspace is defined and the cursor is
visible in column 10 of line 6.

. The command

ILEF 9<CR>

moves the cursor to column | of line 6.

. The subsequent command

ILEF 150<CR>

moves the cursor through the 80 columns in
line 5, rolls down the workspace to display
line 4, and moves the cursor through the
rightmost 70 columns in line 4. The cursor
stops in column 11 of line 4.

. The subsequent command

ILEF 300<CR>

moves the cursor through the leftmost ten
columns in line 4, then through the 80
columns in each of lines 3, 2, and 1, rolling
the workspace down to display these lines.
The cursor stops at column 1 of line 1.

4027 PROGRAMMER’S @

CONTROLLING THE DISPLAY
LEFT COMMAND

Line 1)
Line 2

____CURSORINLINE 6,
COLUMN 10

Line 1
Line 2

Line 5
ine 6
S AFTERILEF9<CR>

: CURSOR IN LINE 6,
COLUMN

(Line 1

e

V®=—— AFTER!LEF 150<CR>
CURSOR IN LINE 4,
COLUMN 11

ipe i
kinez TS
Line 3

— AFTER !LEF 300 <CR>
CURSOR IN LINE 1,
COLUMN 1

6-13

CONTROLLING THE DISPLAY
TAB COMMAND

THE TAB COMMANDS
TAB Command

Syntax
ITAB [<count>]<CR>

where <count> is a positive integer. If <count> is not specified, it defaults to one.

Action
This command is equivalent to pressing the TAB key <count> times.

This command can be used to move either the workspace cursor or the monitor cursor. If
the command is typed on the keyboard, it moves the cursor in that scroll which receives

text from the keyboard. If the command is sent from the computer, it moves the cursor in

that scroll which receives text from the computer.

Suppose text from the computer is printed in the workspace and the command
ITAB <count> <CR>

is sent from the computer. This command moves the workspace cursor <count> tab
stops to the right. If there are no tab stops defined to the right of the current cursor
position, the next tab moves the cursor to the beginning of the next line. Thus if <count>
is large enough to move the cursor past the last tab stop in a line, the cursor jumps to
column 1 of the next line and continues tabbing a total of <count> stops. Each skip to
the next line, as well as each skip to the next tab stop in a line, accounts for one of the
<count> tabs. If <count> is large enough to move the cursor below the bottom of the
workspace window, roll up occurs.

If <count> is large enough to move the cursor past the last line in the workspace,
enough blank lines are created at the bottom of the workspace to accommodate the
command.

If the text from the computer is printed in the monitor and this command is sent from the
computer, it has the same effect on the monitor cursor.

@ 4027 PROGRAMMER'S

‘

"

Examples

Suppose there is a workspace window of ten lines,
with tab stops in columns 10, 20, and 30, and the
cursorisinline 9, column 1.

1. The command
ITAB4<CR>

moves the cursor to the three stops in line 9
and then to column 1 of line 10.

2. The subsequent command
ITAB 17 <CR>

moves the cursor to column 10 (the first
stop) in line 14. The first 16 tabs move the
cursor through lines 10, 11,12, and 13, to
column 1 of line 14; the final tab moves the
cursor from column 1 of line 14 to the first
tab stop inline 14.

NOTE

CONTROLLING THE DISPLAY
TAB COMMAND

Line 1
Line 2

ine 9 _____CURSORINLINE 9,
tine 10 COLUMN 1

TAB STOPS IN COLUMNS
10, 20, AND 30

_AFTER ITAB 4<CR>
__— CURSOR IN LINE 10,
- COLUMN 1

(Line 1)

Line 2

Line 5 4
Line 10

Line 11 (blank)

Line 12 (blank) AFTER !TAB 17 <CR>

Line 13 (blank) CURSOR IN LINE 14,
Line 14 (bjank) COLUMN 10

The TAB command, like the TAB key, performs a different action when the
4027 is in form fillout mode. See the Forms and Form Fillout section for

details.

4027 PROGRAMMER'S @

6-15

CONTROLLING THE DISPLAY
BACKTAB COMMAND

6-16

BACKTAB Command
Syntax
IBACktab [<count>]<CR>

where <count> is a positive integer. If <count> is not specified, it defaults to one.

Action

This command is equivalent to pressing the BACKTAB key (SHIFT-BACKSPACE)
<count> times.

This command can be used to move either the workspace cursor or the monitor cursor. If
the command is typed on the keyboard, it moves the cursor in that scroll which receives
text from the keyboard. If the command is sent from the computer, it moves the cursor in
that scroll which receives text from the computer.

Suppose text from the computer is printed in the workspace and the command
IBAC <count><CR>

is sent from the computer. This command moves the workspace cursor <count> tab
stops to the left. Each backtab moves the cursor one tab stop to the left, or to the left
margin if there are no tab stops to the left of the cursor position. The cursor does not
move to a preceding line of text, regardless of how large <count> is, but “sticks” at the
left margin of the current line.

If text from the computer is printed in the monitor and this command is sent from the
computer, it has the same effect on the monitor cursor.

@ 4027 PROGRAMMER'S

Examples

Suppose tab stops are set at columns 10, 20, 30,
and 40 and the cursor is in column 35.

1. The command
IBAC<CR>

moves the cursor left one stop to column 30
of the current line.

2. Any of the subsequent commands

'BAC 3<CR>
IBAC 4<CR>

moves the cursor to column 1 of the current
line.

NOTE

CONTROLLING THE DISPLAY
BACKTAB COMMAND

AB STOPS IN COL
10,20,30, AND 4

CURSOR IN LINE N,
COLUMN 35

UM

AFTER !BAC <CR>
CURSOR IN LINE N,
COLUMN 30

AFTER I|BAC 3<CR>,
!BAC 4<CR>, ETC.
CURSORIN LINE N,

COLUMN 1

The BACKTAB command, like the BACKTAB key, performs a different
action when the 4027 is in form fillout mode. See the Forms and Form

Fillout section for details.

4027 PROGRAMMER'S @

6-17

CONTROLLING THE DISPLAY
RUP COMMAND

6-18

THE SCROLLING COMMANDS
RUP (Roll Up) Command
Syntax

IRUP [<count>]<CR>

where <count> is a positive integer. If <count> is not specified, it defaults to one.

Action

This command is equivalent to pressing the up scrolling key (pad key 7, marked A)
<count> times.

This command rolls up the current scroll (workspace or monitor) <count> lines, or until
the last line of the scroll is visible at the bottom of the window. This command does not
create blank lines at the end of the scroll. If <count> is larger than the number of lines
remaining in the scroll, the scroll rolls up until the last line of the scroll is visible in the
window, then stops.

When the scroll rolls up, the cursor moves with it, remaining in the same line of text, at the
same column position, as long as that line of text remains visible. If that line of text passes
out of the window, the cursor ‘“sticks” at the top of the window, with the column position
unchanged.

Examples

Suppose a workspace window of ten lines is
defined, the workspace scroll contains 30 lines, and
the cursor isin line 9, column 5.

CURSORIN LINE 9,
COLUMN 5

Line 29
Line 30 ’)

@ 4027 PROGRAMMER'S

1. The command
IRUP 8<CR>

leaves line 9 at the top of the workspace,
with the cursorin line 9, column 5.

2. The subsequent command
'RUP 10<CR>

leaves line 19 at the top of the workspace

window, with the cursor in line 19, column 5.

3. Any of the subsequent commands

'RUP 2<CR>
'RUP 3<CR>

leaves line 30 at the bottom of the work-
space window, with the cursor in line 21,
column 5.

4027 PROGRAMMER’S @

CONTROLLING THE DISPLAY
RUP COMMAND

(Line 1 D
Line 2

Line8

/———x
[incads——————_ AFTER IRUP 8<CR>
ing CURSOR IN LINE 9, COLUMN 5

AT TOP OF WORKSPACE WINDOW

Line 17
Line 18

-

Line 29
Line 30 /)

(Line 1 O
Line 2

Line 3

Line1

Line 20 — AFTER !RUP 10<CR>

CURSOR IN LINE 19, COLUMN 5
AT TOP OF WORKSPACE WINDOW

Line 27
Line 28

Line 1
Line 2

|

Ling21
Line22

~—— AFTER !RUP 2<CR>,

'RUP 3<CR>, ETC.
CURSOR IN LINE 21, COLUMN 5
AT TOP OF WORKSPACE WINDOW

Line 29
Line 30

6-19

CONTROLLING THE DISPLAY
RDOWN COMMAND

6-20

RDOWN (ROLL DOWN) Command
Syntax
IRDOwn [<count>]<CR>

where <count> is a positive integer. If <count> is not specified, it defaults to one.

Action

This command rolls down the current scroll (workspace or monitor) <count> lines, or
until the first line of the scroll is at the top of the window. The RDOWN command cannot
be used to insert blank lines at the top of the workspace.

Giving this command is equivalent to pressing the down scrolling key (pad key 1, marked
V) <count> times.

When the current scroll rolls down, the cursor moves with it, remaining at the same row
and column position as long as that position is visible in the window. If that position
passes out of the window, the cursor “‘sticks” at the bottom line of the window, with the
column position remaining unchanged.

Examples (Line 1 D

Line 2

Suppose a workspace window of ten lines is
defined, with a workspace scroll of 30 lines and the
cursor positioned in line 21, column 5.

Line21
Line 22

———— CURSOR

Line 29
Line 30

@ 4027 PROGRAMMER'’S

1. The command
'IRDO 9<CR>

rolls the workspace down 9 lines, leaving the
cursor still positioned in line 21, column 5.

2. The subsequent command
'RDO 6<CR>

rolls the workspace down an additional six
lines, leaving the cursor in line 15, column 5,
at the bottom of the window.

3. Any of the subsequent commands

'RDO 5<CR>
'RDO 6<CR>
'RDO 7<CR>

rolls the workspace down five lines, with the
cursor in line 10, column 5, at the bottom of
the window.

4027 PROGRAMMER'S @

CONTROLLING THE DISPLAY
RDOWN COMMAND

Line 1 \)
Line 2

Line 12
Line 13

~___AFTER!RDO9 <CR>
Line 20 / CURSOR IN LINE 21, COLUMN 5
AT BOTTOM OF WORKSPACE WINDOW

Line 29
Line 30 ')

ﬁme 1 \)
Line 2

Line 6
Line 7

. AFTER!RDO 6<CR>
Line 14 CURSOR IN LINE 15, COLUMN 5
J Line 15 AT BOTTOM OF WORKSPACE WINDOW
-

Line 29
Line 30 ’)

Line 1
Line 2

____ AFTER!RDO5<CR>,
: / IRDO 6<CR>, ETC.
Lines /| CURSORIN LINE 10, COLUMN 5
Line_10 | AT BOTTOM OF WORKSPACE WINDOW

Line 29
Line 30 ’)

6-21

CONTROLLING THE DISPLAY
ERASE COMMAND

6-22

ADDITIONAL COMMANDS
ERASE Command
Syntax

IERAse [Workspace | Monitor] <CR>

Action

This command erases the specified scroll. The entire scroll, not just the portion visible in
the window, is erased. If text is currently directed into that scroll, the cursor quickly
reappears in the home position (line 1, column 1, in the upper left corner) of the window. If
text is not currently directed into that scroll, the next time that cursor appears, it appears
in the home position. This command does not affect the size of the workspace and
monitor windows.

If no parameter is specified, the source of the command determines which scroll is
erased. If the commmand is sent from the computer and no parameter is specified, the
scroll which receives text from the computer is erased. If the command is typed on the
keyboard and no parameter is specified, the scroll which receives text from the keyboard
is erased.

Examples
1. 'lERA W<CR> Erases the workspace scroll and returns the workspace
cursor to the home position. This destroys any graphic area
which has been defined.
2. |[ERA M<CR> Erases the monitor scroll and returns the monitor cursor to
the home position.
3. [ERA<CR> If sent from the computer, this command erases whichever

scroll receives text from the computer.

If typed on the keyboard, this command erases whichever
scroll receives text from the keyboard.

NOTE

The ERASE command can also be used to erase the contents of a
graphics region in the workspace by entering the command 'ERA

G< CR>. See the Graphics section for details.

,
‘) ‘

@ 4027 PROGRAMMER'S

CONTROLLING THE DISPLAY
BELL COMMAND

BELL Command
The 4027 contains a bell. This bell sounds automatically when certain conditions occur;
for example, the bell rings if the operator types beyond the right margin, or if an attempt is
made to enter a character in a protected field when the terminal is in form fillout mode.
The programmer may wish to sound the 4027 bell at various times during an applications
program — perhaps to remind the operator to enter data, or to press a function key. The
BELL command is used for this purpose.
Syntax

'BELI<CR>

or

'BEL<CR>

Action

This command sounds the 4027 bell. The bell also sounds when the ASCII BEL character,
CTRL-G, is sent to the terminal.

4027 PROGRAMMER'S @ 6-23

C C C

e

COMMANDS DISCUSSED IN THIS SECTION:

Color Commands

COLOR COMMANAS .« . oot ettt et e e e e e e e e et 7-2

MAP COMMANG . .ottt ettt 7-3

MIX COMMANG . . ettt e e e e ettt e et 7-7

PATTERN COmMMAand . ..ottt e e e e e e aa 7-8

RMAP COmMMANG. .o\ttt et e e e e e 7-5
o/
U/

@ 4027 PROGRAMMER'S

Section 7

4027 COLOR COMMANDS

The 4027 has a palette of 64 distinct colors. Of these 64, eight may be selected at any
one time to create graphics, to develop unique symbols and patterns, and to assign colors
(visual attributes) to the character fonts. These eight colors are assigned color numbers
CO, C1, ..., C7, respectively. This section explores the commands used to select and
invoke the various colors and how patterns may be created.

Appendix A, the Tektronix Color Standard, should be reviewed before using the
commands discussed in this section. The Tektronix 4027 Color Standard is a model used
to explain the relationship between hue, lightness, and saturation and how they are used
to achieve a particular color.

THE COLOR COMMANDS

There are five commands which control the selection and assignment of color on the
display. The COLOR command is used to assign one of the eight color numbers (CO-C7)
or one of 120 possible patterns (PO-P119) to be used in any subsequent graphic
displays. The MAP, RMAP, and MIX commands are used to determine which of the 64
possible colors will be assigned to the eight color numbers. The PATTERN command is
used to define any of 120 patterns. Each of these commands will be discussed in turn.

4027 PROGRAMMER’S @

7-1

COLOR COMMANDS
COLOR COMMAND

7-2

COLOR Command

The COLOR command is used to designate the color of subsequent graphics.

Syntax

ICOLor <vector color no.>/<vector pattern no.>[<boundary color
no.>/<boundary pattern no.>]<CR>

where

<vector color number> is one of CO, C1, ..., C7.

<vector pattern no.> is one of PO, P1,...,P119.
<boundary color no.> is one of CO, C1, ..., C7.

<boundary pattern no.> is one of PO, P1,..., P119.

Action

The first parameter (<vector color no.>/<vector pattern no.>) specifies the color or
pattern which will be used to draw subsequent vectors or fill subsequent polygons. If a
boundary color or pattern is required, then the second parameter (<boundary color
no.>/<boundary pattern no.>) is given. The boundary parameter is optional. If no color
command is given, the default color for subsequent vectors and polygons is CO (default
white). Valid colors for both vectors and boundaries are CO-C7 and PO-P119.

Examples
ICOLor C1 <CR>

All vectors and polygons will be color C1 (default color red).
ICOLC1 C2<CR>

All vectors and polygons will be color C1 (default color red) and the polygons will have a
boundary color C2 (default color green).

ICOL P1<CR>
All vectors and polygons will be pattern P1.

ICOL P1 C4<CR>

All vectors and polygons will be drawn in pattern P1. The polygons will have a boundary
of color C4. Pattern P1 must be defined by the PATTERN command prior to its use in a
COLOR command. Refer to the PATTERN command described later in this section.

@ 4027 PROGRAMMER'S

=

COLOR COMMANDS
MAP COMMAND

MAP Command

The 4027 provides a selection of 64 possible colors of which eight (CO-C7) may be
designated at any one time. If colors other than the eight default colors are desired, the
MAP command may be used to set the hue, lightness, and saturation to redefine any of
the eight color numbers. If a MAP command is not given, default colors for CO-C7 are
white, red, green, blue, yellow, cyan, magenta, and black, respectively.

Syntax

IMAP <Cn> <hue angle> <lightness> <saturation> <CR>
where

<Cn> is one of eight color numbers (CO-C7).
<hue angle> is an integer from 0 to 360.

<lightness> and <saturation> are integers from 0 to 100.

NOTE

Refer to Appendix A for further information on the Tektronix 4027 Color
Standard.

Action
The <Cn> indicates which of the eight color numbers (C0O-C7) is being MAPped.

<Hue angle> is a gradation of color measured around a circle as an angle from 0 to 360
degrees. Referring to the color cone in Appendix A, observe that a <hue angle> of O
degrees always specifies one of several shades of blue, 60 degrees magenta, 120
degrees red, 180 degrees yellow, 240 degrees green, and-300 degrees cyan (360
degrees = O degrees). If a <hue angle> is given between two of these angles, an
intermediate color is produced. For example, specifying a <hue angle> between 0 and
60 gives a color between blue and magenta.

The <lightness> and <saturation> parameters determine which shade of the given hue
will be produced by a given <hue angle>. Again referring to the color cone in Appendix
A, notice that <lightness> is expressed as a value between 0 percent (black) at the
bottom of the cone and 100 percent (white) at the top. This means that any of the colors

4027 PROGRAMMER'S @ 7-3

COLOR COMMANDS
MAP COMMAND

selected by the <hue angle> parameter will be shaded according to the value given by
the <lightness> parameter. In addition, if the value of <lightness> is O percent, the
color produced will be black regardless of the <hue angle> or <saturation>.
Conversely, a <lightness> value of 100 percent always produces white.

The third parameter of the MAP command, <saturation>, sets the amount of gray to be
contained at a given <hue angle> and <lightness>. As the saturation approaches 100
percent, less gray is added and a purer hue is produced.

NOTE

Small changes in any of the HLS parameters may not produce a change in
the MAPped color. For example, if the < hue angle> of 120 degrees, which
produces red, is changed to 125 degrees, the red hue is still produced. The
same is true for small changes in the <lightness> and < saturation>
parameters. A total of 64 colors can be displayed. Each of these is
invariant over a finite range in each parameter.

The SYSTAT message displays the HLS (hue, lightness, saturation) parameters assigned
to each of the colors C0-C7, along with a color sample. All colors return to their default
parameters when the 4027 is powered off or RESET.

The default colors for CO-C7 and their respective default parameters are as follows:

CO (white) — 0,100,100
C1 (red) — 120,50,100

C2 (green) — 240,50,100
C3 (blue) — 0,50,100

C4 (yellow) — 180,50,100
C5 (cyan) — 300,50,100
C6 (magenta) — 60,50,100
C7 (black) — 0,0,100

Examples

IMAP C1 0,50,100<CR> Sets <color number> C1 (default red) to a <hue
angle> of O degrees (blue), a <lightness> of 50%,
and <saturation> of 100%. Color number C1 is
then blue.

IMAP C4 240,50,50<CR> Sets <color number> C4 (default yellow) to a
<hue angle> of 240 degrees, <lightness> of 50%,
and <saturation> of 50%. Color number C4 is then
green.

7-4 @ 4027 PROGRAMMER'S

COLOR COMMANDS
RMAP COMMAND

RMAP (Relative MAP) Command
The RMAP command changes a color’s HLS parameters by amounts specified relative to
the current HLS parameters.
Syntax
IRMAp <Cn> <hue angle> <lightness> <saturation><CR>
where

<Cn> is one of the color numbers CO, C1, ... C7.
<hue angle> is a positive or negative integer from 0 to 360.

<lightness> and <saturation> are positive or negative integers from 0 to 100.

Action

<Cn> is the color number to be redefined. The color may be redefined by changing the
<hue angle> a number of degrees or by changing the <lightness> or <saturation> a
given percentage. Any or all of the parameters may be changed in an RMAP command. If
zero (0) is entered for any of the parameters, then no change is made to that parameter.

NOTE

Small changes in the HLS parameters may not produce a visible change in
the displayed color. Refer to Appendix A for further information.

When a SYSTAT command is given, it will display the RMAPped color and the current
HLS parameters for that color. When the 4027 is powered off or RESET, all eight colors
return to their default values.

4027 PROGRAMMER'S @ 7-5

COLOR COMMANDS
RMAP COMMAND

7-6

The default colors for CO-C7 and their respective default parameters are as follows:

CO (white) — 0,100,100
C1 (red) — 120,50,100

C2 (green) — 240,50,100
C3 (blue) — 0,50,100

C4 (yellow) — 180,50,100
C5 (cyan) — 300,50,100
C6 (magenta) — 60,50,100
C7 (black) — 0,0,100

Examples
IRMAP C1 0,10,0<CR>

C1 has default HLS parameters 120, 50, 100. By entering the command above, the
<lightness> is changed 10 percent. The new HLS parameters for C1 are then
120,60,100. Notice that since 0 was entered for the <hue angle> and <saturation>
parameters, <hue angle> and <saturation> are not changed. The revised parameters
and a color sample will appear when a new SYSTAT message is displayed.

IRMAP C2 30,—25,—50<CR>
C2 has default HLS parameters of 240,50,100. This command will change the <hue

angle> from 240 to 270 degrees, the <lightness> from 50 to 25 percent, and the
<saturation> from 100 to 50 percent.

@ 4027 PROGRAMMER'S

COLOR COMMANDS
MIX COMMAND

MIX Command

The MIX command provides an alternative to the MAP and RMAP methods of defining the
color assigned to a given color number. The MIX command combines proportionate
amounts of red, green, and blue to create one of the 64 possible colors.

Syntax

IMIX <Cn> <red> <green> <blue><CR>
where

<Cn> is one of the eight color numbers CO-C7.
<red>, <green>, and <blue> are positive integers from 0 to 100.

Action

This command redefines the color Cn by mixing the basic colors of red, green, and blue.
The <red>, <green>, and <blue> parameters specify the amount of the corresponding
colors to be MIXed, in percentages of full intensity. Small changes in the percentages of
<red>, <green>, or <blue> may not cause the displayed color to change.

If a SYSTAT message is displayed, it will show the newly MIXed color but the HLS
parameters will be shown as 0,0,0.

Examples
IMIX C2 25,0,100<CR>

Color C2 will have a <red> component which is 25 percent of its full intensity, no
<green> component, and a <blue> component which is 100 percent of its full intensity.

IMIX C20,0,0<CR>
Color C2 is a mixture of red — 0%, green — 0%, blue — 0%. With this mixture, C2 is black.
IMIX C2 100,100,100<CR>

Color C2 is a mixture of red — 100%, green — 100%, blue — 100%. With this mixture, C2
is white.

MIX C3 50,50,0<CR>

Color C3 will have: <red> and <green> components which are both 50 percent of their
full intensity, and zero <blue> component.

4027 PROGRAMMER'S @ 7-7

COLOR COMMANDS
PATTERN COMMAND

PATTERN Command

The PATTERN command is used to define a colored pattern for use in vector drawing,
polygon filling, and so forth. The 4027 can have 120 user-defined patterns in its memory
at any one time.

Syntax

IPATtern <Pn> [<background COL>] <foreground COL> [<value 1>]...
[<value 14>] [<foreground color>[<value 1>]...[<value 14>]]..<CR>

where

<Pn> isoneof PO, P1,...,P119.

<background COL >, <foreground COL>, and all occurrences of <foreground
color> are chosen from CO, C1, ..., C7.

All <value i> parameters are integers from O to 255. If less than 14 <value i>
parameters are specified, the omitted ones default to zero.

Action

The pattern Pn is defined by setting the color of each dot in a color cell. If two colors are
given, the first is the <background color>, and the remainder of the command consists of
groups that specify a <foreground color> and the dots that are to be made that color.
Once a <foreground color> is set, all the dots which are designated by the following
<value number> will be made that color. Sets of dots within each row may be set to
different colors by giving additional <foreground colors> and specifying the dots to be
made that color by giving additional <value numbers>. In this manner, it is possible to
have each of the eight dots in each row be an individual color.

The dots which are turned on to create the pattern are set by giving a <value number>
which is an integer between 0 and 255. <value numbers> are decimal equivalents of
binary numbers and are assigned for each of the 14 rows of the color cell. If a <value
number> 0 or no <value> is given for any row, the <background color> is displayed.

Examples

!PATtern PO C2 C3 0,0,0,0,60,60,60,60,60,60,0,0,0,0<CR>
Pattern PO will have a <background color> C2, which will be the color for all of the rows
which have a <value> of 0. Rows 5 through 10, which are given a <value> of 60, will

have some of their dots turned on in the <foreground color> (C3) as shown. The j
rest of their dots will be color C2. .

7-8 @ 4027 PROGRAMMER'S

COLOR COMMANDS
PATTERN COMMAND

A USER DEFINED PATTERN
Eight-Bit Pattern Within
Integer Binary Equivalent One Color Cell
o] 0|0|0/0O(0O|0O(0O|O
o] 0/0/0|0|0|0(0|O
0 0|0|0|0|0O|0O(0O|O
o] o|0|0|O(O|0O(O|O
60 0|0|1|1(1|1]|0|0
60 o(o|1|1|1[1|0(0O
60 o|o(1|1[1|1|/0(0O
60 o[o[1[1[1][1]0]0
60 0|0(1|1|1|{1/0|0
60 0|0({1|1|1]|1/0|0
0 0/0({0/0|0|0|0O|O
0 0|0|0|0[{0(0|O|0O
0] 0|0|0|0|0(0O|0O|O
0] 0/0|/0|{0|0({0|0|0O E:
Foreground Background
2657-8 Color Color

'PATP1C1C37,7,7,7,7,7,7,7,7,7,7,7,7,7 C2
24,24,24,24,24,24,24,24,24,24,24,24 2424 <CR>

Pattern P1 will have a <background color> C1 (default red) which will fill the dots not
designated by the <foreground COL> parameter. The rightmost three columns of the
color cell are displayed in color C3 (default blue). Columns four and five (counting from
the right) are displayed in color C2 (default green). The remaining columns have not been
designated by this command and will therefore appear in the <background color> C1.

Notice that when a new <foreground color> is given, a <value number> is given for
each row, starting at row one (the topmost row). The illustration below shows the integers
used, the eight-bit binary equivalent, and the pattern.

A USER DEFINED PATTERN

Color 1 Color 2 Color 3
(<Background>)
No Integers Eight-Bit
Assigned Integer Integer Binary Equivalent Pattern

- 24
- 24
- 24
- 24
- 24
- 24
- 24
- 24
- 24
- 24
= 24
— 24
- 24
— 24

0

O|O(0|0|0|0|0O|O|0|0O|0O|0|0|0
O|0O|0|0|0|0O(0O|0|0|0O|0|0O|0
O|O|0|0|0|O|0O|O|0|O|0O|0|0 |0
) Y [[()) P R S) B [(P
b f ot | o [b | [| ot [| [|t | b b |
b || it | b |t | ot | ot [t | ot [t | s [ot | et [e
JEP) [P (DY) [P [D)) [) Y (PG [P Y
JFY [P (D) [N S) () EEFY [P R) [P P Y

NNSNNSNSNSNSNSNSNSNSNSNSN

BINARY BINARY
00011000 00000111

2657-9

4027 PROGRAMMER'S @ 7-9

C C C

8-0

COMMANDS DISCUSSED !N THIS SECTION.:

Graphic Commands

CIRCLE Commando e 8-19
DISABLE Command. 8-6
ENABLE Commandot 8-4
ERASE G Command 8-26
GRAPHIC Commandt 8-2
INK ComMmMand . ..o e e e e 8-22
LINE Command e e 8-11
PIE COmMmMaNd ... oottt e 8-16
POLYGON Commandt e e e 8-12
RPOLYGON (Relative Polygon) Command. ..., 8-14
RVECTOR (Relative Vector) Commandoovuieiiniiaien. 8-9
SHRINK COmMMaNG.ottt e e e e e e 8-28
STRING Command.o e 8-24
VECTOR Commandottt e e e e 8-7
Alternate Character Fonts
DFONT (Delete Font) Command. e 8-38
FONT Commandt e e e e 8-37
SYMBOL COMMANT. . ..ottt e e e e 8-35
@ 4027 PROGRAMMER'S

C

C

\

(—

C C T -

[G

e

| G

. - o

Section 8

D

GRAPHICS

The 4027 has extensive color graphics capability. It can draw several styles of vectors
(line segments), intermix graphics with text and forms, and store special purpose
character fonts defined by the user. The 4027 can also draw circles, pies (filled circles),
and polygons. All these features include color capability.

THE GRAPHIC COMMANDS

This section contains a discussion of each of these commands, in the order in which they

1 3 3O 33 33313 3O O3 33O 34

ﬁ are listed:
ﬂ ® Graphic ® Circle
@ Enable ® Ink
® Disable ® String
n ® Vector ® Erase G
® RVector ® Shrink
® Line ® Symbol
ﬂ ® Poly ® Font
¢ RPoly ® DFont
ﬂ ® Pie
)
4027 PROGRAMMER'S @

—

There are seventeen commands designed for creating color graphic displays on the 4027.

GRAPHICS
GRAPHIC COMMAND

8-2

GRAPHIC Command
Graphics are displayed in the 4027 workspace. Before this can be done, the workspace

must be prepared to display graphs by defining a graphic region. The GRAPHIC command
is used for this purpose.

Syntax

IGRAphic <beg row> <end row>[<beg col>[<end col>]]<CR>
where all parameters are positive integers designating rows and columns in absolute
workspace coordinates. Thus <beg row> must be less than <end row>, <beg col>
must be less than <end col>, and <end col> must be less than or equal to 80. Also,

<end row> must not exceed <beg row> by more than 53 rows. The default values of
<beg col> and <end col> are 1 and 80, respectively.

Action

This command defines a graphic region in the 4027 workspace and erases all information
currently stored in this region. The graphic region thus defined consists of rows <beg
row> through <end row>, and columns <beg col> through <end col> in each of these
rows.

Examples

'GRAphic 1,33<CR>

Creates a graphic region in the workspace containing columns 1 through 80 of rows 1
through 33.

IGRA 1,33,30<CR>

Creates a graphic region in the workspace containing columns 30 through 80 of rows 1
through 33.

The structure of a graphic region is best illustrated by an example. The command
IGRA 10,19,20,49<CR>

creates a graphic region which occupies rows 10 through 19, columns 20 through 49 in
each of these rows.

@ 4027 PROGRAMMER'S

b)

G

. C_

| G

. . . o

D,

D

-3 _

D

-2

GRAPHICS
GRAPHIC COMMAND

As illustrated in Figure 8-1, this graphic region is 10 cells (character cells) high and 30
cells wide. Each cell consists of a dot matrix 8 dots wide by 14 dots high. Each dot can be
turned on (lighted). Various commands discussed in this section create graphic displays
or display user-defined symbols by turning on patterns of these dots.

00000000

00000000

—— 00000000

~ 00000000
| S 00000000
L 000C00COee

10 CEL 0000CeeC0
HIGH 000e0000
] 80000000
L 00000000
00000000

00000000

00000000

00000000

EACH CELL IS
A 14x8 MATRIX

(2401) 2657-10

Figure 8-1. A Graphic Region.

The columns of dots are numbered from left to right across the graphic region, starting
with O for the leftmost column, and from bottom to top, starting with O for the bottom row.
In Figure 8-1, the 240 cotumns of dots (30 cells, each cell 8 dots wide) are numbered
from O to 239; the 140 rows of dots (10 cells, each cell 14 dots high) are numbered from
0 to 139. This establishes a coordinate system in the graphic region. For each dot in this
region there is a pair of numbers: its X- and Y-coordinates. The X-coordinate gives the
dot’s horizontal position; the Y-coordinate gives the dot's vertical position. These
coordinates are used in the VECTOR, POLYGON, PIE, and CIRCLE commands.

This coordinate system is also used in the RVECTOR and RPOLYGON commands. In
these commands, however, each coordinate pair is relative to the last coordinate pair
given in the command.

It is possible to define more than one graphic region in the workspace. If this is done, new
graphic commands affect only the graphic region most recently defined. Different graphic
regions should not overlap.

4027 PROGRAMMER'S @ 8-3

GRAPHICS
ENABLE COMMAND

8-4

ENABLE Command

The ENABLE command places the 4027 in the Graphic Input (GIN) mode. This mode is
used to provide graphic beam position and color information to the host computer.

Syntax
IENAble [<count>]<CR>

where <count> is a positive integer specifying the number of points to be sent to the
host computer. If <count> is not specified, it defaults to infinity.

NOTE

GIN mode may also be initiated by pressing the crosshair key.

Action

The ENABLE command causes the terminal to enter GIN mode. When GIN is first
ENABLEd, the crosshair is displayed at the graphic beam position. The crosshair can then
be manipulated with the cursor control and home keys.

When a key other than the crosshair control key is pressed, a report is sent to the host.
The report is in the form:

<cmd. chr.> DAT 03, <key>, <x pos>, <y pos> <color>;

where
<cmd. chr.> is the current command character. DAT 03 indicates the crosshair
device.

<key> is the ASCH decimal equivalent of the key value that generated this report.

<X pos> is a three-digit number indicating the location of the crosshair with respect
to the horizontal axis.

<y pos> is a three-digit number indicating the location of the crosshair with respect
to the vertical axis.

<color> is a three-digit number indicating the color of the point at that location.

@ 4027 PROGRAMMER'S

C

C

(‘
. C CC CC. CC o

D,

)

D

~

GRAPHICS
ENABLE COMMAND

The 4027 remains in GIN mode until one of the following occurs:

® the crosshair key is pressed.
® a DISABLE command is sent from the host or typed on the keyboard.

® the specified <count> number of points and the carriage return have been sent.
An end-of-line sequence is not sent between each point when multiple points are
sent.

Certain characteristics of the graphic beam during GIN mode should be noted. When
ENABLE is given, the crosshair is displayed at the graphic beam position. If the crosshair
is moved, the graphic beam is moved to the crosshair position when a key is pressed.
Also, if INKing is on, a line is drawn from the previous graphic beam position to the
present crosshair position when a key is pressed. The key normally used to set the
graphic beam at the position of the crosshair is the pad terminator key. However, pressing
most of the alpha or numeric keys will have the same result. Keys which, when pressed,
do not set the graphic beam at the position of the crosshair are the BREAK, CROSSHAIR,
SHIFT, CONTROL, HOME, TTY LOCK, NUMERIC LOCK, and COMMAND LOCK OUT keys.

Examples
IENAble <CR>

Places the 4027 in GIN mode and sets the crosshair at the graphic beam position.

T ———

A
CROSSHAIR

A crosshair appears in the workspace
when the 4027 is ENABLED.

IENA 5<CR>

Places the 4027 in GIN mode for the specified number of points (5) and sets the
crosshair at the graphic beam position. An end-of-line sequence is sent, after five reports
have been sent, which causes the crosshair to leave the screen and the 4027 to leave
GIN mode.

4027 PROGRAMMER'S @ 8-5

GRAPHICS
DISABLE COMMAND

8-6

DISABLE Command
Syntax

IDISAble <CR>

Action

The DISABLE command removes the 4027 from GIN mode. The crosshair is removed from
the graphic area and the crosshair control keys return to controlling the alpha cursor. An
end-of-line sequence is sent to the host as the terminator of the GIN messages, if any
have been sent.

\/

@ 4027 PROGRAMMER'S

C— 0 C -

C_

D

ZJ:I:Z:]::I:]:
)

3 J 3O 3 3 3 3 32 1

GRAPHICS
VECTOR COMMAND

VECTOR Command

When a graphic region of suitable size has been defined, vectors (line segments) can be
drawn in the graphic region using the VECTOR command.

Syntax
IVECtor <X0><YO0> <X1><Y1>[<X2><Y2> ... <Xn><Y¥n>]<CR>

where all <X> and <Y > parameters are positive integers.

Action

This command draws a vector from the point with graphic coordinates (<X0>, <Y0>) to
the point with coordinates (<X1>, <Y1>). If additional pairs of coordinates are
specified, additional vectors are drawn from (<X1>, <Y1>) to (<X2>, <Y2>), from
(<X2>, <Y2>) to (X8>, <Y3>),... and finally from (<X(n—1)>, <Y{(n—1)>)
to(<Xn>, <Yn>). All vectors are drawn in the color currently defined by the COLOR
command.

The <X> and <Y> coordinates are graphic region coordinates. If the value of <X> or
<Y> is not within the graphic region, the vector is “clipped;” that is, a line is drawn to
the edge of the graphic region in the current direction. If another vector is drawn after this,
the new vector is also clipped as it comes back into the window.

4027 PROGRAMMER'S @ 8-7

GRAPHICS
VECTOR COMMAND

8-8

Example

Suppose you have used the !IGRA 10,19,20,49 <CR> command to define the 240 X 140
graphic region described earlier. The command

IVEC 120,120 91,30 168,85 72,85 149,30 120,120<CR>

creates the following display. (Axes are not shown on the display.) Note that, since either
a space or a comma serves as the separator, we have alternated these to emphasize the
VECTOR coordinate pairs.

Y-AXIS

A

(120,120)
(72,85) (168,85)
(91,30) (149,30)

'VEC 120,120,91,30,168,85,72,85,149,30,120,120

- X-AXIS

2402-13

Figure 8-2. The VECTOR Command.

4027 PROGRAMMER'S

- =

¢

—

—

— . CT

GRAPHICS
RVECTOR COMMAND

D

RVECTOR (Relative Vector) Command

It is possible to draw vectors by specifying relative coordinates — that is, coordinates
relative to the last graphic beam position. This is done using the RVECTOR command.

Syntax

IRVEctor <rel XO> <rel YO> <rel X1><rel Y1>
[<rel X2><rel Y2> ... <rel Xn><rel Yn>]<CR>

where <rel X> and <rel Y> are integers, not necessarily all positive. The parameters
are separated by spaces or commas.

Y-AXIS

START FINISH
(120+0,65+55) = (120,120) = (149-29,30+90)

N

(169-96,85+0) = (72,85) ((168,85) = (91+77,30+55)

ORIGINAL VECTOR BEAM
POSITIONED AT (120,65)

(149,30) = (72+77,85-55)

D

(120-29,120-90) = (91,30)
\

> X-AXIS
'RVE 0, §5,-29,-90,77,55,-96,0,77,-55,-29,90<CR>
n 2402-14
q Figure 8-3. The RVECTOR Command.
I
i
4027 PROGRAMMER'S @ 89

-

—

GRAPHICS
RVECTOR COMMAND

Action }
b
This command draws one or more vectors in the graphic region, as does the VECTOR \
command. The pair <rel X0>, <rel YO> specifies coordinates relative to the current i
bt

graphic beam position. Each succeeding pair of <rel X>, <rel Y > parameters specifies
new coordinates relative to the preceding coordinate pair. All vectors are drawn in the
color currently defined by the COLOR command.

Example

Suppose that the current graphic beam position is at the point with absolute workspace
coordinates(120,65). The command:

L .

IRVE 0,55 —29,—9077,65 —96,077,—55 —29,90<CR>

| G

draws the star in Figure 8-3. It is the same figure drawn by the earlier VECTOR command,
but now each pair of coordinates given is relative to the preceding pair of coordinates.

[

C

— . CC -

As in the VECTOR command, if a pair of coordinates specifies a point outside the graphic
region, the 4027 will draw the vector only to the edge of the graphic region where it will be
terminated or “clipped.” The next line to be drawn will be drawn as though the entire
vector was present. The clipping action has no effect on subsequent vectors.

—

([:?

8-10 @ 4027 PROGRAMMER’S

| G

3 O O3 30 T3 3 O3 IO 3

D

R

5

GRAPHICS
LINE COMMAND

LINE Command

The 4027 can draw different styles of vectors. The style of vector is selected with the
LINE command and will be drawn in the current vector color by the VECTOR command.

Syntax
ILINe [<line type>]<CR>
where <line type> must be one of the following:
® A digit from 1 to 8, inclusive
® The letter P
® The letter E

If <line type> is not specified, it defaults to one.
Action

This command sets the type of line used to draw vectors in subsequent VECTOR,
RVECTOR, and CIRCLE commands. Line type 1 is a solid line, the default line type. Line
types 2 through 8 are various styles of dashed lines. Line types 1 through 8 are shown in
Figure 8-4.

2401-23

Figure 8-4. Vector LINE Types.

Line type P causes subsequent VECTOR and RVECTOR commands to plot isolated points
rather than connect the points with line segmernts.

Line type E causes subsequent VECTOR and RVECTOR commands to draw vectors in the
background color which effectively “erase’” existing vectors. However, if a line that
crosses a polygon is erased in this way, it will leave a background color line across the

polygon.

4027 PROGRAMMER'’S @ 8-11

GRAPHICS
POLYGON COMMAND

8-12

POLYGON Command

A large number of shapes and panels may be drawn in color by the 4027 using the
POLYGON command.

Syntax
IPOLygon <X1><Y1><X2><Y2><X3><Y3>[.<Xn><Yn>]<CR>
where

< X1> is an integer indicating a point on the horizontal axis which will be one of the
coordinates for one vertex of the polygon.

<Y1> is an integer indicating a point on the vertical axis which will be the second
coordinate for one vertex of the polygon. Additional parameters define the
succeeding vertices of the polygon. A minimum of 3 vertices are necessary to form a

polygon.

Action

This command draws a polygon whose vertices are defined by the given parameters. This
polygon is filled in with the current color (as defined by the COLOR command).
Boundaries of polygons are drawn in the current line type, as defined by the LINE
command. The vertices are given as in the VECTOR command; if the last vertex is not the
same as the first vertex, then a closing edge is automatically drawn. If any edges cross,
the polygon will still be filled correctly.

Since a maximum of 53 lines may be allotted to the graphic region, the largest possible Y
axis coordinate is 752 (14 X 53 = 752).

Refer to the GRAPHIC command discussion for further explanation of the graphic region
coordinate system.

@ 4027 PROGRAMMER'S

U

-

(

—

— = =

. =

. -

| S

L

~ GRAPHICS
POLYGON COMMAND

D,

Example
IPOLygon 100,100,200,100,200,200,100,200<CR >

Creates a polygon designated by the given vertices in the current color as shown below.

Y-AXIS

(100,200) (200,200)

D,

(100,100) (200,100)

-3 3 2 T3 I3y 0037 3

> X-AXIS
n !POL 100, 100, 200, 100, 200, 200, 100, 200<CR>
) 2657-11
1
ﬂ 4027 PROGRAMMER'S @ 8-13

GRAPHICS

RPOLYGON COMMAND

RPOLYGON (Relative Polygon) Command

The 4027 can draw polygons using relative coordinates (as in the RVECTOR command).

Syntax

where

Action

RPOLygon <X1><Y1><X2><Y2><X3><Y3>[.<Xn><Yn>]<CR>

<X1> and <Y1> are coordinates relative to the current position of the crosshair
and define the first point of the polygon.

<Xn> and <Yn> are subsequent coordinates which define the other vertices of
the polygon relative to the last given pair of coordinates.

This command creates a filled polygon in the current vector and boundary color as does
the POLYGON command. But the vertices are given in relative coordinates, as in the
RVECTOR command. If the last vertex is not the same as the first, a closing edge is
automatically created. Like the POLYGON command, the resulting filled area covers
anything below it. If polygons overlap, the last one created is the one displayed in the
overlapping area.

8-14

Y-AXIS
1\
THIRD VERTEX (-50,50)
I/
-«—— SECOND VERTEX (50,50)
i\ START (0,0) IS AT LOCATION
CROSSHAIR OF THE CROSSHAIR.
- X-AXIS
'RPOL 0,0 50,50 -50,50<CR>
2657-12
Figure 8-5a. An RPOLY Command Using 0,0 as the First Coordinate Pair.
@ 4027 PROGRAMMER'S

\/

GV

- = =

- 1=

—

| G

(—

—

| ARG SR Suny

GRAPHICS
RPOLYGON COMMAND

D

Example
IRPOLygon 0,0,50,50,—50,50<CR>

Creates a triangle at the location of the crosshair in the current vector and boundary
colors, as shown in Figure 8-5a.

'RPOL 150,0,50,50,—50,50<CR>
Creates a triangle. Its first coordinate pair is 150 points to the right of the crosshair

position on the X axis. Subsequent vertices of the triangle are drawn relative to the
position designated by the previous coordinate pair. Refer to Figure 8-5b.

Y-AXIS

-3 0 33 3 3223 O3 3 332 32

/THIRD VERTEX (-50,50)

-«— SECOND VERTEX
(50,50)

150 ,
POINTS

N

START (150,0)

CROSSHAIR —

> X-AXIS

=3 3 3 1

!RPOL 150,0 50,50 —-50,50<CR>
2657-13

—3

Figure 8-5b. An RPOLY Command Using 150,0 as the First Coordinate Pair.

o |

3 -

=3

4027 PROGRAMMER'S @ 8-15

-1

GRAPHICS
PIE COMMAND

PIE Command

The 4027 can draw filled circles, circle sectors, or equilateral polygons using the PIE
command.

Syntax
IPIE <radius> [<start angle>] [<end angle>] [<increment angle>]<CR>
where

<radius> is a positive integer representing the radius of the pie or polygon in raster
units. A raster unit is one dot within a character cell. Refer to the GRAPHIC command
(in this section) for further explanation of dots and character cells.

< start angle> is a positive or negative integer which states the angle at which the
first radius is drawn.

<end angle> is a positive or negative integer which states the angle at which the
last radius is drawn.

<increment angle> is a positive integer which represents the angle between points
on the circumference that become vertices of a polygon.

Action

The PIE command causes a pie shape to be drawn, centered at the current crosshair
position. The pie has a <radius> of the specified number of raster units and is filled with
the current vector color and outlined in the current boundary color from the <start
angle> to the <end angle>. If the <start angle> and <end angle> are not given, O and
360 degrees are the default values and a complete pie is drawn with the specified
<radius>.

If <increment angle> is given, the PIE command creates a polygon with vertices every
<increment angle> degrees. These points are joined and become the vertices of a
polygon. The default value for <increment angle> is 4 degrees. A polygon drawn with
vertices this close together looks like a circle.

All angles are measured with O degrees as the point of reference. Zero degrees is the

horizontal line segment which extends from the center point to the point on the right side
of the graphic area. Angle values increase in a direction moving counterclockwise.

@ 4027 PROGRAMMER'S

— —

| QoG

S S

O

. =

| G

—

| G

|

—13

m

Examples

-1 030339397113 /3

— =X

3 a3 I3 3 0 -
D,

o, |

S ‘)

4027 PROGRAMMER’'S

—3

IPIE 1000 270<CR>

~+— (0°) START ANGLE

CENTER
POINT

\ (270°) END ANGLE

IPIE 100 0 270<CR>
2657-14

'PIE 100 0 360 45<CR>

/ (45°) INCREMENT ANGLE

(0°) START ANGLE
\ (360°) END ANGLE

CENTER
POINT

!PIE 100 0 360 45<CR>

2657-15

GRAPHICS
PIE COMMAND

Causes a pie to be drawn as shown below. The <radius> is 100 raster units, <start
angle> is 0 degrees, and <end angle> is 270 degrees.

This command draws a polygon as shown below. The <radius> is 100 raster units,
<start angle> is O degrees, and <end angle> is 360 degrees. Since the <increment
angle> of 45 degrees has been given, the pie is drawn as a polygon with 8 equal sides.

8-17

——

GRAPHICS
PIE COMMAND

e,
——

(

IPIE 100 0 360 90<CR>

| G

When this command is given the polygon shown below is drawn in the current boundary
color and filled in the current vector color. The <radius>, <start angle>, and <end
angle> are the same as in the previous example. With the <increment angle> set at 90
degrees, a square polygon is drawn which is rotated 45 degrees from the X axis.

. -

-— (90°) INCREMENT ANGLE

— O

, «— (0°) START ANGLE
: " (360°) END ANGLE

|

o

CENTER
POINT

C

!PIE 100 0 360 90 <CR>
2657-16

- ¢

—

C
PG GO GG Guu

[

8-18 @ 4027 PROGRAMMER'S U

U |

),,

=3 3 3

-

-1

D,

GRAPHICS
CIRCLE COMMAND

CIRCLE Command

The CIRCLE command is used to create circles, circle sectors, and equilateral polygons,
just as the PIE command. These shapes, however, are not filled; instead just the boundary
is drawn in the current color.

Syntax
ICIRcle <radius> [<start angle>] [<end angle>] [<increment angle>]<CR>
where

<radius> is a positive integer representing the radius of the circle or polygon in
raster units.

< start angle> is a positive or negative integer which states the angle at which the
first radius of the circle will be drawn.

<end angle> is a positive or negative integer which states the angle at which the
last radius of the circle will be drawn.

<increment angle> is a positive integer which represents the number of degrees
between the vertices of the polygon.

Action

The CIRCLE command creates various shapes in the same manner as the PIE command.
The CIRCLE command causes a shape to be drawn around the beam position which,
unlike the PIE command, is not filled with the current vector color. Only the boundary of
the figure is made the current color.

The circle (or polygon) will be drawn from the <start angle> to the <end angle> ata
radius of <radius> raster units. If the <start angle> and <end angle> are not given,
they default to O and 360 degrees, respectively.

If <increment angle> is given, the CIRCLE command will mark vertices at intervals of
<increment angle > degrees. The vertices then are joined to form a polygon as in the PIE
command. Default value for <increment angle> is 4 degrees.

All angles are measured with O degrees as the point of reference. Zero degrees is the
horizontal line segment which extends from the center point to the right side of the
graphic area. Angle values increase in a direction moving counter clockwise relative to
zero degrees.

4027 PROGRAMMER’S ‘@ 8-19

GRAPHICS
CIRCLE COMMAND

8-20

Examples

ICIRcle 100 0 360<CR>
ICIR 100<CR>

P (0°) START ANGLE

(360°) END ANGLE

CENTER
POINT

CIRCLE CREATED BY !CIR 100 0 360<CR>
2657-17

ICIR 100 0 360 45<CR>

Creates a complete circle in the current vector color with a <radius> of 100 raster units,
as shown below.

Creates a polygon in the current vector color with a <radius> of 100 raster units. As
shown below, including the <increment angle> of 45 degrees causes an eight-sided
polygon to be formed. <Start angle> and <end angle> must be given when <increment

angle> is used.

(45°) INCREMENT ANGLE

Ve

(0°) START ANGLE

Vg
~N (360°) END ANGLE

CENTER
POINT

POLYGON CREATED BY !CIR 100 0 360 45<CR>

2657-18

4027 PROGRAMMER'S

\/

C

— =

(.-.-..

-

- T

C

-

——

—— T

e

C

—

T

———
m— -

- = C

—

GRAPHICS
CIRCLE COMMAND

=

D)

!CIR 100 90 360<CR>

Creates a sector of a circle with a <radius> of 100 raster units from the <start angie>
of 90 degrees to the <end angle> of 360 degrees, as shown below.

=3 33

«—(90°) START ANGLE

Radius
~4— 100 Raster —p=, -¢=— (360°) END ANGLE
Units

- 3

SHAPE CREATED BY !CIR 100 90 360 <CR>
2657-19

3 =03 O

)

_—

D

~

-1 3 2

4027 PROGRAMMER'S @ 8-21

-3

GRAPHICS
INK COMMAND

8-22

INK Command

The INK command enabies the drawing of lines between points in the graphic area
without typing in coordinates. The 4027 must be in the GIN mode to INK.

Syntax
IINK [Yes |[No]<CR>

if no parameter is specified, Yes is assumed.

Action

When the INK or INK YES command is given, the 4027 can draw lines from the present
crosshair location to the previous location without designating the coordinates asin a
VECTOR or RVECTOR command. The 4027 must be ENABLED by giving the ENABLE
command or pressing the zero/crosshair key. After this has been done, pressing the pad
terminator key or any other non-cursor moving key causes a line to be drawn from the
present position of the crosshair to the previous position.

The INK NO command turns INKing off.

Example
HINK Yes<CR>

Refer to Figure 8-6. When drawing a line from crosshair position one to position two,
position one must first be established by moving the crosshair to the desired location and
pressing the pad terminator key. Remember that the crosshair is displayed by giving the
ENABLE command or pressing the crosshair key. When the crosshair first comes up, if
INKing is already on, a line is drawn from the previous beam position to the crosshair
position when the pad terminator key is pressed.

@ 4027 PROGRAMMER'S

\/

| GUBGIN GUONE G

| .

i
e —

| G

C

P GUNE SME SN

(

—

-

—
-

08

r"f
—

Gl

3

>

3 3 233 3 23 3 3

IS |

~—y

D,

GRAPHICS

INK COMMAND

4027 GRAPHIC AREA

PRESENT
CROSSHAIR POSITION

\ LINE DRAWN IN CURRENT

COLOR WHEN PAD TERMINATOR
KEY PRESSED.

PREVIOUS
CROSSHAIR POSITION

2657-20

Figure 8-6. Drawing a Line in INK mode.

After the position of the crosshair has been established, give the INK command. Then,
each time the crosshair is repositioned and the pad terminator key is pressed, a line is
drawn between the present location of the crosshair and the previous one. Lines are
drawn in the current vector color. If no color has been specified, lines are drawn in color
number CO (default white).

INK No<CR>

The INKing process is terminated. If INKing is off, then no vectors are drawn when points
are set in GIN mode.

If an ENABLE command for X points is given, after X points are entered, the crosshair
goes down and INKing appears to terminate. However, INKing is still in effect and
additional vectors will be INKed if the zero/crosshair key is pressed, returning the

crosshair to the graphic region. INKing is terminated only by giving the INK NO command.

4027 PROGRAMMER'S @

8-23

—

GRAPHICS
STRING COMMAND

—

STRING Command !
o

Text may be entered in a graphic region directly from the keyboard or by using the

STRING command. The STRING command allows text to be positioned relative to the l

displayed graphics using graphic coordinates.)
:

Syntax

ISTRing <text> <CR>

| G

where <text> may be:

—

1. One or more delimited ASCII strings.

G

2. A sequence of ASCII Decimal Equivalents.

3. Any combination of 1 and 2.

—

The string defined by <text> should not contain the command character.

C
| G

Action

—

This command inserts the string defined by the <text> parameter into the graphic
region. The first character defined by <text> is displayed in the character cell containing
the graphic beam. Succeeding characters of <text> are displayed in succeeding
character cells. Any vectors or characters that were previously displayed in the character
cells where <text> is inserted are no longer visible, since each character of <text> fills
an entire character cell.

—

C

Example

ISTRing/Triangle/<CR>

G

where “Triangle” is a delimited ASCII string which will be displayed at the position of the
graphic beam.

| G

—

u

i

 C

8-24 @ 4027 PROGRAMMER'S

GRAPHICS
STRING COMMAND

D)

Triangle

|
v

'GRAPHIC 1,35

‘'VECTOR 9,0 300,80 150,200 0,0
'VECTOR 120,89

'STRING "Triangle”

3 - |

(2402) 2657-21

Figure 8-7. The STRING Command.

D

4027 PROGRAMMER'S @ 8-25

- 3 3 3 3 3 3 13 1

GRAPHICS
ERASE G COMMAND

8-26

ERASE G Command

When the information displayed in a graphic region is no longer needed, it can be deleted
in one of two ways. You can delete the graphic region and all information stored in it from
the workspace display list. You can also erase the graphic information but leave the
graphic region defined to display new graphic information.

To delete the graphic region from the display list, give the ERASE WORKSPACE
command. The graphic region, along with all other information in the workspace, is
deleted from the display list. No further graphic commands can be executed until a new
graphic region is defined by a GRAPHIC command.

If you wish to reuse the same graphic region, the ERASE G command is used. The ERASE
G command can include a color number or pattern number which will cause the graphic
area to be flooded (erased) with the specified color or pattern.

Syntax

'IERAse [G [raphics] [<color number>|<pattern number>11<CR>

Action

This command causes the graphic area to be erased. If the parameters include a color
number (CO-C7) or pattern number (PO-P119), the color or pattern becomes the
background color. The current vector and panel drawing color is not changed. The ERASE
GRAPHICS command does not reallocate the graphic memory cells at the top of Font 31.

NOTE

The ERASE command can also be used to erase the contents of the
workspace or monitor. Refer to the Controlling the Display section for
details.

@ 4027 PROGRAMMER'S

S

"

-

a3 3 O 33 I3 132 3 132 12

D

)

D

Examples
lERA G<CR>

Erases the contents of the graphic area containing the graphic cursor.
'IERA G C1<CR>

Erases the contents of the graphic area with color C1.
IERA G P1<CR>

Erases the contents of the graphic area with pattern P1.

4027 PROGRAMMER'S @

GRAPHICS
ERASE G COMMAND

8-27

GRAPHICS
SHRINK COMMAND

8-28

SHRINK Command

When using 4010-style graphics it is necessary for the 4027 to alter the coordinates of
graphic information in its display list.

The 4027 can accept 4010-style graphic commands from a host computer. In 4010-style
graphic commands, the X-coordinates can be as great as 1023. The X-coordinates in a
4027 graphic commands should not exceed 639 (in a graphic region occupying all 80
columns). It is necessary, therefore, to scale incoming 4010-style graphic commands for
display in the 4027 graphic region. (See discussion of 4010-style graphics in this
section.)

Syntax
ISHRink [Yes |Hardcopy | Both | No] <CR>

The default parameter is Yes.

Action

SHRINK YES. This command causes the 4027 to “shrink” X- and Y-coordinates in
subsequent VECTOR, RVECTOR, POLY, RPOLY, CIRCLE and PIE commands, multiplying
them by a factor of approximately 5/8. This accommodates the 4027 to the range of
possible coordinates in 4010-style graphics commands. The SHRINK YES command also
sets the appropriate output condition for transmitting DATA coordinates in graphic input
mode.

To use the 4027 to execute a 4010-style graphic command file, first dimension the
graphic region to hold 35 rows of 80 columns. ({GRA 1,35,1,80 or |GRA 10,44 are two
GRAPHIC commands which do this.) Then give a SHRINK YES command to put the 4027
in graphics shrink mode.

NOTE
SHRINK HARDCOPY and SHRINK BOTH commands are included only for

compatibility with programs written for the 4025. These commands are not
recommended for programs written for the 4027.

SHRINK NO. This command removes the 4027 from shrink mode.

REV A, OCT 1980 4027 PROGRAMMER'S

C

o/

.

. . o C_

-

D,

- 3 33 33 D
D

-3

= 3

D,

GRAPHICS
EFFECTS OF GRAPHIC REGION

EFFECTS OF A GRAPHIC REGION

The presence of a graphic region affects the action of some of the 4027 commands and
keys, summarized here:

DELETE CHARACTER: Inside a graphic region, the character is replaced by a space.

DELETE LINE: In a line which passes through a graphic region, only characters outside
the graphic region are deleted. Information inside the graphic region is not deleted.

ERASE & SKIP: In a line that passes through a graphic region, only characters outside
the graphic region are deleted.

ERASE WORKSPACE: This erases the entire workspace, including the graphic region
definition. A new GRAPHIC command must be given before new graphics can be
displayed.

CURSOR MOVEMENT AND TYPING: The ASCII keys, the cursor movement keys and
commands, and the scrolling keys and commands are not affected by the presence of the
graphic region. If the cursor is moved into a graphic region and a character typed on the
keyboard, that character replaces graphic information previously stored in the character
cell. Entering GIN mode causes the cursor movement keys to control the movement of the
crosshair instead of the cursor.

FORM FILLOUT MODE: All locations within the graphic region are protected in form
fillout mode. if a graphic region is less than 80 columns wide and no form exists in the
side region(s), the area to the left of the form is unprotected (text may be entered) but all
other areas outside the form are protected and text may not be entered in them. To
prevent text from being entered into the unprotected area of the field, expand the graphic
area so that it will begin at column 1.

ATTRIBUTE CODES: Inside a graphic region, the 4027 inserts only font attribute codes
in the display list. All other attributes are ignored. Any visual attributes (enhanced, etc.)
which are in effect at the left edge of the graphic region affect the entire row of character
cells running through the graphic region. Logical attributes and font codes in effect at the
left edge of the graphic region do not affect the graphic region itself, but characters to the
right of the graphic region are given these same font and logical attributes.

THE SEND COMMAND: Graphic information in a graphic region is not transmitted by the
SEND command. Every character cell containing graphic information is transmitted as an
ASCII space. Text information is sent, however.

4027 PROGRAMMER'S @ 8-29

GRAPHICS
EFFECTS OF GRAPHIC REGION

C

. CCC C CC C

Suppose the graph shown in Figure 8-8 is displayed in the workspace.

OUTLAYS FOR TRANSPORTATION

— TOTAL
15 { - HIGHWAYS AND OTHER TRANSPORTATION
-~ MASS TRANSIT AND RAILROADS

- — WATER

10

"""""

NZOWIMIM—w

.

oo .
e pr———
’

e ———
o
et o= - — = = -

ST 1]

- - — -
- - -

S

-
-
— - =
—

%)
I I T I 1 T [T T T
68 69 70 kg ! 72 73 74 75 76 7 78 79 J
FISCAL YEARS
2402-16
hued
Figure 8-8. A Graphic Display.
et
If you do a SEND operation to the computer, then SEND back from the computer to the
terminal, you obtain the display in Figure 8-9. No information generated by graphic

commands was sent to the computer. The display in Figure 8-9 is what is stored in the
computer.

\/

8-30 @ 4027 PROGRAMMER’S

— .

GRAPHICS
EFFECTS OF GRAPHIC REGION

D,

n OUTLAYS FOR TRANSPORTATION
TOTAL
15 HIGHWAYS AND OTHER TRANSPORTATION
MASS TRANSIT AND RAILROADS

‘ WATER

B
| 1

L 10

L
r‘ 1

0
‘9 N

S
i s

~ i
n / 68 69 70 71 72 73 74 75 76 77 "B 79
FISCAL YERRS

n (2402) 2657-22
n Figure 8-9. A Graphic Display After the SEND Command.
n 4027 PROGRAMMER'S @ 8-31

GRAPHICS
4010-STYLE GRAPHICS

4010-STYLE GRAPHICS ON THE 4027
bt
The 4027 with standard Graphics Memory, accepts 4010-styie graphic commands when
these commands are sent from the host. (The 4027 does not accept 4010-style graphic
commands entered on the keyboard.) 4010-style graphics are characterized by b
addressable screen coordinates and the use of ASCII characters to encode these
addresses.
et
To enable the 4027 to respond properly to 4010-style graphic commands, issue the
commands J
IGRAPHIC 1,35<CR> .
ISHRINK < CR> U

These set up a graphics region which is correctly proportioned to display 4010-style
graphics. Specifically, the addressable graphic region is approximately 640X by 490Y, in
4027 workspace coordinates (1024X by 784Y in 4010 coordinates). (See the SHRINK
command discussion earlier in this section.)

| G G

In 4010-style graphics, certain control characters are interpreted by the terminal as
graphic commands. The following 4010-style commands from the host cause the 4027 to
change operating modes:

C

1. The GS command places the 4027 in 4010-style graph mode.

2. The US command exits the 4027 from graph mode and positions the cursor at the
character cell containing the graphic beam.

3. The ESC command notifies the 4027 that the next character should be interpreted
as a command. This command has no effect if the terminal is in 4010-style
graphic mode.

4. The ESC-Form Feed command erases the current graphics region if the terminal
is in US mode.

Addressing the Graphic Beam

The graphic beam is moved to a point in the graphic region by sending to the terminal the
binary equivalents of the Y address and the X address (4010 coordinate addresses) of
the point. Each binary equivalent is separated into two parts: the five most significant bits
and the five least significant bits. The address 205Y,148X translates to 0011001101,
0010010100X (binary). The 0011001101Y becomes 00110 HiY and 01101 LoY; the
00100101<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>