PRODUET REFERENCE BOOK
for the Tektronix Type

1 A7A
differential amplifier unit

For all serial numbers
(C) , 1968, Tektronix, Inc., P.O. Box 500 Beaverton, Oregon. All rights reserved.

$$
\begin{aligned}
& \Omega \\
& \underset{\sim}{\infty} \\
&
\end{aligned}
$$

1

U.S. MARKETING SALES RELEASE

1A7A HIGH GAIN DIFFERENTIAL PLUG-IN

Major Sales Features

The 1A7A is the result of a complete redesign of the 1 A 7 . The notable differences are:

All solid state, FET inputs.
Bandwidth - Extended to 1 MHz .
CMRR - Increased to $100,000: 1$.
Dynamic Range - Increased to 400 mV .
Drift - Old Spec - $200 \mu \mathrm{~V} / \mathrm{h}$ averaged over 10 h . $150 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ 。
New Spec - Short term - $5 \mu \mathrm{~V} /$ min after 1 hour warm up. Long term - $10 \mu \mathrm{~V} / \mathrm{h}$ after 1 hour warm up. $50 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ 。

Input Gate Current - A very important specification change.
01d Spec $=\leqslant n A$ after 20 minutes warm up, $50 \mathrm{pA} /{ }^{\circ} \mathrm{C}$, and $20 \mathrm{pA} / \mathrm{h}$ long term drift with time. New Spec - From $10 \mu \mathrm{~V} / \mathrm{cm}$ to $10 \mathrm{mV} / \mathrm{cm}\left(25^{\circ} \mathrm{C}\right)$ max gate current is $\pm 10 \mathrm{pA}$ (increasing to 100 pA at $50^{\circ} \mathrm{C}$).

Maximum Input Voltage - Decreased from 200 V at $10 \mu \mathrm{~V} / \mathrm{cm}$ to ± 20 V at $10 \mu \mathrm{~V} / \mathrm{cm}$.

Signal Output - Increased from $34 \mathrm{mV} / \mathrm{cm}-\mathrm{defl}$ to $0.25 \mathrm{~V} / \mathrm{cm}-\mathrm{def1}$.
Overdrive recovery is now specified.
Public Announcement: March 11, 1968.
First Public Showing: IEEE Show, March 18, 1968.
Price: \$440.

1A7A HIGH GAIN DIFFERENTIAL PLUG-IN - continued

First Demo Availability: April 1, 1968 .
First Customer Availability: Apri1 1, 1968 .
Support Activity
Advertising: March 1968 Long-Form Catalog. Press Release (info and photograph) sent to about 60 magazincs for release after March 11, 1968.

Product Technical Information: PRB to arrive in FO around March 8, 1968.

```
85
```

CONTENTS:
This is the guide for calibrating new instruments in Product Manufacturing. The procedure consists of 4 sections:

Equipment Required
Factory Test Limits - Factory Test Limits are limits an instrument must meet before leaving Manufacturing. These limits are often more stringent than advertised performance requirements. This is to insure that the instrument will meet advertised requirements after shipment, allows for individual differences in test equipment used, and (or) allows for changes in environmental conditions.

Short Form Procedure - The Short Form Procedure has the same sequence of steps and the same limits on checks or adjustments as the Main Procedure.

Main Procedure - The Main Procedure gives more detailed instructions for the calibration of the instrument. This procedure may require that some checks and adjustments be made so that performance is better than that required by the Factory Test Limits. This insures the Factory Test Limits will be met when side panels are added, permits some normal variation in test equipment and plug-in scopes, etc.

Abbreviations in this procedure will be found listed in TEKTRONIX STANDARD A-100. Definitions of terms used in this procedure may be found in TEKTRONIX STANDARD A-101.

In this procedure, all front panel control labels and Tektronix instrument names are in capital letters (VOLT/DIV, etc). Internal adjustment labels are capitalized only (Gain Adj, etc).

CHANGE INFORMATION:
This procedure has been prepared by Product Manufacturing Staff Engineering. For information on changes made to this procedure, to make suggestions for changing this procedure, or to order additional copies: please contact PMSE, 39-307. (JT)

This procedure is company confidential

1A7A

April 1968
For all serial numbers.

EQUIPMENT REQUIRED:

The following equipment is necessary to complete this procedure:

```
a. TEKTRONIX Instmments
1 TYPE 540B series OSCILLOSCOPE
1 TYPE 547 OSCILLOSCOPE
1 TYPE 1Al DUAL TRACE PLUG-IN UNIT
b. Test Fixtures and Accessories
*1 Standard Amplitude Calibrator (067-0502-00) (with EXT mod)
*1 Sine Wave Generator (067-0542-99) (with J series timing caps)
1 Normalizer, 47pF BNC (067-0541-00)
1 50 Termination, BNC (011-0049-00)
2 10:1 Attenuators, BNC (011-0059-00)
1 COAX T connector, BNC (067-0525-00)
2 50 Cables, BNC (012-0057-00)
1 600V Variable DC Supply PMPE Dwg 非 1421A
1 250:1 Divider (Special)
1 Variable Attenuator (067-0511-00)
1 67.5 Volt Bridge PMPE Dwg 非1008A
2 Patch Cords BNC-BNC (012-0091-00)
1 1k 1% resistor
1.01 capacitor (MYLAR)
```

* This equipment must be treaceable to NBS for instrument certification.

Substitute test equipment may be used. The Plant Staff Engineer must approve any substitutions. All equipment listed must perform within its manufacturer's specifications, unless otherwise stated.
(c) , 1968 TEKTRONIX, INC., P. O. Box 500 BEAVERTON, OREGON. All rights reserved.

QUALIFICATION

Factory Test Limits are qualified by the conditions specified in the main body of the Factory Calibration Procedure. The numbers and letters to the left of the limits correspond to the procedure steps where the check or adjustment is made. Steps without Factory Test Limits (setups, presets, etc.) are not listed. Instruments may not meet Factory Test Limits if calibration or checkout methods and test equipment differ substantially from those in this procedure.

3. BALANCE

b. Variable Balance . 2 cm , max
4. OUTPUT DC LEVEL

```
\pm2%, max
of main frame +100V
```

5. INPUT CURRENT AND DRIFT
a. Adjust + Input $2 \mathrm{~cm} \pm 15 \mathrm{pa}$, \max
b. Adjust - Input $2 \mathrm{~cm} \pm 15 \mathrm{pa}$, max
c. Check drift $5 \mu \mathrm{~V}$, max, in 1 minute after 1 hr . warm up
6. VOLTS/CM ACCURACY
a. Check 1 mV to $10 \mathrm{VOLTS} / \mathrm{CM}$ accuracy: $\pm 1.5 \%$, max
b. Check 1 mV to 10 V accuracy: $\pm 1.5 \%$, max
7. SIGNAL OUTPUT
b. Adjust DC Level $\pm .5 \mathrm{~V}$, max
c. Adjust compensation $\pm 3 \%$, max
d. Check ampltiude $.25 \mathrm{~V} / \mathrm{CM}, \pm 10 \%$
max
e. Check 1 MHz amplitude $.25 \mathrm{~V} / \mathrm{CM}$, $\pm 10 \%$, max
f. Check dynamic range $+\&-$ 4.5 VOLTS, min
8. INPUT CAPACITANCE AND ATTENUATOR COMPENSATION
b. Adjust C112 (C212) aberration: $\pm 1 \%$, max
c. Adjust attenuator compensation aberration: $\pm 1 \%$, max
9. ATTENUATOR DIFFERENTIAL BALANCE 1000:1, min

6. NEUTRALIŻATION

*13. CMRR
b. Adjust - neutralization aberration: $\pm 1 \%$, max
c. Adjust + neutralization aberration: $\pm 1 \%$, max
7. GAIN
a. Check GAIN range $+\&-6 \%$, min
b. Check VARIABLE ratio: 2.5:1, min
8. POSITION RANGE $+\&-9 \mathrm{~cm}$, min
b. Check CMRR 125,000:1, min
c. Check AC coupled CMRR

25,000:1, min @ 100 kHz
2,500:1, min @ 60 Hz
d. Check attenuator CMRR

500:1, min, @ 100 kHz
*14. BANDWIDTH LIMIT
b. Check 1 MHz bandwidth $1 \mathrm{MHz},+30 \%$ -0\%
c. Check HIGH FREQ -3dB POINT $\pm 10 \%$, max
d. Check LOW FREQ -3dB POINT $\pm 10 \%$, max
15. OVERDRIVE RECOVERY
b. Check overdrive recovery . 5% in $10 \mu \mathrm{~S}$
16. DC OFFSET
a. Check + DC OFFSET $+.4 \mathrm{~V}, \pm 7.5 \%$, max
b. Check -DC OFFSET $-.4 \mathrm{~V}, \pm 7.5 \%$, max
17. DYNAMIC RANGE AND INPUT OVERLOAD
b. Check + dynamic range and INPUT OVERLOAD range: 420 mV , min OVERLOAD light: before overload
c. Check - dynamic range and INPUT OVERLOAD range: 420 mV , min OVERLOAD light: before overload
18. DISPLAYED NOISE
b. Check displayed noise measured tangentially: $15 \mu \mathrm{~V}$, max
[NOTE: THE FOLLOWING CHECKS ARE NOT MADE
ON 100\% OF THE INSTRUMENTS BUT ARE DONE
ON SAMPLING BASIS]
19. AC LF RESPONSE
b. Check AC LF response 1.6 Hz , min
20. SIGNAL OUTPUT RESISTANCE
b. Check SIGNAL OUTPUT resistance: 750Ω, max

THE END

* Indicates measurement characteristic; test equipment must be traceable to the NBS for instrument certification.

Factory TEST LIMITS are limits an instrument must meet before it leaves Manufacturing; therefore, it must be possible to inspect to these limits. Because of normal variations in test equipment and plug-in scopes, addition of side panels, etc, it is necessary to set up some circuits so their performance is better than required by Factory Test Limits. Therefore, the instructions given in the Factory Calibration Procedure may call for checks or adjustments which result in less error than that allowed by the Factory Test Limits.

1. PRESETS

a. TYPE 1A7A
b. TYPE 547
2. CHECK RESISTANCE
3. BALANCE
a. Adjust AC Atten Bal
b. Adjust Variable Bal $\pm .2 \mathrm{~cm}$, max
c. Adjust Coarse Bal
4. OUTPUT DC LEVEL $\pm 2 \%$, max, of main frame +100 v
5. INPUT CURRENT AND DRIFT
a. Adjust + Input Zero $\pm 10 \mathrm{pa}$, max
b. Adjust - Input Zero $\pm 10 \mathrm{pa}$, max
c. Check drift $5 \mu \mathrm{~V} / \mathrm{min}$
6. NEUTRALIZATION
a. Setup
b. Adjust - neutralization aberration: $\pm 1 \%$, max
c. Adjust + neutralization aberration: $\pm 1 \%$, max
7. GAIN
a. Check GAIN range $+\&-6 \%$, min
b. Check VARIABLE ratio: 2.5:1, min
8. POSITION RANGE $+\&-9 \mathrm{~cm}$, min
9. VOLTS/CM ACCURACY
a. Check 1 mV to 10 VOLTS/CM accuracy: $\pm 1.5 \%$, max
b. Check 1 mV to $10 \mu \mathrm{~V}$
accuracy: $\pm 1.5 \%$, max
10. SIGNAL OUTPUT
a. Setup
b. Adjust DC Level $\pm .5 \mathrm{~V}$, max
c. Adjust compensation $\pm 3 \%$, max
d. Check amplitude $.25 \mathrm{~V} / \mathrm{CM}, \pm 10 \%$, max
e. Check 1 MHz amplitude $.25 \mathrm{~V} / \mathrm{CM}$, $\pm 10 \%$, max
f. Check dynamic range $+\&-4.5$ VOLTS, min
11. INPUT CAPACITANCE AND ATTENUATOR COMPENSATION
a. Setup
b. Adjust C112 (C212) aberration: $\pm 1 \%$, max
c. Adjust attenuator compensation aberration: $\pm 1 \%$, max
12. ATtenuator differential balance 1000:1, min
13. CMRR
a. Adjust CMRR 125,000:1, min
b. Check CMRR 125,000:1, min
c. Check AC coupled CMRR

25,000:1 @100kHz 2,500:1 @60Hz
d. Check attenuator CMRR 500:1 @100kHz

14. CHECK BANDWIDTH LIMITT

a. Setup
b. Check 1 MHz bandwidth $1 \mathrm{MHz},+30 \%$ -0\%
c. Check HIGH FREQ -3dB POINT $\pm 10 \%$, max
d. Check LOW FREQ -3 dB POINT $\pm 10 \%$, max
15. OVERDRIVE RECOVERY
a. Setup
b. Check overdrive recovery . 5% in $10 \mu \mathrm{~S}$
16. DC OFFSET
a. Check + DC OFFSET $+.4 \mathrm{~V}, \pm 7.5 \%$, max
b. Check -DC OFFSET $-.4 \mathrm{~V}, \pm 7.5 \%$, max
17. DYNAMIC RANGE AND INPUT OVERLOAD
a. Setup
b. Check + dynamic range and INPUT OVERLOAD range: 420 mV , min OVERLOAD light: before overload
c. Check - dynamic range and INPUT OVERLOAD range: 420 mV , min OVERLOAD light: before overload
18. DISPLAYED NOISE
a. Setup
b. Check displayed noise
measured tangentially: $14 \mu \mathrm{~V}$, max
[NOTE: THE FOLLOWING CHECKS ARE NOT MADE
ON 100\% OF THE INSTRUMENTS BUT ARE DONE
ON A SAMPLING BASIS]
19. AC LF RESPONSE
a. Setup
b. Check AC LF response 1.6 Hz , min
20. SIGNAL OUTPUT RESISTANCE
a. Setup
b. Check SIGNAL OUTPUT resistance
resistance: 750 , max

THE END
a. TYPE 1A7A

VOLTS / CM
VARIABLE
POSITION
HIGH FREQ -3dB POINT
LOW FREQ - 3dB POINT
DC OFFSET switch
DC OFFSET
DC OFFSET FINE
GAIN
STEP ATTEN DC BAL
INPUT switches
all internal adjustments
b. TYPE 547

HORIZONTAL DISPLAY
TIME BASE A \& B
TRIGGERING LEVEL
MODE
SLOPE
COUPLING
SOURCE
TIME/CM
VARIABLE

10 mVOLTS
CAL
centered
10 kHz
10 Hz
off
midr
midr
midr
midr
GND
midr

B

0
AUTO
$+$
AC
NORM
. 5mSEC
CALIBRATED

Leave controls and adjustments, for any step, as they were in the step preceding unless noted otherwise.

2. CHECK RESISTANCE

Check resistance to ground on 16 pin Amphenol connector (rear). Connect negative lead of VOM to gnd. Set VOM to XIk scale.

pin number	approximate resistance	use
1	14k	output
2	0	gnd
3	14k	output
4, 5, 6, 7, 8	inf	unused
9	14k	-150v supply
10	5.6k	+100v supply
11, 12, 13, 14	inf	unused
15	500Ω	+75v filament
16	inf	unused

3. BALANCE
a. Adjust AC Atten Bal

Position the trace to graticule center with the TYPE 1A7A POSITION control. Set VOLT/CM to $50 \mu \mathrm{~V}$. Adjust R505 to return trace as near to graticule center as possible.
b. Adjust Variable Balance $\pm .2 \mathrm{~cm}$, max

Set TYPE 1A7A VOLTS/CM to 10 mV . Adjust R425 for no trace shift while rotating the VARIABLE control ccw and cw . Set VARIABLE to CAL.
c. Adjust Coarse Bal

Position trace to graticule center with the TYPE 1A7A POSITION control. Set LOW FREQ -3dB POINT to DC. Set VOLTS/CM to .1 mV . Adjust R 345 to return trace to approximately graticule center. Adjust STEP ATTEN DC BAL for no trace shift while switching VOLTS/CM between . 1 mV and $10 \mu \mathrm{~V}$.

Set VOLTS/CM to 10 mV and position trace to graticule center.
4. OUTPUT DC LEVEL
$\pm 2 \%$, max, of
main frame +100 V
Connect the 67.5 volt bridge as shown:

Set the VOM to the most sensitive DC volts range. Check that zero volts can be obtained on the VOM with the dial on the 67.5 Volt bridge.

Disconnect 67.5 Volt bridge and VOM.
a. Adjust + Input Zero $\pm 10 p a$, max

Set HIGH FREQ -3 dB POINT to 100 Hz .
Set VOLTS $/ \mathrm{CM}$ to $10 \mu \mathrm{~V}$. Connect a . 01 capacitor to the + INPUT. Position trace to graticule center with STEP ATTEN DC BAL. Adjust R115 for no trace shift while switching the + INPUT selector between GND and DC. Set + INPUT to GND.
b. Adjust - Input Zero $\pm 10 p a$, max

Change the .01 capacitor to the - INPUT. Adjust R215 for no trace shift while switching the - INPUT selector between GND and DC. Set - INPUT selector to GND.
c. Check drift drift: $5 \mu V, \max$,
in 1 min
Observe trace shift for \simeq one minute: .5 cm , max
Set HIGH FREQ -3 dB POINT to 1 MHz and VOLTS/CM to 10 mV .

Remove. 01 cap.

6. NEUTRALIZATION

a. Setup

Set TYPE 1A7A + INPUT to DC. Connect a . 1 VOLTS from TYPE 547 AMPLITUDE CALIBRATOR to TYPE 1A7A + INPUT. Set DC OFFSET to ON and position top of display to graticule center with COARSE control. Set VOLTS/CM to 1 mV .
b. Adjust - neutralization aberration: $\pm 1 \%$, max

Adjust C231 for least change in front corner of waveshape when switching INPUT from GND to DC. Aberration: $\pm 1 \mathrm{~cm}$, max.
c. Adjust + neutralization aberration: $\pm 1 \%$, max

Set TYPE 1A7A - INPUT to DC. Change signal from + INPUT to - INPUT. Position bottom of display to graticule center with DC OFFSET

Note: The . 01 cap should be inclosed in a holder such as the 204-0209-00 with a 134-0044 connector.

Note: Heating the leads of D133 and D233 to approximately solder melting temperature may cause sufficient additional leakage to compensate input current.

6c. (cont'd)

COARSE (approx 2.4 turns CW). Adjust Cl 31 for least change in front corner of waveshape when switching + INPUT from GND to DC. Aberration: $\pm 1 \mathrm{~cm}$, max. Remove signal. Set both INPUT switches to GND, and DC OFFSET to OFF.

7. GAIN

a. Check GAIN range $+\&-6 \%$, min

Connect a 5mVOLT square wave from the SAC to the TYPE 1A7A + INPUT. Set + INPUT selector to DC and - INPUT selector to GND. Rotate GAIN full cw and not deflection: 5.3 cm , min. Rotate GAIN full $c c w$ and note deflection: 4.7 cm , max. Adjust GAIN for exactly 5 cm .
b. Check VARIABLE ratio: 2.5:1, min

Rotate VARIABLE full ccw and note deflection: 2 cm , max. Rotate VARIABLE to CAL.
8. POSITION RANGE $+\&-9 \mathrm{~cm}$, min

Set SAC AMPLITUDE to 10 mV and MODE to
+DC. Rotate TYPE 1A7A POSITION full ccw.
Trace must position to within 1 cm of graticule center. Set SAC MODE to -DC. Rotate TYPE 1A7A POSITION full cw. Trace must position to within 1 cm of graticule center.

Set POSITION to midrange.
9. VOLTS/CM ACCURACY
a. Check $1 m V$ to 10 VOLIS/CM accuracy $\pm 1.5 \%$, max
Connect 100 V @ 500 Hz from Sine Wave Genera- Note: Use a SAC with EXT MOD. tor to SAC EXT INPUT. Set SAC MODE to EXT.

9a. (cont'd)

Adjust Sine Wave Generator AMPLITUDE MULTIPLIER for 6 cm display. Maintain a 6 cm display with the SAC AMPLITUDE switch while checking each position of the TYPE 1A7A VOLTS/CM switch from 1mV to 10 VOLTS: $\pm .09 \mathrm{div}$, max
b. Check $1 m V$ to $10 \mu V$ VOLTS/CM accuracy $\pm 1.5 \%$, max
Set TYPE 1A7A HIGH FREQ -3dB POINT to 100 Hz , LOW FREQ -3dB POINT to 10 kHz , and VOLTS/CM to lmV. Set SAC AMPLITUDE to 1 VOLT. Adjust Sine Wave Generator AMPLITUDE MULTIPLIER for exactly 6 cm of display. Maintain a 6 cm display with the SAC AMPLITUDE switch while checking each position of the TYPE 1A7A VOLTS/CM switch from 1 mV to $10 \mu \mathrm{~V}$: $\pm 0.9 \mathrm{div}$, max.

Set + INPUT selector to GND. Remove input.

a. Setup

Set the TYPE 1A7A VOLTS/CM to 10 mV , HIGH FREQ -3dB POINT to 1 MHz , and LOW FREQ -3dB POINT to DC. Position the trace to graticule center with the position control. Set TYpe 1A1 CHANNEL 1 VOLTS/CM to .5 and position. trace to graticule center. Connect TYPE 1A7A SIGNAL OUTPUT to TYPE 1 Al CPANNEL 1 input with patch cords.
b. Adjust DC Leve I $\pm .5 \mathrm{~V}$, max.

Adjust R550 for no trace shift on the test scope while switching TYPE 1 Al CHANNEL 1 INPUT SELECTOR between GND and DC.
c. Adjust compensation

Connect 50 mV from the TYPE 547 AMPLITUDE CALIBRATOR to the TYPE 1A7A + INPUT. Set + INPUT selector to DC. Adjust C554 for best compensation of front corner of test scope display.

Note: Patch cords are used in step 10 for minimum capacative loading on the signal output.
10. (cont'd)
d. Check amplitude . $25 \mathrm{~V} / \mathrm{CM}$, $\pm 10 \%$, max

Set TYPE 1A1 VOLTS/CM to .2. Adjust TYPE 1A7A VARIABLE for 4 cm on Plug-in scope display. Check amplitude of test scope display: $4.5 \mathrm{~cm}, \min ; 5.5 \mathrm{~cm}$, max.

Remove TYPE 1A7A input. Set VARIABLE to CAL.
e. Check 1 MHz complitude $.25 \mathrm{~V} / \mathrm{CM}, \pm 10 \%$, max

Connect Sine Wave Generator to TYPE 1A7A + input and adjust for 4 cm at 1 MHz on plug-in scope display. Check amplitude of test scope display: $4.5 \mathrm{~cm}, \mathrm{~min}, 5.5 \mathrm{~cm}$, max.
f. Check dynamic range $+\&-4.5$ Volts, min

Set TYPE 1A1 VOLTS/CM to 2. Set Sine Wave Generator to 1 kHz and adjust AMPLITUDE until clipping occurs on the positive and negative peaks of the test scope display. Note ampltiude of test scope display: + and -2.25 cm , min.

Remove cable and patch cord.
11. INPUT CAPACITANCE AND ATTENUATOR COMPENSATION
a. Setup
apply signal
TYPE 547 AMPLITUDE CALIBRATOR--50 cable--
47 pf INPUT TIME CONSTANT STANDARDIZER--TYPE 1A7 + INPUT
b. Adjust C112 (C212) aberration: 1\%, max

Set the + (-) INPUT switch to DC and the -
(+) INPUT switch to GND. Apply 5 cm of signal
(. 1 VOLTS) from the AMPLITUDE CALIBRATOR.

Adjust C112 (C212) for best square-wave.
c. Adjust attenuator compensation
aberration: 1\%, max
Set the AMPLITUDE CALIBRATOR for 5 cm of deflection in each of the following steps.

11c. (cont'd)
Adjust for best front corner, then for level.
adjust
TYPE 1A7
VOLTS/CM
for best
front corner
20 mVOLTS
50 mVOLTS
C105C (C205C)
check* check*
. 1 VOLTS
.2 VOLTS ClO7C (C207C
.5 VOLTS
1 VOLTS
check*
check*
2 VOLTS C109C (C209C) C109B (C209B)

10 VOLTS check*
for
level
C105B (C205B)

C107B (C207B)

* The rolloff, overshoot and level must be within 1%. If necessary, detune preceding variable capacitors (within 1\%) to bring
all positions involved within 1%.
Repeat step 11 for - INPUT.
Remove input.

12. ATTENUATOR DIFFERENTIAL BALANCE

Connect TYPE 547 AMPLTIUDE CALIBRATOR through the coax T to TYPE 1A7A + and - INPUT. Set both input selectors to DC and adjust for minimum vertical deflection as in table below:

VOLTS / CM	CALIBRATOR	adjust	
20 mV	2 VOLTS	R205E	C205C
. 2 V	20 VOLTS	R207E	C207C
2	100 VOLTS	R209E	C209C

Remove Cable from CO-AX T.
a. Adjust CMRR 125,000:1, min

Set TYPE 1A7A VOLTS/CM to 1 mV . Connect
20 V at 100 kHz from SINE WAVE GENERATOR
to Coax T connector and to the TYPE 1A7A

+ and - INPUT connectors. Adjust C162
for minimum deflection. Set VOLTS/CM
to .1 mV and fine adjust Cl 62 for minimum
deflection, 1.6 cm , max.
b. Check CMRR 125,000:1, min

Set SINE WAVE GENERATOR FREQUENCY
MULITPLIER to $10 \mathrm{kHz}, 1 \mathrm{kHz}, 100 \mathrm{~Hz}$, and
10 Hz and note deflection: 1.6 cm , max.
c. Check AC coupled CMRR

$$
\begin{gathered}
25,000: 1, \mathrm{~min} @ 100 \mathrm{kHz} \\
2.500: 1, \mathrm{~min}, @ 60 \mathrm{~Hz}
\end{gathered}
$$

Set TYPE 1A7A VOLTS/CM to 1 mV and INPUT selectors to AC. Set Sine Wave Generator to 100 kHz and note deflection: . 8 cm , max. Set TYPE 1A7A VOLTS/CM to 10 mV . Set Sine
Wave Generator to 60 Hz and note deflection:
.8 cm , max.
d. Check attenuator CMRR 500:1, min, @100kHz
Set both INPUT selectors to DC and check as in table:

Sine Wave Generator	VOLTS	Adjust if	
20 Voits	20 mV	c205c	2 cm
50 Volts	50 mV		2 cm
100 Volts	. 1 Volts		2 cm
100 Volts	. 2	C207C	1 cm
100 Volts	. 5		.4 cm
100 Volts	1		.2 cm .
100 Volts	2	C209C	. 1 cm

Remove inputs. Set the - INPUT selector to GND.
a. Setup

Set TYPE 1A7A VOLTS/CM to 10 mV .
Connect $5 \mathrm{~cm} @ 1 \mathrm{kHz}$ from Sine Wave
Generator to TYPE 1A7A + INPUT.
b. Check 1MHz bandwidth $1 \mathrm{MHz},+30 \%-0 \%$

Set Sine Wave Generator to 1 MHz and note deflection: 3.5 cm , min, 4.1 cm , max.
c. Check HIGH FREQ $-3 d B$ POINT $\pm 10 \%$, max

Set the TYPE 1A7A HIGH FREQ -3dB POINT and the Sine Wave Generator to each front panel frequency and note deflection: 3.4 cm , min, 3.7 cm , max. Set HIGH FREQ -3 dB POINT to 1 MHz .
d. Check LOW FREQ $-3 d B$ POINT $\pm 10 \%$, max

Set TYPE 1A7A LOW FREQ -3dB POINT and Sine Wave Generator to each front panel frequency from 10 kHz to 1 Hz and note deflection: 3.4 $\mathrm{cm}, \min , 3.7 \mathrm{~cm}$, max.

Remove input. Set LOW FREQ -3dB POINT to DC.
15. OVERDRIVE RECOVERY
a. Setup

Set TYPE 1A7A VOLTS/CM to 1 mV and + INPUT. selector to GND. Position trace to graticule center. Set plug-in scope TRIGGERING slope to -, MODE to TRIG TIME/CM to $10 \mu \mathrm{SEC}$, and LEVEL full cow. Increase INTENSITY until a dot appears and position dot to left edge of graticule. Connect +100 V DC from AMPLITUDE CALIBRATOR through 250:1 divider to + INPUT.
b. Check overdrive recovery $.5 \%$ in 10 HS

Set TYPE 1A7A + INPUT selector to DC. After a few seconds, depress button on 250:1 divider. Note: trace must return to within 2 cm of graticole center within $10 \mu \mathrm{~S}$. See Fig. 1. Set + INPUT selector to GND.

Fig $\# 1$

Set TRIGGERING MODE to AUTO and decrease intensity to normal.
a. Check + DC OFFSET $+.4 \mathrm{~V}, \pm 7.5 \%$, max

Set TYPE 1A7A VOLTS/CM to 10 mV , + INPUT selector to DC and DC OFFSET to ON.
Rotate COARSE full ccw and note trace returns to graticule.
b. Check -DC OFFSET -. $4 \mathrm{~V}, \pm 7.5 \%$, max

Change 250:1 divider to - INPUT. Set + INPUT selector to GND and - INPUT selector to DC. Rotate COARSE full cw and note trace returns to graticule.

Rotate DC OFFSET fine and check for approximately .2 cm of range.

Remove 250:1 divider. Set DC OFFSET to OFF. Set TIME/CM to . 5 mSEC .
17. DYNAMIC RANGE AND INPUT OVERLOAD
a. Setup

Connect Sine Wave Generator to TYPE 1A7A - INPUT. Adjust Sine Wave Generator for $4 \mathrm{~cm} @ 1 \mathrm{kHz}$. Set SAC to $5 \mathrm{~V}+\mathrm{DC}$ and connect through Variable Attenuator to TYPE 1A7A + INPUT. Set + INPUT selector to DC and LOW FREQ -3dB POINT to 10 Hz .
b. Check + dynomic range and INPUT OVER-. LOAD
range: 420 mV , min OVERLOAD Zight: before overload

Adjust Variable Attenuator until display starts to compress. Note INPUT OVERLOAD light lights before display compresses.

Set TYPE 1A7A - INPUT Selector to GND and VOLTS/CM to .l. Set SAC MODE to square wave and note display amplitude: 4 cm , min.
c. Check - dynamic range and INPUT OVERLOAD
range: 420 mV , min
OVERLOAD light: before overload
Set SAC MODE to -DC. Set TYPE 1A7A VOLTS/CM to 10 mV and -INPUT selector to DC. Adjust Variable Attenuator until display compresses.

17c. (cont'd)
Set SAC MODE to square wave. Set TYPE
1A7A - INPUT selector to GND and VOLTS/ cm to .1. Note display amplitude: 4 cm , min.

Set LOW FREQ - 3 dB POINT to DC.
18. DISPLAYED NOISE
a. Setup

Remove Variable Attenuator from SAC OUTPUT and connect to TYPE 547 CAL OUT. Set AMPLITUDE CALIBRATOR to .2mVOLTS, TIME/CM
to $20 \mu \mathrm{SEC}$ and TRIGGERING LEVEL full cw.
Set TYPE 1A7A VOLTS/CM to . 1 mV .
b. Check displayed noise measured tangentially: 14 14 V , max

Adjust Variable Attenuator until dark band vanishes. Set AMPLITUDE CALIBRATOR to 2 mVOLTS and note display amptliude: 1.4 cm , max.

Remove input. Set TYPE 1A7A VOLTS/CM to 10 mV .
[NOTE: THE FOLLOWING CHECKS ARE NOT MADE ON 100\% OF THE INSTRUMENTS BUT ARE DONE ON A SAMPLING BASIS]
19. AC LF RESPONSE
a. Setup

Set TYPE 1A7A + INPUT selector to AC. Connect Sine Wave Generator to + INPUT: Adjust Sine Wave Generator for 5 cm @lkHz.
b. Check $A C$ LF response 1.6Hz, min

Set Sine Wave Generator to 2 Hz and note display ampltiude: 3.85 cm , min.

Set Sine Wave Generator to 1 kHz .
20. SIGNAL OUTPUT RESISTANCE
a. Setup

Connect TYPE 1A7A SIGNAL OUTPUT to
TYPE 1Al with patch cords, Set 1 Al
VOLTS/CM to . 2 . Adjust Sine Wave Gen-
erator for 5 cm on test scope display.
b. Check SIGNAL OUTPUT resistance
resistance: 750 , max
Connect a $1 \mathrm{k} \Omega 1 \%$ resistor from TYPE IA7A SIGNAL OUTPUT to ground. Note test scope display ampltiude: 2.9 cm , min.

Remove cables from TYPE 1A7A.

THE END

TO: \qquad IP Routing \qquad DEPT: \qquad

FROM: \qquad Dave Robertson \qquad DEPT: \qquad SUBJECT: \qquad 1A7A Change 6

Please replace the old page with the one enclosed. OLD
6. Page 5, March 25, 1969 NEW

Dec. 5, 1969/A

Reason for change: IP Correction
ny
cc: SE (2)
Dean Nelson
Keith Summerill
PE-PEM
FPQC File
Ron Howe (3)

INPUT CAPACITANCE
AND ATTEN COMPENSATION
$\pm 1 \% \max$ aberration

AT ${ }^{T r N}$ DIFF
BA $\overline{I C E}$
1000:1, min

ENGINEERING INSTRUMENT SPECIFICATION

CHANGE NOTICE

Instrument Type: 1A7A
Publication affected: Engineering Instrument Spec. No. 197 Dated 12/28/67

Page: 1-3 \& 1-7 Item Step Response, Maximum Input Gate Current
Changed from: Page 1-7
Maintenance and Operation column:
Adjustable to zero using internal
adjustments.

Changed to: Page 1-3

Add to Engineering Notes column:

Test signal risetime not less than 10 ns .

Page 1-7
Delete information.

NOTE: The enclosed slit-punched pages replace the corresponding pages in the EIS.

Reason for change: Instrument may not perform as indicated by statement on page 1-7. Short risetime, high-amplitude test signals cause attenuator ringing and amplifier overload.

Instrument Type: \qquad
Publication affected: Engineering Instrument Spec. No. 197 Dated 12/28/67

Page: 1-7 Item_ Maximum Input Gate Current

Changed from:
See page 1-7 of Spec. Book

Changed to:

Maximum Input Current		$+25^{\circ} \mathrm{C}$	$+50^{\circ} \mathrm{C} *$
$10 \mu \mathrm{~V} / \mathrm{cm}$ to $10 \mathrm{mV} / \mathrm{cm}$	each input	$\pm 20 \mathrm{pA}$	$\pm 100 \mathrm{pA}$
	both inputs	$\pm 40 \mathrm{pA}$	$\pm 200 \mathrm{pA}$
$20 \mathrm{mV} / \mathrm{cm}$ to $10 \mathrm{~V} / \mathrm{cm}$	each input	$\pm 10 \mathrm{pA}$	$\pm 10 \mathrm{pA}$
Display Shift at $10 \mu \mathrm{~V} / \mathrm{cm}$ (AC coupled)	each input	$\pm 2 \mathrm{~cm}$	$\pm 10 \mathrm{~cm}$

NOTE: The enclosed slit-punched page replaces the corresponding page in the EIS.

Reason for change:

1. Instrument may not meet existing specification.
2. Re-1ayoyt of table for clarity.

Approved by:

Instrument Type: 1A7A Differential Amplifier
Publication affected: Engineering Instrument Spec. \qquad No. 197 Dated 12/28/67

Page: 1-8 Item Signal Output - Amplitude

Changed from:

```
    0.25 V/cm within 10%, decreasing to 0.225 V/cm
    within 10% to 1 MHz
```

Changed to:

QUOTABLE
$.25 \mathrm{~V} / \mathrm{cm}$, within 10%

MAINTENANCE \& OPERATION

Minimum load impedance $10 \mathrm{k} \Omega$ (15 pF at 1 MHz)

NOTE: The enclosed slit-punched page replaces the corresponding page in the EIS.

Reason for change:

Loading circuit not specified.

ENGINEERING INSTRUMENT SPECIFICATION

TYPE 1A7A DIFFERENTIAL AMPLIFIER PLUG-IN UNIT

FOR INTERNAL USE ONLY TEKTRONIX, INC.

ENGINEERING
 INSTRUMENT SPECIFICATION

TYPE 1A7A
DIFFERENTIAL AMPLIFIER
PLUG-IN UNIT

FOR INTERNAL USE ONLY
TEKTRONIX, INC.
\qquad

PREFACE

This Engineering Instrument Specification is the reference document for all company activity concerning the electrical, environmental, and physical characteristics of the subject instrument. This document is printed in two issues: a tentative copy printed on or before Prototype Release of the instrument, and a final copy printed following Engineering Release. Occasionally, if justified by the number of changes, the final copy is updated and reissued following Pilot Production.

The major function of the Engineering Instrument Specification is to provide electrical, environmental, and physical characteristics to the following departments:

Manuals	Advertising
Product Technical Information	International Manufacturing
Engineering Product Reliability	Technical Support
Marketing Technical Training	International Marketing
Product Manufacturing Staff	Manufacturing Quality Assurance
Engineering	Manufacturing Management

Electrical and environmental characteristics listed in Section 1 are worst case, and are to be treated as described on page 1-1. Factory test limits are excluded from the Engineering Instrument Specification. Factory test limits are established by Product Manufacturing Staff Engineering, and appear in documents issuing from that department.

Abbreviations and symbols appearing in the Engineering Instrument Specification conform to Tektronix Standard No. A-100, Recommended Short Forms.

This page is used as a guide to insure that all change pages have been inserted. When change pages are received, log them on this page, then insert the change pages in their appropriate place. Change numbers (located in upper right corner of Change Notice form) are assigned in sequence. Absence of a number from the sequence indicates a change which has not been inserted.

CHANGE NOTICE NUMBER	EFFECTIVE DATE OF CHANGE	PAGE NUMBER

CONTENTS

INTRODUCTION
Description I
Functions of Controls, Connectors, and Indicators I
SECTION 1 CHARACTERISTICS
1.1 Electrical 1-2
1.1.1 Amplifier 1-2
1.2 Environmental 1-10
1.3 Physical 1-11
SECTION 2 ELECTRICAL PERFORMANCE VALIDATION
2.1 Test Equipment Required 2-1
2.2 Deflection Factor 2-1
SECTION 3 ENVIRONMENTAL PERFORMANCE VALIDATION
3.1 Temperature $3-1$
3.2 Altitude 3-2
3.3 Vibration 3-3
3.4 Shock 3-3
3.5 Transportation 3-4

INTRODUCTION

Description

The Type 1A7A is an improved version of the Type 1A7. It is a general-purpose $10 \mu \mathrm{~V}$, DC coupled differential amplifier for Type $530-540-550$ series oscilloscopes with DC offset capability with switchable high and low frequency -3 dB points. Increased bandwidth and improved drift with time in addition to better common mode rejection ratio permit measurement capabilities in the biomedical, transducer and other areas which require stable, low deflection factor, low-noise measurements. The Type 1A7A has been designed and tested to meet certain Tektronix environmental requirements for laboratory instruments.

Function of Controls, Connectors, and Indicators

VOLTS/CM Switch
Selects calibrated deflection factors from $10 \mu \mathrm{~V} / \mathrm{CM}$ to $10 \mathrm{~V} / \mathrm{CM}$ in a 1-2-5 sequence.

VARIABLE VOLTS/DIV Control

Provides uncalibrated continuously variable deflection factor to at least 2.5 times the calibrated setting (uncalibrated deflection factor range is extended to $25 \mathrm{~V} / \mathrm{div}$).

POSITION Control

Vertically positions the display.
INPUT OVERLOAD Indicator

Indicates that differential overload is being approached. Lights when differential input + DC offset exceeds 0.75 of differential dynamic range.

GAIN Adjustment
Screwdriver adjustment allows calibration of vertical deflection factor.

+ INPUT Connector

BNC connector for applying external signals. Positive signal deflects trace up.

- INPUT Connector

BNC connector for applying external signals. Positive signal deflects trace down.

Input Selector
AC
Capacitively couples input signal to vertical amplifier.
GND
Grounds input attenuator.
DC
Signal is directly coupled to vertical amplifier.
STEP ATTEN DC BAL Control
Permits balancing of trace when switching VOLTS/CM control.
HIGH FREQ -3 dB POINT Switch
Selects upper bandwidth frequencies from 100 Hz to 1 MHz , nine steps in a 1-3-10 sequence.

LOW FREQ -3 dB POINT Switch
Seven positions select DC and lower bandwidth frequencies from 0.1 Hz to 10 kHz in decade steps.

DC OFFSET Switch
Turns DC offset ON or OFF.
DC OFFSET, COARSE and Fine Control
Permits displaying on screen, small signal variations on relatively large signals.

SIGNAL OUTPUT Connector
BNC connector for monitoring displayed signal.

SECTION 1

CHARACTERISTICS

Characteristics are attributes or capabilities of a product described in terms of acceptable qualitative or quantative limits. The characteristics in this section are categorized as electrical, environmental and physical.

The electrical and environmental characteristics together with their related validation procedures in Section 2 and 3 comprise a complete statement of the electrical and environmental performance of a calibrated instrument. Thus, the electrical and environmental characteristics are valid only: (1) if the instrument is operating under the conditions described in this section and in Section 2 and 3, and (2) if the instrument is calibrated and operating in a calibrated system.

Information in this section is tabulated as follows:

1. ITEM
2. QUOTABLE
3. MAINTENANCE \& OPERATION
4. TEST RATE
5. VAL. STEP
6. ENGINEERING NOTES

Titles of specific attributes or capabilities of a product.
Characteristics describing the measurement capabilities or limitations and physical attributes of a product. These characteristics are considered necessary to qualify a product for a particular application(s). These characteristics are a commitment between Tektronix, Inc., and the customer.
Characteristics that, when met, will insure optimum instrument operation. These characteristics may be given to a customer as maintenance or operational aids, but are not a commitment between Tektronix, Inc., and the customer
Engineering's recommendations (not binding on Manufacturing) regarding the minimum percentage of instruments which are tested for specific characteristics; i.e. $100 \%, 10 \%, 1 \%$ or 0.1%. These recommendations are based on confidence level, and on the importance of the characteristic.

The step number in Section 2 or 3 where the validation procedure for the characteristic can be found.
Reserved for Engineering information. This information is not to be printed in any publication normally available to the customer and may not be given to a customer except under special circumstances. This information is not intended to be a commitment between the customer and Tektronix, Inc.

1.1.1 AMPLIFIER					
ITEM	QUOTABLE	MAINTENANCE \& OPERATION	TEST RATE	VAL. STEP	ENGINEERING NOTES
Characteristics described in this section are valid over the stated environmental range for instruments calibrated at an ambient temperature of $+20^{\circ} \mathrm{C}$ to $+30^{\circ} \mathrm{C}$ and after a 5 minute warm up unless otherwise noted.					
Deflection Factor					
Calibrated Range	$10 \mu \mathrm{~V} / \mathrm{cm}$ to $10 \mathrm{~V} / \mathrm{cm}, 19$ steps in a 1-2-5 sequence				
Accuracy	Within 2\%		100\%	2.2.1	
Uncalibrated (Variable)	Continuously variable; extends deflection factor to at least $25 \mathrm{~V} / \mathrm{cm}$	At 1east 2.5:1	100\%	2.2.2	
GAIN Range		```At least +5% to -5% from calibrated setting```	100\%	2.2 .3	GA:IN adjusted at $1 \mathrm{mV} / \mathrm{CM}$
Differential Dynamic Range (DC OFFSET at OFF)	$\pm 400 \mathrm{mV}$		100\%	2.2 .4	Input C changes outside differential, Dynamic Range
$10 \mu \mathrm{~V} / \mathrm{cm}$ to $10 \mathrm{mV} / \mathrm{cm}$					
$20 \mathrm{mV} / \mathrm{cm}$ to $0.1 \mathrm{~V} / \mathrm{cm}$	$\pm 4 \mathrm{~V}$				
$0.2 \mathrm{~V} / \mathrm{cm}$ to $1 \mathrm{~V} / \mathrm{cm}$	$\pm 40 \mathrm{~V}$				
$2 \mathrm{~V} / \mathrm{cm}$ to $10 \mathrm{~V} / \mathrm{cm}$	$\pm 400 \mathrm{~V}$				

(Verification Points

Fig. 1-1. CMRR vs Frequency For Signals Not Exceeding Common-Mode Dynamic Range

1 ELECTRICAL					
1.1.1 AMPLIFIER (cont)					
ITEM	QUOTABLE	MAINTENANCE \& operation	$\begin{aligned} & \text { TEST } \\ & \text { RATE } \\ & \hline \end{aligned}$	VAL. STEP	ENGINEERING NOTES
AC (Capacitive) Coupled	See graph, page 1-5				$\begin{aligned} & \text { AC coupled input } \\ & 10 \mu \mathrm{~V} / \mathrm{CM} \text { to } \\ & 10 \mathrm{mV} / \mathrm{CM} \text {. Typi- } \\ & \text { cally } 2 \text { times } \\ & \text { better } \end{aligned}$
Maximum Input Voltage		Fuse will blow if exceeded	0\%		
DC (Direct) Coupled, DC + Peak AC					
$10 \mu \mathrm{~V} / \mathrm{CM}$ to $10 \mathrm{mV} / \mathrm{CM}$	$\pm 20 \mathrm{~V}$				
$20 \mathrm{mV} / \mathrm{CM}$ to $10 \mathrm{~V} / \mathrm{CM}$	$\pm 500 \mathrm{~V}$				
AC (Capacitive) Coupled Input DC Voltage	$\pm 500 \mathrm{~V}$, each input	Precharge circuit should be used when applying voltage			
AC (Capacitive) Coupled Input DC Rejection	At least $4 \times 10^{5}: 1$				
Input R and C	$1 \mathrm{M} \Omega$ within 1%		0.1\%	2.2.11	
Resistance					
Capacitance	47 pF within 2.05 pF		0.1\%		
Time Constant	47 us within 4%		100\%		
					-

ITEM	QUOTABLE	MAINTENANCE \& OPERATION	TEST RATE	VAL. STEP	ENG INEERING NOTES
Finish	Anodized aluminum front panel				
Weight	4.75 lbs				
Dimensions					

SECTION 2

ELECTRICAL PERFORMANCE VALIDATION

2．1 Test Equipment Required

1 Oscilloscope
1 Sinewave Generator
1 Sinewave Generator $1 \mathrm{~Hz}-1 \mathrm{MHz}$
1 Standard Amplitude Calibrator
1 Resistance Capacitance Bridge
1 1，000：1 Resistive Divider
1 100：1 Resistive Divider
1 Input RC Normalizer
1 Squarewave Generator
：Tektronix Type 547
：Tektronix Type 191
：Tektronix Part No．067－0542－99
：Tektronix Part No．067－0502－00
：ESI 250DA
：Tektronix Part No．067－0529－00
：Tektronix Special
：Tektronix Part No．067－0541－00
：Tektronix Type 106

2．2 Deflection Factor

2．2．1 Accuracy

Connect Standard Amplitude Calibrator to＋INPUT．Use either
4 cm or 5 cm of displayed signal depending upon combination of calibrator signal and VOLTS／CM setting．GAIN is adjusted at $1 \mathrm{mV} / \mathrm{CM}$ ．Deviations from $10 \mathrm{mV} / \mathrm{CM}$ to $0.5 \mathrm{~V} / \mathrm{CM}$ must be recorded．

Check accuracy $10 \mu \mathrm{~V} / \mathrm{CM}$ to $0.5 \mathrm{mV} / \mathrm{CM}$ as follows：Connect $1 \mathrm{~Hz} \mathrm{-}$ 1 MHz Signal Generator to＋INPUT．Set－INPUT selector to GND， HIGH FREQ－3 dB POINT to 100 Hz ，LOW FREQ－3 dB POINT to 1 kHz and VOLTS／CM to 10 mV ．Adjust Signal Generator amplitude for a 5 cm display and FREQUENCY for 300 Hz ．Set VOLTS／CM for $10 \mu \mathrm{~V} / \mathrm{CM}$ ． Connect 1 Hz － 1 MHz Signal Generator through 1，000：1 resistive divider（067－0529－00）to＋INPUT．Check display amplitude for 5 cm within 0.1 cm and that measured error at $10 \mu \mathrm{~V} / \mathrm{CM}$ and recorded error of $10 \mathrm{mV} / \mathrm{CM}$ do not exceed 2% deviation from $1 \mathrm{mV} / \mathrm{CM}$ ．Repeat to check $20 \mu \mathrm{~V} / \mathrm{CM}$ to $0.5 \mathrm{mV} / \mathrm{CM}$ ．

2．2．2 Uncalibrated（Variab1e）
Connect SAC to＋INPUT．Set VOLTS／CM to 1 V and apply 5 V from SAC．Turn VARIABLE VOLTS／CM fully ccw．Check for 2 cm display or less．

2．2．3 GAIN Range

Connect SAC to＋INPUT．Set VOLTS／CM to 1 mV ．Apply 5 mV from SAC．Turn GAIN fully cw and check for 5.25 cm display．Turn GAIN fully cow and check for 4.75 cm display．Adjust GAIN for 5 cm display．

2.2.4 Differential Dynamic Range

Connect 1 Hz - 1 MHz Sinewave Generator to - INPUT. Set VOLTS/CM to 1 mV , LOW FREQ -3 dB POINT to 10 Hz , and DC OFFSET to OFF. Set Sinewave Generator for 1 kHz and adjust amplitude for a 5 cm display.

Connect SAC---Variable Attenuator--- + INPUT. Set + INPUT selector to DC and SAC for 0.5 V and adjust Variable Attenuator for 0.4 V DC. Check displayed sinewave for 5 cm .

Connect $1 \mathrm{~Hz}-1 \mathrm{MHz}$ Sinewave Generator to + INPUT and SAC to - INPUT and repeat.

2.2.5 Frequency Response (Full Graticule Reference)

Overa11 Frequency Response DC (Direct) Coupled Input
Connect Type 191 to + INPUT. Set VOLTS/CM to 1 mV , HIGH FREQ -3 dB POINT to 1 MHz , and LOW FREQ -3 dB POINT to DC. Set Type 191 frequency to 50 kHz and adjust amplitude for a 4 div display. Increase frequency to 1 MHz and check display amplitude for 2.8 cm or greater. Set frequency to 1.3 MHz and check display amplitude for 2.8 cm or less.

AC (Capacitive) Coupled Input Lower Bandwidth Frequency

Connect 1 Hz - 1 MHz Sinewave Generator to + INPUT. Set LOW FREQ -3 dB POINT to DC. Set Sinewave Generator frequency for 10 kHz and adjust amplitude for a 4 div display. Decrease frequency until 2.8 cm are displayed and check that frequency is 1.6 Hz within 5%.
2.2.6 Bandwidth Limit Accuracy (-3 dB points)

High

1 MHz
Connect Type 191 to + INPUT. Set VOLTS/CM to 1 mV , HIGH FREQ -3 dB POINT to 1 MHz , and LOW FREQ -3 dB POINT to DC. Set Type 191 frequency to 50 kHz and adjust amplitude for a 4 div display. Increase frequency to 1 MHz and check display amplitude for 2.8 cm or greater. Set frequency to 1.3 MHz and check display amplitude for 2.8 cm or less.

300 kHz to 100 Hz
Connect 1 Hz - 1 MHz Sinewave Generator to + INPUT. Set VOLTS/CM to 1 mV and LOW FREQ -3 dB POINT to DC. Set frequency to $1 / 20$ of switch setting and adjust amplitude for a 4 cm reference. Increase frequency until 2.8 cm are displayed. Check that frequency is within 12% of value indicated by HIGH FREQ -3 dB POINT setting.

Low

1 Hz to 10 kHz
Connect $1 \mathrm{~Hz}-1 \mathrm{MHz}$ Sinewave Generator to + INPUT. Set VOLTS/CM to 1 mV and HIGH FREQ -3 dB POINT to 1 MHz . Set frequency to 20 times LOW FREQ -3 dB POINT switch setting and adjust amplitude for a 4 cm reference. Decrease frequency until 2.8 cm are displayed. Check that frequency is within 12% of value indicated by LOW FREQ -3 dB POINT setting.

2.2.7 Step Response

Risetime (1 MHz Bandwidth)

Connect Type 106 to + INPUT. Set VOLTS/CM to 1 mV , HIGH FREQ -3 dB POINT to 1 MHz , and LOW FREQ -3 dB POINT to DC. Set TYPE 106 to + OUTPUT and adjust amplitude for a 5 cm display. Measure the time interval between the 10% and 90% amplitude points on the leading edge of the pulse.

Aberrations

Connect Type 106 to + INPUT. Set VOLTS/CM to 1 mV , HIGH FREQ -3 dB POINT to 1 MHz , LOW FREQ -3 dB POINT to DC, and + INPUT selector to DC. Set Type 106 Repetition Rate Range for 10 kHz and adjust Fast Rise amplitude for a 5 cm display. Set sweep rate for $0.5 \mu \mathrm{~s} / \mathrm{cm}$ and position the 50% amplitude point to the 0 graticule line. Start aberration measurement $1 \mu \mathrm{~s}$ after 50% amplitude point. Check for $+1 \%-1 \%$ or less.

2.2.8 Overdrive Recovery

Install Type 1A7A in a Type 547. Connect B Sweep + Gate through 100:1 divider to + INPUT. Set VOLTS/CM to 1 mV , HIGH FREQ -3 dB POINT to 1 MHz , LOW FREQ -3 dB POINT to DC , and + INPUT selector to DC. Set B Sweep for $0.1 \mathrm{~s} / \mathrm{cm}$, Trigger to Auto, + AC Line, and Level for free-running sweep. Set A Sweep for $10 \mu \mathrm{~s} / \mathrm{cm}$, Slope for -, Coupling AC, Int, and adjust Level to trigger on - slope. Set Horiz Display for A Delayed.

Check that trace recovers to within 1 cm of baseline within $10 \mu \mathrm{~s}$.

2.2.9 Input Overload Light

Connect 1 Hz - 1 MHz Sinewave Generator to + INPUT and - INPUT. Light will light when differential input is between 0.75 and $1: 0$ of Differential Dynamic Range.

2.2.10 Common-Mode Rejection Ratio

Connect 1 Hz - 1 MHz Sinewave Generator to + INPUT and - INPUT. Set Sinewave Generator for the proper frequency and amplitude as shown by verification points on page 1-5. CMRR is expressed as a ratio of input signal to displayed signal.

2.2.11 Input R and C

Resistance

Connect ESI 250 DA to + INPUT. Measure the input resistance for $1 \mathrm{M} \Omega$ within 1%. Repeat for - INPUT.

Capacitance

Connect ESI 250 DA to + INPUT. Measure input capacitance for 47 pF within 1.5 pF .

Time Constant

Connect Type 106---Input RC Normalizer (067-0541-00)--- + INPUT. Set VOLTS/CM for 1 mV and + INPUT selector for DC. Set Type 106 amplitude for a 5 cm display and frequency for 1 kHz . Tilt must be less than 0.2 cm . Repeat to check - INPUT.
2.2.12 Input Gate Current $\left(+25^{\circ} \mathrm{C}\right)$

Each Input
Set + INPUT and - INPUT to GND. Connect 50Ω terminations to both + INPUT and - INPUT. Set HIGH FREQ -3 dB POINT for 100 Hz and set deflection factor as stated on page 1-7. Position trace to graticule center. Switch + INPUT selector to AC and note trace deflection. Indicated voltage change is divided by $1 \mathrm{M} \Omega$ input resistance to determine gate current. Repeat for - INPUT.

Both Inputs

Set + INPUT and - INPUT to GND. Connect 50Ω terminations to both + INPUT and - INPUT. Set HIGH FREQ -3 dB POINT for 100 Hz and set deflection factor as stated on page 1-7. Position trace to graticule center. Switch + INPUT and - INPUT to AC simultaneously and note trace deflection. Indicated voltage change is divided by $1 \mathrm{M} \Omega$ input resistance to determine gate current.

Display Shift at $10 \mu \mathrm{~V} / \mathrm{cm}$ (AC Coupled)
Set + INPUT to GND and VOLTS/CM for $10 \mu \mathrm{~V} / \mathrm{cm}$. Position trace to graticule center. Switch + INPUT to AC. Check that trace deflection is less than 1 cm .
$+50^{\circ} \mathrm{C}$ characteristics are checked during environmental test phase.

2.2.13 Variable Balance

Set VOLTS/CM for 1 mV and position trace to graticule center. STEP ATTEN BAL must be adjusted correctly. Turn VARIABLE from fully cw to fully ccw and check for 0.2 cm or less shift.
2.2.14 STEP ATTEN DC BAL

Position trace to graticule center. Check that STEP ATTEN DC BAL can be adjusted for no position change while switching VOLTS/CM.

2.2.15 Position Range

Connect Type 106--- + INPUT. Set + INPUT selector to AC, VOLTS/CM for 50 mV , and position trace to graticule center. Adjust Type 106 amplitude and symmetry to obtain a 3.2 cm display centered on screen. Set VOLTS/CM for 10 mV . Turn POSITION fully cw . Top of waveform must position to graticule center or below.

Turn POSITION fully ccw. Bottom of waveform must position to graticule center or above.
2.2.16 Displayed Noise (Tangentially Measured)

Connect Type 106---100 X Attenuator---50 Termination--- + INPUT. Set VOLTS/CM for $10 \mu \mathrm{~V}$ and free-run time base. Adjust Type 106 amplitude until two noise bands merge. Remove 100 X Attenuator and set VOLTS/CM for 0.1 mV . Measure display amplitude. Divide displayed voltage by 100 to determine noise.
2.2.17 DC Drift

Drift with Time (Ambient Temperature and Line Voltage Constant)
Short Term
Set VOLTS/CM for $10 \mu \mathrm{~V}$ and position trace to graticule center. Monitor total P-P trace drift after 1 hour warm-up occurring in a 1 minute interval. Trace drift must be 0.5 cm or less.

Long Term

Set VOLTS/CM for $10 \mu \mathrm{~V}$ and position trace to graticule center. Monitor total P-P trace drift after 1 hour warm-up occurring in a 1 hour interval. Trace drift must be 1 cm or less.

Drift with Ambient Temperature (Line Voltage Constant)
Check during environmental test phase.
2.2.18 Isolation Between + and - Inputs (+ INPUT to Open - INPUT, - INPUT to an Open + INPUT)
$10 \mu \mathrm{~V} / \mathrm{cm}$ to $10 \mathrm{mV} / \mathrm{cm}$
Connect SAC to + INPUT. Set - INPUT selector to GND, VOLTS/CM to 1 mV , and DC OFFSET to ON. Set SAC for 100 mV . Adjust COARSE to position top of display to graticule center. Switch - INPUT selector to DC. Trace deflection must be 1 cm or less. Repeat for - INPUT.

$20 \mathrm{mV} / \mathrm{cm}$ to $10 \mathrm{~V} / \mathrm{cm}$

Connect SAC to + INPUT. Set - INPUT selector to GND, VOLTS/CM to 100 mV , and DC OFFSET to ON. Set SAC for 2 V . Adjust COARSE to position top of display to graticule center. Switch - INPUT selector to DC. Trace deflection must be 1 cm or less. Repeat for - INPUT.

2.2.19 Signal Output

Dynamic Range

Connect SAC to + INPUT. Set VOLTS/CM to 0.2 V , HIGH FREQ -3 dB POINT to 1 MHz , LOW FREQ -3 dB POINT to DC , and + INPUT selector to DC. Set SAC for 10 V and monitor SIGNAL OUTPUT with test scope. Check for $+4 V$ to $-4 V$.

Amplitude

Connect SAC to + INPUT. Set VOLTS/CM to 10 mV , HIGH FREQ -3 dB POINT to 1 MHz , LOW FREQ -3 dB POINT to DC , and + INPUT selector to DC. Set SAC for 50 mV and monitor SIGNAL OUTPUT through $42^{\prime \prime}$ RG 58/U cable to test scope. Check for 1.25 V within 10%.

Output Resistance

Connect ESI Resistance Bridge Type 250 DA to SIGNAL OUTPUT. Check that output resistance is 750Ω or less.
2.2.20 DC OFFSET, Coarse Range From Electrical Zero

$10 \mu \mathrm{~V} / \mathrm{cm}$ to $10 \mathrm{mV} / \mathrm{cm}$

Connect SAC---Variable Attenuator--- + INPUT. Set + INPUT selector to GND and position trace to graticule center. Set SAC amplitude for 0.5 V , + DC. Set + INPUT selector to DC. Set DC OFFSET to ON and turn COARSE fully cow. Adjust Variable Attenuator to position trace to graticule center. Measure input DC voltage with test scope. Voltage must be +400 mV within 10%.

Set + INPUT selector to GND and position trace to graticule center. Set SAC amplitude for 0.5 V - DC. Set + INPUT selector to DC. Set DC OFFSET to ON and turn COARSE fully cw. Adjust Variable Attenuator to position trace to graticule center. Measure input DC voltage with test scope. Voltage must be -400 mV within 10%.

20 mV to 0.1 V

If the $10 \mu \mathrm{~V} / \mathrm{cm}$ to $10 \mathrm{mV} / \mathrm{cm}$ DC OFFSET range is within its performance requirements then the 20 mV to .1 V range is within its performance requirements.

0.2 V to 1 V

Connect Type 106 to + INPUT. Set + INPUT selector to GND and position trace to graticule center. Adjust Type 106 amplitude for 80 V P-P output. Set + INPUT selector to DC. Set DC OFFSET to ON and turn COARSE fully ccw. Top of display must position below graticule center. Turn COARSE fully cw. Bottom of display must position above graticule center. Check that Fine has 0.2 V total range.

2 V to 10 V
When the $10 \mu \mathrm{~V} / \mathrm{cm}$ to $1 \mathrm{~V} / \mathrm{cm}$ ranges are within their performance requirements then the $2 \mathrm{~V} / \mathrm{cm}$ to $10 \mathrm{~V} / \mathrm{cm}$ range is within its performance requirement.

SECTION 3

ENVIRONMENTAL PERFORMANCE VALIDATION

3.1 Temperature

Perform all tests in a single chamber and, when changing chamber ambient temperature, do not exceed a change rate of $5^{\circ} \mathrm{C}$ per minute.

3.1.1 Nonoperating

Perform all electrical tests, described in Section 2, at $25^{\circ} \mathrm{C}$. Then turn the instrument off and store at $-40^{\circ} \mathrm{C}$ ambient for 4 hours.

Change ambient temperature to $+65^{\circ} \mathrm{C}$ and again store for 4 hours.
Return the ambient temperature to $25^{\circ} \mathrm{C}$, allow 4 hours for stabilization, and again perform all electrical tests.

Failure Criteria

Instrument and components must meet performance requirements before and after storage. If necessary, internal or external adjustments may be performed to meet required accuracies.

Cracking, warping, discoloration or any deformation which interferes with a normal mechanical function also constitutes failure.
3.1.2 Operating

Perform all electrical tests, described in Section 2, at $25^{\circ} \mathrm{C}$.
With the instrument turned off, change ambient temperature to $0^{\circ} \mathrm{C}$ and allow the instrument to stabilize for 4 hours. At the end of this period, turn the instrument on, allow 5 minutes for warm-up, then check accuracy and operation of all front-panel functions.

With the instrument operating, change the chamber ambient temperature to $+50^{\circ} \mathrm{C}$ and allow 4 hours for stabilization.

At the end of 4 hours, again check the accuracy and operation of all front-panel functions.

Return the instrument to $25^{\circ} \mathrm{C}$, allow 4 hours for stabilization, then perform all electrical tests described in Section 2.

Failure Criteria

Instrument must meet performance requirements at each step in the test. Controls and switches must operate normally.

3.2 Altitude

Altitudes described in this section are referred to sea level. "Normal altitude", when used, refers to the natural elevation (outside the chamber) of the test facility site.

3.2.1 Nonoperating

Perform all electrical tests described in Section 2 at $25^{\circ} \mathrm{C}$ and normal altitude. Then store, with the instrument turned off, for 4 hours at 50,000 feet and $-40^{\circ} \mathrm{C}$.

Return chamber to normal altitude and $25^{\circ} \mathrm{C}$ and allow 4 hours for stabilization. At the end of this period, repeat the electrical tests.

This test may be performed with the nonoperating temperature test (3.1.1).

Failure Criteria
The instrument must meet performance requirements before and after the altitude test, and must experience no cracking or warping, nor any deformation which interferes with a normal mechanical function.

3.2.2 Operating

Perform all electrical tests described in Section 2 at $25^{\circ} \mathrm{C}$ and at normal altitude.

Operate the instrument for 4 hours at 15,000 feet. At the end of this period, maintain that altitude and measure accuracy and operation of front-panel functions.

When necessary, open the vacuum chamber and perform required switching as rapidly as possible. Then return chamber to the : specified altitude and allow 1 hour for stabilization before continuing the tests.

Return the instrument to normal altitude and repeat all electrical tests described in Section 2.

Failure Criteria

Instrument will meet performance requirements before, during, and after the operating altitude tests. Any evidence of malfunction constitutes failure.

3.3 Vibration

3.3.1 Operating

Perform all electrical tests described in Section 2 before vibrating the instrument.

Fasten the instrument securely to the vibration platform.
With the instrument operating, vibrate for 15 minutes along each of the three axes at a total displacement of $0.015^{\prime \prime}$ (1.9 g 's at $50 \mathrm{c} / \mathrm{s}$) and with the frequency varied from $10-50-10 \mathrm{c} / \mathrm{s}$ in $1 \mathrm{~min}-$ ute cycles. Hold at any resonant point for 3 minutes.

If no resonances are present, vibrate at $50 \mathrm{c} / \mathrm{s}$ for 3 minutes in each axis for a total vibration time of about 55 minutes.

Turn off the vibration $p l a t f o r m$ and repeat all electrical tests described in Section 2.

Failure Criteria

The instrument must meet performance requirements before and after the vibration tests. (Sporadic output during vibration is permissible.)

Mechanical failures are indicated by:
Broken leads
Broken chassis
Broken components
Loose parts
Excessive wear
Component fatigue
Change in component value outside rated tolerance
Deformation which interferes with a normal mechanical function

Test will be completely rerun after repairing any of these failures except vacuum tubes. Vacuum tubes may be replaced and the test continued at the point of failure.
3.4 Shock

3.4.1 Nonoperating

Perform all electrical tests described in Section 2 before proceeding with the shock tests.

Subject the instrument to guillotine-type shocks of 30 g 's, $1 / 2$ sine, 11 ms duration; 1 such shock each direction along each of the 3 major axes for a total of 6 shocks.

Failure Criteria

The instrument will meet performance requirements before and after the shock tests.

There must be no cracked or broken chassis, components, or leads; component deformation of $0.100^{\prime \prime}$ or more; nor any deformation which interferes with a normal mechanical function.

3.5 Transportation

Perform all tests described in Section 2 before conducting the transportation tests, then place the instrument in the carton in the manner in which it is normally shipped.

3.5.1 Package Vibration

Vibrate for 1 hour in a manner causing the package to just leave the vibration platform (slightly in excess of 1 g).
3.5.2 Package Drop

Drop the package from a height of $30^{\prime \prime}$ on one corner, on all edges radiating from that corner, and on all flat surfaces for a total of 10 drops.

After the transportation test, repeat all electrical tests described in Section 2.

Failure Criteria
The instrument must meet performance requirements before and after the transportation tests. There must be no broken components, leads, or chassis members, nor any deformation which interferes with a normal mechanical function.

Change Number: 197-1
Page: See Below
Effective Date: 1-25-68
Characteristic: See Below
New Spec: Change As Follows:
Page 1-7
Position Range (under Maintenance \& Operation) change to:
At least +8 to -8 cm from graticule center

Page 1-8

Signal Output (Dynamic Range) (under Maintenance \& Operation) change to:
At least +4 to -4 V
$\frac{\text { Page } 2-1}{2.1}$
Test Equipment Required
Add: 1 Squarewave Generator : Tektronix Type 106
2.2.1 Accuracy

Change third sentence of second paragraph to read:
Adjust Signal Generator amplitude for a 5 cm display and FREQUENCY for 300 Hz .

Page 2-3
2.2.10 Common-Mode Rejection Ratio Change: Page number reference for verification points to 1-5.

Page 2-4
2.2.12 Input Gate Current ($+25^{\circ} \mathrm{C}$)

Each Input
Change page number shown on third line to: 1-7.
Both Inputs
Change page number shown on third line to: 1-7.

Page 2-5

2.2.15 Position Range

Change third line of first paragraph to: ... a 3.2 cm display ... Change second line of second paragraph to read: graticule center or above.
2.2.16 Displayed Noise (Tangentially Measured) Change last sentence of paragraph to read: Divide displayed voltage by 100 to determine noise.

```
Change Number: 197-1 (continued)
Page 2-6
    2.2.19 Signal Output (Dynamic Range)
        Change last line to read: for +4 V to -4 V.
        Signal Output (under Amplitude)
        Change third line of paragraph under Amplitude to:
        Set SAC for 50 mV ...
    2.2.20 DC OFFSET, Coarse Range From Electrical Zero
        Change fourth sentence (third line) of the first paragraph to read:
        Set + INPUT selector to DC.
        Change third sentence (second line) of the second paragraph to read:
        Set + INPUT selector to DC.
Page 2-7 (Under 0.2 V to 1 V)
    Change fourth sentence (third line) to read:
    Set + INPUT selector to DC.
Reason:
    Correction
```

This form requests changes in the Engineering Instrument Specification (salmon book) or in performance characteristics quoted to the customer via publications such as the Catalog or Instruction Manual. When the instrument has an Engineering Instrument Specification, then it is the controlling document.

Return completed form to Product Evaluation and Modification Engineering Writing 50/425 for approval and distribution.

Instrument Type:
Publication affected:_ No._ Dated______________
Requested by: \qquad Dept. \qquad Date \qquad

Page no: \qquad Item

Now reads: \qquad
\qquad
\qquad
\qquad
Change to/add: \qquad
\qquad
\qquad
\qquad
Reason for change: \qquad
\qquad
\qquad
\qquad
Approval: (Initial in proper space)

Make change immediately
Make change at next rewrite Reject
or

Proj. Mgr.	Proj. Eng.	Eval. Mgr.	Eval. Eng.			
				\cdots		

