COMPANY
CONFIDENTIAL

MICROPROCESSOR
DESIGN PITFALLS

Bill Walker (T&M Group vice president), in November 1976, formed the Engineering
Activities Council to provide engineers with a forum in which to present directly, to
multiple levels of management, what engineers themselves consider important in
technology.

The subject of the eighth forum was Microprocessor Design Pitfalls. Bill Walker introduced the forum chairmen: Paul
Williams (Engineering Services, T&M Operations) and Robert Chew (Instrument Research, Tektronix Laboratories). Paul
and Robert introduced the forum panel members: Norm Kerth (Computer Research, Tektronix Laboratories), Bill Lowery
(Scientific Computer Center), Steve Dum (LDP Engineering) and Bob Edge (IDS Engineering) who spoke about pitfalls
from an IDG designer’s viewpoint.

Robert Chew
COCHAIRMEN

Steve Dum, LDP Engineering,spoke
about logic development support for
microprocessor design.

MICROPROCESSOR DESIGN

PITFALLS

FROM A DESIGNER’S VIEWPOINT

Norm Kerth, Computer Research
(Tektronix Laboratories), ext. 6640.

From a designer’s viewpoint there
are several major pitfalls on the road
of microprocessor-based product
design. Eachrequires the attention of
the engineers and managers involved
in the project.

PRODUCT DEFINITION

In some companies, marketing
people decide which products will be
designed. Since most marketing
people have little contact with new
technology, their design suggestions
tend to be warmed-over versions of
existing products. The new products
may be incrementally bigger,
smaller, faster or cheaper but they
aren’t radically different in the
technology they employ.

In other companies, engineers decide
which products will be designed.
While familiar with the latest
technology, they often aren’t familiar
with markets. Products designed
without marketing input often have
little-used options and high prices.

Since the engineer’s job is designing,
the engineer has little time to learn
the spectrum of markets that are “out
there.” For example, engineers know
that cable testers are used to check

2

cables in aircraft and telephone lines.
But marketing people are more likely
to know that a cigar manufacturer
uses a cable tester to make sure each
packaged box contains the right
number of cigars, and that a potato
farmer uses a spectrum analyzer to
find rotten spots.

The engineer’s job is designing, and
the marketing person’s job is
identifying markets and selling to
them. I believe that Tektronix needs
for each project a third person whose
full-time job is new product
definition. This person should have a
current engineering background, an
understanding of software and an
exposure to the marketplace. Job
responsibilities would include
complete product definition, product
simulation and maintaining contacts
with customers and the design
groups.

SYSTEM OVERVIEW

After product definition, the next
step in microprocessor-based
product development should be
formulating a complete system
design. Not having a consistent, well-
thought-out system design leads to
several problems.

Not all design changes can or should
be avoided, but having a firm system
design helps engineers resist the
temptation to add ”just one more
neat feature” that may have an
adverse impact on the rest of the
design.

Lack of coherent system design also
sustains the ”“do-and-redo”
syndrome. If only part of the design
has been thought through, the
software designer may be told to
write the code for that part of the
design. When other parts of the
system design are completed, the
software designer often has to redo
the first efforts.

One way to minimize these problems
is to assign a system architect to each
project. Microprocessors have made
instrument design much more
complex. To meet that complexity,
there should be one system architect
who defines the overall design,
documents that design, and answers
design questions during product
development. The system designer
should also make sure the the
product modules work together.
Good system designers are rare, but
we should still look for them.

HUMAN INTERFACE

Microprocessor control of the
human-machine interface makes that
interface very flexible, but also
introduces a pitfall. It’s easy to wait
until the instrument is built to check
out the interface. If the interface
doesn’t do what was expected, the
designer may have to make major
changes. To avoid the pitfall, the
designer can simulate the interface
using a 4051 graphic terminal, a bit-
bucket or the Cyber system.

Fortunately, you don’t have to
simulate the whole instrument just
the human interface. It’s usually
enough to mock-up the front panel....
modeling keyboard action, the crt, or
other human-interface devices. The
mock-up will show any flaws in the
human-interface design as well as
allow the designer to show marketing
and manufacturing people how the
instrument works. And then let
novices use the simulator ... that’s the
ultimate test.

The simulator is a useful educational
tool because marketing and field
people can begin learning how to
operate the new product. Consider
having a few customers try the
simulator. After all, they are will be
using and buying the product.

I know from experience that the HP
65 programmable calculator was
simulated two years before engineers

Copyright © Tektronix, Inc., 1978 Company Confidential

started the design. With the
simulator, applications engineers
wrote programs for the calculator
and suggested changes to the
keyboard even before the design
engineers began their work.

PROGRAMMER
PRODUCTIVITY

Any designer’s productivity is a
result of his own efforts and his
interactions with his co-workers.

Walkthroughs can increase a
designer’s productivity by efficient
interaction with his peers. A
walkthrough is a meeting of a
designer and three or four peers. In
each meeting, the peers review a
couple of pages of code or a block
diagram of proposed code.
Reviewing code, they examine the
code for efficiency and the comment

statements for clarity. They also look
for bugs. With the block diagram, the
reviewers look for alternative
solutions, design flaws and design
omissions.

Walkthroughs have many benefits.
First, more people than the designer
know the program ... valuable in case
the designer decides to move to
Tabhiti on a day’s notice. Seeing other
designers’ work can stimulate each
designer’s own thinking. And
walkthroughs minimize ego
problems (the designer doesn’t feel so
bad if a bug has slipped past three
other programmers too).

For walkthroughs to work well, the
participants should follow a few
ground rules. First: no managers
allowed. The designer should feel
that the program, not the designer, is
being examined Second,

walkthrough transactions are
private. This encourages the
participants to speak freely. Third,
all walkthrough participants should
attend every meeting so that they will
know why decisions were made to go
this way or that.

MANAGING SOFTWARE

There are a number of pitfalls for
managers. Fortunately, there are a
couple of good books available for
managers of software designers: The
Mythical Man Month by Fredric
Brooks and The Psychology of
Computer Programming by Gerald
Wienberg. Both are available in the
Tektronix library. To borrow a copy,
call ext. 5388.[]

PREPARING HARDWARE

ENGINEERS

FOR THE SOFTWARE WORLD

Bill Lowery, Scientific Computer
Center (T and M Operations),
ext. 5865.

To remain up-to-date professionally
and to produce competitive
products, hardware designers must
now become familiar with the
software world. The best way to
enhance their software education is
to provide a total learning
environment - an environment that

provides incentives to learning,
provides learning tools, and
encourages formal education.

The software education of the
hardware designer serves the
interests of both the designer and his
employer. The employer should
therefore provide as much
encouragement and as many learning
opportunities as possible and the
engineer should take advantage of
the opportunities. The designers and
companies who fail to make progress
in software education will surely lose
their place in the market.

INCENTIVES

Even in groups of talented and
accomplished designers there
sometimes is inertia in designing with
traditional design tools. In spite of
the software revolution introduced
by microprocessors, some designers
may continue to use random logic for
their designs simply because they
lack enough incentive to learn new
ways.

Copyright © Tektronix, Inc., 1978 Company Confidential

There are several factual arguments
for hardware designers learning
software techniques. Lower costs, for
example, may be a reason for
switching to software solutions to
some design problems. (Costs are
subject to continuous change... the
costs of programming, logic and
memory are all in flux).

Flexibility is another advantage of
software. Sometimes, minor changes
can be made to software at less cost
than changing the equivalent
random logic circuits. There are
limits, however, to the changes that
can be made economically.

Other incentives for learning
software are more personal. The
availability of software training will
make most designers aware that
changes are coming. Competition
from peers and juniors who have
learned software design techniques is
also a major incentive for
overcoming inertia, but managers
should avoid producing a sour-
grapes attitude in their groups (some

3

designers may react with “I'm good at
what I do,so I don't need to learn any
of this new-fangled stuff”).

Another major incentive for the
traditional hardware engineer is the
desire to become a “complete
engineer” — one who is proficient
with both hardware and software
design. This type of designer can
make valuable inputs in all phases of
product development, and has a
wider perspective than either the
software guru or the hardware
wizard.

BUILDING FAMILIARITY

Eliminating uncertainties about
software makes the transistion to
software design easier. Dispelling the
myth that software is less exact than
hardware is one approach.

Another approach to making the
transistion easier is avoiding the
"technology shock” that sometimes
results when a designer moves from a
familiar to an unfamiliar field. The
former expert is a now a novice and
will inevitably make mistakes at first.
These first efforts should always be
treated with respect.

Another barrier on the road to
familiarity with software design is the
“pseudo-expert syndrome” ... the
belief that if you can write code in a

given language, then you can write a
program or even design a software
system. In the hardware world, this is
equivalent to saying you can design
circuits if you know how to wire IC
pins together. Designing a software
system is as complex as designing a
hardware system. The software
provides flexibility, but that
flexibility magnifies the possibility of
making errors.

Building familiarity with software
design takes time. The hardware
designer has the talent, but he also
needs the time to learn the
fundamental concepts and to use
them enough to reach proficiency.

LEARNING TOOLS

Efficient learning requires more than
books. The engineer must also have
hands-on experience with
microprocessor design aids.
Available aids range from
inexpensive hardware aids, coded in
machine language, to expensive
system-development aids.

The most sophisticated versions of
the latter are general-purpose
computers with attached hardware-
debugging systems. The investment
required for such a system is justified
for companies that are serious about
developing and maintaining in-house
software systems expertise.

The most sophisticated design aids
provide a “friendly” learning
environment which is very important
for the new user of any system. It’s
hard enough learning software
design without having to first learn a
host of details for operating the aid.

ENCOURAGE
FORMAL EDUCATION

It is the responsibility of serious
designers to add the experience of
other designers to their own
experience. Formal education is one
route to take in that direction.

A company can encourage formal
education by paying the engineers’
tuition at local schools, by sending
employees to workshops and
seminars, and by sponsoring
educational programs within the
company. Our experience in the
Scientific Computer Center tells us
that engineers do take advantage of
in-house opportunities resulting in
growth in individual and corporate
expertise.

Fortunately, here at Tektronix we do
have a major formal education
program. Education and Training
lists many software courses in its
catalog, and the Scientific Computer
Center offers its facilities for learning
through sharing common interests.
The Microprocessor Users Group is
an example.[]

COMPANY CONFIDENTIAL

Managing editor: Burgess Laughlin, ext. 6792.
Graphic designer: Joan Metcalf. Compiled
and edited by the T&M Publicity Dept. for the
benefit of the Tektronix engineering and
scientific community in Beaverton,
Wilsonville and Grass Valley. For
information, call ext. 6792 or write to D.S. 19-
22}

Forum Report is distributed over the Engineering News mailing list. To add
your name to the list, or change your delivery station, call ext. 6792.

€495 09

Copyright © Tektronix, Inc., 1978 Company Confidential

A3y ussJnel

