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FORWARD 

This the first edition of the Tektronix Digital Concepts book 
uses Negative True Logic when explaining circuits throughout 
the book. This is due to the fact that most digital instruments 
designed at Tektronix prior to the publication of this book 
have had their circuits and logic diagrams explained in terms 
of Negative True Logic. 

This is not meant to imply that Tektronix has standardized on 
Negative True Logic. There are times when Positive True Logic 
may be the more natural form to use. 

The content of the book is as valid for explaining the concept 
of one system as for the other. 
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INTRODUCTION 

Automated or programmed devices using integrated 
logic circuits (IC) become more common daily. The 
engineer or technician whose background lies largely 
with conventional or analog-type circuitry can have 
difficulty understanding digital diagrams filled 
with odd-shaped symbols. Most people with an 
electronics background are trained to use schematic 
diagrams which require consideration of each 
individual component and its contribution toward the 
operation of the circuit. In logic circuitry as 
implemented today, our point of interest is shifted 
upward an order of magnitude. Rather than considering 
each individual bit and piece, entire circuits are 
supplied in individual packages. It is not necessary 
to know the exact circuit configuration of the 
particular device because the device is encapsulated. 
Consider the Fairchild 914 NAND gate. Within the 
capsule are six transistors and numerous associated 
resistors. The only access we have to these 
transistors and resistors is through the eight pins. 
Therefore signal-tracing the circuitry within the IC 
(or chip as it is often called) is impossible. It 
is necessary to understand the relationship between 
the input and output signals, but no more. Since we 
cannot repair the 914 we can only replace it as a unit. 
This is universally true of presently available 
integrated circuitry. 

This Digital Concepts book will help the beginner to 
approach digital instruments from the standpoint of 
circuit blocks rather than individual components. 
We begin by reviewing the concepts of the decimal 
and binary number systems. We next study the rules 
of Boolean algebra and its application to the field 
of digital logic circuitry. We then present the 
application of the algebra to the design, 
simplification, and understanding of these circuits. 
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To the designer, applications of Boolean algebra 
involve the basic design and simplification of a 
particular series of functions. He begins with a 
series of statements of what a circuit is to perform 
and implements these statements in a logic circuit. 
Determining a first approximation of the circuit, 
the designer next applies the principles of Boolean 
algebra to simplify. After simplification the 
resulting Boolean equations are translated again into 
circuitry. Frequently the second design is simpler 
and therefore less expensive. 

The user of the completed instrument has other 
concerns. For him the circuits are already designed. 
His major problem is to interpret instrument operation 
from the diagrams supplied. He is required to 
understand the sometimes complicated interconnecting 
of the various IC's to determine the scheme of 
operation. This is particularly necessary in 
troubleshooting the complete instrument. Since most 
digital instruments available today were designed 
using the principles of Boolean algebra, diagrams 
supplied use logic symbols. To realize what the 
symbols mean and gain a finer appreciation for digital 
techniques, the technician must also be familiar 
with the basic principles of Boolean algebra. From 
the technician's standpoint, however, the methods of 
simplifying a device are of secondary importance. 

This book concentrates on the interpretation of 
existing designs, although some of the principles 
that enter into completing the design are mentioned. 
Having considered basic principles of Boolean algebra 
and the basic symbology, we next precede to more 
complex designs. Finally, selected circuits taken 
from existing Tektronix digital instruments are 
analyzed. The book does not explain the overall 
operation of such instruments, but concentrates on 
those areas which are common, such as counters and 
registers. 

A thorough study of the book should accelerate the 
student's understanding of digital instruments. 
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THE BINARY NUMBER SYSTEM 

Digital instruments such as the digital voltmeter, 
the frequency counter, and the analog-to-digital 
converter may be broken down into hundreds (or 
thousands) of switching devices. A switch has two 
stable conditions, "on" and "off." When examining 
devices containing many switches, the decimal system 
is unhandy. Since the switch is a two-state device, 
a counting or numbering system based upon the value 
two is convenient. Such a numbering system is called 
the binary number system. Although unfamiliar to the 
average person, the binary number system is logical 
and easily learned. 

In the decimal number system ten symbols are used: 
0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. A person counting 
paper clips, for example, and writing down the count, 
writes 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. 

For the tenth clip he has run out of symbols, 
therefore, he starts again with 0 and places a 1 to 
the left of the zero indicating that the count has 
reached 10 one time. The next count is 11, indicating 
1 ten + 1 one = 11. When the count reaches twenty, 
note that the right-hand column begins with 0 again 
but this time a 2 is written to the left of 0. This 
indicates that the count has gone to ten a total of 
two times. The symbol 63 indicates 6 tens + 3 ones. 
Note that at the count 99, we have again exhausted 
the symbols so we repeat the change which occurred 
at ten and write 100 indicating 1 hundred + 0 tens + 
0 ones. 

Note that the change points are even powers of ten 
which are indicated 10 1 = 10; 102 = 100; 103 = 1,000; 
104 = 10,000, etc. In a written number such as 
10,349 we can determine the various powers of 10 
which the number represents by the position of the 
written numbers, as 1 x 104 + 0 x 103 + 3 x 102 + 
4 X 10 1 + 9 X 10°. 
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binary-to­
decimal 
conversion 

In the binary numbering system only two symbols are 
used. Although the symbols are completely arbitrary 
we use the first two symbols of the Arabic numbering 
system in order to avoid having to memorize new 
symbols. To see how binary counting works let us 
again assume a person is to count paper clips and is 
to write the running total in binary form. He begins 
by writing 0 indicating that he has not counted yet. 
He counts the first clip and writes 1. He now has 
on his paper 0, 1. When he counts the second clip 
what does he do? In the binary system there are 
only two symbols, therefore, he resorts to the same 
method used in the decimal system, he writes a 0 and 
places a 1 to the left indicating he has counted to 
two 1 time. At the count of three he writes 11 
indicating 1 two + 1 one = three. At the count of 
four he is again out of symbols so he writes 100 
indicating 1 four + 0 twos + 0 ones. At the count 
of five he writes 101 indicating 1 four + 0 twos + 
1 one and so he continues until at the count of seven 
he writes 111. Again he has used all symbols in all 
columns so he writes 1000, indicating 1 eight + 0 
fours + 0 twos+ 0 ones. Look at Fig. 2-1, which 
shows the binary count along with the same count in 
decimal form. 

Note that the position notation idea is valid for a 
number in binary form, except that each position is 
based upon a power of two. For example, 20 10 is 
10100z (the subscripts are used to indicate the radix 
being used. The radix of a numbering system is 
simply the number of symbols that it uses.) 

101002 = 1 sixteen + 0 eights + 1 four + 0 twos + 
0 ones which could also be written: 101002 = 1 x 24 + 
0 X 23 + 1 X 22 + 0 X 21 + 0 X 20. (any number to 
the zero power equals 1) 

In the study of digital circuits it will be necessary 
sometimes to be able to convert a binary form number 
to decimal form. With the aid of a power-of-two chart 
this can be accomplished very easily. 
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Consider the number 1101. This can be read using 
the position value of each symbol as 1 x 23 + 1 x z2 + 
0 X 21 + 1 X 2°. Referring to the table in Fig. 2-1: 

DECIMAL 

0 

I 

2 

3 

4 

5 

6 

7 

8 

9 

10 

II 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

1 x z3 s 
1 x 22 4 
o x 2 1 o 
1 x zO 1 

1310 is the number in 
decimal form. 

Bl NARY 

0 

I 

10 

II 

100 

101 

110 

Ill 

1000 

1001 

1010 

lOll 

1100 

1101 

1110 

II II 

10000 

10001 

10010 

10011 

10100 

10101 

10110 

lOIII 

11000 

11001 

11010 

11011 

11100 

11101 

IIllO 

IIIII 

100000 

Fig. 2-1. Comparison of binary and decimal 
numbers. 
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bit 

word 

character 

binary 
codes 

Comparing the same number in binary and decimal forms 
shows that the binary form is cumbersome in that it 
takes many more digits to express a number. Refer 
back to Fig. 2-1, and notice that 32lo takes 6 digits 
in binary form. Why then do digital instruments use 
the binary system? Electronic devices and decimal 
counting are not very compatible. Although circuits 
can be built to use base-10 values, the circuitry 
is quite complex and involves the use of ten different 
voltage levels. 

Since active electronic devices can operate as switche 
two-voltage-level circuits are easily made. In 
addition these devices can be made to switch at rates 
of millions per second. It is simplicity and speed 
which makes the use of the binary system practical 
in electronics. 

The operation or programming of digital instruments 
often requires that very long binary numbers be used. 
For convenience, certain terms are used to identify 
parts of these numbers. The term bit is used to 
identify a binary digit. (Bit is derived from Binary 
digiT.) The term character is a group of bits. The 
term word refers to the total number of bits required 
by a particular instrument. 

For example, the Tektronix Type 240 Program Control 
Unit is designed to process a binary number which is 
192 bits long. The complete number is called a word 
and the Type 240 is said to use a 192-bit word. 
Because of the extreme length of the word, for 
convenience it is divided into groups of 4 bits. 
Each 4-bit group is called a character. Hence the 
Type 240 is also said to use a 48-character word. 

Digital instruments use data and instructions in 
binary form. Humans, however, use decimal numbers 
and alphabetic letters. Therefore, various codes 
have been designed to facilitate communication with 
digital devices. These codes are formed by taking 
groups of bits and assigning each unique combination 
a particular letter, symbol or decimal number. There 
are many codes in existence, only a few of which will 
be considered here. 

Some binary codes use a number weighting scheme. 
The simplest code called pure binary uses the exact 
position value of each binary digit as the weight 
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DEC I MAL BCD 

0 0000 

1 0001 

2 0010 

3 0011 

4 0100 

5 0101 

6 0110 

7 0111 

8 1000 

9 1001 

Fig. 2-2. 8, 4, 2, 1 BCD code. 

value. For example, the number 1510 is written in 
binary as 1111. This number is read as 1 x 8 + 
1 x 4 + 1 x 2 + 1 x 1 = 15. Pure binary (also called 
hexadecimal) is said to have an 8, 4, 2, 1 weight. 
Many other weight schemes are used. Examples include 
7 , 4 , 2 , 1 ; 4 , 2 , 2 ' , 1 and 6 , 3 , 2 , 1 , 0 ( 5 bits) • 

Other codes are unweighted which means that the 
decimal equivalent o~ the binary number is determined 
only by an arbitrarily assigned value. An example 
of this type is the Excess-3 code. 

The simplest code to understand is the binary-coded 
decimal, which is abbreviated BCD. The BCD code uses 
four binary bits per character and a weight scheme 
of 8, 4, 2, 1. Each character has the decimal value 
that the four bits represent. The code is shown in 
Fig. 2-2. Note that the decimal equivalent is simply 
the binary number expressed in decimal form. 

A 4-bit number can have values from zero to fifteen. 
Ordinarily, however, in the BCD code only enough 
combinations are used to express all 10 decimal 
symbols. In order to express decimal numbers greater 
than 9, a separate four-bit group is used for each 
number. For example: 82 10 is 1000 0010 in BCD, 
37010 is 0011 0111 0000, 59110 is 0101 1001 0001. 

Note that the BCD system requires many bits to 
express a decimal number. 
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To return to the Tektronix Type 240 Program Control 
Unit, recall that the 192-bit word is divided into 
4-bit characters. Each 4-bit character is further 
simplified by giving each character its decimal value 
in a specific case. Since each 4-bit character in 
this situation may contain any of the sixteen 
possible combinations of bits, a character in the 
Type 240 may have a value in excess of nine. Fig. 2-3 
shows all possible values. 

DECIMAL CHARACTER 

0 0000 

I 0001 

2 0010 

3 0011 

4 0100 

5 0101 

6 0110 

7 0111 

8 1000 

9 1001 

10 1010 

11 1011 

12 1100 

13 1101 

14 1110 

15 1111 

Fig. 2-3. Pure binary 8, 4, 2, 1. 
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DEC I MAL 8,4,2, 1 CODE 4,2,2' ,1 CODE EXCESS-3 CODE 

0 0000 0000 0011 

1 0001 0001 0100 

2 0010 0010 0101 

3 0011 0011 0110 

4 0100 1000 0111 

5 0101 0111 1000 

6 0110 1100 1001 

7 0111 1101 1010 

8 1000 1110 1011 

9 1001 1111 1100 

Fig. 2-4. Comparison of some BCD codes. 

This coding is similar to BCD but includes combinations 
which are forbidden in the BCD system. To reduce 
confusion, care should be taken not to call the Type 
240 character system "BCD." It should instead be 
called pure binary 8, 4, 2, 1. 

Other common codes are shown in Fig. 2-4; the 8, 4, 
2, 1 BCD code is included for comparison. The 4, 2, 
2', 1 code is used in the Tektronix Type 6RlA. The 
Excess-3 code is formed by adding binary 3 to the 
BCD number. For example, 01o in BCD is 0000; by 
adding 32 the sum is 0000 + 0011 = 0011. Each 
Excess-3 number is formed by the same process. The 
Excess-3 code has some advantages over BCD when 
performing arithmetic subtraction in computers. 1 

1T.C. Bartee, Digital Computer Fundamentals, (New York: 
McGraw-Hill, 1966), pp 56-7. 
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ASCII Code 

In computers designed for business data processing 
it is necessary to work with alphabetic characters 
as well as decimal numeric characters. Such an 
alphanumeric code must contain more than 4 bits since 
26 letters plus 10 digits must be encoded. This 
means that at least 6 bits must be used since 5 bits 
contain only 32 unique combinations. A six-bit code 
has often been used. In the past each manufacturer 
has selected or created codes to suit his particular 
devices. In an attempt to standardize, the American 
Standards Association approved a new 7-bit code in 
1964. This code is known as ASCII (American Standard 
Code for Information Interchange). (For verbal 
communication the letters are phoneticized az-key.) 
Fig. 2-5 shows the entire code. Seven bits are used 
so that punctuation marks, symbols, plus telephone 
and teletype abbreviations can be included. 

Examine the column headed by "011." The ten decimal 
digits are listed in order. The chart is decoded by 
using the four digits shown on the left and adding 
the three digits at the head of the column. Examples: 
4 = 011 0100 and 7 = 011 0111. The last four binary 
digits express the decimal number in 8, 4, 2, 1 BCD 
code. Because of this, the ASCII code is compatible 
with instruments designed to use the 8, 4, 2, 1 BCD 
code. The Type 240 Program Control Unit can be 
addressed by the ASCII code. 



0 0 0 0 0 NUL 

0 0 0 1 1 SOH 

0 0 1 0 2 STX 

0 0 1 1 3 ETX 

0 1 0 0 4 EOT 

0 1 0 1 5 ENQ 

0 1 1 0 6 : ACK 

0 1 1 1 7 BEL 
1 0 0 0 8 BS 

1 0 0 1 9 HT 

1 0 1 0 10 LF 

1 0 1 1 11 VT 

1 1 0 0 12 FF 

1 1 0 1 13 CR 

1 1 1 0 14 so 
1 1 1 1 15 51 

Control Clulraders 

NUL Null 

SOH Start of H..-ading !CCI 

STX Start of Text !CCI 

ETX End of Text !CCI 

EOT End of Tnnsmission !CCI 

ENQ Enquiry ICC! 

ACK Acknowledge (CC) 

Sf:l Belli audible or attention 'i,!:nall 

BS Backspace If'[ I 

HT Horizontal Tabulation {punched card skip II FE! 

lf Line Feed {FE I 

VT Vertical Tabulation (FE! 

FF Form Feed {FE I 

CR Carriage Return !FE) 

SO Shift Out 

51 Shift In 

DLE IJata Link Escape I(() 

DCl Device Control I 

DC2 Device Control 1 

DC3 llevice Control J 

DC4 D.-vice Control-liStopl 

NAK ~egative Acknowledge ICC I 

SYN Synchronous idle ICC! 

ETB End of Transmission Block ICC! 

CAN Cancel 

EM End of \ledium 

SUB Substitute 

ESC Escape 

FS File Separator (IS) 

GS Group Separator (IS) 

RS Record Separator j)S) 

US Unit Separator liS I 

DEL ~Jete 

NOTE: ICC) Communication Control 
IFEI Format Efr..,tw 
{IS) Information Separ•tor 

Standard Code 

1 
0 1 1 0 0 1 

DLE SP 

DC1 

DC2 
DC3 

DC4 

NAK 

SYN 

ETB 

CAN 

EM 

SUB 

ESC 

FS 

GS 

RS 

us 0 

Legend 

Graphic Characters 

Column,'Row ~ Name 

2;0 SP Spaee !!\ormally Non-Printing! 

2/l 

% 

Exdamation Point 

Quotation Marh IDiaeresi~ I 

I\' umber Sign 

Dollar Sign 

Ampersand 

11 

DEL 

Apostrophe !Closing Single Quotation ~ark; Acute Accent I 

2'1-1 

2,1.) 

:l; 10 

3,'11 

:l/!2 

31J:l 

.1/14 

3;J:, 

-1/0 

Sill 

5/12 

S/13 

5/14 

5tl.'i 

b/0 

7/11 

7/12 

7/13 

7/14 

Opening Parenthe<i.< 

Closin!!; Parenth .. sis 

Asterisk 

Comma !Cedilla I 

Hyphen !Minus) 

Pniod ( IJeeirnal Point) 

Slant 

Colon 

Less Than 

Equals 

Greater Than 

Question Mark 

Commercial At 

Opening Bracket 

Reverse Slant 

Closing Bracket 

Circumfle~ 

L'nderline 

Grave Accent !Opening Single Quotation Mark) 

Opening Brace 

Vertical Line 

Closing Brace 

Overline (Tilde ; General Accent ) 

Fig. 2-5. USA Standard Code for Information 
Interchange. 

11 
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octal 
system 

Another common numbering system used within the 
digital area is the octal system. The octal system 
is based on the number 8. Eight digits are used, 0, 
1, 2, 3, 4, 5, 6, and 7. The rules are basically the 
same as for binary or decimal except that position 
is based upon powers of 8. Fig. 2-6 shows decimal 
and octal equivalents. 

Note that the octal system requires more digits than 
the decimal system to express a number but not nearly 
as many as the binary system. The octal system 
converts readily to binary because the basis of the 
octal system 8 is also an even power of two, i.e., 
8 = 23. 

Caution must be used in verbally naming numbers 
expressed in octal and other numbering systems. For 
example, lOg is not pronounced ten because lOs = 8 
and should be called "eight" verbally. 

The octal numbering system is used by several digital­
equipment manufacturers as a means of expressing 
binary numbers by using fewer symbols. This system 
could be called "octal-coded binary." For example, 
the Digital Equipment Corporation makes the PDP-8 
family of computers. These computers operate with 
a 12-bit word. A word might be 110 011 001 111. To 
reproduce this word would of course require writing 
12 digits. By arranging the word bits in groups of 
three bits each, and converting each group to its 
equivalent in octal code, the same number can be 
written using 4 octal digits. The process is shown 
in Fig. 2-7. 

Thus the 12-bit word 110 011 001 111 can be written 
6317g. This system is convenient because a group of 
3 bits can have only 8 possible values. With practice 
the numbers from 0002 to 1112 can be memorized and 
the binary-to-octal conversion can be performed 
mentally. 

This is primarily used as a shorthand method of writing 
binary numbers. A computer program might consist of 
several hundred 12-bit words, each one of which must 
be recorded. Think how much writing can be saved by 
using the octal-coded binary method of condensing 
the binary word! Seldom will the octal numbering 
system be used for arithmetic operation; it is the 
positional notation which is of value here. 
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DEC I MAL OCTAL 

0 0 

1 1 

2 2 

3 3 

4 4 

5 5 

6 6 

7 7 

8 10 

9 11 

10 12 

11 13 

12 14 

13 15 

14 16 

15 17 

16 20 

17 21 

18 22 

64 100 

65 101 

Fig. 2-6. Octal numbering system. 

~ OCTAL 6 3 

I BINARY 110 Oil 001 Ill 

Fig. 2-7. Octal-to-binary conversion. 
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BOOLEAN ALGEBRA 

The engineer's understanding of digital circuits and 
digital instruments requires an understanding of a 
different form of algebra from the algebra taught in 
high school. Although unfamiliar to many, this 
algebra is logical and easily understood. Boolean 
algebra, universally used by digital instrument 
designers, differs from conventional algebra in that 
it uses the binary numbering system. Boolean algebra 
contains methods which are specially adaptable to 
digital circuitry and makes the design of such 
circuitry much easier. Conventional algebra is best 
for everyday use, but in the digital area, it may 
needlessly complicate circuit design. 

There is a twofold advantage in using Boolean algebra 
in the digital field. First, Boolean algebra permits 
the engineer to design a circuit or instrument in a 
logical manner. Secondly, it allows another engineer 
or technician to easily understand and follow the 
operation of the device. 

Boolean algebra has been called the algebra of two­
valued logic. An English mathematician, George Boole, 
published a work in 1854 titled, An Investigation of 
the Laws of Thought. This book contains one of the 
earliest attempts to discuss logic in a mathematical 
sense using special notation similar to mathematical 
symbols. 

Boolean algebra remained almost forgotten until 1938 
when Claude Shannon, a research assistant at MIT, 
published a thesis titled, "A Symbolic Analysis of 
Relay and Switching Circuits." The paper presented 
a method for representing switching circuitry by a 
set of mathematical expressions analogous to the 
expressions of Boolean algebra. The techniques 
developed in Shannon's paper have been improved until 
today they are used in all parts of digital circuit 
design. The economy of reducing circuitry to 
mathematical expressions and simplifying by 
mathematical operations permits the design of even 
the most complex modern computers. 
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symbology 

NOT 

Fig. 3-1. 

Boolean algebra is a method of manipulating deductive 
logic. It recognizes only two possible values for 
a statement. A statement is either entirely true or 
entirely false. There are no halfway conditions. 
A statement which is not true must therefore be false. 
These premises allow the algebra to be used to 
represent the conditions found in electrical switching 
circuitry. Consider the switch of Fig. 3-1. The 
switch is either open or closed. It has no other 
possible conditions. By applying the basic premise 
of Boolean algebra we can define the closed switch as 
a "true" condition and the open switch as a "false" 
condition. The switch, when not open, must be closed. 
If not closed it is open. This parallels the Boolean 
logic. The closed condition could be called the 
false state and the open condition a true state, 
without ambiguity. By defining the conditions of a 
two-state device in Boolean terms, the symbology of 
the algebra becomes usable. Note the switch of 
Fig. 3-1 can also itself represent various electronic 
elements such as transistors, diodes, and vacuum 
tubes operated in swLtched modes. 

Boolean algebra has numerous theorems; however, only 
a few need be examined here. Letters are used to 
represent quantities. Letters close to the beginning 
of the alphabet are used to represent variable values 
and letters close to the end of the alphabet represent 
unknown quantities. 

Consider the circuit of Fig. 3-2. We represent the 
condition of switch SWI by the letter A if the switch 
is closed and by A if the switch is open. The bar 
over A indicates the "false" state of the switch 
where false indicates the open condition. An 
expression with the bar is read aloud by saying for 
A, "not A." It follows therefore, that the expression 
A indicates, by the absence of the bar, that the 
switch is in a closed or true state. Throughout 
Boolean algebra this convention is followed. 
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LOAD 

Fig. 3-2. 

The not symbol is used to represent a very common 
circuit function which is the inverter. A signal 
can be inverted by a transformer, amplifier, or by 
various other means. Assume a two-valued signal is 
assigned the letter F. If the signal is inverted 
by a circuit the value of F must also be inverted. 
Symbolically F is placed at the output. The symbol 
for an inverter presently used by Tektronix on logic 
diagrams is shown in Fig. 3-3. 

Considering again Fig. 3-2, we can represent the 
condition of switch SW2 with the letter B. Further, 
we can describe the presence or absence of voltage 
across the load by the letters T (true) or F (false). 
Thus, T means voltage is present and F means voltage 
is not present. A Boolean algebra equation may now 
be written which describes all possible combinations 
of the switches SWl and SW2 and whether or not voltage 
appears across the load. The equation is A+ B = X, 
where X represents a voltage across the load. 

Fig. 3-3. Inverter symbol. 
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OR 

truth 
table 

A B X A B X 

A B X 0 0 0 

A B X 0 1 1 

A 8 X 1 0 1 

A B X 1 1 1 

(A) (B) 

Fig. 3-4. OR function truth tables. 

Reading aloud the reader should state, "A OR B equals 
X." The symbol"+" is read as "OR" in Boolean algebra, 
not as "plus." Literally, the equation states, "If 
either A ORB (or both) is true, then X is true." To 
properly examine this equation requires the use of a 
table listing all possible combinations of A and B. 
Such a table is easily constructed. See Fig. 3-4A. 

This table shows that there are four possible 
combinations for the variables A and B. It follows 
that in a different equation with three variables 
there would be eight combinations, and with four 
variables sixteen combinations, i.e., the number of 
combinations for 2-valued variables is 2n, where n 
is the number of different variables. Note that X 
is true for all conditions of A and B except where 
A and Bare both false (switches SWl and SW2 open). 
The truth table is easier to construct and interpret 
by using the binary number symbols 1 and 0, as in 
Fig. 3-4B. In this table wherever a variable is 
true a 1 is placed, wherever a variable is false, a 
0 is placed. 

The above discussion describes a Boolean OR function. 
For the purpose of simplifying diagrams wherever a 
circuit appears which could perform an OR function, 
the schematic may be replaced by the OR-gate symbol. 
The presently used symbol is shown in Fig. 3-SA. 
Three variables are shown. The distinctive shape 
means the OR function. Fig. 3-SB shows the Boolean 
equation for the OR gate. 

One of the many possible circuits which operates as 
an OR gate is shown in Fig. 3-SC. To realize how thiS 
circuit functions, let us define two voltage levels. 
A voltage level of +10 V is defined as a logical 0 
in this circuit. A ground level (O V) is a logical 1· 
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A -t + 2 = 

( '2) 

Fig. 3-5. OR functions. 

The absolute voltage level assigned to logical 1 is 
negative with respect to the voltage level assigned 
to logical zero. This is an example of negative 
logic. The exact voltage levels could be any values 
desired, but if the more negative of the two 
represents 1 then the logic is negative. 

The reverse case is possible and often used. If, for 
example, +10 V was logical 1 and zero volts logical 
0 the circuit would be termed a "positive logic" 
circuit. Note, however, that the circuit of Fig. 3-SC 
is not a positive logic OR gate. Study of the circuit 
shows that if A or B or C were at 0 V then the output 
Y would also be at 0 V, and therefore logically true 
(1) as defined above. 

Another important Boolean algebra function is called 
the AND function. Fig. 3-6 illustrates a circuit 
which will help one understand the concept of the 
AND function. 

Note that unless switch SWl and SW2 are closed, no 
voltage is delivered to the load. If we assign 
symbols, letting C stand for switch SWl, D stand for 
switch SW2, and Y stand for presence of output across 
the load, then a Boolean equation for the circuit may 
be written C • D ~ Y. Note the use of the symbol 
which means "multiply by" in conventional algebra. 
In Boolean the "•" means "AND." 
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~~lD i - - ww 
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I 

1 

D 

0 

I 

0 

I 

(A) (8) 

Fig. 3-6. AND function. 
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The equation is read aloud as "if C is true AND D is 
true, then Y is true." Often an expression omits 
the dot entirely but its presence is understood; for 
example, BEFGH would mean B AND E AND F AND G AND H. 

Fig. 3-6B illustrates the truth table for the circuit 
of Fig. 3-6A. Note that the only time the output is 
true is when the inputs are all true. 

Fig. 3-7A shows the symbol for an AND gate as found 
on logic diagrams. Fig. 3-7B shows the equation for 
the gate and Fig. 3-7C shows the truth table for the 
example. Note again that Y is true only when A and 
B and C are all true. 

An example of a circuit which displays the AND 
function is shown in Fig. 3-8. This is an AND gate 
for negative logic. If any one of the inputs A, B, 
or Cis false (at +10 V), output Y will be false. 
Only if A·B·C are true (O V) will Y be true. 

Fig. 3-SC and 3-8 are examples of OR and AND gates. 
There are numerous other ways of building circuits 
and devices to perform these functions. The principle 
methods will be treated in a later chapter. 

As an experiment let us re-examine the circuit of 
Fig. 3-8, but this time with positive logic. We 
define +10 V as the true level and 0 V as the false 
level. If +10 V is now the true level then Y will 
be at +10 V if A or B or C (or any combination of 
A, B, C) is at 10 V. The truth table inverts the 
values of Fig. 3-7C. 

Constructing a new truth table as in Fig. 3-9, it 
is apparent the circuit is now an OR gate. Thus, a 
negative logic AND gate is a positive logic OR gate. 
At this time, examine Fig. 3-SC and you will find that 
the circuit is a positive logic AND gate. Thus, 
depending on the logic chosen for a particular device, 
the gates are dual in nature. Notice that once the 
logic levels are chosen this duality vanishes. 
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Fig. 3-7. Three-variable AND function. 
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Fig. 3-8. AND gate. 

A B C Y 

1 1 1 1 

1 1 0 1 

1 0 1 1 

1 0 0 1 

0 1 1 1 

0 I 0 1 

0 0 1 1 

0 0 0 0 

Fig. 3-9. OR-function truth table. 
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Boolean 
theorems 

A + A = A 3.1 

A A = A 3. 2 

A + 1 = 1 3.3 

A 1 = A 3.4 

A + 0 = A 3.5 

A 0 = 0 3.6 

A + A = 1 3. 7 

A A = 0 3.8 

A = A 3. 9 

A + AB = A 3.10 

A (A + Bl = A 3.11 

A + B = A B 3.12 

AB = A + B 3.13 

A (A + Bl = AB 3.14 

A + AB = A + B 3.15 

A + AB = A + B 3.16 

A + AB = A + B 3.17 

Table 3-1. Useful Boolean algebra theorems. 

Boolean algebra is the tool which enables the engineer 
to reduce circuitry to mathematical equations and 
then to simplify these equations. Having studied some 
of the Boolean algebra functions and examined the 
circuit implementation of these functions, we next 
consider some of the theorems and postulates of 
Boolean algebra. Some of these postulates are exactly 
the same as in ordinary algebra. Some, however, are 
exclusive to Boolean algebra. Table 3-1 shows a list 
of some useful Boolean algebra theorems. Some of 
the theorems can be seen to be true by inspection, 
some however, require proof. We shall prove several 
of the theorems. 

The proof may be accomplished by several different 
methods. One method uses the truth table, another 
proves the theorem in mathematical form by applying 
previously proven algebraic theorems to simplify the 
mathematical equations. A third method implements 
the Boolean function in an actual circuit an~ is 
simplified by inspection. We shall give examples 
of all of these methods. Fig. 3-lOA shows a circuit 
which implements Theorem 3.1: A OR A= A. Since the 
quantity A is to be OR'd with itself, A is represented 
as a ganged switch. Whenever the switch is closed, 
we can assume A is true, whenever the switch is open, 
we can assume it is false. The extra contact on the 
switch is redundant. 
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+10V 

(A) 

~AA I~ .D--'-'--.----l~OUTPUT 

(6) 

Fig. 3-10. 

Therefore, the expression and the circuit could be 
simplified to a single switch labeled A as in 
Fig. 3-lOB. 

Theorem 3.10 will be proven by the use of a truth 
table. See Fig, 3-11. Since the theorem involves 
two variables, A and B, the figure lists all four 
combinations of values that A and B can assume. The 
values for the term AB are shown in Fig. 3-llB. In 
Fig. 3-llC we combine the values of A OR'd with the 
quantity of A AND B. In Fig. 3-llD we find the value 
of the expression A OR the quantity A AND B is exactly 
the same as the value of A alone. Therefore, when 
an expression of the form A + (A·B) appears in an 
equation, it can be replaced solely by the quantity 
A. 

A B AB 

(A) (B) 

A + 

(Cl 

Fi o-. \-11 

AB A + AB A 

EQUAL 

(D) 



24 

DeMorgan's 
theorems 

Theorem 3.11 is proved mathematically: 

A (A + B) A Theorem 3.11 

AA + AB A Multiply 

A+ AB A By 3.2 

A A By 3.10 

The proof of the rest of the theorems is left as an 
exercise for the reader. Pay special attention to 
theorems 3.12 and 3.13 which are known as DeMorgan's 
theorems. These theorems form the basis for NAND and 
NOR operations described in Chapter 4. 

The engineer may be presented with digital circuit 
problems in several different forms. One, he may be 
given a series of logical statements which may be 
translated into actual circuitry. Two, he may desire 
to implement a truth table by actual circuitry. Three, 
he may be given a logic diagram representing a Boolean 
algebra function and, four, he may be presented with 
the expression in mathematical terms. In all cases 
he should be aware of the methods by which one form 
can be changed to any other. As an example, supposing 
the problem is to implement the following logical 
statement. "A room with two doors is to have a central 
light installed with switches accessible to each 
door, either one of which can turn the light either 
on or off." Let the letter A represent the switch 
by one door, and the B represent the switch by the 
other door. Let the letter L stand for the lamp. 
We first construct the truth table. See Fig. 3-12. 
Although the choice is entirely arbitrary we assume 
that when a switch is closed it has a logical value 
of 1 and \vhen opened it has the logical value of 0. 
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A B 

0 0 0 

0 I I 

I 0 I 

I I 0 

Fig. 3-12. Exclusive-OR truth table. 

When A is zero and B is zero the lamp will be off -­
we assign this condition a logical value of zero. 
In order for either switch to control the lamp, if 
A or B changes states, the lamp must go on. Therefore, 
when A is zero and B is one L must have the value of 
one and when A is one and B is zero, L must also have 
a value of one. Finally, when A and B are both one 
the lamp must be off. The next problem is to write 
a Boolean algebra expression for the truth table. 

L is to be one for two possible conditions; when A 
is zero and B is one and also when A is one and B 
is zero. When two quantities are AND'd together, 
they must be both equal to one for the result to be 
one. (Theorem 3.2). In this case we indicate A 
as zero, however, its complement A would have a 
value of one when A is zero. Therefore, we write: 
AB. Similarly we write AB. L is 1 for either one 
OR the other combination. The complete equation is 
AB + AB = L. 
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Inspection of the equation shows that it cannot be 
simplified using any of the theorems in Table 3-1. 
Next, we implement the equation in a logic diagram. 
Wherever two terms are ANDed together we use the 
symbol for an AND gate; wherever the two terms are 
OR'd together, we use the symbol for an OR gate. 
The complete diagram is shown in Fig. 3-13A. 
Inverters are used to generate the negated values 
of any one of the variables when it is required. 

In Fig. 3-13B we show the final circuit which uses 
switches to implement the logic functions. By the 
use of single-pole double-throw switches we generate 
both the true and negated value for a particular 
variable. 

Re-examining Fig. 3-13A, note that L is true if either 
A or B is true, but not when both are true. This 
particular combination is so useful that it has been 
given a special name and a special symbol. The 
implementing circuit is called an "Exclusive OR" 
gate. The symbol is shown in Fig. 3-13C which 
diagrams the lamp problem using the Exclusive OR. 
The problem could be diagrammed as in Fig. 3-13A or 
3-13C; however, the latter diagram is the more 
convenient. 
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Fig. 3-13. Exclusive-OR operations. 
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Ao-------------~ 

80---------~--~~~ 

CO---~----~--~~~ 

(A) 

AD-----~x 

(8) 

AC +ABC+ AC 
}---~x 

Fig. 3-14. Simplification of complex logic 
diagrams. 
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Fig. 3-14A shows another type of problem that may be 
encountered. The engineer is presented with an 
accomplished logic diagram. His task is to reduce 
this diagram to its Boolean algebraic equivalent. 
By starting at the input and carefully labeling each 
line, noting also where negation or inversion has 
taken place, the function may be completely 
derived from the diagram. The final equation is 
shown at the output. Examining the equation shows 
that the equation can be simplified as follows: 

AC + ABC + AC X 

A(C +c) + ABC X Factoring and rearranging terms. 

A(l) + ABC X By 3.7 

A + ABC X By 3.4 

A X By 3.10 

The simplified equation shows that the function 
reduces to a straight-wire connection (Fig. 3-14B) 
from A to X eliminating all other gates and 
connections. 
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Fig. 4-1. NAND functions. 
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When the design engineer tries to implement a Boolean 
algebra function he may use any common switching 
device, including the transistor and vacuum tube. 
When operated in common-emitter mode, the transistor 
acts as an inverter. Thus, when a transistor is used 
to implement a logic function; the output of the 
transistor, if taken at the collector, represents the 
inversion of the input operation. This means that 
when constructing an AND gate using a transistor, 
often the output represents the inversion of an AND 
gate. 

In Fig. 4-lA we show a two-input digital gate, 
consisting of two NPN transistors Ql and QZ. In a 
negative logic system, when inputs A and B are true 
they are 0 V. In this condition both transistors 
are off. If they are both off, the output level is 
+10 V, the false level. Examination of the truth 
table for an AND gate shows that the output is 0 or 
false for any combination of inputs A and B except 
when both are true. Referring to Fig. 4-lA again, 
if both transistors are off, which occurs only when 
A and B are true, Y is false. For all other 
conditions, one or the other or both of the 
transistors is on because its base is at the false 
or positive level. With either transistor on, Y is 
equal to 0 V, the true level. TheY column is the 
inverse of an AND gate output. 

This type of gate is known as a negated AND gate 
which is shortened to NAND gate. The symbol for a 
NAND gate appears in Fig. 4-lC. The basic shape of 
the gate identifies it as an AND function. The 
circle at the output of the gate means that the signal 
is logically inverted at the point where the circle 
appears. The Boolean algebra expression for the 
NAND GATE is written as Y = AB. By DeMorgan's theorem 
(3.13) this expression can also be written as 
Y = A +B. Note that in one form of the equation, 
the AND function is indicated, in the other form of 
the equation the OR function is indicated. 



32 

NOR 

A 

0 

0 

I 

I 

B z A 
0 I 

I 0 B 
0 0 

I 0 

+lOY 

Ql 

Q2 

L------t----~~ z 

(Al 

z 
Z o A + B 

Z o A B 

(8) (C) 

Fig. 4-2. NOR functions. 

Fig. 4-2A shows a digital logic circuit using two 
PNP transistors. In negative logic system when inputs 
A or B are made true, the base of the appropriate 
transistor is pulled negative with respect to the 
emitter which turns the transistor on. A truth table 
for this gate is shown in Fig. 4-2B. Output Z is 
true only when both transistors are not conducting. 
Both transistors are off only when A and B are both 
false. This result is equivalent to taking the output 
of an OR gate and negating it. The circuit is 
therefore referred to as a negated OR gate or NOR 
gate. The symbol for a NOR gate is shown in Fig. 4-ZC. 
The basic shape of the gate indicates an OR function. 
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The presence of a circle at the output indicates 
logic inversion at that point. An equation for a 
NOR gate is Z =A+ B. By DeMorgan's Theorem (3.12) 
this expression is also equivalent to Z = A B. Thus, 
in the NOR gate as in the NAND gate both OR and &~D 
functions can be implemented. Neither the NAND gate 
nor the NOR gate are restricted to two input 
configurations. NAND or NOR gate IC's are available 
with up to five inputs. 

The question is frequently asked as to why most 
commercially available digital integrated-circuit 
gates are of the NAND or NOR variety. The answer is 
found by applying DeMorgan's theorem to NAND and NOR 
functions. As mentioned previously DeMorgan's theorem 
shows that in either the NOR or the NAND gate, both 
AND and OR functions are indicated. 

A manufacturer producing integrated-circuit chips 
can manufacture a single type of gate, either NAND 
or NOR type, thus simplifying his own inventory and 
production problems. The user of this single type 
of gate can implement any kind of indicated operation 
AND/OR strictly by the use of NAND or NOR gates. To 
illustrate this principle let us re-examine Theorem 
3.12 which reads: A+ B = A B. See Fig._4=3· The 
output of the gate is A± B which equals A B. By 
applying Theorem 3.9, A B = AB. By inverting logic 
levels before the NOR gate, the result is equivalent 
to an AND function. 

A+ B 0 A B 0 AB 

Fig. 4-3. Implementing the AND function with 
NOR gates. 
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0 A + 3 

IAI (d) lSI 

Fig. 4-4. The NOR gate as an inverter. 

An important question is: Can the NOR gate function 
as an inverter? Examining the truth table for a NOR 
gate Fig. 4-4A, if input B is held permanently false, 
when A is 0 the output is 1 and when A is 1 the output 
is 0. This method of operating a NOR gate would 
invert whatever signal is connected to input A. Input 
B is easily held false in a negative logic system by 
connection to the positive supply. A NOR gate 
operated as an inverter, Fig. 4-4B, could also be 
symbolized by the symbol in Fig. 4-4C, i.e., an 
inverter or NOT circuit. It is of little consequence 
in a logic diagram exactly how the inverter function 
is implemented. Many diagrams would use the inverter 
symbol. The AND function of Fig. 4-3 could therefore 
be implemented by using three NOR gates. 

If the OR function is to be implemented using NOR 
gates, the designer may proceed as in Fig. 4-5. 
A + B inverted becomes A + B; thus inversion of the 
AND function, or the OR function, can be implemented 
using nothing more than NOR gates. 

Theorem 3.13 reads AB = A+ B. Using the A NAND B 
relationship any of the desired functions can be 
implemented. Examine the truth table for a NAND 
gate as shown in Fig. 4-6A. If the B input is held 
permanently true (Fig. 4-6B) then the A input is 
inverted. The NAND gate may be used as an inverter 
and may be symbolized as in Fig. 4-6C. 

A 

B 

Fig. 4-5. Implementing the OR function with 
NOR gates. 
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Fig. 4-6. Inverting with a NAND gate. 

Fig. 4-7A illustrates the implementation of an AND 
function using only NAND gates. Fig. 4-7B shows the 
implementation of an OR function using only NAND gates. 
A and B are first inverted and then NANDed together 
giving the result, AB. By DeMorgan's theorem this 
is equivalent to A + B. 

Most integrated circuit chips presently manufactured 
are NAND gates when used in a negative logic system. 
Very many NAND gates appear in Tektronix digital 
instruments. The student should be familiar with the 
implementation of logic functions using NAND gates. 

A 

AB = AB 
B 

(AI AND 

A 

B 

(81 OR 

Fig. 4-7. Implementing with NAND gate. 
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B 

AB + CD 

c 
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Fig. 4-8. Complex NAND circuits. 

Sometimes a NAND gate is shown as an inverted input 
OR gate. See Fig. 4-8A. The truth table for a NAND 
gate indicates that with A and B both true a false 
output results. The same applies to gate B. Here 
we have a situation in which true inputs give a false 
output. Gate C responds to the false output levels 
of gates A and B. Re-examine the truth table for a 
NAND gate replacing true and false with the negative 
logic voltage levels (Fig. 4-8B), we find when any 
NAND gate input is high the output is low. Only if 
both inputs are low is the output high. Using 
positive logic instead of negative logic we could say 
that this gate acts as a positive logic NOR gate. In 
certain schematics, as in Fig. 4-8C, the symbol for 
Gate C is replaced by an inverted input OR symbol. 
A NAND B and C NAND D are inverted before being OR'd. 
The final result is A AND B OR C AND D. Fig. 4-8A 
also gives this result if we apply DeMorgan's 
theorem to the output. The difference is only in the 
symbology used. The actual logic operation is the 
same. 
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The configuration in Fig. 4-8 appears several times 
in the Tektronix Type 230 and Type 240 instruments. 
When using NAND gates or NOR gates a system of mixed 
logic actually occurs within the diagram. The true 
inputs for a NAND gate give a false output. This 
operation can be called an inversion in logic values. 
Thus, many observers say that after passing through 
a NAND gate (if the input is in a negative logic 
assignment) the output has a positive logic assignment. 
In the case of Fig. 4-8, the system inputs are in a 
negative logic environment. They are inverted once 
by the first two NAND gates and inverted again by 
(negative logic NAND or positive logic NOR) gate C. 
The output level emerges in a negative logic 
environment. This is the case for many Tektronix 
digital instrument circuits. The actual logic 
assignments are fixed in Tektronix diagrams. 

Fig. 4-9A illustrates a transistor whose input 
terminals are the emitter and the base. In this case, 
input A must be high and input B must be low for the 
transistor to be on. The inputs required have opposite 
levels. The truth table for such a gate in a negative 
logic environment is shown in Fig. 4-9B. The output 
is zero (or false) except when A is zero and B is one. 
The logic symbol for such a gate is shown in Fig. 4-9C. 
The equation for such a gate is Z = AB. Occasionally 
we use such a gate where it is desired to hold one 
input false and disable the entire gate. Here, if 
input B is held false, the output at A has no control 
over the gate. In this sense, then, input B is termed 
an inhibiting input and the gate is often called an 
"inhibitor." At Tektronix we consider this type of 
gate a special form of AND or NAND gate with mixed­
logic inputs. Examples of this gate appear in both 
Type 230 and Type 240 instruments. 

+I OV 

A B 

0 0 0 

0 I I 

I 0 0 

I I 0 

(A) (8) (C) 

Fig. 4-9. An inhibited gate. 
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The logic operations discussed to this point are 
essentially single action in nature. A set of logic 
signals is applied to a set of logic decision devices 
which proceed to generate a single result. Many 
digital systems require nothing more. Others, perhaps 
the majority, require a series of such operations 
in sequence. To provide a sequential action, a 
device is required which has a memory. One which 
will remember the results of a logic operation for 
later use. A counting circuit is an example. When 
counting from one to ten the counter must remember 
how many units have already been counted. At the 
fourth count, to realize that this is the fourth count, 
the counting circuits must remember that three prior 
counts have been made. 

0 

(A) 

X 6 Y 
y 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

X 

A 

(B) (C) 

Fig. 4-10. Evolving a flipflop. 
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A simple way of obtaining a memory device uses an OR 
gate. See Fig. 4-lOA. OR gate E has a connection 
from its output back to one of the inputs. Assume 
that X initially equals zero. If X is zero then A 
must be zero. If A is now made equal to one, then 
X must equal one. If X equals one, input B receives 
the one and regardless of whether A returns to zero 
the output remains at one. The circuit as shown is 
impractical because there is no way of forcing X back 
to the zero state. The gate can be forced back to 
zero if some means is provided for breaking the 
feedback path. See Fig. 4-lOB. Here the feedback 
path contains AND gate F. The AND gate F has inputs 
Band X and output Y. A truth table for gate F is 
shown in Fig. 4-lOC. Examining the table Y equals 
X if B is one. If B is zero, however, the output is 
zero. By making B equal to zero we force the OR gate 
E back to zero if A is zero at that time. The logic 
equation for this circuit would be Y = B·X. Looking 
at the overall circuit a one input at A forces the 
output X to one. A one at B, inverted by gate G, 
forces the output to zero. 

The above is an electronic equivalent to a toggle 
switch. Flip the switch one way to on, flip the 
switch the other way to off. Similarly make B equal 
to one and X flips to zero; make A equal to one and 
X flips to one. This leads to the definition for a 
binary memory unit. Such a binary unit has two 
control inputs. A true level at one input forces the 
output of the device to one. The other input having 
a true input forces the output to the opposite state. 

The circuit of Fig. 4-lOB is bistable. If input A 
goes to one, X goes to one. If input B goes to one, 
X goes to zero. This action is similar to an FF 
(flipflop). An FF can be implemented by using vacuum 
tubes, transistors, tunnel diodes, magnetic cores or 
any other two-state active device. 
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Fig. 4-11. T flipflop. 

A commonly encountered type of FF using transistors 
is shown in Fig. 4-11. A trigger pulse introduced 
at A is differentiated and then conducted via diode 
Dl and D2 to Ql and Q2 bases. Dl and D2 polarize the 
pulse so that only the negative edge of the pulse 
appears at the bases. The NPN transistors are turned 
off by a negative edge. Any time a trigger pulse is 
coupled into input A the flipflop will change state. 
Since this action is analogous to toggle-switch 
action, the circuit is called a toggle flipflop (T FF). 
The T FF has a major shortcoming. The state of the 
FF after a trigger is applied cannot be accurately 
known unless the present state is known. 

Another common FF is the "Set-Reset" (RS FF). A 
representative transistor RS FF is shown in Fig. 4-12A. 
This is similar to the T FF except that there are 
two input terminals. This circuit is predictable 
for three of four input conditions. 

The inputs labeled R and S are called the Reset and 
Set inputs, respectively. Two rules for RS flipflops 
are "Set to one" and Reset to zero." Set to one 
means an input signal (negative step here) to the 
Set terminal switches the circuit to a known condition 
called the One state. Reset to zero means that an 
input signal (negative step) to the Reset input 
switches the flipflop to the opposite condition called 
the Zero state. It remains to define the output 
states of the circuit. As an example, consider 
Fig. 4-12A. A negative edge to the S input couples 
through D2 and C2 to turn Q2 off. The collector of Q2 
goes false and turns on Ql. The collector of Ql goes 
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true. This output is therefore the one output. Thus, 
a Set input signal places the flipflop in the one 
state. A negative edge to the R input switches the 
1 output to zero. 

The collector of Q2 always logically complements the 
1 output and is called the 0 output. In Fig. 4-12B 
we show the logic diagram symbol for an RS flipflop. 
A box symbol shows two inputs on the left, two outputs 
on the right. Tektronix diagrams always show the 
Set input opposite the 1 output. The Reset appears 
opposite the 0 output. The rule that an input to R 
causes the 1 output to go to 0 could also be stated 
R causes the 0 output to go to 1. The RS flipflop 
truth table (Fig. 4-12C) shows that all input 
conditions are covered except when S and R inputs 
receive simultaneous negative edges. The next state 
of the FF cannot be predicted and is ambiguous. 
Since this is true, for the RS flipflop simultaneous 
R and S inputs are commonly called "not allowed" or 
"forbidden" combinations. The RS flipflop is 
used in logic situations which do not include the 
possiblility of simultaneous Set and Reset inputs. 
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The circuit of Fig. 4-13A combines the features of 
the toggle and RS FF's. This particular circuit 
using PNP transistors responds to positive signals 
at all inputs. The Clock input responds only to 
positive-edge signals. 

A logic symbol (drawn for negative logic) appears 
in Fig. 4-13B. The small circles at S and R inputs 
indicate logic inversion at that point. This should 
be interpreted to mean that a false level is inverted 
to become a true level within the box. The 1 and 0 
outputs also have circles. From a negative-logic 
viewpoint these are I and 0 outputs. A Set signal 
(the bar indicates that the set input is the high 
level) switches the FF to a l condition. See the 
truth table of Fig. 4-13C. 

The symbol at the Cp (Clock pulse) input indicates 
that this input responds to a positive edge signal 
only. 

The clocked RS FF is used in counting circuits. In 
such circuits the FF operates in a clocked mode for 
a period of time. Afterwards the FF must be returned 
to a known condition using either R or S input. 

The JK FF has no ambiguous states. When a one is 
applied to the J, the flipflop is switched to the one 
state. With a one at K the flipflop is switched to 
the zero state. If ones are applied to both J and K 
the FF switches to its complement state. Many JK 
flipflops are supplied with two or more J inputs and 
two or more K inputs. Frequently one J and one K 
input are connected together and called the clock 
input. This input is usually labeled Cp on Tektronix 
logic diagrams. 
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Fig. 4-13. The clocked RS FF. 
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Fig. 4-14A shows a JK flipflop using discrete 
components. The circuit is similar to that for the 
T FF. Diodes Dl and D2 provide a way of inhibiting 
Cp input signals. For example a positive level 
applied to the J input causes D2 to conduct. The 
positive level coupled through D2 holds D4 off. D4, 
when off, blocks a negative edge signal to Ql base. 
Ql cannot be turned off. The Cp signal can pass 
through D3 turning Q2 off (if not already off). 

A positive voltage at K couples through Dl to D3. 
D3 inhibits a Cp signal to Q2. This inhibiting action 
can be viewed as a way of steering the flipflop to a 
desired condition. If both J and K are held false 
the flipflop will hold its present condition when a 
clock input occurs. 

One mode of operation puts J and K at one. For the 
negative logic assignment used at Tektronix the inputs 
are at 0 V. J and K are electrically disconnected 
from D3 and D4, the trigger gates. The operation is 
now the same as for the T FF. The state of the 
flipflop changes for each negative edge into the Cp 
input. For this circuit, just pulling J false or K 
false will not change the state of the flipflop. The 
false J or K inputs have no effect until a clock is 
applied to Cp. This is typical of all clocked JK 
flipflops. The reader may determine the operation 
of the flipflop by referring to the truth table of 
Fig. 4-14C. The logic symbol for a JK flipflop 
appears in Fig. 4-14B. The JK flipflop has no 
ambiguous states. The designer can always control 
the output state of the flipflop regardless of the 
combination of input signals. For this reason the 
JK flipflop is used more frequently than any 
other type. 

In certain circuits the designer requires an 
additional input which overrides the J, K, and clock 
inputs. The circuit of Fig. 4-14A may have an 
extra transistor connected as shown in parallel 
with Q2. See Fig. 4-15. The base of Q3 would be 
called a set input. By putting a false level on 
Q3 the 1 output goes true regardless of any other 
inputs to the circuit. 
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Logic functions can be implemented by the use of any 
component which can act as a switch. This includes 
mechanical switches, relays, diodes, transistors, 
vacuum tubes, field-effect transistors; indeed any 
active device which can turn on and off. The various 
methods of using the switching devices to implement 
logic functions are given special names. The name is 
usually a series of letters taken from the first 
letter of the first words which name each type of 
logic circuit. Thus we have such names as DL which 
stands for Diode Logic, RTL standing for Resistor­
Transistor Logic, DTL for Diode-Transistor Logic, TTL 
for logic systems using Transistor-coupled to 
Transistor Logic circuits and CML for Current-Mode 
Logic. Within the digital circuit industry, other 
initials are commonly used. These, however, are 
primarily utilized for commercial purposes and are 
normally found to be modifications of the previously 
named types of logic systems. 

Knowledge of the exact type of logic circuit used is 
often of minor importance to the user of the 
completed device. However, this knowledge is very 
important to the device designer because the families 
of logic circuits possess various advantages and 
disadvantages which recommend one over the other. 
Also, to troubleshoot or circuit trace an existing 
instrument, a knowledge of the shortcomings of the 
types of logic circuits becomes important. 

The semiconductor diode is a two-terminal, nonlinear 
switching device. It is binary in nature because 
when forward biased it has low forward resistance, 
and when reverse biased, it has high reverse 
resistance. Semiconductor diodes used to perform 
logic functions were among the first devices utilized 
in digital circuits, principally because they are 
small, inexpensive, fast switching and operate at low 
power levels. The diode, however, is a nonamplifying 
device, and circuits which employ diodes are usually 
limited to single logic functions. 
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Fig. 5-l. Diode logic gates. 

Practical circuits utilizing diode logic circuits 
often include active transistors or other amplifying 
devices to offset diode losses. Two basic diode 
logic circuits are shown in Fig. 5-l. Fig. 5-lA 
shows a diode circuit and a voltage-level truth table. 
This circuit operates as an AND gate in a positive­
logic system, and an OR gate for a negative-logic 
system. Fig. 5-lB, on the other hand, is a positive­
logic OR gate and a negative logic AND gate. Since 
these are universal circuits it is important to 
realize that the same circuit in one instrument could 
be an AND gate and could equally well be an OR gate 
in a different instrument. 

In either of the circuits of Fig. 5-l, assuming that 
silicon semiconductor diodes are utilized, 
approximately 0.6 volts is lost between the input and 
the output signal levels. If an attempt is made to 
cascade several diode-logic circuits, it is usually 
found that enough voltage is lost to render the 
circuit almost unusable. In early instruments which 
used this type of logic circuit, an amplifying 
transistor or vacuum tube was often inserted to 
replenish circuit losses. 

When operated in high-speed logic systems, the diode 
logic circuit has several shortcomings. One problem 
is the fact that when a diode is forward biased and 
an attempt is made to turn it off, it takes an 
interval of time before the stored charge is fully 
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swept out of the diode junction. This limits 
switching speed for the diode. In addition, the 
diode logic circuit suffers from poor "fan-out" 
capabilities. Fan out is a term which refers to the 
number of other logic-device input circuits that a 
particular logic output circuit may be capable of 
driving. 

The diode logic circuit has poor fan-out capabilities 
because the diode has low forward resistance and 
provides little isolation between input and output. 
The source impedance of the circuit can cause 
excessive voltage losses. If high-speed logic 
functions are to be performed, the ability of a 
diode circuit to charge a capacitive input is 
limited by the finite forward resistance. 

The biggest advantages of diode logic circuits are 
small size and low cost. Because of these 
advantages, which often outweigh the disadvantages, 
frequent use is made of diode logic circuits. 

Resistor-transistor logic circuits use the 
transistor as an active element. The transistor 
has several advantages. It provides both voltage 
and current gain which gives it excellent noise 
immunity and excellent fan out. The transistor is 
normally operated as a switching device; that is, it 
operates between a cutoff condition and a saturated 
condition. When cut off the transistor has high 
reverse resistance and when saturated has low 
forward resistance. Thus it is a good binary 
element. 

On the other hand, transistors operated into 
saturation may suffer from several forms of time 
delay. When turned on, the transistor takts an 
interval of time before the carrier condition is 
fully established. A saturated transistor requires 
a certain amount of turn-off time because of the 
minority-carrier storage time of the forward-biased 
collector-to-base junction. This limits the 
usefulness of the RTL circuit in high-speed logic 
applications. 

RTL circuits use transistors in the common-emitter 
amplifier mode. Because of the bipolar nature of 
transistors, circuits utilize both NPN and PNP 
devices. 
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A representative RTL circuit using a PNP transistor 
is shown in Fig. 5-2. This is a three-input NAND 
gate. The three inputs, A, B and C, are each 
coupled to the base of Ql by a 12-k resistor. The 
logic levels for this particular circuit are 0 V = 1, 
12 V = 0. Unless A and B and C are all true, the 
base of Ql is not negative with respect to its 
emitter and Ql remains off. Only with A and B and C 
at zero volts, can Ql be on, and the output be false. 
This is characteristic of a NAND gate. 

The major point of interest in this circuit is the 
voltage level at node M in Fig. 5-2A. To confirm the 
truth of the previous statements, let us examine the 
possible conditions for the gate. First we consider 
the C input true, the other two inputs false. This 
is the voltage condition shown in Fig. 5-2B. We 
apply Thevenin's theorem to the two-resistor branch 
consisting of Rl and R2 which gives the result shown 
in Fig. 5-2C. Again applying Thevenin's theorem 
gives the circuit of Fig. 5-2D. R3 in series with 
the equivalent 4.3 kn puts node Mat +20.7 volts. 
This assures that Ql is off. 

+SOV 

R4 

Rl 15k 
+12V +12V +SOV 

12k 
A +12V +12V 

R2 t 12k 
Rl R2 R4 B 

R3 Dl 12k 12k 15k 

12k M c Ql M 
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-::-
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Fig. 5-2. An RTL circuit using a PNP transistor. 
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If Ql were to be a silicon planar PNP transistor, it 
would be necessary to add a clamp-diode Dl at node M 
to prevent Ql from going into emitter-base breakdown. 
This diode would clamp node Mat approximately +12.7 
volts. Without the diode, node M would be at +16.9 
volts. 

If we consider two inputs (B and C) true we have the 
circuit of Fig. 5-3A. This Thevenizes to the 
simplified circuit in Fig. 5-3B. The resistor ratio 
places node M at approximately +13.8 volts. This 
level assures that Ql is off. 

Finally, considering the case where all three inputs 
are true, we have the circuit of Fig. 5-3C. This 
simplifies to the circuit of Fig. 5-3D placing node 
Mat approximately +10.3 volts. Ql is turned on with 
+10.3 volts at the base. 
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If Ql were to draw excessive emitter-base current a 
resistor could be added between node M and the base 
of the transistor to limit that current. Fig. 5-4 
illustrates a similar circuit which performs as a 
negative-logic NOR gate. Here an NPN transistor is 
used. Ql is cut off unless all inputs are false. 
Study of the voltage-level truth table shows that 
this is a negative-logic NOR gate. The reader may 
solve the resistive divider for all possible input 
combinations using the methods for Fig. 5-3 to 
convince himself that the circuit operates as stated. 

Fig. 5-5A shows the symbol of a three-input circuit 
which performs a majority logic operation. Unlike 
ordinary Boolean algebra circuits, a majority circuit 
responds to the majority of its inputs. A truth 
table for such a function of a three-input majority 
logic gate is shown in Fig. 5-5B. The output of the 
gate is 0 unless two or more of the inputs (a 
majority) are 1, in which case, the output is 1. 

One of the simplest methods of implementing this 
function uses RTL with an inverting transistor. The 
majority output is thus inverted. See Fig. 5-5C. A 
majority inverted becomes a minority. The output 
(carry) agrees with the minority of A, B, and C input 
levels. This composite gate is represented by the 
symbol of 5-5D. The truth table for the minority 
gate is shown in Fig. 5-5E. 
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Fig. 5-4. An RTL circuit using an NPN transistor. 
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Fig. 5-S. Majority/minority functions. 



54 

+50V +12V 

180k 

80k 
Ql 

80k 
B o---'INir--____. 

80k 
c o--~ltvv--...J 

(A) 

A B c M 

0 0 0 I 

0 0 I I 

0 I 0 I 

0 I I 0 

I 0 0 I 

I 0 I 0 

I I 0 0 

I I I 0 

(B) 

Fig. 5-6. A minority circuit. 

A circuit which performs a minority function appears 
in Fig. 5-6A. The circuitry appears to be the same 
as that of a three-input NAND gate. The resistive 
components are chosen so that Ql remains off unless 
at least two of the inputs are true. A truth table 
for the gate is shown in Fig. 5-6B. The gate uses 
logic levels of 0 = +12 V and 1 = 0 v. The reader 
may solve the circuit and prove the truth table. 
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The Exclusive-OR gate (also called an anticoincidence 
gate) delivers a true output if the input states are 
not identical. The output of the gate is false if 
the inputs are identical. A typical discrete­
component transistor Exclusive-OR gate is shown in 
Fig. 5-7A. Transistors Ql and Q2 are connected 
together in the form of a RTL logic circuit. Input A 
is connected to the emitter of Ql and the base of Q2. 
Input B is connected to the base of Ql and the emitter 
of Q2. If inputs A and B are at the same level, both 
transistors have zero-biased emitter-base junctions 
and neither transistor is on. Only if the inputs are 
at opposite logic levels can one or the other of the 
transistors be on. A truth table for the device is 
shown in Fig. 5-7B. 

The major disadvantage of the RTL circuit is slow 
operation due to saturation. In addition, given a 
fixed logic assignment and restricted to a single 
type of transistor (NPN or PNP), there is no way to 
obtain both NAND and NOR operations. Thus certain 
logic expressions cannot be implemented efficiently. 
Both disadvantages are avoided by combining the diode 
logic circuit with the transistor. 
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Fig. 5-7. Exclusive OR gate. 
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A typical circuit of DTL is shown in Fig. 5-SA. In 
this example the diodes perform the logic function 
while the transistor amplifies and inverts the 
results. Logical 1 equals 0 V and logical zero 
equals 10 V. The circuit of Fig. 5-8A must have 
both inputs true for Ql to be turned off. For all 
other conditions Ql base is positive, turning Ql on. 
The voltage-level truth table demonstrates that this 
is a negative-logic NAND gate. Study of the circuit 
of Fig. 5-8B shows that it functions as a negative­
logic NOR gate. 

In both figures, an NPN transistor is used. The only 
difference is the polarity of the series diodes and 
the pull-up or pull-down voltage required. By proper 
design of the circuit, particularly the selection of 
Rl, the amount of saturation can be limited. This 
makes a faster switching circuit. Since diodes are 
often less expensive than transistors this circuit 
can be more economical than logic circuits using 
multiple transistors. The circuits of Fig. 5-8 
could also be implemented by PNP transistors. 

Transistor logic circuits of the previous sections 
utilize the transistor only as an amplifier, the 
logic function being performed by resistors or diodes. 
A commonly used family of logic circuits utilizes 
transistors to perform the logic operation as well 
as amplify. This family is called Direct-Coupled 
Transistor Logic (DCTL). 

DCTL may be divided into two categories: those 
using the transistor as an inverting amplifier 
(common emitter) and those using a noninverting 
amplifier (emitter follower). 
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Fig. 5-9 shows two DCTL circuits utilizing both NPN 
and PNP transistors as emitter followers. Fig. 5-9A 
shows a two-input negative-logic OR gate (positive­
logic AND gate). Here a true input (0 V) at input A 
or input B biases either Ql or Q2 on, placing the 
output at approximately 0 V, logical one. Therefore, 
if A is true or B is true (or both) the output is 
true. Examining the A input, resistor Rl limits the 
emitter-base current drawn through Ql. R2 returned 
to +12 V assures turn off of Ql when the A input is 
false. Capacitor Cl is often included to help remove 
the stored charge when turning off the transistor, 
thus improving the switching speed of Ql. Input B 
is similar. 

Fig. 5-9B shows a two-input logic gate using NPN 
transistors. With negative-logic assignment it 
performs as an AND gate. If A is true and B is false 
the output is false. The high at input B keeps Q2 
on. Q2 when turned on pulls the output to +10 volts. 
Only with both A and B true (Ql and Q2 both turned 
off) can the output be true. The gate performs an 
AND function. 

The emitter follower has a very low output impedance. 
Therefore, this type of circuit is characterized by 
having good fan-out capabilities. On the other hand, 
a serious disadvantage is that an emitter follower has 
no voltage gain. In fact, there is a voltage loss, 
depending upon the type of transistor and the values 
of the resistances which are used. This means that 
only a limited number of stages can be cascaded. At 
intervals in a cascade of circuits an inverter or 
restoring circuit must be included to reestablish the 
proper signal level. 

Another disadvantage of the emitter-follower logic 
gate is that a particular type of transistor emitter­
follower will charge faster in one direction than the 
other. A PNP-type circuit such as in Fig. 5-9A will 
have a faster falltime than risetime. The reverse is 
true for the NPN circuit of Fig. 5-9B. This can be 
offset at the expense of additional transistors and 
components by using a complementary emitter-follower 
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Fig. 5-10. Complementary emitter follower. 

arrangement. Fig. 5-10 shows part of an emitter­
follower logic circuit which has been complemented. 
Ql is an NPN transistor and Q2 is a PNP transistor. 
With this configuration, no matter whether the 
output signal is going from true to false or from 
false to true, either Ql or Q2 is turning on. This 
improves the risetime and falltime of the circuit. 
This circuit would have to be duplicated for each 
gate input required. Such additional circuits would 
be connected to the output at point X. 

Fig. 5-llA shows two NPN transistors which are 
connected as common-emitter amplifiers sharing a 
common-collector load resistor. Unless both Ql and 
Q2 are turned off, the output will be logically true. 
If Ql and Q2 are both off, then the output would be 
false. This is characteristic of a negative-logic 
NAND gate. In a positive-logic environment this 
circuit is a NOR gate. A voltage-level truth table 
is shown for the gate. 

A similar circuit using PNP transistors is shown 
in Fig. 5-llB. With either input A or input B or 
both at logical one (O V), Ql or Q2 or both are 
turned on and the output is zero (+10 V). Only 
if inputs A and B are both false can the output 
be true. This is characteristic of a negative­
logic NOR gate. 

Instead of having the transistors connected in 
parallel they can be connected in series. When 
two NPN transistors and a collector resistor are 
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connected in series, as shown in Fig. 5-12A, the 
circuit behavior is similar to that in Fig. 5-llB. 
This is a negative-logic NOR gate. If A is true 
or B is true, one or the other of the transistors 
is turned off and f is false. The output f drops 
to a logical one level only if both transistors 
are on. For both transistors to be on both A and B 
would have to be high or false. At that time the 
output f is true. 
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Fig. 5-12. Series-DCTL inverting circuits. 

Connecting PNP transistors and the collector load 
in series results in a circuit as shown in Fig. 5-12B. 
If A and B are both low, both transistors are on, and 
the output is logical zero. For any other combination 
of inputs, one or the other or both transistors are 
off and the output is one. For negative logic, this 
is a NAND gate. 



current­
mode 
logic 

63 

Comparing circuits we see that if NPN transistors are 
operated in parallel, a negative-logic NAND gate 
occurs. If they are operated in series, the negative­
logic NOR gate occurs. For PNP transistors operated 
in parallel, a negative-logic NOR gate occurs and for 
PNP in series a negative-logic NAND gate occurs. 
Thus, either NAND or NOR functions can be implemented 
using only NPN or PNP transistors. 

It is possible in any of the above circuits to have 
more than two transistors in parallel or in series, 
thus, increasing the number of inputs to the gate. 
Care must be taken in the series form to avoid too 
many transistors in series since the saturation 
resistances add. 

The major limitation of DCTL circuits is the 
relatively slow turnoff time of a saturated 
transistor. This has resulted in many ingenious 
designs which prevent the transistor from 
saturating; the minority-carrier storage time being 
thus avoided. To examine these is beyond the scope 
of this book. 1 

The principle disadvantage of transistor-coupled 
logic circuits is that the transistor is operated 
in a saturated mode. A saturated transistor suffers 
the problem of storage time as a speed-limiting 
factor. Another form of transistor logic circuit 
is "emitter-coupled logic" often called current-mode 
logic (CML). The family was designed as a 
nonsaturating form of logic which eliminates 
transistor storage time as a speed-limiting factor. 
This permits extremely high-speed operation. 

The term "current mode" does not have a well-defined 
meaning. In general, it refers to circuits with 
small signal-level changes and where nearly equal 
currents switch from one path to another. CML 
circuits combine features of previously described 
logic families but use emitter coupling between 
amplifier circuits. 

1Yaohan Chu, Digital Computer Design Fundamentals 
(New York: McGraw Hill, 1962), p 185 
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Fig. 5-13. A CML circuit. 

Fig. 5-13 illustrates the basic current-switching 
technique as it first appeared. Input signals A 
and B are applied to the bases of Ql and Q2. The 
base of Q3 is connected to ground. Both positive 
and negative power supplies are large relative to 
signal potential levels, so nearly constant current 
may be assumed to flow through Rl, R2 and R3. The 
values of Rl, R2 and R3 are chosen so that the 
current through R3 is about twice that through 
either Rl or R2. For example, assume the current 
through R3 to be 10 milliamperes. Inputs A and B 
couple to the bases of Ql and Q2. An output, f, is 
taken from the collector of Q3. 
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If either of inputs A and B is false (approximately 
+2.6 V) the emitters of Ql and Q2 are pulled up to 
approximately +2 V. The emitter of Q3, also at +2 V, 
cuts off Q3. With Q3 off, output f rises to 
approximately +2.6 V. The 5-mA current demand of 
R2 causes 5-mA current flow through R4. The voltage 

'drop of 0.6 V across R4 places fat +2.6 V. 

If inputs A and B are both true, (approximately -0.6 v: 
both Ql and Q2 cut off. This is because the emitter 
buss is clamped at approximately -0.6 V by the 
emitter-base junction of transistor Q3. This leaves 
transistors Ql and Q2 with zero bias. In this 
situation Q3 is conducting the ten milliamperes 
through R3. We assumed a constant 5 milliamperes 
through R2, so the additional 5 milliamperes of 
current flows through the 120-ohm resistor to the 
+2-V supply. Five milliamperes through the 120 ohms 
puts the collector of Q3 at approximately +1.4 V. 
Note that Q3 is not saturated. 

Fig. 5-13B shows a voltage-level truth table for 
this circuit. For negative logic with the output 
taken at the collector of Q3, the circuit functions 
as an AND gate. For positive logic it is an OR gate. 
An additional output can be taken from the collectors 
of Ql and Q2. This second output will be inverted 
from the output taken at the collector Q3. 
Therefore, it is labeled f, the complement of f. 
We find that for negative logic f is equal to AB, 
and for positive logic the I output is equal to A+ B. 

The advantage of this type of circuit is that 
neither transistor is saturated. The disadvantages 
are the multiple power-supply requirements and the 
shift in output levels from input to output. One 
solution to the output-level problem alternates 
NPN and PNP transistor gates from one stage to 
another within a switching network. PNP transistors 
in a circuit of this type would perform OR/NOR logic 
in a negative-logic environment. The PNP circuits 
would produce a bias shift in the opposite direction 
correcting the NPN circuit offset. 

This availability of AND as well as OR circuits may 
simplify logic design to some extent; however, 
dummy stages, to provide offset .correction, are often 
required when only one or the other function is 
required. 
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Adding transistors in parallel with Ql and Q2 
expands the input capabilities of this gate. 
Whether the output is taken as f or f, a similar 
source impedance is available. The 120-ohm resistor 
in each collector circuit guarantees that the output 
impedance is about 120 ohms. Therefore this type 
of circuit has fairly good fan-out capabilities. 
The fan out is improved by the high gate input 
impedance seen at A or B. A particularly important 
point is that the power supplies are loaded 
approximately the same amount regardless of the 
gate's activity. This constant loading of the power 
supplies gives good noise immunity. The major 
circuit disadvantage is higher cost. The 
antisaturation of this circuit was particularly 
important with early transistors where minority­
carrier storage time was predominant in limiting 
speed. Since newer transistor types are faster, 
this version of current-mode switching is no longer 
as widely used. 

+ 1 v 

~v 

Fig. 5-14. A CML gate. 
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Another version of CML is illustrated in Fig. 5-14. 
In this circuit, transistors Ql, Q2 and Q3 function 
in essentially the same manner as in the previous 
circuit. However, here no attempt is made to limit 
the collector swing of the transistor to prevent 
saturation. The power supply used is relatively small 
so that the currents are not particularly constant. 
High speed depends upon the use of fast transistor 
types. Fan-out capabilities of this circuit are 
improved principally because of the use of transistors 
Q4 and Q5 as emitter followers. These give this 
circuit a significantly lower output impedance. 
The typical output impedance for an emitter follower 
is 2 ohms or less. 

The circuit maintains the relatively high input 
impedance at inputs A and B by the common-emitter 
configuration of the transistors. The collector 
of Q3 cannot be any more positive than the +1-V supply 
to which it is connected. If Q3 is saturated, the 
collector swing is limited in the negative direction 
to approximately 0.6 V by the collector-to-base 
junction of Q3. These voltages are offset by the 
bias of output emitter-follower Q4. In this 
particular circuit the output levels would be +0.4-V 
false and -1.2-V true, giving a logic-level swing of 
about 2 V. At least one major integrated-circuit 
manufacturer uses the circuit of Fig. 5-14 to form 
a large part of their logic-circuit product line. 
See discussion of Motorola integrated circuits in 
Chapter 6. 
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Q3 

Fig. 5-15 shows what is commonly called a 
Transistor-Transistor Logic circuit or TTL. The 
circuit may be thought of as being derived from DTL. 
Here Ql and Q2 are connected as common-base 
amplifiers. The inputs are made to the emitters of 
both transistors. The collectors of Ql and Q2 are 
paralleled and connected to the base of Q3, the 
output transistor, which operates as an inverting 
amplifier. This circuit may be thought of as being 
derived from the DTL circuit of Fig. 5-8. 
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A disadvantage of the DTL circuit is that when the 
transistor is changed from conducting to cutoff 
condition, the diodes connected to the base present 
a high resistance to the flow of current from the 
base. Consequently, an additional resistor is 
needed to drain away the charge. In the circuit of 
Fig. 5-15, the transistors being operated as common­
base amplifiers may be considered as quasi-diodes. 
When input signals are positive, no current can flow 
to the bases of Ql and Q2. The polarity of the 
voltage across the collector-to-base junctions of 
these transistors is then opposite the normal 
polarity for transistor operation. The transistors 
operate as a low-resistance path for the flow of 
current from the base of Q3 to the power supply. 
If input signal A or B is zero volts, either Ql or 
Q2 will be on and saturated. Assume zero volts at 
input A. This places the base of Ql at approximately 
+0.6 V. The collectors of Ql and Q2, tied together, 
pull to the same voltage (+0.6 V). 

Diode Dl will be forward biased (assuming that all 
transistors and the diode are silicon) and the base 
of Q3 is at approximately 0 V. Q3 is cut off. For 
the circuit, if either A or B is true, the output 
transistor is cut off. 

A voltage-level truth table is shown in Fig. 5-15B. 
By utilizing high-frequency transistors, storage 
problems are reduced in the gate. TTL circuits are 
most frequently encountered in IC form. 





IMPLEMENTING LOGIC CIRCUITS 
USING INTEGRA TED CIRCUITS 

IC The digital integrated circuit (IC) or chip is a 
fabrication device which contains complete digital circuits. 
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The entire circuit, including diodes, resistors, 
capacitors and transistors, is made as an entity, in 
much the same way as a single transistor is made. 
The present trend indicates that in the near future, 
digital instruments will utilize virtually 100% 
integrated-circuit logic. This is because of the 
relative reliability of IC logic devices; their small 
size, the lower cost (since assembly labor is almost 
entirely automated), and universal availability. 

Examination of the different integrated-circuit logic 
devices available on the market today shows that 
each integrated-circuit is based upon one or more 
of the previously mentioned families of logic 
circuits. It has been found that certain of these 
families, such as the DTL, are much easier to 
fabricate using integrated-circuit techniques. Other 
families, such as RTL, do not lend themselves to 
IC techniques. Therefore, many of the earlier 
types of logic families are fast disappearing. 

The first successful IC used DTL. However, it is 
no more expensive in the final design of an IC to put 
a transistor on the chip than a diode. By using 
logic families with more transistors, the circuit 
losses and slow speed of diodes is eliminated. 
The latest IC's take full advantage of the increased 
speed, reliability, and fanout of the transistor. 

Tektronix digital instruments at the present time 
utilize IC's manufactured by Fairchild and Motorola. 
We shall describe several of the types of IC's 
supplied by each manufacturer. 



72 

Fa i rch i I d 
914 

914 as 
NOR gate 

phantom OR 

914 as NAND 
gate 

The Fairchild IC's presently used by Tektronix are 
primarily of the RTL family. An example is the 
Fairchild Type ~L 914 dual two-input NAND/NOR gate. 
The schematic is shown in Fig. 6-lA. Pin numbers are 
indicated. There are two independent two-input gates 
on the chip. The chip is available in an 8-lead 
T0-5 size epoxy package. The device is compatible 
with other Fairchild 900-Series IC's. 

Each input is resistor-coupled to the base of a 
transistor. The collectors of the transistors are 
parallel connected. This type of logic circuit was 
previously referred to as DCTL. However, throughout 
the IC fabrication industry this family of logic is 
now called RTL. RTL was one of the first practical 
digital-logic families to be produced in IC form. 
It does suffer the limitations of switching 
transistors because the transistors operate in 
saturated mode. Typical delay time is 12 ns. 
The Vee is +3.8 V for all Fairchild 900-Series logic 
chips. 

The logic symbol of the 914 is shown in Fig. 6-lB. 
For positive logic each gate acts as a NOR gate; 
for negative logic each gate acts as a NAND gate. 
If pins 6 and 7 are tied together a single four­
input NAND gate results. 

Fig. 6-2 illustrates the two sections of a 914 with 
the outputs in parallel. The symbol for a phantom 
OR (sometimes called a wired OR) appears at the 
junction between pins 6 and 7. Interpret the phantom 
OR by saying, "If pin 6 is true or pin 7 is true, the 
output is true." 

The logic diagram may show a symbol for the 914 as 
in Fig. 6-2A or in 6-2B; a single NAND gate with 
four independent inputs. The presence of two 
connections at the output may be inferred by pin 
numbers 6 and 7 shown at the output connection. 
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Fig. 6-3. The 914 connected for AND operation. 

Should an AND function be required, a 914 is sometimes 
operated as shown in Fig. 6-3A. The output of gate 
A is AB. Gate B with pin 5 grounded inverts. 
Therefore, AB inverted becomes AB = AB. On certain 
logic diagrams the whole operation may appear with 
a single AND-gate symbol as in Fig. 6-3B. 

The dual two-input gate elements may be cross­
connected to form FF's. A FF formed by cross­
connecting a 914 appears in Fig. 6-4A. To understand 
the operation of the circuit, first consider the fact 
that pins 1 and 5 are quiescently 0 V (true). Assume 
that pin 2 is also true. NAND-gate A output, pin 7, 
is therefore false. The false at pin 7 connects to 
pin 3 of gate B. Gate B output is therefore true. 
This true connects back to pin 2 proving that the 
original assumption for pin 2 is valid. As long as 
no input signal appears at inputs E and F the circuit 
is stable in this condition with output 1 true and 
output 0 false. 

Because of the series capacitors, an input to E 
or F must be a step function. For this circuit, an 
input signal could be either a negative step (change 
from false to true) or a positive step (change from 
true to false). At inputs E or F, a negative step is 
not recognized since pins 1 and 5 are quiescently 
true. Assume a positive step input to E. Pin 1 goes 
momentarily false and output pin 7 goes true. Pin 
3 goes true, pin 5 is already true, therefore pin 6 
goes false. This false level couples to pin 2. 
After the AC-coupled false signal to pin 1 decays, 
pin 6 remains false. The FF has changed states. 
This is also a stable condition. 
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Fig. 6-4. The 914 connected as an RS FF. 

Any additional input signals to E cause no further 
switching. A positive edge at F, however, switches 
the flipflop back to the original condition. The 
reader may trace the levels through to determine 
the sequence of operation. 

This circuit is a form of RS FF. Call pin 6 the 1 
output, then input E is the Set input and F the 
Reset input. The circuit could be represented by 
the symbol of Fig. 6-4C. However, in Tektronix 
logic diagrams the circuit most often appears as in 
Fig. 6-4A. It is important to recall that an RS 
flipflop has an ambiguous state. If inputs E and F 
have simultaneous positive edge signals the state 
of the FF cannot be predicted. 

On Tektronix logic diagrams for the Type 230 all 
IC's are identified as MXXXX (Ml801, M2302, etc.) 
For this reason most IC's found on diagrams in this 
book use MXXXX as a reference number. For the Type 
240 and all later digital instruments the logic 
diagrams will use "UXXXX" instead of MXXXX. 
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Occasionally the output signal of a logic circuit 
has insufficient pulse width. A circuit which can 
"stretch" such a pulse appears in Fig. 6-5A. This 
circuit is a single shot, also called a one shot. 
Pin 3 is quiescently true. Pin 1 is held false by 
the return through Rl to +3.8 V. Pin 7 is 
quiescently true holding pin 5 true. Gate B with 
both inputs true has output pin 6 false. The circuit 
is stable in this condition. 

A positive edge (true to false) at input E drives 
pin 3 momentarily false; pin 6 goes true. The 
negative change at pin 6 from false to true AC­
couples through Cl to pin 1. Pin 1, momentarily true, 
causes pin 7 to go false. This false level coupled 
to pin 5 reinforces the false level at pin 3. The 
signal at pin 3 goes true after a time determined 
by Rl-Cl. However, pin 5 remains false so pin 6 does 
not change. The negative edge at pin 1 remains true 
for a period of time determined by Rl-Cl. When pin 
1 goes false again the circuit resets to the original 
state. 

The output pulse width is determined by the Rl-Cl 
time constant. For a typical circuit of this type 
with Rl = 3.3 k~ and Cl = 0.1 ~F, the output pulse 
width is about 150 ~s. The original input signal 
was a positive pulse while the output is negative. 
If a negative pulse cannot be tolerated then the 
output could be taken from pin 7 of the 914. 

NAND gate A actually operates as an inverter, so 
this circuit frequently appears as in Fig. 6-5B. 
Tektronix logic diagrams use the symbol of 6-5C. 
The letters SS stand for single shot. The sketched 
waveform shows output-pulse duration and polarity. 
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Fig. 6-6. Type 923 JK flipflop. 

Another type of Fairchild integrated circuit widely 
used in Tektronix instruments is the Type 923 which 
is a clocked JK FF. The schematic diagram for the 
actual circuitry on the chip is shown in Fig. 6-6A. 
The schematic symbol used by Tektronix is shown in 
Fig. 6-6B. The 923 has J, K, Cp (Clock) and P 
(Preset) inputs. The outputs are identified as 
1 and 0 outputs, respectively. Power-supply 
requirements are the same as required to operate 
the Fairchild Type 914, +3.8 v. 

The symbol shown connected to the Cp or clock input 
indicates that the cp input is actuated by a 
negative edge. That is, a signal must be at the 
false level and move to the true level in negative 
logic to actuate the FF. It is very important to 
recall that with a clocked JK FF both J and K 
inputs can be made any combination of true and 
false without affecting the output of the FF until 
a clock pulse appears at the clock input. A truth 
table appears in Fig. 6-6C. 

Several new terms have been introduced within the 
truth table. The combination of the J and K inputs 
are shown in 0-1 combinations in the column labeled 
t = N. Interpret t = N to mean bit value before a 
negative-going clock pulse appears at Cp. The second 
column lists the output conditions for t = N + 1 
where N + 1 means the bit value after a clock pulse 
appears. 
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Examining the first line of the truth table, we find 
that J and K inputs are both indicated as being false. 
For a JK FF, if both inputs are held false, the FF is 
inhibited; therefore, in the output columns we show 
the words "no change". This tells us that the FF 
will hold its present state, whatever it is. If J is 
false, and K is true, with a clock pulse, the 1 output 
goes to 0, the 0 output goes to 1. Just the opposite 
occurs if J is true and K is false. 

If J and K are both true, this is equivalent to 
grounding both J and K inputs. The clock pulse in 
this case switches the FF from its present condition 
to the opposite condition. Since the present 
condition may be either of the two possible states 
we use the symbol N + 1, meaning the FF will switch 
to the opposite state. 

The Preset input is a special purpose input which 
allows placing the JK FF in a known state with a 
single pulse. The P input responds only to the 
positive edge of a signal. The signal must go from 
true to false. The input is insensitive to a 
negative edge. A positive-edge signal at P forces 
the 1 output to a logical 1. Preset is a priority 
input. When actuated, P overrides the J, K, and Cp 
inputs. 

Motorola labels the IC's used in Tektronix 
instruments as MECL. These initials stand for 
Motorola Emitter-Coupled Logic. Emitter-coupled 
logic is a form of TTL logic which was discussed 
in Chapter 5. Fig. 6-7A shows the schematic 
diagram for a Motorola Type MC-357 three-input AND/ 
NAND OR/NOR gate. The three input-transistor bases 
connect to pins 6, 7, and 8. The collectors of 
these three transistors are paralleled and connected 
to the base of Q5. Q5 operates as an emitter 
follower providing an output at pin 5. The emitters 
of Ql, Q2, and Q3 are common to Re and connect to 
the emitter of Q4. Q4, a grounded-base amplifier, 
connects to the base of output emitter-follower Q6. 
The emitters of Q5 and Q6 connect directly to output 
pins 5 and 4, respectively. Each transistor requires 
an external-emitter load. Wherever this gate is used 
the load resistance is supplied. 
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The truth table for the MC 357 is shown in Fig. 6-7B. 
Examination of the truth table shows (for negative 
logic) when using output pin 5 a NAND gate function 
is performed. Output pins 4 and 5 are complementary. 
Using pin 4 as the output, f = ABC; using pin 5, 
f = ABC. 

This gate operates as either a NAND gate or an AND 
gate (or both) depending upon the output used. In 
some circuits, (Tektronix Type 230), both are used. 
The reader must be very careful to consider which 
output is used before deciding what logic function 
is taking place. For positive logic this gate acts 
as an OR/NOR gate. The MC 357 logic symbol appears 
in Fig. 6-7C. 

Motorola 350-series IC's may require three different 
voltage supplies. In examining the schematic of the 
MC 357 note that pin 3 is connected to Vee• the 
symbol for collector voltage supply. Pin 1 of the 
chip is connected to Vbb• a bias-supply input. 
Pin 2, Vee• emitter-supply voltage, is the third 
power supply input. 

Manufacturer's specifications state Vee= 0 V, 
Vbb = -1.158 V, Vee = -5.2 v. These conditions 
give output levels of -1.55 V low and -0.75 V high. 
Since Tektronix instruments require a low level of 
0 V the 357 is operated with Vee +1.75 V, Vee -3.5 V, 
and Vbb +0.65 V. This yields output levels of 0 V 
low and +0.8 V high. The MC 350-series IC's are 
available in 10-lead metal packages of T0-5 size. 
Propagation time is about 6 ns. Fanout is good, 
the gate output can drive up to 26 other MC 350-series 
inputs. 

Examining the MC 357 again, the collectors of Ql, Q2 
and Q3 are connected. This connection is brought 
out to pin 9. The emitter bus is brought out through 
pin 10. Adding discrete transistors between pins 9 
and 10 enables gate expansion. 

That is, the base of an external transistor, with 
collector connected to pin 9 and emitter to pin 10, 
becomes an additional input to the gate. The truth 
table would be modified to that of a 4-input gate. 
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Fig. 6-8. MC 354 regulator. 

Fig. 6-8 shows the schematic diagram for the 
Motorola Type MC 354 bias driver. The Vbb input on 
the Motorola 350-series gates requires a stabilized 
voltage. Since the logic gates require a well 
regulated voltage, the MC 354 has been manufactured 
to make a stable voltage source readily available. 
Examining the schematic of the chip, a transistor 
(Ql) is located on the chip. The collector connects 
to Vee• and its emitter-load is R3. Ql operates as 
an emitter follower. The base voltage of Ql is 
determined by a resistive divider, Rl and R2. In 
series with the R2, Dl and D2 are present to provide 
temperature compensation. The diodes insure stable 
and reliable operation of the device over the 
temperature range of 0°C to +75°C. With 5.2 V ±20% 
applied to pin 3, the output pin 1 will be 
approximately +1.15 V. Since the IC performs no 
logic function, no logic symbol for the device is 
used. 
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In Fig. 6-9A a dual two-input NAND gate Motorola Type 
MC 360 is shown. There are two independent gates 
present in this circuit. Input pins 7 and 8 connect 
to the Ql and Q2 bases respectively. The paralleled 
collectors of Ql and Q2 connect to Q3 base. Q3 
functions as an emitter follower to output-pin 6. 
Three other transistors, Q5, Q6, and Q7 operate in 
a similar fashion. Ql and Q2 have their emitters 
parallel-connected and tie to one emitter of a 
special transistor Q4 made with two separate 
emitter-base junctions. 

Connecting Ql and Q2 emitters to Q4 provides a 
temperature-stabilized bias voltage to Ql and Q2. 
The other emitter of Q4 connects to the other 
two-input gate configuration on the chip. The 
base of Q4 is brought out to pin 1 (Vbb) and 
typically connects to the output of the previously 
mentioned Type MC 354. 

The logic symbol of the MC 360 appears in Fig. 6-9B. 
Since the same symbol is used for both the MC 360 and 
Fairchild ~L 914 dual NAND gates it is impossible 
to know which type is used. Yet, it is important 
sometimes to know which IC is used at that point 
in a circuit. The ~L 914 may be operated as a 
four-input NAND gate by connecting the outputs in 
parallel. If the outputs of the MC 354 are connected 
together a four-input NAND gate does not result. 

Look at output pins 5 and 6 of Fig. 6-9A. If pins 
5 and 6 are paralleled, two NPN emitter followers 
are connected together. If either Q3 or Q7 has a 
high-level (false) output the composite output is 
high. For negative logic this is not a phantom OR. 
It is a phantom AND connection. The complete 
expression takes the output of each NAND gate and 
AND's the results X= AB • CD. On logic diagrams 
the phantom AND symbol appears at the junction of the 
two NAND gates. 
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Fig. 6-9. MC 360 dual two-input NAND gate. 
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The MC 352 flipflop schematic is shown in Fig. 6-lOA. 
Eight transistors are present on the chip. 
Transistors Ql and Q2 form the Set inputs; Q3 and Q4 
form the Reset inputs. Transistors Q5 and Q6 form 
the actual FF. Transistors Q7 and Q8 are emitter 
followers from which the outputs 1 and 0 are taken. 
In order to change the state of the FF via the 
Set input, Ql or Q2 must turn on. 

To turn either on requires a positive signal level. 
In a negative logic environment a false level 
actuates the FF. This also applies to the Reset 
input. When Ql turns on, its collector pulls down, 
pulling down the base of Q7. Q7, acting as an 
emitter follower, pulls down on the base of Q6, 
turning it off. Q6 collector goes high. Q8 emitter 
also goes high which means that a false input at the 
Set input causes the 1 output to go false. 

This circuit was originally designed to act as an 
RS FF for use with a positive-logic assignment. 
Here, the Set input is a false level and in turn 
the 1 output goes to a false level. For a negative 
logic assignment therefore, this FF might be called 
a Set Reset FF. A set input being a false level 
could be called a Set signal. The one output could 
be called a one output. Using positive logic FF's 
in a negative logic environment complicates the 
naming of the various inputs and outputs. We only 
say here that a Set pulse causes the FF to go to a 
one state. In the same manner we could say that a 
Reset input causes the FF to go to a zero level. 
In all cases, of course, the NOT inverts the signal 
level. The Tektronix logic symbol for this FF is 
shown in Fig. 6-lOB. A truth table for the FF is 
shown in Fig. 6-lOC. 

For this particular device two high inputs are not 
allowed. As is usual there is an ambiguous state 
for the FF. The MC 352 is compatible with all 
other Motorola MC 350 series logic devices. It 
has an average propagation delay of 10 ns. Power 
requirements are exactly the same as for the MC 357. 



88 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
L ____ _ b ( 5[1) 2 ("/ ... ) 

-~- ____M_ 

IAI 

ISETl 

~ '1----------4---

~IRESETI L __ .--/ 

I 

IBI 

0 0 

0 I 
FF 

I 0 
10 

I I 

I ( RESETJ 

Ill 

101 

CHANGE TO 
OPPOSITE STATE 

I I 0 

0 I I 

NO CHANGE 

ICI 101 

Fig. 6-11. MC 358 JK FF. 



Motorola 
MC 358 
J K FF 

89 

The Motorola MC 358 is a JK FF designed for use with 
all other series MC 350 integrated circuits. The 
device is packaged in a T0-5 configuration with 10 
leads. The case is metal. This JK FF is capable 
of relatively high-speed operation; it can be 
clocked at a rate of approximately 30 megahertz. 
A schematic for the chip is shown in Fig. 6-llA. 
This FF has J and K inputs as well as Set and 
Reset inputs. The device is designed to perform 
as an RS FF, a JK FF, or a clocked JK FF. 

A logic diagram for the circuitry on the chip 
appears in Fig. 6-llB. Any unused inputs can be 
left floating or grounded. 

As an RS FF the MC 358 would operate in the same 
manner as the MC 352. 

The JK FF logic diagram symbol is shown in Fig. 6-llC. 
The edge symbols at J and K inputs indicate that they 
respond to a false edge. A truth table for this 
symbol appears in Fig. 6-llD. If both J and K go 
false the FF toggles from its present state. The 
reader may trace these levels through the diagram 
of Fig. 6-llB. The fact that J and K inputs are 
duplicated permits a form of inhibiting logic. 
If pin 7 is held false, pin 8 is inhibited. That is, 
a positive edge on pin 8 has no effect. On the other 
hand, if pin 7 is held true then pin 8 can switch 
the multi. Thus, in certain circuits a J or K input 
is inhibited by the other input connection. In other 
circuits it may be required that the FF be placed 
in a known condition independently of the J and K 
inputs. Either the Set or Reset inputs may be used 
depending on the desired FF state. By connecting 
pins 8 and 9 together a clocked JK FF results. 
The Cp input thus formed is sensitive only to a 
positive edge signal. The logic diagram symbol is 
shown in Fig. 6-12. 
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Fig. 6-12. MC 358 connected for clocked-mode 
oneration. 
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Fig. 7-2. +4 circuit. 
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COUNTING CIRCUITS 

Circuits which can count are frequently required in 
digital instruments. Events to be counted are 
presented to the counting circuit in the form of a 
pulse train, one pulse per event. It is possible 
to construct circuits which divide the input 
signal's frequency by any desired ratio. For example, 
a circuit which has one output pulse for every two 
input pulses is a divide-by-two circuit. 

Any flipflop which can act as a Toggle FF is a +2 
circuit. The clocked JK FF with J and K inputs held 
true operates in a toggle mode. See Fig. 7-lA. A 
Fairchild Type 923 JK FF is shown with J and K both 
true. A waveform ladder diagram appears in 
Fig. 7-lB. The clock input is a pulse train 
representing the events to be divided-by-two. The 
input responds only to a negative edge. 

At time T7, the clock signal changes from 0 to 1 and 
the negative edge toggles Ml. The 1 output goes from 
0 to 1 and the 0 output goes to 0. 

At T2 clock goes positive but Ml does not respond. 

At T3 clock again goes negative and Ml toggles. 

At T4 clock goes positive and again Ml does not 
respond. 

At T5 clock goes negative and Ml toggles. 

At this point the reader can see that while the clock 
signal has completed two cycles the 1 output has 
completed one cycle. This is a +2 action. 

By connecting two +2 circuits in cascade, a +4 circuit 
results. See Fig. 7-2A. Two Fairchild Type 923's 
are shown. The Preset inputs are shown. In some 
counting circuits it is necessary to provide a means 
for returning the circuit to a known state. This 
is here accomplished with the Preset input. A 
waveform ladder diagram appears in Fig. 7-2B. 
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+8 

+16 

readout 

At time To Ml is high, M2 pin 7 is low. 

At time T1 a positive pulse called Reset appears and 
FF's Ml and M2 reset to 1. 

At Tektronix a waveform which is logically false at 
the time it accomplishes its object is identified 
by the bar. Reset is read aloud as Reset Not. 

At some later time after T2 a series of clock 
pulses arrive at Ml pin 2. The negative edge of 
each pulse toggles Ml at times TJ, T4, Ts, etc. 
Ml pin 7 switches negative at every other clock 
pulse, T4, Te, TB, etc. Each negative edge 
constitutes a carry to M2 pin 2. 

M2 divides by two and its output pin 7 has one 
complete output cycle per four input clock cycles 
to Ml. 

At this point it is apparent that by using toggle 
FF's any dividing ratio which is a whole number 
power of 2 can be obtained. Should a +8 ratio be 
required an additional FF could be connected to 
the output of M2 of Fig. 7-2A. Should a +16 ratio 
be desired, yet an additional FF could be added. 

Certain counting circuits are required to count for 
some period of time and then display the results. 
Some means of readout must be provided for the total 
of the count to be known. Consider the circuit of 
Fig. 7-2A and assume that the count period ended at 
time T5 after three clock pulses. With no further 
clock pulses Ml and M2 hold the condition existing 
at T5 until Reset appears again. 

Ml is in the 0 state; pin 7 is high. M2 is also in 
the 0 state. This means that the 0 output, pin 5, 
is at the 1 state for Ml and M2. Assume a circuit 
is available which can recognize the levels at the 
0 output pins. Such a circuit would see that the 
counter has a binary number 11 (3lo) stored. A 
problem is which of the output l's represent 2° 
and which 21 • See Fig. 7-3A. To make a binary 
count from 0 to 4 the column labeled 2° changes 
states with each count. Restudy Fig. 7-2A and see 
that Ml changes states with each pulse to be counted. 
This leads us to assign the value 20 to Ml and 21 to 
M2. 
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Fig. 7-3. fl6 circuit. 

Conventional diagrams place the input on the left 
and output on the right. For a divide-by-16 circuit 
this leads to the situation shown in Fig. 7-3B. The 
20 output is on the left. The 23 output is on the 
right. When writing a binary number the least 
significant number is on the right, the reverse of 
readout on the diagram. The reader should be alert 
to this condition and be able to identify the binary 
weighting of each FF. The conventional way of 
identifying FF's in a counter calls Ml the 1 binary, 
M2 the 2 binary, M3 the 4 binary, and M4 the 8 binary. 
This may be reconciled to the powers of two by 
recalling that 20 ; 1, 21 ; 2, 22 = 4, and 23 = 8. 
A readout of Fig. 7-3B would be in the form of a 
four-digit binary number. The value could be any 
number between 00002 and 11112. llll2 is 1510• 
The highest number that can be represented in the 
fl6 circuit is 1510· The reader may determine for 
himself that the highest number for other counting 
circuits is always one less than the divide ratio. 

Simple toggle FF circuits may be used if a counter 
is required which divides by a power of 2. If any 
other number ratio is required the designer is 
forced to use other more specialized types of FF's. 
The basic scheme to solve the problem utilizes 
binary FF's and feedback systems. 
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+3 Consider a +3 ratio. Such a ratio is not a whole 
number power of two. Since 3 is greater than 21 

but less than 22 two binary stages are required. The 
circuit can be made to +3 if there is some way for 
the basic +4 circuit to go through a complete cycle 
but with only three input pulses. Many schemes have 
been developed to perform this function. One example 
is shown in Fig. 7-4. 

Here the 0 output of Ml drives M2 and the 0 output 
of M2 is AC-coupled back to the Preset input of Ml. 
At T1, Ml toggles and pin 5 generates a negative 
edge. M2 also toggles. The negative edge of M2 
pin 5 is differentiated and fed as a negative spike 
to Ml Preset. Preset does not respond to a negative 
signal. 

At T2, Ml toggles again and the 0 output generates a 
positive edge which does not toggle M2. 

At T3, Ml toggles and the 0 output toggles M2. 
The positive edge, differentiated by RlCl to a 
positive spike, presets Ml. Ml pin 5 goes false 
again. The width of the waveform at Ml pin 5 will 
be determined by the response times of the FF's. 
Here it is exaggerated for clarity. 

At T3, M2 pin 7 goes 
is the output of the 
once for every three 
the +3 requirement. 
because this circuit 
No means is provided 
circuit. 

true. This negative signal 
circuit. The output goes true 
input signals. This satisfies 
No readout circuitry is shown 
operates in a continuous fashion. 
for periodically resetting the 
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Another form of +3 circuit appears in Fig. 7-5. This 
circuit counts to three and then locks itself up. 
Once locked up a Reset pulse is required to unlock the 
circuit. Work your way through the sequence of the 
circuit with the aid of the waveform ladder diagram 
of Fig. 7-5B. At T3 the false level at M2 pin 7 
coupled back to both J inputs locks the FF's with pin 
7 high, pin 5 low. The only method of unlocking is 
the arrival of a new Reset pulse. Any succeeding 
clock pulses are ignored until the next Reset. 

The truth table (Fig. 7-5C) shows that a readout 
circuit may read the count state of the circuit 
in BCD 8, 4, 2, 1. M2 pin 5 is the 2 1 output while 
Ml pin 5 is the 20 output. 

Clocked SET-RESET FF's connected as dividers 
represent some of the more difficult concepts in 
counting circuits. The difficulty is that the FF's 
respond to positive edge signals. 

Three +2 circuits may be connected to divide by five 
as shown in Fig. 7-6A. Assume the clock input is 0 
and all 1 outputs are O's (See Fig. 7-6B, T7). 
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T 1 T .:C' T 3 T 4 r, T 6 

INPUT 

Ml OJ 
1 OUTPUT l ~ I 
M2 
1 OUTPUT 

M3 
1 OUTPUT l 

M.5 
U OUTPUT 

(BJ 

Fig. 7-6. +5 circuit. 
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~10 

Ml and M2 form a divide-by-4 circuit as shown in 
Fig. 7-6B from T1 to Ts. When the input changes at 
Ts, Ml and M2 switch. M3 receives an input and it 
switches. Its 1 output changes from 0 to 1. Its 0 
output changes from 1 to 0 and this output is fed 
back to the Set inputs of both Ml and M2, causing 
them to switch. 

This feedback cancels the fourth count of the divide­
by-four section of the circuit. On the next input 
leading edge all three FF's will switch, obtaining 
from input to output a divide-by-five function. 

Fig. 7-7A shows a different method of obtaining a 
divide-by-five function. 

Assume that just prior toT] (Fig. 7-7B), the clock 
input is 1 and all 1 outputs are l's. At T] the input 
steps from 1 to 0 and Ml switches, M2 switches and 
M3 switches. 

At T2, Ml switches but nothing else happens. 

At T3, Ml switches and M2 switches, feeding back 
its 0 output (the inverse of M2 output signal shown 
in Fig. 7-7B) to the Preset input of Ml which changes 
Ml's state to a 1 output. 

At T4, Ml switches, M2 switches and M3 switches, 
feeding its 0 output back to the Preset input of M2, 
changing M2's output back to 1. 

At T5, Ml switches but nothing else happens. At T6, 
Ml, M2 and M3 switch and a divide-by-five function 
has been performed. 

Either of the two divide-by-five circuits presented 
may be combined with an independent divide by two 
circuit to form a divide-by-ten circuit. 
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T 8 0 I I 0 I 0 1 0 

T9 I 0 I 0 I 0 I 0 

(C) TRUTH TABLE 

Fig. 7-8. 4, 2, 2', 1 weighted counter. 
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Fig. 7-BA shows a +10 circuit. This counter uses a 
special binary code. Fig. 7-8B shows the input/ 
output waveforms for each FF and the BCD 4, 2, 2', 1 
output levels for each count. Since two FF's 
have the numerical weighting of 2, one of them is 
identified by the prime symbol. This differentiates 
between the output of M2 and M3. After To the 1 
output of each FF is a logical one. This would 
read 1111, which is ambiguous since the count should 
be 0 at this time. For this example the binary count 
will be identified by the logic levels at the 0 
output of the FF's. Hence, at To the count is 0000. 

At T1, Ml toggles and the 0 output goes to 1. The 
count is 0001. 

After T2, M2 is at 1, Ml is at 0, and the count is 
0010. 

After T3 the count is 0011. 

Ml is given a unit weight of 1 and M2 a unit weight 
of 2. 

After T4, Ml is at 0, M2 is at 1, M3 is at 1, M4 is 
at 0. The count 0110. Since this is a count of 4 
the unit weight of M3 is also 2. We identify M3's 2 
by 2'. 

After T5 , M4 and Ml are at 1, the others are at 0. 
The count is 1001. The unit weight of M4 is 4. 
The weight scheme for the circuit is 1, 2, 2', 4. 
Note that all numbers from 01o to 910 can be formed 
by combining these values. 

After T6 the outputs are 1100. M3 has the weight 
of a 2 and M4 must have a weight of 4. 

7 is represented by 1101. 

8 is represented by 1110. 

9 is represented by 1111. 

At TlO• notice that the circuit is back at the 
same condition as at To. 
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8,4,2, 1 
+10 
counter 

Fig. 7-9A shows a JK divide-by-ten circuit, using 
Fairchild 923 JK FF's. A ladder diagram is shown 
in Fig. 7-9B. The truth table for the circuit is 
shown in Fig. 7-9C. 

After a Reset pulse appears, the state of the FF's 
are as shown at To. The output of M4 is connected 
to the K input of M2, therefore, this input is a 1. 
The AND gate will have a 1 for an output only when 
both inputs are l's, therefore, at To its output 
is a 0. The output of the AND gate is connected 
to the K input of M4. 

Each FF will toggle on a negative edge. Ml divides 
the input by two. The output of Ml is taken from 
the 1 output and fed to both M2 and M4. 

The first negative edge seen by M2 is at T2. Its 
J and K inputs are l's and it toggles. M4 has a 
0 for a K input and a 1 for a J input and the 1 
output is a 1. M4 will not toggle at T2. The 
input to M3 steps from 1 to 0 at T2 and it does 
not toggle. The 1 outputs are as shown in the 
truth table. 

At T3, Ml toggles but nothing else happens. 

At T4 , Ml toggles, feeding a negative edge to M2 
which toggles. M2 feeds a negative edge to M3 
and it toggles. 

At T5 , Ml switches but nothing else happens. 

At T6 , Ml switches and M2 switches. 

The outputs of M2 and M3 are now both l's and the 
output of the AND gate M5 switches to a 1. 

The important condition at this time is the K input 
of M4. It is now a 1 and this FF toggles on the next 
negative edge CP input. This occurs at T8 • 

All the FF's toggle at T3. After they have switched 
M2 is locked out (its K input is at O) and M4 can 
only switch back with its 1 output at logical 1. 

At T9, Ml flips, M2 is locked out and the positive 
edge does not toggle M4. 

At the second To, M4 toggles unlocking M2 and the 
situation is the same as was assumed at T0 • 
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Fi1r. 7-9. +1 0 counter ( 8 . 4 . 2 . 1 BC:nl . 
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The circuit has divided the input signal by ten and 
is ready to count again. Careful study of the truth 
table shows that at each stage of the count the 
number counted is shown in BCD 8, 4, 2, 1 form at 
the outputs of the FF's. 

Another type of +10 circuit appears in Fig. 7-lOA. 
Motorola MC 358 JK FF's are used. A special feature 
of the circuit is that it functions as either a +10 
or +5 counter. The count ratio is determined by the 
logic value of the +5 input line. When +5 is 
logically true the circuit operates in a +5 mode. 
When +5 is logically false the circuit operates in 
+10 mode. 

The inverter M5 is actually a clamp circuit. With 
the +5 line false the Reset input of Ml is clamped 
true (0 V). With the +5 line true the clamp is 
released and the level of Ml Reset is determined by 
the feedback line from Ml pin 5. 

A ladder diagram and truth table for the circuit 
operating in +5 mode appear in Fig. 7-lOB and 7-lOC. 

Ml operates as a monostable circuit with one output 
pulse generated for each clock pulse. When a clock 
input arrives, Ml toggles on the positive edge. 
Each time Ml toggles the 1 output goes from true to 
false. This positive level immediately resets Ml 
and the 1 output goes true again. Ml may be called 
a +1 circuit in this case. The output of Ml 
viewed from the 0 output is shown in the ladder 
diagram. The width of the output pulse is 
determined by the response time of the FF, 
10 to 12 ns for the MC 358. In the drawing, the 
width of the pulse is exaggerated for clarity. 
The positive edge of each output pulse toggles M2 or 
M4. 

At T0 , all FF's have pin 4 false. 

At T], M2 toggles, nothing else happens. M4 doesn't 
toggle because the J input is high. 

At T2, M2 toggles and the positive edge toggles M3. 

At T3, M2 toggles, nothing else happens. 
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Fig. 7-10. Dual-range converter. 
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At T4 , MZ, M3, and M4 toggle. The one output of 
M4 is now false. This high feeds back to pin 7 of 
M2, locking MZ. 

At the second T0 , MZ does not toggle. M4 has a 1 
at the J input and with the arrival of the positive 
edge from Ml, M4 switches. 

M4 pin 5 goes true and pin 4 goes false. All FF's 
are back to the originally assumed condition. 
For each 5 clock pulses, 1 carry pulse is generated 
at the output lead. 

Next assume that the +5 input line is false. 
Inverter M5 clamps the feedback line from Ml pin 5 
to pin 1 at logical 1. At this time the clamp 
prevents any reset action at Ml pin 1. Ml operates 
as a +2 counter. M2, M3, and M4 have already been 
shown to be a +5 counter, therefore, the entire 
circuit is a +10 counter. 

The reader may follow the sequence of operation 
with the aid of the ladder diagram and truth table 
of Fig. 7-llA and 7-llB. 

CLOCK 

(AI 

CLOCK 
0 OUTPUTS PIN 4 

~4 M3 M2 Ml 

0 0 0 0 0 

I 0 0 0 I 

2 0 0 I 0 

3 0 0 I I 

4 0 I 0 0 

5 0 I 0 I 

6 0 I I 0 

7 0 I I I 

8 I 0 0 0 

9 I 0 0 I 

(6) 

Fig. 7-11. Dual-range converter, +10 mode 
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COUNTER READOUT CIRCUITS 

After a counter has ended a count cycle it often 
becomes necessary to know the value of the last count 
made. Readout Circuitry is designed to perform this 
function. Direct readout from a counter is in the 
less convenient binary form. Readout circuitry 
usually decodes the information from binary to the 
more convenient decimal form. 

The value of the count is often presented visually 
by means of Nixie tubes. The Nixie is a type of 
gas-filled tube with 10 cathodes and 1 anode. Each 
cathode is shaped to form a digit. By applying 
anode voltage and grounding one of the cathodes the 
gas is ionized. In ionized gas tubes, the cathode 
is surrounded by glowing gas. The glow around the 
specially shaped cathode is seen by a viewer as a 
digit. 

Readout circuitry to drive a Nixie tube must have 
ten output lines. Each line connects to one of the 
Nixie cathodes. By grounding one line at a time 
the digital value of the count stored is made 
visible. 

The count value is often required for external 
recording devices such as tape printers or card 
punchers. These devices accept binary digital 
information. For this reason readout circuits also 
connect to external connectors making the count 
(in binary form) available. 
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Fig. 8-1. Ten-line readout circuit. 
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Examples of decoding and nondecoding readout circuits 
are included in this chapter. 

Fig. 8-1 shows a binary counter with 4, 2, 2', 1 
logic and a group of AND gates that convert the 
binary number contained in the counter to a decimal 
output. The output consists of 10 lines representing 
the decimal number 0-9. For any decimal number one 
of the ten lines will have a 1 output. All others 
will be 0. 

The AND gates require l's for each of their three 
inputs before their output will be a 1. An AND gate 
output of 1 indicates its assigned number is in the 
counter. Suppose the counter contained a 0. All 1 
outputs would be O's and all 0 outputs would bel's. 
If the 1 output of Ml is a 1, the number contained in 
the counter is an odd number (1,3,5,7,9). If the 1 
output of Ml is a 0, the counter contains an even 
number. In the example 0 is an even number and the 
0 output of Ml is a 1. This enables Gates G8, G6, G4, 
G2 and GO. One of G8's inputs is connected to the 1 
output of FF2 which is a 0. G8's output cannot be 
a 1. One of G6's inputs is connected to the 1 
output of FF4 which is a 0. G6's output cannot be 
a 1. G4 and G2 also have a 0 input (G4 from M3 and GZ 
from M2). Neither of these gates can have an output 
of 1. 

GO has a 1 input from Ml, M2 and M4. GO and only 
GO has an output of 1 indicating the counter contains 
a zero. 

Suppose the counter contained the number 7 (1011). Ml 
would indicate an odd number (its 1 output is a 1) . 
G7 would have a 1 input from Ml, MZ and M4. G7 and 
only G7 would have an output of 1. 
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Ml 
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Fig. 8-2. 4, 2, 2', 1 binary-to-decimal 
converter. 
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Fig. 8-2 shows the circuitry for 4, 2, 2', 1 code 
binary-to-decimal conversion. Each transistor has 
its emitter connected to either the 1 or 0 output of 
Ml. These lines will enable either all the even or 
all the odd numbered transistors. The base of each 
transistor is connected to the output of two other 
FF's through resistors (see Fig. 8-3). Q9, for 
example is connected to the 0 output of M2 and the 1 
output of M3. In order for the transistor to conduct 
both base inputs must be high and the emitter must 
be low. Hith only one base input high the transistor 
will conduct but not enough to pull its collector 
to 0 v. 0 V at the collector indicates a true 
condition. 

M2 M3 

0 

Fig. 8-3. Partial readout circuit. 
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The Fairchild Micrologic 960 decimal decoder driver 
is housed in an epoxy dual in-line flat pack with 
sixteen leads. A schematic of the device is shown 
in Fig. 8-4A. This device decodes a binary-coded 
decimal (BCD) input to a ten line output. The 
output of the chip drives the numeral cathodes of a 
Nixie indicator tube. There are ten outputs labeled 
Zo to Zg. The Zo would connect to the zero cathode, 
Z] to the one cathode, and so forth. The inputs 
accept all sixteen binary combinations but only BCD 
is permitted. 

The chip contains thirty transistors and twenty-one 
resistors. The logic diagram symbol for the chip 
is shown in Fig. 8-4B. A decoding truth table is 
shown in Fig. 8-4C. 
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Fig. 8-4. Fairchild Type 960. 
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As an example of decoding, consider BCD number 0010 
(2 10 ). The inputs are: I1, I2, I 4 , and Is· In BCD 
form, four binary digits are presented in a 1, 2, 4, 
8 arrangement. The 8 bit connects to Is and so forth. 
See Fig. 8-4A. The zero on the I1 input turns Ql on. 
The collector pulls down to ground. Looking at Q2 we 
see that Q2 goes off. As this collector pulls high, 
emitter-follower Q3 pulls the emitters of output 
driver transistors Q6, Q8, QlO, Ql2 and Ql4 high, 
making it impossible for these transistors to turn on. 
Note that I] bit determines whether the final output 
line shall be odd or even. The transistors which the 
I 1 bit turned off are the transistors which drive odd 
number outputs Z1, Z3, Z5, Z7, and Z9. 

Return to the output of Ql. We see that the ground 
at the collector of Ql also couples to the base of Q4. 
Q4, a PNP transistor with its base low, acts as 
emitter follower. Q4 emitter pulls the emitters of 
transistors QS, Q7, Q9, Qll and Ql3 low, enabling them 
to turn on. The base of only one of these transistors 
is high. Look at the I2 input and at transistor Ql5. 
Notice that the I2 input is low or true at this time. 
Ql5 is off. Ql5 collector rises. This high couples 
to the base of transistor Ql6. Ql6 turns on. The 
collector of Ql6 drops pulling the base of emitter 
follower Ql7 low. Ql7 pulls the bases of Q5 and Q6 
low. Therefore, neither of these two transistors can 
be on. The collector of Ql5 also connects to Ql8 
base. The high at Ql8 base turns it off. Ql8 emitter, 
returned to Vee• pulls the base of Q7 high, Q7 turns 
on. The base of Q8 is also pulled high. Q8 emitter 
is pulled high by the input drive from Q4. With equal 
potentials on emitter and base, Q8 cannot turn on. In 
a similar manner a check all the way up the row of 
transistors reveals that all other transistors are off 
with this particular input combination. For any other 
BCD input from decimal zero to decimal nine, one and 
only one of the output transistors, Q5 through Ql4, 
will be on. 
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Some types of counting devices operate in an 
alternating mode. The circuit first counts and 
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then displays the results. This method of operation 
is time consuming since the circuitry cannot make 
a new count until display time is finished. A 
different approach lets the counter make the count 
and then transfer the total of the count to a 
storage circuit. The storage circuit displays the 
results. Meanwhile the counting circuits are free 
to make a new measurement. In this manner, 
considerable time can be saved. The storage circuit 
is called a storage register. 

Storage registers can be formed using JK FF's such as 
the Fairchild Type 923. See Fig. 8-5. The JK FF is 
operated on a clocked mode. The P and Cp inputs are 
connected together. The P input of a 923 responds 
only to a positive level input while Cp is sensitive 
only to a negative edge. This circuit is capable 
of storing one bit of the readout information. 
If 12 bits are to be read out of a counting device, 
12 storage register circuits of this type are 
required. A signal appearing after the counting 
circuits have completed their measurement must 
be supplied. This signal is called Register Set. 

The bar over the word Set means that this waveform 
will go from true to false when activated. The bit 
to be stored couples to the K input of Ml. Output 
is taken from the 0 output (pin 5). 

REGISTER SET __n_ 
A6 rj p 

l 2 FF 
c 

L p 

STORED 
3 K 5 

~ 0 
BIT TO BE 

Ml 

Fig. 8-5. Storage register. 
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Assume that the bit to be stored is a 0 (high level), 
in this case approximately +3.8 V. From discussion 
of the Fairchild Type 923 FF* recall that a positive 
level presets the FF. Pin 1 goes true, pin 5 goes 
false. With the appearance of Register Set the FF 
Presets. The 0 output goes false. When the negative 
edge of Register Set appears Ml clocks. With K held 
false, clocking Ml can only make the zero output go 
high. (For this example no change occurs.) Ml 
remains with the zero output false until the next 
Register Set. The circuit can be said to store the 
zero bit which was fed in. 

Now assume that the bit to be stored is a true level. 
When the positive edge of Register Set appears, 
pin 5 goes to 0. With the negative edge of Register 
Set Ml toggles because both J and K inputs are true. 
Pin 5 which was at 0 goes to 1. The circuit has 
stored the one bit fed in. 

Register circuits are used for purposes other than 
simple storage. Data is often presented as a series 
of serial bits on a single line. An oscilloscope 
monitoring a line feeding in such a series of bits 
would show a set of true and false pulse waveforms. 
Usually these serial bits must be converted to 
parallel bits. 

For example in the Tektronix Type 240, a serial-to­
parallel conversion operation is performed which 
takes groups of four bits in serial form and converts 
them to four bits in parallel form. Each group of 
four Serial bits in are coupled out via four 
parallel lines, one bit per line. A Shift Register 
which performs this function is shown in Fig. 8-6A. 

A Clock signal is always required by a Shift 
Register. The Register Clock signal informs the 
circuit when a bit is being applied to the Register. 
The signal also serves to shift data through the 
Register. 

*See Chapter 6 page 79. 
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An observer using a test oscilloscope connected to 
the serial data line would find it difficult to 
detect the separation between the two adjacent 1 
(or 0) bits. This demonstrates the added value of 
the clock pulse. We define the status of Serial 
Data line by stating: Serial data is a 1 or a 0 
depending upon its exact level at the time the 
negative edge of Register Clock occurs. 

These actions are most easily seen by tracing the 
operation cycle of the circuit for consecutive serial 
data bits. See Fig. 8-6B. Assume that the first 
four data bits into the register input are 1011. 

The serial data is connected to the input of inverter 
M5 and to K of Ml. The inverted output of M5 connects 
to J of Ml. J and K always have opposite level 
inputs. 

At T1 serial data is a 1. This places Ml pin 1 at 0 
and pin 3 at 1. With the negative edge of clock all 
four FF's switch simultaneously. 

The reader should recall that no circuit can change 
states instantaneously. This means that the 
switching of each FF is determined by the J and K 
input levels that existed prior to each clock pulse. 
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Thus, Ml had pin 5 at 0. This 0 transfers into M2 
because the high at M2 pin 3 causes M2 pin 5 to go high. 

At T2 serial data is a 0. With the clock at T2 
Ml pin 5 goes to 0. M2 pin 5 goes to 1. M3 pin 5 
goes false. M4 pin 5 does not change. 

At T3 serial data is al. Ml pin 5 remains a 1. 
M2 pin 5 goes false. M3 pin 5 goes true. M4 pin 5 
goes false. 

At T1 serial data is a 1, Ml pin 5 remains a 1. 
M2 p1n. 5 goes to 1. M3 pin 5 goes to 0. M4 pin 5 
goes to 1. 

After Tf the status of the zero output lines of the 
four FF s read from bottom to top is l 0 1 1. 
These bits are now available on four parallel lines. 
External circuitry capable of accepting parallel 
input data may now be signaled to accept this data. 
A typical external circuit would be another kind of 
shift register with four parallel inputs. 

Note that if a device was connected to M4 pin 5 the 
data could be read out of the shift register in 
serial form. Therefore, a shift register typically 
may have either parallel or serial outputs or both. 
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A four-bit shift register which is incorporated on 
one IC chip is shown in Fig. 8-7A. This is a 
Fairchild 997. It is housed in a dual in-line flat 
pack with 16 leads. The chip has 48 transistors. 
It is intended by the manufacturer to serve as a 
multipurpose shift register. The chip accepts 
either serial or parallel entry and provides either 
serial or parallel output. In Tektronix instruments, 
such as the Type 240, this device is wired so that 
parallel entry is denied. The device uses serial 
entry and both serial and parallel output. 

Fig. 8-7B shows a logic symbol for the 997. Pins 9, 
10, 11 and 12 are the parallel readout pins, pin 12 
is also the serial output. The Right Shift input 
serves the same purpose as the clock input in the 
example of Fig. 8-6. Pin 8 is the shift input which 
is negative-edge sensitive. Pins 1, 2, 3, and 4 are 
Set inputs wired together. Each of these inputs 
connects to one of the FF's within the schematic 
diagram. 

SHIFT INPUT 

Sh 
SERIAL INPUT 

0 0 

10 II 12 
SCR I AL OUT 

Ql Q2 Q3 Q4 

IBI LOGIC SYMBOL 
Q I Q2 Q3 Q4 

F T T T T 

F F T T T 

F F F T T 

F F F F T 

F F F F F 

T T F F F 
Q2 

T T T F F 

Q3 
--------' T T T T F 

T T 04 _____ ___J T T T 

(C) WAVEFORMS AND TRUTH TABLE 

Fig. 8-7. Fairchild 997 shift register. 
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The term right shift describes the direction a bit 
will move through the shift register. On the 
schematic when the Right Shift input is activated, 
the pulse moves from left to right. Within certain 
Tektronix instruments a reference is made to a 
Left Shift register. In this case while the 
schematic would be drawn in a similar manner to 
Fig. 8-7A, the wiring would be reversed so that 
the signal literally moved from right to left on 
the page. 

A truth table and waveform timing diagram appear 
in Fig. 8-7C. The reader may examine the sequence 
of operation with the aid of the truth table and 
timing diagram. 

The 997, in common with Fairchild micrologic 900 
series IC's, is activated by a negative edge at 
the shift input. Data is applied to pin 5 in serial 
form and processes through the shift register with 
each negative edge of the shift pulse train. 

A special circuit which combines the features of a 
shift register with those of a counting circuit is 
shown in Fig. 8-8A. The circuit is designed to 
perform a divide-by-5 function. For every five 
clock pulses coming into the left side of the 
diagram, one pulse leaves the output. This circuit 
is periodically reset by generating a Reset pulse. 

A truth table for the operation of the circuit is 
shown in Fig. 8-8B and a ladder diagram in Fig. 8-8C. 
For FF's M2, M3 and M4 the one and zero outputs are 
connected to J and K inputs of the next FF 
respectively. However, M5 to Ml, and Ml to M2, the 
two outputs cross over. That is, 1 goes to K and 
0 goes to J. 

At time To the Reset pulse occurs. All FF's set to 
one. The 1 output waveforms of each FF are as shown. 

With the negative edge of clock (TJ) Ml and M2 toggle. 
Ml toggles because J is false and K is true. The 1 
output of Ml goes to 0 and the 0 output goes to 1. 
M2 toggles for the same reason. M3 and M4 do not 
change. 
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At T2 , Ml remains the same, M2 switches with J low and 
and K high. M3 reverses states, M4 and MS remain 
the same. 

At T3 , Ml remains the same, M2 remains the same, M3 
reverses states, M4 reverses states, MS remains 
the same. 

The reader may continue through the sequence by 
utilizing both the truth table and the waveform 
diagram and he will find that at the lead labeled 
Output, one complete pulse appears between T4 and 
T5 . At T4 Output goes false, at T5 Output goes 
true again. This generates one negative edge at 
the output for five negative edges on the clock 
pulse input. Hence, the divide-by-five function 
has been performed. 

This type of counter is frequently called a ring 
counter. The pulse which the reader will notice 
at the output of M2 and M3 and M4 is circulated 
around the loop (or ring) of the circuit. This 
circuit performs a continuous divide-by-five 
function whenever clock pulses appear. 
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88-89 
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Frequency counter, 3 
Inhibitor, 37 
Inverter, defined 17 
Motorola MC 352, 86-87 

MC 354, 83 
MC 357, 80-82 
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MC 360, 84-85 

NAND, defined 31 
Negated AND, see NAND 
Negated OR, see NOR 
Negative logic, defined 19 
Nixie tubes, 107 
NOR, defined 32 
NOT, defined 16 
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OR, defined 18 

inverted input, 36 
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Radix, 4 
Resistor-transistor logic, 47, 

49-55, 71 
RTL, see Resistor-transistor 

logic 
Saturation, 49 
Shift register, 116-124 
Single shot, 76-77 
SS, see Single shot 
Transistor-transistor logic 

(TTL), 47, 68-69 
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Wired OR, 72 
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