7912: Difference between revisions

From TekWiki
Jump to navigation Jump to search
No edit summary
Line 3: Line 3:
image=Tek-7912ad.jpg|
image=Tek-7912ad.jpg|
caption=Tektronix 7912AD with [[7A26]] and [[7B90P]] |
caption=Tektronix 7912AD with [[7A26]] and [[7B90P]] |
introduced=1974 |
introduced=1973 |
discontinued=1989 |
discontinued=1989 |
summary=500/750 MHz Digitizer|
summary=500/750 MHz Digitizer|
Line 12: Line 12:
* [[Media:7912ad_theory.pdf | 7912AD Operator's Manual (partial, 57 pages from introduction)]]
* [[Media:7912ad_theory.pdf | 7912AD Operator's Manual (partial, 57 pages from introduction)]]
* [http://w140.com/tek_7912_and_related_digitizer_docs.pdf 7912 and related digitizer documents]
* [http://w140.com/tek_7912_and_related_digitizer_docs.pdf 7912 and related digitizer documents]
* [http://w140.com/7912ad_reading_gun_supply.pdf 7912AD Reading Gun Supply]
* [http://w140.com/7912ad_reading_gun_supply.pdf 7912AD Video preamp/Reading gun supply schematics]
* [http://w140.com/7912ad_writing_gun_supply.pdf 7912AD Writing Gun Supply]
* [http://w140.com/7912ad_writing_gun_supply.pdf 7912AD Z-Axis/HV board schematics]
 
* ''complete service manual needed [[Category:Manual needed]]''
}}
}}
The '''Tektronix 7912''' was a series of high-speed digitizers that take one [[7000-series_plug-ins#Vertical plug-ins|7000-series vertical plug-in]] and one [[7000-series_plug-ins#Horizontal plug-ins|7000-series horizontal plug-in]].   
The '''Tektronix 7912''' was a series of high-speed digitizers that take one [[7000-series_plug-ins#Vertical plug-ins|7000-series vertical plug-in]] and one [[7000-series_plug-ins#Horizontal plug-ins|7000-series horizontal plug-in]].   
Line 26: Line 26:


==R7912==
==R7912==
The '''R7912''', introduced in 1974, achieved a bandwidth of 500 MHz with a [[7A19]] vertical amplifier plug-in.  It was also possible, like in the [[7904]] scope,  to access the CRT deflection plates directly through a [[7A21N]] plug-in and achieve a bandwidth of 1 GHz, albeit at reduced sensitivity (4 V/Div) and loss of triggering and readout functions. Some customers further modified the stock 7912 to increase bandwidth up to 3 GHz in special applications (see literature links below).
The '''R7912''', introduced in September 1973 (Ref.1), achieved a bandwidth of 500 MHz with a [[7A19]] vertical amplifier plug-in.  It was also possible, like in the [[7904]] scope,  to access the CRT deflection plates directly through a [[7A21N]] plug-in and achieve a bandwidth of 1 GHz, albeit at reduced sensitivity (4 V/Div) and loss of triggering and readout functions. Some customers further modified the stock 7912 to increase bandwidth up to 3 GHz in special applications (see literature links below).


The reading beam operates differently depending on the output mode.  In TV mode,  the reading beam scans the target in a horizontal format similar to that used in conventional television systems, and a video output compatible with TV monitors is generated. In Digital mode, the reading beam scans the target vertically, in 512 discrete steps for each of 512 horizontal positions.  Waveforms are converted to digital, stored in memory, and can be read by a computer.
The reading beam operates differently depending on the output mode.  In TV mode,  the reading beam scans the target in a horizontal format similar to that used in conventional television systems, and a video output compatible with TV monitors is generated. In Digital mode, the reading beam scans the target vertically, in 512 discrete steps for each of 512 horizontal positions.  Waveforms are converted to digital, stored in memory, and can be read by a computer.
Line 52: Line 52:


==Literature and Software==
==Literature and Software==
* [http://tekretirees.org/Newsletter/nov2012_trn.pdf The introduction of the R7912] by Hale Farley in the Tek Retirees Newsletter 11/2012
# [http://tekretirees.org/Newsletter/nov2012_trn.pdf Hale Farley, ''The introduction of the R7912''] in Tek Retirees Newsletter 11/2012
* [http://w140.com/US3748585.pdf US Patent 3748585: Silicon Diode Array Scan Converter Tube and Method of Operation.  Culter et al, July 1973.]
# [http://w140.com/US3748585.pdf US Patent 3748585: ''Silicon Diode Array Scan Converter Tube and Method of Operation''.  Culter et al, July 1973.]
* [http://pwww.lle.rochester.edu/media/publications/lle_review/documents/v25/25_Review.pdf LLE Review, Oct-Dec 1985] mentioning the '''LM7912A''', a Lockheed-modified R7912 variant having ''"a bandwidth of 3.5 GHz at the -3 dB point, less than 5% undershoot and overshoot, with a 12-bit output (2 mV/bit)"''
# [http://pwww.lle.rochester.edu/media/publications/lle_review/documents/v25/25_Review.pdf LLE Review, Oct-Dec 1985] mentioning the '''LM7912A''', a Lockheed-modified R7912 variant having ''"a bandwidth of 3.5 GHz at the -3 dB point, less than 5% undershoot and overshoot, with a 12-bit output (2 mV/bit)"''
* [http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/10/434/10434659.pdf Lockheed Palo Alto Research Lab study for LLL (June 1978)] describing the LM7912 Enhanced Performance Transient Digitizer, claiming 3 GHz bandwidth
# [http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/10/434/10434659.pdf Lockheed Palo Alto Research Lab study for LLL (June 1978)] describing the LM7912 Enhanced Performance Transient Digitizer, claiming 3 GHz bandwidth
* [http://w140.com/boyer_data_acq_ebeam_fus_acc.pdf William B. Boyer, DATA ACQUISITION AND PROCESSING ON ELECTRON BEAM FUSION ACCELERATORS. IEEE Transactions on Nuclear Science Vol.NS-25, No. 1, February 1978]
# [http://w140.com/boyer_data_acq_ebeam_fus_acc.pdf William B. Boyer, ''Data Acquisition and Processing on Electron Beam Fusion Accelerators''. IEEE Transactions on Nuclear Science Vol.NS-25, No. 1, February 1978]
* [http://www.scottpages.net/MESCthesis.pdf Thesis on "7912ADM" upgrade version]
# [http://www.scottpages.net/MESCthesis.pdf Thesis on "7912ADM" upgrade version]
* [http://bee.mif.pg.gda.pl/ciasteczkowypotwor/Tek/Transient%20Digitizers/RISOM2873.pdf Improvement of the Bandwidth of the Transient Digitizers in the LIDAR Thomson Scattering Diagnostic on JET. Risø National Laboratory, Denmark, June 1990] discussing how removing the delay line and replacing the compensation circuit can boost the 7912AD+7A29 combination to 1.1 GHz bandwidth
# [http://bee.mif.pg.gda.pl/ciasteczkowypotwor/Tek/Transient%20Digitizers/RISOM2873.pdf ''Improvement of the Bandwidth of the Transient Digitizers in the LIDAR Thomson Scattering Diagnostic on JET''. Risø National Laboratory, Denmark, June 1990] discussing how removing the delay line and replacing the compensation circuit can boost the 7912AD+7A29 combination to 1.1 GHz bandwidth
* [http://w140.com/kurt/7912_gpib_examples.zip 7912 GPIB examples]
# [http://w140.com/kurt/7912_gpib_examples.zip 7912 GPIB examples]


==Links==
==Links==

Revision as of 01:07, 1 March 2017

{{{manufacturer}}} 
500/750 MHz Digitizer
Tektronix 7912AD with 7A26 and 7B90P

Produced from 1973 to 1989

Manuals
Manuals – Specifications – Links – Pictures

The Tektronix 7912 was a series of high-speed digitizers that take one 7000-series vertical plug-in and one 7000-series horizontal plug-in.

All 7912 models use the same internal CRT-based, digitizing scan converter tube (T7912) that is not visible from the outside. The signal from the vertical plug-in deflects a writing beam through distributed deflection plates. The electrons hit a small flat rectangular solid state target, conceptually similar to the image sensor in a digital camera. The resolution of the target is 512×512, giving 512 points in the time domain and 9-bit linear quantization of the input voltage.

With a 7B92 sweeping the whole X-axis in 5 ns, and the 7912 capturing 512 samples in that sweep, the 7912 performs the function of a 100 GSample/s A/D converter.

The primary markets for the 7912 series were nuclear and laser research.

R7912

The R7912, introduced in September 1973 (Ref.1), achieved a bandwidth of 500 MHz with a 7A19 vertical amplifier plug-in. It was also possible, like in the 7904 scope, to access the CRT deflection plates directly through a 7A21N plug-in and achieve a bandwidth of 1 GHz, albeit at reduced sensitivity (4 V/Div) and loss of triggering and readout functions. Some customers further modified the stock 7912 to increase bandwidth up to 3 GHz in special applications (see literature links below).

The reading beam operates differently depending on the output mode. In TV mode, the reading beam scans the target in a horizontal format similar to that used in conventional television systems, and a video output compatible with TV monitors is generated. In Digital mode, the reading beam scans the target vertically, in 512 discrete steps for each of 512 horizontal positions. Waveforms are converted to digital, stored in memory, and can be read by a computer.

The R7912 used the 7000 series readout system writing readout characters onto the storage target, which would become part of the output signal in the NON STORE mode.

The R7912 had a proprietary digital interface. A card for interfacing to a DEC PDP-11 was available. The Tektronix 067-0679-00 Digital Display Controller is an external module that interfaces with the 7912 and an analog X-Y storage display (607?). Tek also offered configurations with multiple R7912s on a common controller within the WP2000 series.

7912AD and 7912HB

From the 7912AD (1978) on, the instrument had a standard GPIB interface. The 7912AD has 500 MHz bandwidth. It was succeeded by the 750 MHz 7912HB in 1987 (using a 7A29P amplifier).

For the 7912AD and 7912HB, special GPIB-controllable plug-in modules with a 'P' suffix, meaning Programmable, were available, e.g. 7A16P, 7A29P and 7B90P.

Internals

Three output methods are provided: NTSC-out, X-Y low-speed analog, and a GPIB interface.

With aftermarket modifications to the electronics, 7912AD bandwidths have been extended up to 3 GHz in special cases.

Specifications

The Tektronix 7912AD is 19" wide, 7" tall, 27" deep, and weighs 55 pounds. It uses 360 watts maximum.

Literature and Software

  1. Hale Farley, The introduction of the R7912 in Tek Retirees Newsletter 11/2012
  2. US Patent 3748585: Silicon Diode Array Scan Converter Tube and Method of Operation. Culter et al, July 1973.
  3. LLE Review, Oct-Dec 1985 mentioning the LM7912A, a Lockheed-modified R7912 variant having "a bandwidth of 3.5 GHz at the -3 dB point, less than 5% undershoot and overshoot, with a 12-bit output (2 mV/bit)"
  4. Lockheed Palo Alto Research Lab study for LLL (June 1978) describing the LM7912 Enhanced Performance Transient Digitizer, claiming 3 GHz bandwidth
  5. William B. Boyer, Data Acquisition and Processing on Electron Beam Fusion Accelerators. IEEE Transactions on Nuclear Science Vol.NS-25, No. 1, February 1978
  6. Thesis on "7912ADM" upgrade version
  7. Improvement of the Bandwidth of the Transient Digitizers in the LIDAR Thomson Scattering Diagnostic on JET. Risø National Laboratory, Denmark, June 1990 discussing how removing the delay line and replacing the compensation circuit can boost the 7912AD+7A29 combination to 1.1 GHz bandwidth
  8. 7912 GPIB examples

Links

See Also

Pictures

R7912

7912AD