571: Difference between revisions

From TekWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 41: Line 41:


===Collector Supply===
===Collector Supply===
The collector supply is a floating programmable power supply.
The collector supply is a floating programmable regulated power supply.
The output voltage, output polarity, and series resistance are all  
The control and data signals entering the collector supply are isolated by relays and optoisolators.
controlled by bits sent by the 8048 processor.
The output voltage, output polarity, and series resistance are all set by bits sent by the 8048 processor.
The collector supply is linear, using a Darlington configuration of three NPN transistors.
An Analog Devices DAC08 DAC, which is floating along with the rest of the collector supply,
 
generates the programmable collector voltage.
The digital DAC value sent by the microprocessor passes through optoisolators before being fed to the DAC.
The collector supply is linear, basically a discrete power op-amp.
The output stage is a Darlington configuration of three NPN transistors.
When supplying 2 A to the DUT at 0.5V, the power dissipation in the collector supply output transistors
is around 100 watts.
In contrast, curve tracers that use rectified mains frequency from a transformer, e.g., the [[576]],
dissipate very little internally even while supplying high current to the DUT.


==Specifications==
==Specifications==

Revision as of 11:42, 24 June 2023

Tektronix 571
Curve tracer
Tektronix 571 Curve tracer

Produced from 1989 to 1995

Manuals
Manuals – Specifications – Links – Pictures

The Tektronix 571 is a curve tracer. It can show the characteristic curves of PNP and NPN bipolar transistors, both N- and P-channel FETs, diodes (including Zener types), and SCRs. It is a microprocessor-controlled device, and user interaction is done through navigation keys. A typical sweep run takes about five seconds. It has a parallel printer output that can print graphics on Epson-protocol dot-matrix printers.

One nice feature of the 571 is its ability to store a set of reference curves, which are displayed as a background for subsequent measurement runs. This makes comparison and matching between devices easy.

The 571 has a well-designed field of parallel-connected sockets to accommodate many different semiconductor package types. Details can be seen in the photographs below.

Because the nature of electronic component testing involves exposing components to sometimes hazardous voltages and operating conditions, at certain settings the 571 will refuse to start a measurement cycle until the user lowers the built-in hinged plastic shield over the socket area. This is to protect the user from both high voltage and high-velocity flying debris in the event of a catastrophic component failure during a test run. The shield is made of a thick high-impact plastic, and the 571 has an internal microswitch so its firmware knows if the shield is in the up or down position.

Internals

The Tektronix 571 is a computer-based instrument. Software running in an Intel 8048 microcontroller performs the I-V curve measurements by sending commands to programmable base and collector power supplies, and reading the digitized that results. Software provides the user interface, reading the buttons and generating the displayed bitmap. The 571 uses an National Semiconductor NS405 Display/Terminal Management Processor IC for generating the video waveform that is displayed. The video waveform is fed to a monochrome raster CRT monitor.

Collector Supply

The collector supply is a floating programmable regulated power supply. The control and data signals entering the collector supply are isolated by relays and optoisolators. The output voltage, output polarity, and series resistance are all set by bits sent by the 8048 processor. An Analog Devices DAC08 DAC, which is floating along with the rest of the collector supply, generates the programmable collector voltage. The digital DAC value sent by the microprocessor passes through optoisolators before being fed to the DAC. The collector supply is linear, basically a discrete power op-amp. The output stage is a Darlington configuration of three NPN transistors. When supplying 2 A to the DUT at 0.5V, the power dissipation in the collector supply output transistors is around 100 watts. In contrast, curve tracers that use rectified mains frequency from a transformer, e.g., the 576, dissipate very little internally even while supplying high current to the DUT.

Specifications

Key Specifications

Collector Sweep 0.5 V to 50 V (both polarities) with 2 A drive, 0.5 V to 100 V with 1 A drive
Vertical Display plots collector current from 5 μA per division to 200 mA per division with 2% accuracy
Horizontal Display plots collector voltage with 2% accuracy
CRT raster scan, 640x336 resolution, monochrome, magnetic deflection, CRT made by Philips
Line voltage 100 to 240 VAC, 50 or 60 Hz
Power 240 W max − Actual consumption based on transistor being tested
Size (W/L/H) 14.6" × 13.8" × 8.1"
Weight 9 kg (19.8 lb)

Pictures