33,143
edits
No edit summary |
(typos) |
||
Line 3: | Line 3: | ||
The 1S1 can operate in normal self-swept mode or an external sweep signal can be applied to the 1S1. With the 1S1's internal sweep disabled, the horizontal-in and vertical-out connections can be used so the the 1S1 acts as a lookup table, a mapping of x to y, a function. | The 1S1 can operate in normal self-swept mode or an external sweep signal can be applied to the 1S1. With the 1S1's internal sweep disabled, the horizontal-in and vertical-out connections can be used so the the 1S1 acts as a lookup table, a mapping of x to y, a function. | ||
The 661 also has | The 661 also has this capability, in its "A vert/B horiz" mode, which is like X-Y mode for a sampler. In this mode, the horizontal-in voltage controls to the time after the trigger event when the sample should be taken, and the vertical-out voltage corresponds to the voltage measured at that instant. This allows a waveform to be digitized using an arbitrarily slow DAC to generate the horizontal voltage and ADC to read the sampled output. But perhaps more importantly, by setting a constant horizontal-in voltage, it allows the output signal at one equivalent time instant to be processed in the time domain. For example, this allows the voltage to be low-pass filtered, so that it can be more accurately measured. The other reason why one might want a signal the consists of multiple sequential measurements of the same equivalent-time instant is that statistics can be calculated on these observations. For example, one might want to know, when testing a logic gate, what is the propagation delay such that 99.9% of the transitions happen faster than this. The horizontal-in voltage can also be produced, in "manual" mode, by setting a knob on the 1S1. |