517: Difference between revisions

Jump to navigation Jump to search
493 bytes added ,  8 January 2022
no edit summary
No edit summary
(14 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{Oscilloscope Sidebar |  
{{Oscilloscope Sidebar  
title=Tektronix 517 |
|manufacturer=Tektronix
summary=50 MHz scope |
|series=
image=Tek 517 front.jpg|
|model=517  
caption= Tektronix 517 front view |
|summary=50 MHz scope  
introduced=1951 |
|image=Tek 517 vt.jpg
discontinued=1965 |
|caption=Tektronix 517 at VintageTek Museum
manuals=
|introduced=1951  
* [http://w140.com/tek_517_calibration.pdf Tektronix 517 Calibration Guide]
|discontinued=1965  
* [http://w140.com/tek_517_early.pdf Early 517 Manual (PDF)]
|designers=Logan Belleville;Dick Rhiger
* [http://w140.com/tek_517_early_OCR.pdf Early 517 Manual (PDF, OCR)]
|manuals=
* [http://w140.com/tek_517_517a_v2.pdf Later Manual Covering the 517 and 517A (PDF)]
* [[Media:IM-517.pdf|Early 517 Manual (IM-517)]] (PDF, OCR)
* [http://w140.com/tek_517_517a_OCR.pdf Later Manual Covering the 517 and 517A (PDF, OCR)]
* [[Media:070-229.pdf|Later Manual (070-229) Covering the 517 and 517A]] (PDF, OCR)
 
* [[Media:Tek_517_calibration_guide.pdf|Tektronix 517 Calibration Guide]] (PDF, OCR)
* [[Media:tek_517_calibration_guide.pdf|Tektronix 517 Calibration Guide (PDF, OCR)]]
}}
}}
The '''Tektronix 517''' is a 50 MHz scope [[introduced in 1950]] or [[introduced in 1951|1951]].
The '''Tektronix 517''' is a 50 MHz scope [[introduced in 1950]] or [[introduced in 1951|1951]].
The power supply is an external box, like the [[507]], [[551]] and [[555]].
The power supply is an external box, like the [[507]], [[551]] and [[555]].
The 517 does not take plug-ins.
The 517 does not take plug-ins. There is also a 517A (1955-1965).
There is also a 517A (1955-1965).


==Specifications==
{{BeginSpecs}}
The power consumption of a 517 is 1250 watts.
{{Spec | Bandwidth | AC (?) to 50 MHz (−3 dB)  }}
The indicator unit weighs 76 pounds and the external
{{Spec | Rise time | 7 ns }}
power supply weighs 72 pounds
{{Spec | Input Impedance | 170 Ω }}
{{Spec | Sweep Rates | 10 ns/div to 20 μs/div}}
{{Spec | Calibrator | ~25 kHz, 150 mV<sub>p-p</sub> to 50 V<sub>p-p</sub>, 4% accuracy }}
{{Spec | Power consumption | 1250 W }}
{{Spec | Weight  |
* Indicator: 76 pounds
* External Power Supply: 72 pounds }}
{{EndSpecs}}


=== Historic Context ===
=== Historic Context ===
The 517 closely resembles a scope that Tektronix developed under a contract  
The 517 closely resembles a scope that Tektronix developed under a contract for the US military during 1949 and 1950.  (See link below.)
for the US military during 1949 and 1950.  (See link below.)


Tektronix engineer [[Frank Hood]] recollects:
Tektronix engineer [[Frank Hood]] recollects:
<blockquote>
<blockquote>
"A lot of progress was made in 1949 and 1950.  
"A lot of progress was made in 1949 and 1950.  
Work was well underway by [[Logan Belleville]], [[Dick Rhiger]] and [[Howard Vollum|Howard]]
Work was well underway by [[Logan Belleville]], [[Dick Rhiger]] and [[Howard Vollum|Howard]] on the high speed scope, the 517.
on the high speed scope, the 517.
 
This used some brand new circuitry, [[distributed amplifier|distributed (or chain) amplifiers]],
This used some brand new circuitry, [[distributed amplifier|distributed (or chain) amplifiers]], using 16 to 20 tubes in each stage to get the power needed to handle the high frequencies.
using 16 to 20 tubes in each stage to get the power needed to handle the high frequencies.
 
Our best prediction at that time was that there were only about 30 to 50 people in the whole world
Our best prediction at that time was that there were only about 30 to 50 people in the whole world who had need of a scope with 60 to 100 megacycle bandwidth.
who had need of a scope with 60 to 100 megacycle bandwidth.
As it turned out, when we brought out a higher speed scope, people were able to design equipment of greater bandwidth and needed even faster measuring instruments.
As it turned out, when we brought out a higher speed scope,
The cycle was regenerative. Having faster, more accurate measuring tools created a demand for even more measuring tools.
people were able to design equipment of greater bandwidth and needed even faster measuring instruments.
 
The cycle was regenerative.
Having faster, more accurate measuring tools created a demand for even more measuring tools.
We eventually sold several thousand of this instrument."
We eventually sold several thousand of this instrument."
</blockquote>
</blockquote>
Line 47: Line 49:
==Internals==
==Internals==
=== External Power Supply ===
=== External Power Supply ===
The external power supply and oscilloscope are connected by a removable cable
The external power supply and oscilloscope are connected by a removable cable with a Jones plug on one end and a Jones socket on the other end.   
with a Jones plug on one end and a Jones socket on the other end.   
Units with serial numbers from 101 through 1739 use 12-pin Jones 2412 connectors; after that it is a 16-pin Jones connector.  
Units with serial numbers from 101 through 1739 use 12-pin Jones 2412 connectors;  
''(Was a 16-pin Jones connector used or did they go directory from the 12-pin Jones connector to the 16-pin Amphenol power connector used by the [[555]]?)''
after that it is a 16-pin Jones connector.  
''(Was a 16-pin Jones connector used or did they go directory from the 12-pin Jones connector
to the 16-pin Amphenol power connector used by the [[555]]?)''


The voltages on the 12-pin connector are:
The voltages on the 12-pin connector are:
Line 62: Line 61:
* Pin 5: +150 V, regulated
* Pin 5: +150 V, regulated
* Pin 6: Ground
* Pin 6: Ground
* Pin 7: -250 V, regulated
* Pin 7: −250 V, regulated
* Pin 8: +180 V, unregulated
* Pin 8: +180 V, unregulated


Later 517A units uses the same cable as the [[551]] and [[555]].   
Later 517A units uses the same cable as the [[551]] and [[555]].   
Although they use the same cable, they are completely incompatible.
Although they use the same cable, they are completely incompatible – the voltages are different.   
The voltages are different.  The 517's external power supply
The 517's external power supply provides +750 V to the indicator unit.   
provides +750 V to the indicator unit.  The highest voltage provided by
The highest voltage provided by the 555 and 551 power supplies is +500 V.
the 555 and 551 power supplies is +500V. Also, for example, the 517A
Also, for example, the 517A has +180 V on pin 8 of the 16-pin connector while the 555 and 551 have -150 V on pin 8.   
has +180 V on pin 8 of the 16-pin connector while the 555 and 551 have
-150 V on pin 8.   


=== Distributed Amplifiers ===
=== Distributed Amplifiers ===
The 517 makes extensive use of the [[distributed amplifier]] concept.   
The 517 makes extensive use of the [[distributed amplifier]] concept.   
Originally the [[5XP]] CRT was used,  
Originally the [[5XP]] CRT was used, which has 38 V/cm vertical deflection sensitivity when operated with 24 kV acceleration voltage.  
which has 38 V/cm vertical deflection sensitivity when operated with 24 kV acceleration voltage.  
''(Is this correct?  It doesn't agree with the 5XP datasheet.)''
''(Is this correct?  It doesn't agree with the 5XP datasheet.)''


Since the vertical sensitivity at the input connector is 0.1 V/cm, we can calculate that  
Since the vertical sensitivity at the input connector is 0.1 V/cm, we can calculate that the voltage gain from the input connector to the vertical deflection plates is 380.  
the voltage gain from the input connector to the vertical deflection plates is 380.  
For 4 cm deflection, a 152 V differential output swing is required.  There are DC blocking capacitors at various places in the signal path.   
For 4 cm deflection, a 152 V differential output swing is required.  There are DC blocking  
The slowest sweep is 20 μs/cm.  The 517 is not designed for low-frequency use.  
capacitors at various places in the signal path.  The slowest sweep is 20 μs/cm.  The 517 is  
not designed for low-frequency use.  


The vertical signal path is as follows:
The vertical signal path is as follows:
Line 97: Line 91:
* Gain Stage 5: differential, twelve sections, distributed, [[6CB6]] pentodes
* Gain Stage 5: differential, twelve sections, distributed, [[6CB6]] pentodes


There is a trigger amplifier in the 517 which can take its input from  
There is a trigger amplifier in the 517 which can take its input from an external source, or from the trigger pickoff in the vertical pre-amp, or from the internal rate generator circuit.   
an external source, or from the trigger pickoff in the vertical pre-amp, or  
The trigger amplifier circuit has five stages:
from the internal rate generator circuit.  The trigger amplifier circuit has
five stages:


* Phase Splitter: [[6J6]] dual-triode connected as a differential amplifier
* Phase Splitter: [[6J6]] dual-triode connected as a differential amplifier
Line 111: Line 103:
The 517 uses 24 kV total acceleration voltage on the CRT.   
The 517 uses 24 kV total acceleration voltage on the CRT.   
This is generated by the [[420|Type 420]] High Voltage Power Supply subsystem in the 517.   
This is generated by the [[420|Type 420]] High Voltage Power Supply subsystem in the 517.   
It uses a 1.8 kHz oscillator to produce the high voltage,
It uses a 1.8 kHz oscillator to produce the high voltage, unlike other Tek scopes which use HV oscillators in the ultrasonic range.
unlike other Tek scopes which use HV oscillators in the ultrasonic range.


The 517 has a switch on the front panel that selects between normal vertical sensitivity,
The 517 has a switch on the front panel that selects between normal vertical sensitivity, which uses the full 24 kV acceleration voltage,  
which uses the full 24 kV acceleration voltage,  
and "X2" mode, which drops the acceleration voltage to 12 kV for a doubling of the vertical sensitivity.   
and "X2" mode, which drops the acceleration voltage to 12 kV for a doubling of the vertical sensitivity.   
The control works by switching the voltage division ratio of the feedback to the error amplifier in the HV supply.
The control works by switching the voltage division ratio of the feedback to the error amplifier in the HV supply.
Line 121: Line 111:
== CRTs Used in the 517 ==
== CRTs Used in the 517 ==
517 units with serial numbers 101 through 925 use the [[5XP|DuMont 5XP CRT]].   
517 units with serial numbers 101 through 925 use the [[5XP|DuMont 5XP CRT]].   
Later units use a Tek-made CRT, the T517PxH/T54PxH, where "x" designates
Later units use a Tek-made CRT, the [[T517|T517PxH/T54PxH]], where "x" designates the [[phosphor]] type: 1, 2, 7, 11, or 16.   
the [[phosphor]] type: 1, 2, 7, 11, or 16.  The 5XP used [[multi-band acceleration]]  
The 5XP used [[multi-band acceleration]] and has three anode connections, at 6.6 kV, 13.3 kV, and 20 kV.   
and has three anode connections, at 6.6 kV, 13.3 kV, and 20 kV.   
The Tek-made CRT has just one anode connection, 20 kV, and has 15 V/cm sensitivity at 24 kV total acceleration voltage.
The Tek-made CRT has just one anode connection, 20 kV,
and has 15 V/cm sensitivity at 24 kV total acceleration voltage.


The 517 might be the only Tektronix instrument to have a part made of wood.
The 517 might be the only Tektronix instrument to have a part made of wood - a support for a large electrolytic capacitor, C826, which filters probe power.
There is a wood support for a large electrolytic capacitor, C826, which filters
(The [[437-0065-00‎‎]] carrying case also has wood parts.)
the probe power.


== Comparison of 517 with 547 ==
== Comparison of 517 with 547 ==
In 1965, following the introduction of the 50 MHz [[547]], the 517 was discontinued.
In 1965, following the introduction of the 50 MHz [[547]], the 517 was discontinued.
The 547 uses a non-distributed solid-state vertical amplifier,
The 547 uses a non-distributed solid-state vertical amplifier, [[tunnel diodes|tunnel diode]] triggering, and a 6.5 V/cm CRT,  
[[tunnel diodes|tunnel diode]] triggering, and a 6.5 V/cm CRT,  
thereby achieving good performance with lower cost, size, weight, complexity, and power consumption than the 517.
thereby achieving good performance with
lower cost, size, weight, complexity, and power consumption than the 517.


 
{| border="1" class="wikitable" style="text-align: center;"
{| border="1" style="text-align: center;"
|+ Comparison of 517A with 547
|+ Comparison of 517A with 547
! scope="col" |
! scope="col" |
! scope="col" | 517A
! scope="col" width="33%" | 517A
! scope="col" | 547 with 1A1
! scope="col" width="33%" | 547 with 1A1
|-
|-
! scope="col" | Bandwidth
! scope="col" | Bandwidth
| 50MHz
| 50 MHz
| 50MHz
| 50 MHz
|-
|-
! scope="col" | Sensitivity
! scope="col" | Sensitivity
Line 161: Line 145:
|-
|-
! scope="row" | Weight
! scope="row" | Weight
| 148 pounds
| 148 lb / 67 kg
| 71 pounds
| 71 lb / 32 kg
|-
|-
! scope="row" | Complexity
! scope="row" | Complexity
Line 169: Line 153:
|-
|-
! scope="row" | Power Consumption
! scope="row" | Power Consumption
| 1250 watts
| 1250 W
| 510 watts
| 510 W
|}
|}


Some 517 modification kits are listed on page 181 of the 1959 catalog.
Some 517 modification kits are listed on page 181 of the 1959 catalog.


Tek sold the [[108]] pulse generator as a tool for maintaining the 517,
Tek sold the [[108]] pulse generator as a tool for maintaining the 517, since a fast scope requires a fast pulse generator to test it.
since a fast scope requires a fast pulse generator to test it.


The [[P170CF]] cathode-follower probe was designed for use with the 517.
The [[P170CF]] cathode-follower probe was designed for use with the 517.


== Links==
== Links==
* [http://w140.com/tektronix_milspec_high_speed_scope_OCR.pdf Final Report on Tektronix MILSPEC High Speed Scope (PDF, cleaned up and OCR)]
* [https://w140.com/tektronix_milspec_high_speed_scope_OCR.pdf Final Report on Tektronix MILSPEC High Speed Scope (PDF, cleaned up and OCR)]
* [http://w140.com/tektronix_milspec_high_speed_scope.pdf Final Report on Tektronix MILSPEC High Speed Scope (5MB, PDF, cleaned up)]  
* [https://w140.com/tektronix_milspec_high_speed_scope.pdf Final Report on Tektronix MILSPEC High Speed Scope (5MB, PDF, cleaned up)]  
* [http://w140.com/MILSPEC_High_Speed_Scope.pdf Final Report on Tektronix MILSPEC High Speed Scope (220MB, PDF, original)]
* [https://w140.com/MILSPEC_High_Speed_Scope.pdf Final Report on Tektronix MILSPEC High Speed Scope (220MB, PDF, original)]
* [http://w140.com/flynn_johnson_fast_gray_wedge.pdf Flynn and Johnson "Fast Grey Wedge Analyzer for High Input Rates"]
* [https://w140.com/flynn_johnson_fast_gray_wedge.pdf Flynn and Johnson "Fast Grey Wedge Analyzer for High Input Rates"]
* [http://w140.com/thomas_and_hearst-measurement_of_exploding_wire_energy.pdf Thomas and Hearst, "An Electronic Scheme for Measurement of Exploding Wire Energy"]
* [https://w140.com/thomas_and_hearst-measurement_of_exploding_wire_energy.pdf Thomas and Hearst, "An Electronic Scheme for Measurement of Exploding Wire Energy"]


==Pictures of 517 ==
==Pictures of 517 ==
Line 242: Line 225:
Tek517 Scope04.jpg
Tek517 Scope04.jpg
Tek517 Scope05.jpg
Tek517 Scope05.jpg
20160930 153834.jpg
Tek 517 lvps internal.jpg
517 PowerSupply01.jpg
517 PowerSupply01.jpg
517 Cable PS-Scope.jpg
517 Cable PS-Scope.jpg
517 Cable Conn.jpg
517 Cable Conn.jpg
517 Cable Conn2.jpg
517 Cable Conn2.jpg
Tek 517 with 5xp crt.jpg|517 with [[5XP]] CRT
Tek 517 right internal 5xp.jpg|517 with [[5XP]] CRT
Tek 517 early rear chassis.jpg
Tek 517 early bottom.jpg
Tek 517 early bottom rear.jpg
Tek 517 early bottom front.jpg
Tek 517 crt gun connections.jpg
</gallery>
</gallery>


Line 255: Line 245:
6_57.JPG |517A with cart
6_57.JPG |517A with cart
</gallery>
</gallery>
{{Parts|517}}
{{Parts|517A}}


[[Category:Monolithic tube scopes]]
[[Category:Monolithic tube scopes]]
[[Category:Introduced in 1950]]
[[Category:Introduced in 1950]]

Navigation menu