7854/Repairs

Revision as of 03:15, 16 August 2021 by Peter (talk | contribs)

Mask ROM deterioration

In the following, we attempt to outline all of the possible remediation techniques to address the mask ROM problem that plagues 7854 scopes with the original ROM board. Later versions (Serial B100000 and above) have a combined RAM/ROM/Backup board which occupied the larger RAM slot, forward of the ROM slot. Note the serial number delineation is mentioned in the service manual, though there is at least one report of a user with a slightly later serial (#B100078) that had the original configuration.

The ROM board, A31, contains:

  • 16k words of ‘base code’ starting at address 0000, spanning across (4) 8k byte mask ROMs from Mostek (upper left)
  • 2k words of patch code 0x8000, spanning (2) 2k byte EPROMs (upper right)
  • A Field Programmable Logic Array (FPLA) in the lower left

The FPLA watches all 15 address lines and outputs 6 address lines and a flag. When an address is called that has a newer segment of code on the EPROMs, the FPLA decodes the incoming address, puts an altered address on the board’s bus, and sets a flag that switches the chip selects from the main ROM to the patch EPROMs. The patch itself is only a few words, enough to jump to another part of the EPROM where a new segment of code resides. The EPROMs also contains ‘normal’ code that is directly addressed.

The mask ROMs are

  • U100: 160-0408-00 / 160-0408-01
  • U110: 160-0409-00 / 160-0409-01
  • U200: 160-0410-00 / 160-0410-01
  • U210: 160-0411-00 / 160-0411-01

The difference between the -00 and -01 versions appears to be only the change in vendor from Mostek to Motorola. The contents are identical. The FPLA & patch EPROMs have -00, -01, and -02 versions. The FPLA & EPROM versions must match each other.

Option 1: Programming pin-compatible EPROMs with original images

This approach uses the original images, and relies on a working FPLA, and matching patch EPROMs. You can use either (4) MCM68766C35 or CY7C64 EPROMs, and the -00 images on the ROM images page. In the case of the MCM68766 EPROMs, the 'C35' suffix is important, as it denotes the access speed. Several people have confirmed that 350 ns EPROMs are necessary and have reported intermittent issues in using 400 ns chips. These EPROMs are out of production, and are not programmable on inexpensive USB programmers.

This is a good option for initial troubleshooting, but as it relies on a working FPLA, may still be prone to future issues. The stability of the FPLAs is somewhat unknown, though there have been reports of them being a source of trouble.

Option 2: Programming pin-compatible EPROMs with patched images

Most solutions that have been described elsewhere involve the use of patched images, which already include the patch terms. This mostly obviates the need for the FPLA (in fact it must be removed unless you have a -02 version), but still requires the -02 patch EPROMs.

You can again use either (4) MCM68766C35 or CY7C64 EPROMs to replace the mask ROMs, and if you have anything other than -02 version EPROMs, you must replace those as well with (2) 2716-1 EPROMs.

This file from David DiGiacomo contains the images required.

Option 3: Programming 28 pin EPROMs with combined images

This is the solution documented on the Vintage Tek Museum’s page, and requires (2) 27128A 16k EPROMs, which are also out of production, but easier to acquire and program. Using a pair of 16k EPROMs covers the address space of 4 original 8k ROMs. These require adapter sockets, which may or may not interfere with the ability to retain the GPIB board, depending on who you ask. As with the above option, if you have anything other than -02 version EPROMs, you must replace those as well with (2) 2716-1 EPROMs. You must also rewire A13 & Chip Select lines now that the address space is handled by 2 chips instead of 4. From the Tek Museum’s page:

Wire A13 by connecting both 27128 pin 26 to U425 pin 1.
Wire new CS. Start by disconnecting the existing CS from U200 and U210 pin 20. We did this by simply not connecting pin 22 in the EPROM adapter (which connects to pin 20 on the PCB) and then flying a new CS wire directly to pin 22 of the EPROM:
Option 1: Add an unused gate by connecting both 27128 U200 and U210 pin 22 to U225 pin 11. Connect U320 pin 13 to U225 pins 12 and 13
Option 2: (We have not implemented this so consider it unverified) Cut and lift U420 pins 9 and 13. They will float high or you can connect these pins to +5V.

This file from Pentti Haka contains the images required.

Option 4: Build a new board

Several people have built replacement boards that use modern programmable devices. Holger Lübben produced a new version of the combined ROM Diagnostic board.


Custom ICs used in the 7854

Page Model Part nos Description Designers Used in
155-0009-00 M001 155-0009-00 horizontal lockout logic Les Larson 7504 7514 7704 7704A R7704 7834 7844 7854 7904 R7903 7904A 7934 7104
155-0010-00 M004 155-0010-00 chop divider and blanking Les Larson 7504 7514 7704 R7704 7704A 7834 7854 7904 R7903 7904A 7934 7104
155-0011-00 M012 155-0011-00 clock and chop blanking Les Larson 485 7313 7403N R7403N 7503 7504 7514 7603 AN/USM-281C 7613 7623 7623A 7633 7704 R7704 7704A 7834 7844 7854 7904 7904A R7903 R7912 7912AD 7912HB 7934 7104 R7103 AN/USM-281C
155-0012-00 M015 155-0012-00 Z Axis Logic Les Larson 485 7504 7514 7704 R7704 7704A 7834 7844 7854 7904 R7903 7904A R7912 7934 7912AD 7912HB 7104 R7103
155-0013-00 M022 155-0013-00 155-0013-01 horizontal chop and alt. binary Les Larson 7504 7514 7704 R7704 7704A 7834 7854 7904 7904A R7903 7934 7104
155-0014-01 M019D 155-0014-00 155-0014-01 analog-to-decimal converter Barrie Gilbert 7000 series readout system 7854 7934 7J20 7L5 P7001
155-0015-01 M020F 155-0015-00 155-0015-01 analog data switch Barrie Gilbert 7000 series readout system 7854 7934
155-0017-00 M025 155-0017-00 5 MHz decade counter Barrie Gilbert 7000 series readout system 7854 7934
155-0021-00 M029C 155-0021-00 155-0021-01 timing generator Les Larson 7000 series readout system 7854 7934
155-0022-00 M036 155-0022-00 155-0022-01 analog multiplexer Gene Andrews 147 148 149 335 468 1430 1441 1461 1900 1910 2220 2221 2230 5223 5403 5440 5441 5443 5444 5A38 7313 7403N 7503 7504 7514 7603 AN/USM-281C 7613 7623 7623A 7633 7704 R7704 7704A 7834 7844 7854 R7912 7912AD 7912HB 7904 R7903 7904A 7934 7A12 7A18 7A18A 7A18N 7B52 7B53N 7D10 7D11 7D12 NT-7000 P7001
155-0059-00 M077A 155-0059-00 HF amplifier Thor Hallen 7834 7844 7854 7904 R7903 R7912 7912AD
155-0064-00 H074A 155-0064-00 vertical output amplifier 7834 7854 7904 R7903 7912AD 485 PG502
155-0067-02 M091B 155-0067-00 155-0067-02 155-0067-03 SMPS controller Joe Burger Gene Andrews 7704A 7834 7844 7854 7904 R7903 7904 7904A 7934 R7912 7912AD 7912HB 7934 7104 R7103 308 434 485 690 P7001
155-0078-00 M084 155-0078-xx 155-0273-00 155-0274-00 broadband amplifier John Addis 464 465 466 468 475 475A 475M 485 7834 7844 7854 7904 R7903 R7912 7912AD 7912HB 7104 7A16A 7A16P 7A24 7A26 7A42 067-0587-01 067-0680-00 AM503 PG502 PG508 DC510 DC5010 FG5010
155-0167-01 H710 155-0167-01 4-bit D/A converter 7854 ADC820T
155-0187-00 M207 155-0187-00 ft doubler amplifier 7854
155-0206-00 H752 155-0206-00 channel switch 7854

Custom ICs used in the 7000 series readout system

Page Model Part nos Description Designers Used in
155-0014-01 M019D 155-0014-00 155-0014-01 analog-to-decimal converter Barrie Gilbert 7000 series readout system 7854 7934 7J20 7L5 P7001
155-0015-01 M020F 155-0015-00 155-0015-01 analog data switch Barrie Gilbert 7000 series readout system 7854 7934
155-0017-00 M025 155-0017-00 5 MHz decade counter Barrie Gilbert 7000 series readout system 7854 7934
155-0018-00 M026 155-0018-00 zeros logic control Les Larson 7000 series readout system 7934
155-0019-00 M027 155-0019-00 decimal point and spacing control Les Larson 7000 series readout system
155-0020-00 M028 155-0020-00 output assembler Les Larson 7000 series readout system
155-0021-00 M029C 155-0021-00 155-0021-01 timing generator Les Larson 7000 series readout system 7854 7934
155-0023-00 M160 155-0023-00 character generator (0 1 2 3 4 5 6 7 8 9) Barrie Gilbert 7000 series readout system
155-0024-00 M161 155-0024-00 character generator (↓ < I / + - + C Δ >) Barrie Gilbert 7000 series readout system
155-0025-00 M162 155-0025-00 character generator (m μ n p X K M G T R) Barrie Gilbert 7000 series readout system
155-0026-00 M163 155-0026-00 character generator (S V A W H d B c Ω E) Barrie Gilbert 7000 series readout system
155-0027-00 M164 155-0027-00 character generator (U N L Z Y P F J Q D) Barrie Gilbert 7000 series readout system